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In this version I give an improvement of the proof of step 3, and I give an
important note on the curve of the function Ss,, :

Note : This result of step 3 can be noticed in the graphs of S, :
If the curve of Ss,, touches the segment |1,2m[ at a point p, then
p is a prime number!!
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I- INTRODUCTION

In 1742, in a letter to Leonhard Euler, Christian Goldbach conjectured [5] :
Any even integer greater than 3 can be written as the sum of two prime
numbers.

De Polignac’s conjecture, stated by Alphonse De Polignac in 1849 [6], is as
follows : Any non-zero even number 2m is equal to the difference of two
consecutive prime numbers in an infinite number of ways.

Inspired by the function ) which I introduced in the article [2], T introduce
the function @ which, also like (), allows to find the prime numbers .

The study of the function Son(z) = ©?2(2) + G?*(2m — z) will allow me
to demonstrate the Goldbach conjecture. And the study of the function :
Som(2) = ©?(2)+®?(2m+z) will allow me to demonstrate the De Polignac’s
conjecture.

In this article I assume known the functions zeta (, Gamma [' : z
Jort*=Le~t dt and their properties (see [3] and [4]).

II- THE PROOF OF THE GOLDBACH CONJECTURE :

Théoréme : [The Goldbach conjecture ]

Any even integer greater than 3 can be written as the sum of two prime
numbers.

Proposition 1. [2] :

Let ®(z) = ((—295).

z/2
If z € N* then ©(z) = 0 <= z is a prime number

Proof :
It follows from Wilson’s theorem [1] - which shows that p is prime if and only
(p—1)!'=—1 mod p - and the fact that the trivial zeros of  are —2N*.

Prolzosition 2
Let ©(z) = sin(Z2* 7).

If e N* then ©® =0 <z is a prime number
Proof : Inspired by proposition 1

Proposition 3 : If m € N*\ {1} |, then the equation :

I'(z)+1

I'2m — 1
(2m — z) + -

™) + sin®( ST,

) =0

sin?(

admits at least one solution z in N with z and 2m — z are primes.
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FIGURE 1 — S(z) for m=8
Proof of Proposition 3 :
Consider the restriction to R™ of the function :

I'(2) + 17r) N Sm2<F(2m —2)+1
z 2m — z

S(z) = sin®( )

I'(2m—z)+1
2m—z

1 step : If the function S(2) = sin?("2* 1) 4 sin?(
extremum at the point p # 2 with p is prime :

7) has a local

In this case %(p) = 0 and according to proposition 2 we have @(p) =
(D@41

sin(=-—=m) =0

We have :

d r 1 r 1 2(2) — (T 1 C(2m — 2) + 1

E(Z)=278in( (2) + m)cos( (2) + 7T>Z (z) = ('(2) + )+27Tsz'n( (2m — z) + )

dz o z 2? m—z
cos(REM =D+ 1 —(m = T — 2) + ([2m —2) + 1)

2m —z (2m — z)

But as _(Qm_p)r/(z(rg,xgz(r(2m_p)+l) # 0 (car —2I"(z) + I['(z) + 1) vanishes in

4
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F(22mmip;r1 ) = 0, because otherwise F(?mmif_p;“ e

N+ 1,and therefore p € 2N, which is not the case, then szn(mmi_zgﬂw) =0,
and from proposition 2, we conclude that 2m — p is prime.

2 step : Let us show the existence of local minimums z in |1, m[ as soon as
m25,withS(z):O,@€Nand%eN

First S admits a local extremum at a point z €]1,m[if m > 5 : Indeed :
S(2) = 1 — (cos(2XE2 1) + cos(2D2n—2H )

If S does not admit a local extremum at a point z €]1,m[ , then T(z) =
(003(2@@ + 003(2%@) does not admit a local extremum in z €
]1,m[, and in this case, by symmetry of the curve of S with respect to the

line z = m, we have 9 (z ( ) <0, Vz €]l,m[or 4L(z) <0, Vz €]m,2m — 1] .

By symmetry suppose that 2C(z) <0, Vz €]1,m] :

And since we cannot have cos(

dT’ r 1 I'"(z) — (I 1 I'(2m — 1
—(z) = —2msin( (2) + 7T)Z (2) = (T(z) +1) — 2msin( (2m —z) + )
dz z 22 m—z

—(2m—-2)I"2m —2)+ (T2m —2) +1)

2
(2m — 2)
v r (2m—2)T (2m—2z)—(T'(2m—2)+1)

By growth of the function % in € [3, +oo[ we have : s

z

1, Vz € [3,m], so

(2m—2)T" (2m—z)—(T'(2m—2z)+1)

(2m—z) .
m) () —(T(2) 1) ¥z € [3,m]

22

r 1 I'2m — 1
(2) + ) > sin( (2m —z) +
z 2m — z

sin(

And for z such that sm(% ) = 1 (z exists because the function L(x) =

r(x::1)+1 B F(m92+1 check L(z) > 1,¥x > 3.2 ), we will have sm(r(z )+1 ) >

1, which is absurd. And therefore S(z) = sin?(FX&2*tr) 4 sin?(H&21ty)
admits local extremum z; in € [3,m]|

If z; is not a local minimum, by taking the same reasoning by replacing 1 by
z1, we deduce the existence of a local extremum zy in [3, 21| or in |z;, m[ and
hence there is a local minimum z between z; et zs.

Let z be a minimum of S in €]1,m].

If S(z) # 0, then @W # 0, mod(m) ou %ﬂ' # 0, mod(m)

By symmetry of the curve of S with respect to the line x = m, we can assume

that &2t £ 0 mod(r) and that sin?("2H ) < sin?(NER—2 ),
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If sin?(FEH 1) < sin? (&2 1f 2 s too close to z with sin2(PEm=2)tly o

2m—=z 2m—z
sin%%w), then S(2’) < S(z) which contradicts the minimality. It fol-
lows that Si?”b%@ﬂ') = sinQ(%ﬁ)

But from the equation :

0= Zi(z) = 2775in(r<z)z+ 17T)005(F(Z)ZjL 17r) 20 _Z(QF(Z) 1 + 27rsin(r(2mm__z)z+ 17r)
COS(F(Qm —2)+ 17r) —(2m —2)I"2m — 2) + (T'(2m — 2) + 1)

2m — z (2m — z)?

We deduce that : 0 = sin( (Z)Hﬂ)cos(r(z)ﬂﬂ) and therefore 0 = sin(r(zzﬂw)

by minimality of S(z). Thus S(z) = 0 with F(Z)H € N and % eN

3 step : Let us show the existence of the roots 2 e NNJ1,m| :

The case where m € {2,3,4} is easy to see, since the Goldbach conjecture
holds in these cases.

If m > 5, from step 2, we have S(z) = 0 with : z €]|1,m|, @ € N and
I'(2m—z)+1 eN

2m—z

If2¢ N:

-Ifz=n+rwithr>2 reR"\Nandn>1
Let TG — .

we deduce : [Ty (n —i+r)[(r) + 1 =kn + kr

So I'(r) = H_”:(Tjj:r)

As r > 2, then I''(r) > 0, and therefore by deriving we will have :

n

E[[(n—i+r)>(=1+kn+kr)> J[ (n—i+r)
=1 J=1i#j;i=1

So% — +nH>ZZ 15 ZM,Which is not the case, and z € N.

—Ifz:n+7“w1th7°<2,reR*\Nandnzl

By setting z = (n+ 3) + (r — 3) we can suppose that z = n+r with r < —1,

reR - \Nandn>1

Let T'(2m—2)+1

5 = [, we deduce :
m—=z

.1__[_ Cm—n—i—r)[(1=r)+1=I2m—-—n—-1)+1(1-71)

So P(1 =) = Eamer LU

But —T"(1 —7r)) < 0if r < —1.
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So:

2m—n—1 2m—n—12m—n—1

— JI Cm—n—i—r)<—(-1+l12m—n-1)+(1-7)) > J[ CGm-n—i-r)

i=1 j=1 i#ji=1

L1 1 2m n—1 1 : .
Thus : ;— > . Y g >y 35— which is not the case,
and z € N.

Note : This result of step 3 can be noticed in the graphs of S, :
If the curve of S,,, touches the segment |1,2m[ at a point p, then
p is a prime number!!

4 step : Proof of proposition 3

The case where m € {2,3,4} is easy to see, since the Goldbach conjecture
holds in these cases.

Ifm > 5, in step 3 we have shown the existence of the roots z € NNJ1,m|
such that Z&* € N and % € N. And from proposition 2 we deduce
that z and 2m — 2 are primes with 2m = z 4+ (2m — z)

Proof of Theorem 1 :

It is deduced directly from proposition 3

IIT - The proof of Alphonse de Polignac’s conjecture [6]

Theorem 2 : The conjecture of Alphonse de Polignac [6]

Any non zero even number 2m is equal to the difference of two consecutive
prime numbers in an infinite number of ways.

Proof :

It is demonstrated by the same technique used above to prove the Goldbach
conjecture using the function S+ instead of S :

I'(2) + 17T) N SmQ(F(zm +2)+1

St (z) = sin®
(z) = sin( . T 2

)

And by showing as in steps 2, 3, above :
- The existence of an infinite number of local minimums z of ST in |1, 00|,

with S(z) =0, "&2* € N and [&2t € N

- The existence of an infinity of integer z roots of S* ( z € N ).

Then using proposition 2 - as in step 4 above - we deduce that z and 2m + z
are prime with 2m = (2m + z) — z

Corollary : [The conjecture of twin prime numbers] [7]

There exists an infinity of prime numbers p such that p + 2 is also prime.
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