

Prime numbers and the Goldbach conjecture

Mohamed Sghiar

▶ To cite this version:

| Mohamed Sghiar. Prime numbers and the Goldbach conjecture. 2020. hal-02997473v2

HAL Id: hal-02997473 https://hal.science/hal-02997473v2

Preprint submitted on 16 Nov 2020 (v2), last revised 16 Dec 2020 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Prime numbers, Goldbach's conjecture, and De Polignac's conjecture

M. SGHIAR msghiar21@gmail.com
Presented to:

Université de Bourgogne Dijon, Faculté des sciences Mirande, Département de mathématiques . Laboratoire d'analyse, 9 av alain savary 21078 , Dijon cedex, France

Tel: 0033669753590

Abstract: Inspired by the article [2], the introduction of the function $\hat{\mathbb{S}}$ whose integer zeros are the prime numbers, will allow me to demonstrate analytically the Goldbach's conjecture and the De Polignac's Conjecture [5]. Résumé: Inspiré de l'article [2], l'introduction de la fonction $\hat{\mathbb{S}}$ dont les zéros entiers sont les nombres premiers, va me permettre de démontrer analytiquement la conjecture de Goldbach et la conjecture de De Polignac [5]. Keywords: Prime Number, the Goldbach conjectures, the Gamma function, the De Polignac's Conjecture.

Code MSC: 11P32, 11N05, 11N36

In this version I give an improvement of the proof of step 3, and I give an important note on the curve of the function S_{2m} :

Note: This result of step 3 can be noticed in the graphs of S_{2m} : If the curve of S_{2m} touches the segment]1,2m[at a point p, then p is a prime number!!

I- INTRODUCTION

In 1742, in a letter to Leonhard Euler, Christian Goldbach conjectured [5]: Any even integer greater than 3 can be written as the sum of two prime numbers.

De Polignac's conjecture, stated by Alphonse De Polignac in 1849 [6], is as follows: Any non-zero even number 2m is equal to the difference of two consecutive prime numbers in an infinite number of ways.

Inspired by the function (§) which I introduced in the article [2], I introduce the function (§) which, also like (§), allows to find the prime numbers .

The study of the function $S_{2m}(z) = \hat{\mathbb{S}}^2(z) + \hat{\mathbb{S}}^2(2m-z)$ will allow me to demonstrate the Goldbach conjecture. And the study of the function : $S_{2m}(z) = \hat{\mathbb{S}}^2(z) + \hat{\mathbb{S}}^2(2m+z)$ will allow me to demonstrate the De Polignac's conjecture.

In this article I assume known the functions zeta ζ , Gamma $\Gamma: z \mapsto \int_0^{+\infty} t^{z-1} e^{-t} dt$ and their properties (see [3] and [4]).

II- THE PROOF OF THE GOLDBACH CONJECTURE:

Théorème : [The Goldbach conjecture]

Any even integer greater than 3 can be written as the sum of two prime numbers.

Proposition 1. [2]:

Let
$$\mathfrak{S}(z) = \zeta(-\frac{\Gamma(z)+1}{z/2}).$$

If $z \in \mathbb{N}^*$ then $\mathfrak{S}(z) = 0 \iff z$ is a prime number

Proof:

It follows from Wilson's theorem [1] - which shows that p is prime if and only $(p-1)! \equiv -1 \mod p$ - and the fact that the trivial zeros of ζ are $-2\mathbb{N}^*$.

Proposition 2:

Let
$$\hat{\mathbb{S}}(z) = sin(\frac{\Gamma(z)+1}{z}\pi)$$
.

If $z \in \mathbb{N}^*$ then $\hat{\mathbb{S}} = 0 \iff \mathbf{z}$ is a prime number

Proof: Inspired by **proposition 1**

Proposition 3: If $m \in \mathbb{N}^* \setminus \{1\}$, then the equation:

$$sin^{2}(\frac{\Gamma(z)+1}{z}\pi) + sin^{2}(\frac{\Gamma(2m-z)+1}{2m-z}\pi) = 0$$

admits at least one solution z in N with z and 2m-z are primes.

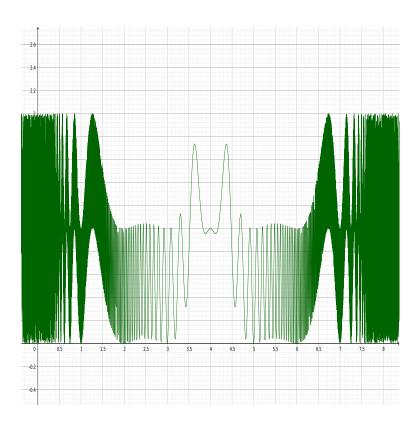


Figure 1 - S(z) for m=8

Proof of Proposition 3:

Consider the restriction to \mathbb{R}^{+*} of the function :

$$S(z) = sin^{2}(\frac{\Gamma(z) + 1}{z}\pi) + sin^{2}(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)$$

1 step : If the function $S(z)=sin^2(\frac{\Gamma(z)+1}{z}\pi)+sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$ has a local extremum at the point $p\neq 2$ with p is prime :

In this case $\frac{dS}{dz}(p)=0$ and according to proposition 2 we have $\hat{\mathbb{S}}(p)=\sin(\frac{\Gamma(p)+1}{p}\pi)=0$ We have :

$$\frac{dS}{dz}(z) = 2\pi sin(\frac{\Gamma(z) + 1}{z}\pi)cos(\frac{\Gamma(z) + 1}{z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(2m - z) + 1)}{z^2}$$

But as
$$\frac{-(2m-p)\Gamma'(2m-p)+(\Gamma(2m-p)+1)}{(2m-p)^2} \neq 0$$
 (car $-z\Gamma'(z)+\Gamma(z)+1$) vanishes in

 $z\sim 2.5\notin\mathbb{N})$, then $2sin(\frac{\Gamma(2m-p)+1}{2m-p}\pi)cos(\frac{\Gamma(2m-p)+1}{2m-p}\pi)=0$ And since we cannot have $cos(\frac{\Gamma(2m-p)+1}{2m-p}\pi)=0$, because otherwise $\frac{\Gamma(2m-p)+1}{2m-p}\in\mathbb{N}+\frac{1}{2}$, and therefore $p\in 2\mathbb{N}$, which is not the case, then $sin(\frac{\Gamma(2m-p)+1}{2m-p}\pi)=0$, and from **proposition 2**, we conclude that 2m - p is prime.

2 step: Let us show the existence of local minimums z in]1, m[as soon as $m \geq 5$, with S(z) = 0, $\frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and $\frac{\Gamma(2m-z)+1}{2m-z} \in \mathbb{N}$:

First S admits a local extremum at a point $z \in]1, m[$ if $m \ge 5$: Indeed:

 $S(z) = 1 - \frac{1}{2}(\cos(2\frac{\Gamma(z)+1}{z}\pi) + \cos(2\frac{\Gamma(2m-z)+1}{2m-z}\pi))$ If S does not admit a local extremum at a point $z \in]1, m[$, then T(z) = [1, m] $(\cos(2\frac{\Gamma(z)+1}{z}\pi)+\cos(2\frac{\Gamma(2m-z)+1}{2m-z}\pi)) \text{ does not admit a local extremum in } z \in]1,m[,\text{ and in this case, by symmetry of the curve of S with respect to the line } x=m, \text{ we have } \frac{dT}{dz}(z) \leq 0, \ \forall z \in]1,m[\text{ or } \frac{dT}{dz}(z) \leq 0, \ \forall z \in]m,2m-1[\text{ .}$ By symmetry suppose that $\frac{dT}{dz}(z) \leq 0, \ \forall z \in]1,m[\text{ :}$

$$\frac{dT}{dz}(z) = -2\pi sin(\frac{\Gamma(z) + 1}{z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} - 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{-(2m - z)\Gamma'(2m - z) + (\Gamma(2m - z) + 1)}{(2m - z)^2}$$

By growth of the function $\frac{z\Gamma'(z)-(\Gamma(z)+1)}{z^2}$ in $\in [3, +\infty[$ we have $:\frac{\frac{(2m-z)\Gamma'(2m-z)-(\Gamma(2m-z)+1)}{(2m-z)^2}}{\frac{z\Gamma'(z)-(\Gamma(z)+1)}{2}} >$ 1, $\forall z \in [3, m[$, so :

$$sin(\frac{\Gamma(z)+1}{z}\pi) \ge sin(\frac{\Gamma(2m-z)+1}{2m-z}\pi) \frac{\frac{(2m-z)\Gamma'(2m-z)-(\Gamma(2m-z)+1)}{(2m-z)^2}}{\frac{z\Gamma'(z)-(\Gamma(z)+1)}{z^2}}; \forall z \in [3,m[$$

And for z such that $sin(\frac{\Gamma(2m-z)+1}{2m-z}\pi)=1$ (z exists because the function L(x)=1 $\frac{\Gamma(x+1)+1}{x+1} - \frac{\Gamma(x)+1}{x}$ check $L(x) \geq 1, \forall x \geq 3.2$), we will have $sin(\frac{\Gamma(z)+1}{z}\pi) > 1$, which is absurd. And therefore $S(z) = sin^2(\frac{\Gamma(z)+1}{z}\pi) + sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$ admits local extremum z_1 in $\in [3, m]$

If z_1 is not a local minimum, by taking the same reasoning by replacing 1 by z_1 , we deduce the existence of a local extremum z_2 in $[3, z_1]$ or in $[z_1, m]$ and hence there is a local minimum z between z_1 et z_2 .

Let z be a minimum of S in $\in]1, m[$.

If $S(z) \neq 0$, then $\frac{\Gamma(z)+1}{z}\pi \neq 0$, $mod(\pi)$ ou $\frac{\Gamma(2m-z)+1}{2m-z}\pi \neq 0$, $mod(\pi)$ By symmetry of the curve of S with respect to the line x=m, we can assume that $\frac{\Gamma(2m-z)+1}{2m-z}\pi \neq 0$, $mod(\pi)$ and that $sin^2(\frac{\Gamma(z)+1}{z}\pi) \leq sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$.

If $sin^2(\frac{\Gamma(z)+1}{z}\pi) < sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$: If z' is too close to z with $sin^2(\frac{\Gamma(2m-z')+1}{2m-z'}\pi) < rac{\Gamma(z)}{2m-z'}\pi$ $sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$, then S(z') < S(z) which contradicts the minimality. It follows that $sin^2(\frac{\Gamma(z)+1}{z}\pi) = sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$ But from the equation:

$$0 = \frac{dS}{dz}(z) = 2\pi sin(\frac{\Gamma(z) + 1}{z}\pi)cos(\frac{\Gamma(z) + 1}{z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(2m - z) + 1)}{z^2}$$

We deduce that : $0 = sin(\frac{\Gamma(z)+1}{z}\pi)cos(\frac{\Gamma(z)+1}{z}\pi)$, and therefore $0 = sin(\frac{\Gamma(z)+1}{z}\pi)$ by minimality of S(z). Thus S(z) = 0 with $\frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and $\frac{\Gamma(2m-z)+1}{2m-z} \in \mathbb{N}$ 3 step: Let us show the existence of the roots $z \in \mathbb{N} \cap]1, m[$: The case where $m \in \{2, 3, 4\}$ is easy to see, since the Goldbach conjecture

holds in these cases.

If $m \geq 5$, from step 2, we have S(z) = 0 with $|z| \leq 1$, $m[1, \frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and $\frac{\Gamma(2m-z)+1}{2m-z} \in \mathbb{N}$ If $z \notin \mathbb{N}$:

- If z = n + r with r > 2, $r \in \mathbb{R}^+ \setminus \mathbb{N}$ and n > 1

Let $\frac{\Gamma(z)+1}{z}=k$.

we deduce : $\prod_{i=1}^n (n-i+r)\Gamma(r)+1=kn+kr$ So $\Gamma(r)=\frac{-1+kn+kr}{\prod_{i=1}^n (n-i+r)}$

As $r \geq 2$, then $\Gamma'(r) > 0$, and therefore by deriving we will have :

$$k\prod_{i=1}^{n}(n-i+r) > (-1+kn+kr)\sum_{j=1}^{n}\prod_{i\neq j;i=1}^{n}(n-i+r)$$

So $\frac{1}{r} \ge \frac{1}{-\frac{1}{h} + n + r} > \sum_{i=1}^{n} \frac{1}{n - i + r}$, which is not the case, and $z \in \mathbb{N}$.

- If z = n + r with $r < 2, r \in \mathbb{R}^+ \setminus \mathbb{N}$ and $n \ge 1$

By setting z = (n+3) + (r-3) we can suppose that z = n+r with r < -1, $r \in \mathbb{R}^- \setminus \mathbb{N} \text{ and } n \geq 1$

Let $\frac{\Gamma(2m-z)+1}{2m-z}=l$, we deduce :

$$\prod_{i=1}^{2m-n-1} (2m-n-i-r)\Gamma(1-r) + 1 = l(2m-n-1) + l(1-r)$$

So
$$\Gamma(1-r) = \frac{-1+l(2m-n-1)+l(1-r)}{\prod_{i=1}^{2m-n-1}(2m-n-i-r)}$$

But $-\Gamma'(1-r) < 0$ if $r < -1$.

So:

$$-l\prod_{i=1}^{2m-n-1}(2m-n-i-r)<-(-1+l(2m-n-1)+l(1-r))\sum_{j=1}^{2m-n-1}\prod_{i\neq j;i=1}^{2m-n-1}(2m-n-i-r)$$

Thus : $\frac{1}{1-r} \ge \frac{1}{-\frac{1}{l} + 2m - n - 1 + (1-r)} > \sum_{i=1}^{2m-n-1} \frac{1}{2m - n - i - r}$, which is not the case,

Note: This result of step 3 can be noticed in the graphs of S_{2m} : If the curve of S_{2m} touches the segment]1,2m[at a point p, then p is a prime number!!

4 step: Proof of proposition 3

The case where $m \in \{2,3,4\}$ is easy to see, since the Goldbach conjecture holds in these cases.

If $m \geq 5$, in step 3 we have shown the existence of the roots $z \in \mathbb{N} \cap]1, m[$ such that $\frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and $\frac{\Gamma(2m-z)+1}{2m-z} \in \mathbb{N}$. And from proposition 2 we deduce that z and 2m-z are primes with 2m=z+(2m-z)

Proof of Theorem 1:

It is deduced directly from **proposition 3**

III - The proof of Alphonse de Polignac's conjecture [6]

Theorem 2: The conjecture of Alphonse de Polignac [6]

Any non zero even number 2m is equal to the difference of two consecutive prime numbers in an infinite number of ways.

Proof:

It is demonstrated by the same technique used above to prove the Goldbach conjecture using the function S^+ instead of S:

$$S^{+}(z) = \sin^{2}(\frac{\Gamma(z) + 1}{z}\pi) + \sin^{2}(\frac{\Gamma(2m + z) + 1}{2m + z}\pi)$$

And by showing as in steps 2, 3, above:

- The existence of an infinite number of local minimums z of S^+ in $]1, \infty[$, with S(z)=0, $\frac{\Gamma(z)+1}{z}\in\mathbb{N}$ and $\frac{\Gamma(2m+z)+1}{2m+z}\in\mathbb{N}$. The existence of an infinity of integer z roots of S^+ ($z\in\mathbb{N}$).

Then using proposition 2 - as in step 4 above - we deduce that z and 2m+zare prime with 2m = (2m + z) - z

Corollary: [The conjecture of twin prime numbers] [7]

There exists an infinity of prime numbers p such that p + 2 is also prime.

IV- References

- [1] Roshdi Rashed, Entre arithmétique et algèbre : Recherches sur l'histoire des mathématiques arabes, journal Paris, 1984,
- [2] M. SGHIAR, The Special Functions and the Proof of the Riemann's Hypothesis, IOSR Journal of Mathematics (IOSR-JM)e-ISSN: 2278-5728, p-ISSN: 2319-765X.Volume 16, Issue 3 Ser. II (May –June 2020), PP 10-12. www.iosrjournals.org
- [3] https://en.wikipedia.org/wiki/Gamma_function.
- [4] https://en.wikipedia.org/wiki/Riemann_zeta_function.
- [5] https://en.wikipedia.org/wiki/Goldbach%27s_conjecture.
- [6] https://fr.wikipedia.org/wiki/Conjecture_de_Polignac
- [7] https://fr.wikipedia.org/wiki/Nombres_premiers_jumeaux