Prime numbers and the Goldbach conjecture

M. SGHIAR

msghiar21@gmail.com

Presented to:

Université de Bourgogne Dijon, Faculté des sciences Mirande, Département de mathématiques . Laboratoire d'analyse, 9 av alain savary 21078 , Dijon cedex, France

Tel: 0033669753590

Abstract: Inspired by the article [2], the introduction of the function $\hat{\mathbb{S}}$ whose integer zeros are the prime numbers, will allow me to demonstrate analytically the Goldbach conjecture [5].

Résumé: Inspiré de l'article [2], l'introduction de la fonction $\hat{\mathbb{S}}$ dont les zéros entiers sont les nombres premiers, va me permettre de démontrer analytiquement la conjecture de Goldbach [5].

Keywords: Prime Number, the Goldbach conjectures, the Gamma function.

Code MSC: 11P32

I- INTRODUCTION

In 1742, in a letter to Leonhard Euler, Christian Goldbach conjectured [5]: Any even integer greater than 3 can be written as the sum of two prime numbers.

Inspired by the function (§) which I introduced in the article [2], I introduce the function (§) which, also like (§), allows to find the prime numbers.

The study of the function $S_{2m}(z) = \hat{\mathbb{S}}^2(z) + \hat{\mathbb{S}}^2(2m-z)$ will allow me to demonstrate the Goldbach conjecture.

In this article I assume known the functions zeta ζ , Gamma $\Gamma: z \mapsto \int_0^{+\infty} t^{z-1} e^{-t} dt$ and their properties (see [3] and [4]).

II- THE PROOF OF THE GOLDBACH CONJECTURE:

Théorème : [The Goldbach conjecture]

Any even integer greater than 3 can be written as the sum of two prime numbers.

Proposition 1. [2]:

Let $S(z) = \zeta(-\frac{\Gamma(z)+1}{z/2}).$

If $z \in \mathbb{N}^*$ then $\mathfrak{S}(z) = 0 \iff$ z is a prime number

Proof:

It follows from Wilson's theorem [1] - which shows that p is prime if and only $(p-1)! \equiv -1 \mod p$ - and the fact that the trivial zeros of ζ are $-2\mathbb{N}^*$.

Proposition 2:

Let $\hat{\mathbb{S}}(z) = sin(\frac{\Gamma(z)+1}{z}\pi).$

If $z \in \mathbb{N}^*$ then $\hat{\mathbb{S}} = 0 \iff \mathbf{z}$ is a prime number

Proof: Inspired by **proposition 1**

Proposition 3: If $m \in \mathbb{N}^* \setminus \{1\}$, then the equation :

$$sin^2(\frac{\Gamma(z)+1}{z}\pi)+sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)=0$$

admits at least one solution z in \mathbb{N} with z and 2m-z are prime.

FIGURE 1 - S(z) for m=8

Proof of Proposition 3:

Consider the restriction to \mathbb{R}^{+*} of the function :

$$S(z) = sin^{2}(\frac{\Gamma(z) + 1}{z}\pi) + sin^{2}(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)$$

1 step : If the function $S(z)=sin^2(\frac{\Gamma(z)+1}{z}\pi)+sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$ has a local

extremum at the point $p \neq 2$ with p is prime :

In this case $\frac{dS}{dz}(p) = 0$ and according to proposition 2 we have $\hat{\mathbb{S}}(p) =$ $\sin(\frac{\Gamma(p)+1}{p}\pi) = 0$

We have:

$$\frac{dS}{dz}(z) = 2\pi sin(\frac{\Gamma(z) + 1}{z}\pi)cos(\frac{\Gamma(z) + 1}{z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)cos(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{-(2m - z)\Gamma'(2m - z) + (\Gamma(2m - z) + 1)}{(2m - z)^2}$$

But as $\frac{-(2m-p)\Gamma'(2m-p)+(\Gamma(2m-p)+1)}{(2m-p)^2} \neq 0$ (car $-z\Gamma'(z)+\Gamma(z)+1$) vanishes in

 $z \sim 2.5 \notin \mathbb{N}) \text{ , then } 2sin(\frac{\Gamma(2m-p)+1}{2m-p}\pi)cos(\frac{\Gamma(2m-p)+1}{2m-p}\pi) = 0$ And since we cannot have $cos(\frac{\Gamma(2m-p)+1}{2m-p}\pi) = 0$, because otherwise $\frac{\Gamma(2m-p)+1}{2m-p} \in \mathbb{N} + \frac{1}{2}$, and therefore $p \in 2\mathbb{N}$, which is not the case, then $sin(\frac{\Gamma(2m-p)+1}{2m-p}\pi) = 0$, and from **proposition 2**, we conclude that 2m - p is prime.

2 step : Let us show the existence of local minimums z in]1, m[as soon as

2 step: Let us show the existence of local minimums z in]1,m[as soon as $m \geq 5$, with S(z) = 0, $\frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and $\frac{\Gamma(2m-z)+1}{2m-z} \in \mathbb{N}$: First S admits a local extremum at a point $z \in]1,m[$ if $m \geq 5$: Indeed: $S(z) = 1 - \frac{1}{2}(\cos(2\frac{\Gamma(z)+1}{z}\pi) + \cos(2\frac{\Gamma(2m-z)+1}{2m-z}\pi))$ If S does not admit a local extremum at a point $z \in]1,m[$, then $T(z) = (\cos(2\frac{\Gamma(z)+1}{z}\pi) + \cos(2\frac{\Gamma(2m-z)+1}{2m-z}\pi))$ does not admit a local extremum in $z \in]1,m[$, and in this case, by symmetry of the curve of S with respect to the line x = m, we have $\frac{dT}{dT}(z) \leq 0$. For all $z \in [1,m[$ or $z \in [m]$ and $z \in [m]$ are $z \in [m]$. line x=m, we have $\frac{dT}{dz}(z) \leq 0$, $\forall z \in]1, m[$ or $\frac{dT}{dz}(z) \leq 0$, $\forall z \in]m, 2m-1[$. By symmetry suppose that $\frac{dT}{dz}(z) \leq 0$, $\forall z \in]1, m[$:

$$\frac{dT}{dz}(z) = -2\pi sin(\frac{\Gamma(z)+1}{z}\pi)\frac{z\Gamma'(z)-(\Gamma(z)+1)}{z^2} - 2\pi sin(\frac{\Gamma(2m-z)+1}{2m-z}\pi)\frac{-(2m-z)\Gamma'(2m-z)+(\Gamma(2m-z)+1)}{(2m-z)^2}$$

By growth of the function $\frac{z\Gamma'(z)-(\Gamma(z)+1)}{z^2}$ in $\in [3,+\infty[$ we have $:\frac{\frac{(2m-z)\Gamma^{-}(2m-z)-(\Gamma'(2m-z)+1)}{(2m-z)^2}}{\frac{z\Gamma'(z)-(\Gamma(z)+1)}{2}} \ngeq$ 1, $\forall z \in [3, m[$, so :

$$sin(\frac{\Gamma(z)+1}{z}\pi) \ge sin(\frac{\Gamma(2m-z)+1}{2m-z}\pi) \frac{\frac{(2m-z)\Gamma'(2m-z)-(\Gamma(2m-z)+1)}{(2m-z)^2}}{\frac{z\Gamma'(z)-(\Gamma(z)+1)}{z^2}}; \forall z \in [3,m[$$

And for z such that $sin(\frac{\Gamma(2m-z)+1}{2m-z}\pi)=1$ (z exists because the function $L(x)=\frac{\Gamma(z)+1}{2m-z}\pi$) $\frac{\Gamma(x+1)+1}{x+1} - \frac{\Gamma(x)+1}{x}$ check $L(x) \geq 1, \forall x \geq 3.2$), we will have $sin(\frac{\Gamma(z)+1}{z}\pi) \not\geq 1$, which is absurd. And therefore $S(z) = sin^2(\frac{\Gamma(z)+1}{z}\pi) + sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$ admits local extremum z_1 in $\in [3, m]$

If z_1 is not a local minimum, by taking the same reasoning by replacing 1 by z_1 , we deduce the existence of a local extremum z_2 in $[3, z_1[$ or in $]z_1, m[$ and hence there is a local minimum z between z_1 et z_2 .

Let z be a minimum of S in $\in]1, m[$.

If $S(z) \neq 0$, then $\frac{\Gamma(z)+1}{z}\pi \neq 0$, $mod(\pi)$ ou $\frac{\Gamma(2m-z)+1}{2m-z}\pi \neq 0$, $mod(\pi)$ By symmetry of the curve of S with respect to the line x=m, we can assume that $\frac{\Gamma(2m-z)+1}{2m-z}\pi \neq 0$, $mod(\pi)$ and that $sin^2(\frac{\Gamma(z)+1}{z}\pi) \leq sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$. If $sin^2(\frac{\Gamma(z)+1}{z}\pi) \nleq sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$: If z' is too close to z with $sin^2(\frac{\Gamma(2m-z')+1}{2m-z'}\pi) \nleq$ $sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$, then $S(z') \nleq S(z)$ which contradicts the minimality. It follows that $sin^2(\frac{\Gamma(z)+1}{z}\pi) = sin^2(\frac{\Gamma(2m-z)+1}{2m-z}\pi)$ But from the equation:

$$0 = \frac{dS}{dz}(z) = 2\pi sin(\frac{\Gamma(z) + 1}{z}\pi)cos(\frac{\Gamma(z) + 1}{z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(z) + 1)}{z^2} + 2\pi sin(\frac{\Gamma(2m - z) + 1}{2m - z}\pi)\frac{z\Gamma'(z) - (\Gamma(2m - z) + 1)}{z^2}$$

We deduce that : $0 = sin(\frac{\Gamma(z)+1}{z}\pi)cos(\frac{\Gamma(z)+1}{z}\pi)$, and therefore $0 = sin(\frac{\Gamma(z)+1}{z}\pi)$ by minimality of S(z). Thus S(z) = 0 with $\frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and $\frac{\Gamma(2m-z)+1}{2m-z} \in \mathbb{N}$ 3 step: Let us show the existence of the roots $z \in \mathbb{N} \cap]1, m[$:

The case where $m \in \{2,3,4\}$ is easy to see, since the Goldbach conjecture holds in these cases.

If $m \geq 5$, from step 2, we have S(z) = 0 with $|z| \in]1, m[$, $\frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and $\frac{\frac{\Gamma(2m-z)+1}{2m-z}}{\text{If }z\notin\mathbb{N}:}\in\mathbb{N}$

First $z \geq 3$: because $\frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and if $z \nleq 3$ then z=1 ou z=2 which is not the case because $z \in \mathbb{R}^+ \setminus \mathbb{N}$

Let $\frac{\Gamma(z)+1}{z}=k, z=n+r$ with $r\geq 2$, $r\in\mathbb{R}^+\setminus\mathbb{N}$ and $r\geq 1$

We deduce : $\prod_{i=1}^{n} (n-i+r)\Gamma(r) + 1 = kn + kr$ So $\Gamma(r) = \frac{-1+kn+kr}{\prod_{i=1}^{n} (n-i+r)}$ As $r \geq 2$, then $\Gamma'(r) \not\geq 0$, and hence :

$$\prod_{i=1}^{n} (n-i+r) \ngeq (-1+kn+kr) \sum_{j=1}^{n} \prod_{i\neq j; i=1}^{n} (n-i+r)$$

So $\frac{1}{r} \ge \frac{1}{-1+kn+kr} \not\ge \sum_{i=1}^n \frac{1}{n-i+r}$, which is not the case, and $z \in \mathbb{N}$.

4 step: Proof of proposition 3

The case where $m \in \{2, 3, 4\}$ is easy to see, since the Goldbach conjecture holds in these cases.

If $m \geq 5$, in step 3 we have shown the existence of the roots $z \in \mathbb{N} \cap]1, m[$ such that $\frac{\Gamma(z)+1}{z} \in \mathbb{N}$ and $\frac{\Gamma(2m-z)+1}{2m-z} \in \mathbb{N}$. And from proposition 2 we deduce that z and 2m-z are prime with 2m=z+(2m-z)

Proof of Theorem:

It is deduced directly from **proposition 3**

III- References

- [1] Roshdi Rashed, Entre arithmétique et algèbre : Recherches sur l'histoire des mathématiques arabes, journal Paris, 1984,
- [2] M. SGHIAR, The Special Functions and the Proof of the Riemann's Hypothesis, IOSR Journal of Mathematics (IOSR-JM)e-ISSN: 2278-5728, p-ISSN: 2319-765X.Volume 16, Issue 3 Ser. II (May –June 2020), PP 10-12. www.iosrjournals.org
- [3] https://en.wikipedia.org/wiki/Gamma function.
- [4] https://en.wikipedia.org/wiki/Riemann_zeta_function.
- [5] https://en.wikipedia.org/wiki/Goldbach%27s_conjecture.