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Abstract

GeneGeneInteR is an R package dedicated to the detection of an association between
a case-control phenotype and the interaction between two sets of biallelic markers (single
nucleotide polymorphisms or SNPs) in case-control genome-wide associations studies. The
development of statistical procedures for searching gene-gene interaction at the SNP-set
level has indeed recently grown in popularity as these methods confer advantage in both
statistical power and biological interpretation. However, all these methods have been
implemented in home made softwares that are for most of them available only on request
to the authors and at best have a web interface. Since the implementation of these methods
is not straightforward, there is a need for a user-friendly tool to perform gene-based gene-
gene interaction. The purpose of GeneGeneInteR is to propose a collection of tools for all
the steps involved in gene-based gene-gene interaction testing in case-control association
studies. Illustrated by an example of a dataset related to rheumatoid arthritis, this paper
details the implementation of the functions available in GeneGeneInteR to perform an
analysis of a collection of SNP sets. Such an analysis aims at addressing the complete
statistical pipeline going from data importation to the visualization of the results through
data manipulation and statistical analysis.

Keywords: association studies, gene-gene interaction, dependence, single nucleotide poly-
mophism.

1. Introduction

Case-control genome-wide association studies (GWAS) have become a standard tool for the
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identification of susceptibility loci underlying common complex diseases. Single-locus ap-
proaches, whereby a large number of single nucleotide polymorphisms (SNPs) are tested
independently for association, are usually performed in a first step analysis of GWAS. A large
number of softwares have therefore been developed to handle GWAS data and to accomplish
whole genome single association testing. When considering that individuals are randomly
sampled among healthy and diseased populations, the most popular tools are the indepen-
dent softwares PLINK (Purcell et al. 2007) and SNPStats (Solé, Guinó, Valls, Iniesta, and
Moreno 2006), the R (R Core Team 2020) packages GenABEL (Aulchenko, Ripke, Isaacs,
and van Duijn 2007), SNPassoc (Gonzalez et al. 2007), adegenet (Jombart and Ahmed 2011),
GWASTools (Gogarten et al. 2012) and postgwas (Hiersche, Rühle, and Stoll 2013) as well as
R Bioconductor (Gentleman et al. 2004) packages snpStats (Clayton 2020) and CGEN (Bhat-
tacharjee, Chatterjee, Han, Song, and Wheeler 2019). Although single-locus approaches have
been successfully applied in many studies, findings have explained relatively little of the heri-
tability of most complex traits. The “missing heritability” can be partly explained by several
features such as the presence of rare variants, the interaction with the environment, the obser-
vation of sex-specific effects, the location of SNPs in non-coding regions, the indirect measure
of effects through tag-SNP observation, the presence of common variants with truly small
effects. In this article we focus on two complementary sources of missing heritability: (1)
SNP-set association and (2) SNPxSNP interaction testing for which efforts have been made
in the literature.
In SNP-set association testing, all the SNPs within the region of a gene (or more generally a
locus) are jointly modeled as a set. Since the gene is considered as the functional unit of the
genome, SNP-set testing has gain in popularity the last few years and has been implemented
in most of the above cited softwares (PLINK, SNPStats, GenABEL, SNPAssoc, postgwas).
Additional softwares have been dedicated to the implementation of SNP-sets methods such
as PUMA (Hoffman, Logsdon, and Mezey 2013) and the R packages hapassoc (Burkett,
Graham, and McNeney 2006), cpvSNP (McHugh, Larson, and Hackney 2020), SKAT (Lee,
Zhao, Miropolsky, and Wu 2020), MixMAP (Matthews and Foulkes 2015) and aSPU (Kwak
et al. 2016).
SNPxSNP interaction consists in testing the association between the case-control status and
the interaction between two SNPs. Such testing allow the detection of an epistatic effect be-
tween two loci which is very often considered as a main source of missing heritability. There-
fore, popular softwares have proposed an implementation of SNPxSNP interaction testing in
randomly-sampled design (PLINK, GenABEL, SNPStats SNPAssoc and CGEN). Many other
tools have also been developed to tackle the issue of detecting SNPxSNP interaction, as, for
example, the independent programs BOOST (Wan et al. 2010) and TEAM (Zhang, Huang,
Zou, and Wang 2010) as well as the R packages MDR (Winham 2012), logicFS (Schwender
2020) and etma (Lin 2016).
However, none of these softwares and, to our knowledge, no R package has implemented func-
tionality to simultaneously tackle the two objectives of SNP-set association and SNPxSNP
interaction into a SNP-set × SNP-set interaction test. This lack of computational tools to
test for interaction at the SNP-set level in randomly-sampled case/control designs is a clear
limitation in the quest of missing heritability since gene-level testing can help characterizing
functional, compositional and statistical interactions (Phillips 2008). By aggregating signals
across variants in a SNP-set with respect to the linkage disequilibrium (LD) structure, statis-
tical power is likely to be increased in situations when multiple causal interactions influence
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the phenotype of interest (Huang, Chanda, Alonso, Bader, and Arking 2011; Wu et al. 2010).
Furthermore, if the interacting variants are only tagged, rather than directly observed, gene-
based tests can aggregate signals from different tag SNPs in partial LD. Finally, the use of
the gene as the statistical unit can greatly facilitate the biological interpretation of findings
(Jorgenson and Witte 2006; Neale and Sham 2004).

However, from a statistical point-of-view, detecting interaction at the SNP-set level is chal-
lenging, thus explaining the lack of computational tools devoted to SNP-set × SNP-set in-
teraction. Tackling the two issues of SNP-set association and interaction indeed requires the
simultaneous modeling of the correlation within and between the two SNP sets. Neverthe-
less, the very recent years have seen the development of statistical methods dedicated to the
detection of interaction at the SNP-set level.

These methods can be grouped into two main classes. In a first class, proposed methods aim
at modeling the joint distribution of SNPs within and between two genes through principal
component analysis (PCA, Li, Tang, Biernacka, and de Andrade 2009), composite linkage
disequilibrium (CLD, Rajapakse, Perlman, Martin, Hansen, and Kooperberg 2012), canonical
correspondence analysis (CCA, Peng, Zhao, and Xue 2010), kernel canonical correspondence
analysis (KCCA, Larson et al. 2014), partial least square path modeling (PLSPM, Zhang
et al. 2013) and gene-based information gain method (GBIGM, Li et al. 2015). A second
class of methods aims at aggregating interaction tests performed at the SNP level by the
minimum p value (minP, Emily 2016), a gene-based association test using extended Simes
(GATES, Li, Gui, Kwan, and Sham 2011), and two truncated tests, the truncated tail strength
(tTS, Jiang, Zhang, Zuo, and Kang 2011) and the truncated product p values (tProd, Zaykin,
Zhivotovsky, Westfall, and Weir 2002). However, all these methods have been implemented
in home made softwares that are for most of them available only on request to the authors
and at best have a web interface. Thus, searching for gene-gene interaction at the gene level
is not straightforward. Furthermore, a comprehensive comparison of such methods, in terms
of power and computational performances, remains hardly feasible.

In this paper, we present the R package GeneGeneInteR (Emily, Sounac, Kroell, and Houee-
Bigot 2020) that provides an assembly of tools for all the steps involved in gene-based
gene-gene interaction testing in case-control association studies when dealing with randomly-
sampled individuals. Our package, available from Bioconductor (https://bioconductor.
org/packages/GeneGeneInteR/) and from GitHub (https://github.com/MathieuEmily/
GeneGeneInteR), proposes a set of functions that allow to (1) download data in various
standardized formats (PED, PLINK, VCF), (2) impute missing genotypes, (3) perform a
gene-based gene-gene interaction analysis and (4) visualize the results. Section 2 provides an
overview of the implementation of the package and aims at summarizing the dependencies
to other R packages. In Section 3, technical details and implementation are given regarding
the 10 above mentioned statistical procedures (PCA, CLD, CCA, KCCA, PLSPM, GBIGM,
minP, GATES, tTS, tProd) proposed in GeneGeneInteR. Section 4 is devoted to the descrip-
tion of the functions implemented in GeneGeneInteR in order to analyze a collection of SNP
sets. Through the example of a dataset related to rheumatoid arthritis and composed of 17
genes, we introduce tools for the importation and the manipulation of the data as well as the
visualization of the results.

https://bioconductor.org/packages/GeneGeneInteR/
https://bioconductor.org/packages/GeneGeneInteR/
https://github.com/MathieuEmily/GeneGeneInteR
https://github.com/MathieuEmily/GeneGeneInteR
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2. Overview of the implementation of GeneGeneInteR
The implementation of GeneGeneInteR can be divided into three main functionality modules.
The first module is a set of functions dedicated to the importation and the manipulation of
raw data. This module exploits functionalities attached to the class ‘SnpMatrix’. ‘SnpMatrix’
is a S4 class of objects developed under the snpStats package that is dedicated to large SNP
association studies. A detailed example of the functionalities of this module is proposed in
Sections 4.1 and 4.2. Our second module consists in functions devoted to the visualization
of the results. One functionality of this module allows a network representation, for which
functionalities from the igraph package (Csardi and Nepusz 2006) are imported with Gene-
GeneInteR. The functionalities of this module are detailed in Section 4.4. Finally, our third
module is a set of functions used to perform the statistical analysis. The main function of
this module is the function GGI that allows the statistical testing of gene-gene interactions in
a set of genes.
The implementation of GGI is displayed in the flowchart of Figure 1 and can be detailed as
follows. First, function GGI takes as input three main parameters: the case-control status Y, a
‘snpMatrix’ object snpX obtained with the functions of our first module and a character string
method that indicates which statistical pairwise method has to be performed. The object snpX
contains a collection of n genes and the purpose of the GGI function is to iteratively test the
n(n − 1)/2 possible pairs of genes with a for loop. For each pair of genes, the pairwise
interaction is tested according to the statistical method specified in the method argument.
The output of GGI is an object of class ‘GGInetwork’ defined as an S3 class consisting of a
list of 4 elements: statistic, p.value, method and parameter. Using our own class allows
us to define our own functionalities for printing, summarizing and plotting the result of the
analysis of a set of genes. To this aim, we define specific S3 methods print, summary and
plot that are adapted to the type of statistical analysis performed by the function GGI. A
detailed example of the use of GGI is provided in Section 4.3.
In GeneGeneInteR, a total of 10 pairwise methods are available corresponding to statistical

Figure 1: Flowchart of the implementation of the main function GGI.
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procedures introduced in the literature. Most of these methods are based on general statisti-
cal methods that have to be adapted to (1) the specific context of SNP-set interaction testing
and (2) the type of data representation used in GeneGeneInteR. Therefore, the 10 pairwise
methods have been implemented in separate functions that have their own dependency to
other R packages. For example, if method = "PCA", the pairwise function PCA.test utilizes
functionalities from packages FactoMineR (Lê, Josse, and Husson 2008) and snpStats. As
usual, the specific numeric results obtained might differ for these multivariate methods de-
pending on the linear algebra library used. For ease of use and convenience, the mandatory
input arguments as well as the output argument are identical for each pairwise function: The
input contains three mandatory arguments (Y, G1 and G2) and the output is an object of class
‘htest’. A formal statistical description as well as examples of usage are provided for each
pairwise method in Section 3.

3. Statistical methods for testing one pair of genes
In this paper, we propose an R package that implements statistical procedures to test for
the interaction between two genes in susceptibility with a binary phenotype, typically a
case/control disease status. Let Y ∈ {0, 1} be the phenotype, where Y = 0 stands for a
control and Y = 1 a case, and X1 and X2 be the two genes for which the interaction is tested.
Let consider a sample of n individuals with nc controls and nd cases (nc + nd = n) and
Y = [y1, . . . , yn]> the vector of the observed binary phenotypes. Individuals are assumed
to be randomly sampled among the two populations of cases and controls. Each gene is
a collection of respectively m1 and m2 SNPs. The observed genotypes for gene X1 can
be represented by a n ×m1 matrix: X1 = [x1

ij ]i∈{1,...,n};j∈{1,...,m1} where x1
ij ∈ {0; 1; 2} is the

number of copies of the minor allele for SNP j carried by individual i. A similar representation
is used for gene X2 where X2 is a n ×m2 matrix. Let us further introduce Xc

1 and Xc
2 the

matrices of observed genotypes among controls for gene X1 and X2 and Xd
1 and Xd

2 among
cases for both genes. Thus Xc

1 is a nc × m1 matrix, Xd
1 a nd × m1 matrix, Xc

2 a nc × m2
matrix and Xd

2 a nd ×m2 matrix. A general setup of the observed values can be presented
as follows:

Y =



y1
...
ync

ync+1
...

ync+nd


, X1 =


Xc

1

Xd
1


=



x1
11 . . . x1

1m1... . . . ...
x1
nc1 . . . x1

ncm1
x1

(nc+1)1 . . . x1
(nc+1)m1

... . . . ...
x1

(nc+nd)1 . . . x1
(nc+nd)m1


,

X2 =


Xc

2

Xd
2


=



x2
11 . . . x2

1m2... . . . ...
x2
nc1 . . . x2

ncm2
x2

(nc+1)1 . . . x2
(nc+1)m2

... . . . ...
x2

(nc+nd)1 . . . x2
(nc+nd)m2


.

In our package we propose 10 methods for testing interaction at the gene level. These 10
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methods are all based on three main parameters: Y, a numeric or factor vector with exactly
two distinct values, G1 and G2, two ‘SnpMatrix’ objects as proposed by the R Bioconductor
package snpStats. ‘SnpMatrix’ objects have been chosen because of their capacity to handle
large datasets. Furthermore, ‘SnpMatrix’ objects benefit from numerous methods provided
by the snpStats package, allowing flexible data manipulation and efficient computation of
summary statistics.
In the remainder of this section, we provide details on the methods implemented in our
package and highlight the specific parameters used for each method. Our implementation
is illustrated by the dataset gene.pair provided with the GeneGeneInteR package. The
dataset gene.pair is a case-control dataset containing the genotypes of 8 SNPs within GC
gene (object G1 of class ‘SnpMatrix’) and 4 SNPs within PADI2 gene (object G2 of class
‘SnpMatrix’). The dataset gene.pair further includes the disease status in a factor variable
Y. In more details, gene.pair contains 247 individuals affected by rheumatoid arthritis (RA)
(Y = 1) and 206 individuals not affected by RA (Y = 0).
The contents of the dataset gene.pair are summarized by the following command lines:

R> library("GeneGeneInteR")
R> data("gene.pair", package = "GeneGeneInteR")
R> summary(gene.pair)

Length Class Mode
Y 453 factor numeric
G1 3624 SnpMatrix raw
G2 1812 SnpMatrix raw

The next code line displays the header of the status coding variable Y:

R> head(gene.pair$Y)

[1] HealthControl HealthControl HealthControl HealthControl HealthControl
Levels: HealthControl RheumatoidArthritis

The two following code lines provide the main characteristics of the two ‘SnpMatrix’ objects,
G1 and G2:

R> gene.pair$G1

A SnpMatrix with 453 rows and 8 columns
Row names: Id1 ... Id453
Col names: rs1491710 ... rs2298849

R> gene.pair$G2

A SnpMatrix with 453 rows and 4 columns
Row names: Id1 ... Id453
Col names: rs2057094 ... rs1005753
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3.1. Principal component analysis (PCA)

In the PCA-based method, a likelihood ratio test is performed to compare the modelMInter
to the model MNo, where MInter refers to the logistic model including interaction effects
whileMNo does not consider interaction terms. Formally,MInter is defined in Equation 1:

logit
(
P
[
Y = 1|PC1

X1 . . . PC
n1
X1
, PC1

X2 . . . PC
n2
X2

])
=

β0 +
n1∑
i=1

PCiX1 +
n2∑
j=1

PCjX2
+

n1∑
i=1

n2∑
j=1

PCiX1PC
j
X2

(1)

andMNo in Equation 2:

logit
(
P
[
Y = 1|PC1

X1 . . . PC
n1
X1
, PC1

X2 . . . PC
n2
X2

])
= β0 +

n1∑
i=1

PCiX1 +
n2∑
j=1

PCjX2
. (2)

In models MInter and MNo, PCiX1
and PCjX2

are the ith principal component of X1 and
the jth principal component of X2. The number of principal components, n1 and n2, kept in
the interaction test is determined by the percentage of inertia retrieved by the PCA. Such a
percentage is defined by the user and corresponds to the threshold parameter.
In our package, two distinct principal component decompositions are provided by the functions
PCA.test via the argument method. With method = "Std", the dataset is standardized using
variables’ standard deviation while with method = "GenFreq", the dataset is standardized
using standard deviation under Hardy-Weinberg equilibrium, as proposed in the snpStats
package.
When the percentage of inertia asked by the user is high, the number of PCs can be important
and fitting logistic modelsMInter andMNo is likely to fail. In that case, the number of PCs
retained in model (2) is reduced until convergence of the glm function for fitting models
MInter andMNo.
The following code line illustrates the PCA-based method when the dataset is standardized
using standard deviation under Hardy-Weinberg equilibrium:

R> PCA.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ threshold = 0.7, method = "GenFreq")

Gene-based interaction based on Principal Component Analysis - GenFreq

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
Deviance = 8.2157, df = 6.0, threshold = 0.7, p-value = 0.2227
alternative hypothesis: true deviance is greater than 0
sample estimates:
Deviance without interaction Deviance with interaction

615.2977 607.0821

In the next code line, the dataset is standardized using variables’ standard deviation:

R> PCA.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ threshold = 0.7, method = "Std)
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Gene-based interaction based on Principal Component Analysis - Std

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
Deviance = 8.5074, df = 6.0, threshold = 0.7, p-value = 0.2032
alternative hypothesis: true deviance is greater than 0
sample estimates:
Deviance without interaction Deviance with interaction

615.0911 606.5837

3.2. Canonical correlation analysis (CCA)

The CCA test is based on a Wald-type statistic defined as in the following Equation 3 (see
Peng et al. 2010 for details):

UCCA = zd − zc√
V(zd) + V(zc)

, (3)

where zd = 1
2 (log(1 + rd)− log(1− rd)) and zc = 1

2 (log(1 + rc)− log(1− rc)) with rd the
maximum canonical correlation coefficient between Xd

1 and Xd
2 and rc the maximum canonical

correlation coefficient between Xc
1 and Xc

2 computed for controls (Y = 0). As suggested by
Peng et al. (2010), the variances V(zd) and V(zc) are determined by applying a bootstrapping
method. The number of bootstrap samples used to estimate V(zd) and V(zc) is determined
by the n.boot argument (with default n.boot = 500). p value is then obtained by noting
that under the null hypothesis UCCA ∼ N (0, 1).
The CCA based gene-gene interaction test is implemented in the CCA.test function and
mainly depends on the cancor function from the stats package (R Core Team 2020).
The following code lines illustrate the use of the CCA.test function.

R> set.seed(1234)
R> CCA.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ n.boot = 500)

Gene-based interaction based on Canonical Correspondence Analysis

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
CCU = 0.60441, n.boot = 500, p-value = 0.5456
alternative hypothesis: true CCU is not equal to 0
sample estimates:

z0 z1
0.2940799 0.2414700

3.3. Kernel canonical correlation analysis (KCCA)

The KCCA based test provides a generalization of the CCA test to detect non-linear co-
association between X1 and X2 (Yuan et al. 2012; Larson and Schaid 2013) and is based on
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the following Wald-type statistic:

UKCCA = kzd − kzc√
V(kzd) + V(kzc)

, (4)

where kzd = 1
2 (log(1 + krd)− log(1− krd)) and kzc = 1

2 (log(1 + krc)− log(1− krc)) with
krd the maximum kernel canonical correlation coefficient between Xd

1 and Xd
2 and krc the

maximum kernel canonical correlation coefficient between Xc
1 and Xc

2.
Similar to the CCA test, V(kzd) and V(kzc) are estimated using bootstrap techniques (Yuan
et al. 2012; Larson and Schaid 2013) and the p value is obtained using the standard Gaussian
distribution of UKCCA under the null hypothesis. Since the performance of kernel meth-
ods strongly relates to the choice of kernel functions, the default is the radial basis kernel
function (RBF) owing to its flexibility in parameter specification. However, other kernel
functions, such as linear, polynomial or spline kernels, can be used. Thus, in addition to
the three arguments Y, G1 and G2, our implementation of the KCCA test proposes two op-
tional arguments: n.boot that determines the number of bootstrap samples and kernel that
provides the kernel function to be used. This kernel parameter is a character string match-
ing one of the kernel name provided by the kernlab package (Karatzoglou, Smola, Hornik,
and Zeileis 2004) such as "rbfdot", "polydot", "tanhdot", "vanilladot", "laplacedot",
"besseldot", "anovadot", "splinedot". The arguments, sigma, degree, scale, offset
and order, can also be passed to the kcca.test function in order to parameterize the kernel
used in the analysis.
The KCCA based gene-gene interaction test is implemented in the KCCA.test function and
mainly depends on the kcca function from the kernlab package.
The next few lines give two examples of the use of the KCCA.test function. First, testing is
performed by KCCA.test with a RBF kernel (σ = 0.05) and significance is tested according
to 500 bootstrap replicates.

R> set.seed(1234)
R> KCCA.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ kernel = "rbfdot", sigma = 0.05, n.boot = 500)

Gene-based interaction based on Kernel Canonical Correspondence
Analysis

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
KCCU = 0.0078595, n.boot = 500, p-value = 0.9937
alternative hypothesis: true KCCU is not equal to 0
sample estimates:

z0 z1
-3.717346 -3.759154

In a second example, KCCA.test is used with a Bessel kernel (with hyperparameters sigma
= 0.05, degree = 1 and order = 1) and significance is tested according to the default value
of 100 bootstrap replicates.

R> set.seed(1234)
R> KCCA.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ kernel = "besseldot", sigma = 0.05, degree = 1, order = 1, n.boot = 100)
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Gene-based interaction based on Kernel Canonical Correspondence
Analysis

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
KCCU = 0.015163, n.boot = 100, p-value = 0.9879
alternative hypothesis: true KCCU is not equal to 0
sample estimates:

z0 z1
-4.161048 -4.251702

3.4. Partial least square path modeling (PLSPM)

The PLSPM testing has been introduced by Zhang et al. (2013) and is based on the Wald-like
statistic defined in Equation 5:

UPLSPM = βd − βc√
V(βd − βc)

(5)

where βd (respectively, βc) is the path coefficient between Xd
1 and Xd

2 (respectively, Xc
1 and

Xc
2). As quoted by Zhang et al. (2013), the distribution of UPLSPM is unknown and significance

can be tested using permutations.
The PLSPM based gene-gene interaction test is implemented in the PLSPM.test function
and mainly depends on the plspm function from the plspm package (Sanchez, Trinchera,
and Russolillo 2017). Besides the three mandatory arguments Y, G1 and G2, the number of
permutations can be set by the n.perm argument (default is n.perm = 500).
The following code lines display an example of the use of the PLSPM.test function.

R> set.seed(1234)
R> PLSPM.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ n.perm = 1000)

Gene-based interaction based on Partial Least Squares Path Modeling

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
U = 4.0938, n.perm = 1000, p-value = 0.163
alternative hypothesis: true U is not equal to 0
sample estimates:

beta0 beta1
-0.2269269 0.1474433

3.5. Composite linkage disequilibrium (CLD)

The CLD method, proposed in Rajapakse et al. (2012) is based on the normalized quadratic
distance (NQD) and is defined in Equation 6:

δ2 = tr.
(
(D̃ − C̃)W−1(D̃ − C̃)W−1

)
, (6)
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where D̃, C̃ and W are three (m1 +m2)× (m1 +m2) matrices of the covariance between the
whole set of SNPs that combines SNPs from both genes. More precisely, D̃ and C̃ are defined
as follows in Equation 7:

D̃ =
[
W11 D12
D21 W22

]
, C̃ =

[
W11 C12
C21 W22

]
, (7)

where W11 (respectively, W22) is the pooled estimate of the covariance matrix for X1 (re-
spectively, X2, D12(= D>21) and C12(= C>21) are the sample covariance matrix between the
two genes estimated from

(
Xd

1,Xd
2

)
and (Xc

1,Xc
2) respectively. In more details, the sample

covariance matrices in cases, denoted by D, and in controls, denoted by C, can be partitioned
in 4 blocks as follows in Equation 8:

D = Cov
(
Xd

1,Xd
2

)
=
[
D11 D12
D21 D22

]
, C = Cov (Xc

1,Xc
2) =

[
C11 C12
C21 C22

]
. (8)

The pooled estimate of the covariance matrix, W , can thus be obtained by Equation 9:

W = ncC + ndD

nc + nd
=
[
W11 W12
W21 W22

]
. (9)

Since the distribution of δ2 is not known under the null hypothesis, significance testing is
performed using permutation tests, as proposed by Rajapakse et al. (2012). Such a test has
been implemented in our package in the CLD.test function where the number of permutations
is determined by the argument n.perm.
In the next few lines, function CLD.test is illustrated with the gene.pair example.

R> set.seed(1234)
R> CLD.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ n.perm = 2000)

Gene-based interaction based on Composite Linkage Disequilibrium

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
CLD = 0.49257, n.perm = 2000, p-value = 0.889
alternative hypothesis: true CLD is not equal to 0
sample estimates:

CLD
0.4925654

3.6. Gene-based information gain method (GBIGM)

Introduced by Li et al. (2015), the GBIGM method is based on the information gain rate
∆R1,2. ∆R1,2 is defined as in Equation 10:

∆R1,2 = min(H1, H2)−H1,2
min(H1, H2) , (10)
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where H1, H2, H1,2 are the conditional entropies (given Y) of X1, X2 and the pooled SNP
set (X1,X2) respectively. Assuming that H(·) is the classical entropy function, we have:

H1 = H(Y,X1)−H(X1) (11)
H2 = H(Y,X2)−H(X2) (12)
H1,2 = H(Y,X1,X2)−H(X1,X2) (13)

Since the distribution of ∆R1,2 is unknown, the significance testing is performed by permu-
tations as suggested by Li et al. (2015). The GBIGM method has been implemented in the
GBIGM.test function and the number of permutations is defined by the argument n.perm.
The following code lines give an example of the GBIGM.test function.

R> set.seed(1234)
R> GBIGM.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ n.perm = 2000)

Gene-based interaction based on Gene-based Information Gain Method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
DeltaR1,2 = 0.46441, n.perm = 2000, p-value = 0.449
alternative hypothesis: two.sided
sample estimates:
DeltaR1,2
0.4644093

3.7. From SNPxSNP interaction to gene-gene interaction testing

This section provides details of the four statistical methods that propose a gene-based test
from SNP-based tests (Emily 2016). Rather than considering multiple SNPs in both genes as
part of a joint model, these methods aim at aggregating p values obtained at the SNP level
into a single p value at a gene level.

Interaction testing at the SNP level
Let consider a pair of SNPs, (X1,j , X2,k) where X1,j is the jth SNP of gene X1 and X2,k the
kth SNP of gene X2 (1 ≤ j ≤ m1 and 1 ≤ k ≤ m2). To test for interaction at the SNP level,
we used the following Wald statistic defined in Equation 14:

Wjk = β̂j,k3
̂

σ

(
β̂j,k3

) , (14)

where β̂j,k3 is an estimate of the interaction coefficient βj,k3 of the logistic model defined in
Equation 15:

log
(

P[Y = 1|X1,j = x1, X2,k = x2]
1− P[Y = 1|X1,j = x1, X2,k = x2]

)
= βj,k0 + βj,k1 x1 + βj,k2 x2 + βj,k3 x1x2. (15)
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β̂j,k3 is obtained by maximizing the likelihood function on the observed data Y, X1 and X2,

while
̂

σ

(
β̂j,k3

)
is calculated by inverting the Hessian of the likelihood. Since the solution of

the maximization of the likelihood function does not have a closed form, we compute Wjk

according to the iteratively reweighted least squares algorithm proposed in the glm function
of the stats package.
To combine the statistics Wjk into a single test, four methods have been proposed that all
account for covariance matrix

Σ = [σ(j,k),(j′,k′)] j=1...m1;k=1...m2
j′=1...m1;k′=1...m2

,

a (m1×m2)× (m1×m2) symmetric matrix where σ(j,k),(j′,k′) = Cov(Wjk,Wj′,k′) (Ma, Clark,
and Keinan 2013). As proposed by Emily (2016), the covariance between Wjk and Wj′,k′

is estimated by: ̂σ(j,k),(j′,k′) = rj,j′rk,k′ where rj,j′ = pjj′−pjpj′√
pj(1−pj)pj′ (1−pj′ )

is the widely used
correlation measure between SNP j and SNP j′, given that pj and pj′ are the respective
allelic frequencies and pjj′ is the joint allelic frequency (Hill and Robertson 1968).

minP
The minP test is based on the minimum p value that is often used to combine p values of
association (Conneely and Boehnke 2007). Let Wmax = max (|W11|, . . . , |Wm1,m2 |) be the
maximum of the absolute observed statistics. The minP is then defined by:

minP = 1− P
[

max(|Z1|, |Z2|, . . . , |Zm1m2 |) < Wmax
]
, (16)

where Z = (Z1, Z2, . . . , Zm1m2) is a random vector that follows a multivariate normal distri-
bution Z ∼ N (0,Σ).
The computation of Equation 16 requires the calculation of the probability distribution of a
multivariate normal random variable. For that purpose, we used the pmvnorm function from
the R package mvtnorm (Genz and Bretz 2009).
To illustrate the minP function, the following code lines test the interaction between the two
sets of SNPs in the gene.pair example.

R> set.seed(1234)
R> minP.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2)

Gene-based interaction based on minP method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
Wmax = 0.0099241, p-value = 0.1796
alternative hypothesis: true Wmax is greater than 0
sample estimates:

Wmax
0.009924148

The function pmvnorm is applicable to dimensions up to 1000 (Genz and Bretz 2009). Thus, if
we consider a first gene having m1 SNPs and a second gene with m2 SNPs, the minP test can
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be performed only if m1×m2 ≤ 1000. Furthermore, it has been shown that the computation
of the minP test lacks accuracy when the number of tests is larger than 900 (Conneely and
Boehnke 2007). To overcome such a limitation, we propose a two-steps approach to perform
the minP procedure. In a first step, each gene (or set of SNPs) is divided into subsets of
SNPs so that all pairs of subsets do not contain more than 900 SNP pairs. Formally, genes
X1 and X2 are split in respectively k1 and k2 subsets as follows:

X1 = [X1
1 , X

2
1 , . . . , X

k1
1 ], X2 = [X1

2 , X
2
2 , . . . , X

k2
2 ].

The number of subsets per gene (namely k1 and k2) are chosen to ensure that ∀i ∈ {1, . . . , k1} :
|Xi

1| ≤ 30 and ∀j ∈ {1, . . . , k2} : |Xj
2 | ≤ 30, where |Xi

1| and |X
j
2 | are the number of SNPs in

the subset i from gene X1 and in the subset j from gene X2. By doing so, we guarantee that:

∀i ∈ {1, . . . , k1}; j ∈ {1, . . . , k2} : |Xi
1| × |X

j
2 | ≤ 900.

To keep the 1-dimensional structure of the data, each gene is split according to a constraint
hierarchical clustering based on the pairwise LD between SNPs. To perform such a clustering,
we implemented in our GeneGeneInteR package, the chclust function.
In a second step, the minP procedure is applied to each pair of subsets to obtain a vector of
k1×k2 p values: [p11, . . . , pij , . . . , pk1,k2 ], where pij is the p value given by the minP test based
on subsets Xi

1 and Xj
2 . To correct for multiple testing, a Benjamini-Hochberg correction is

applied to the vector [p11, . . . , pij , . . . , pk1,k2 ] and the minimum of the corrected p values is
returned by the minP.test function.
To illustrate such a strategy, consider the interaction between two genes PCSK6 and TXNDC5,
where PCSK6 (respectively, TXNDC5) contains 54 (respectively, 36) SNPs. The number of
SNPxSNP interaction tests is therefore equal to 54× 36 = 1944 > 1000, thus preventing the
direct use of the function pmvnorm. Therefore, in a first step, constraint hierarchical trees
are estimated for each gene and then used to split each gene into SNP subsets. As shown in
Figure 2, gene PCSK6 is split into k1 = 4 subsets and gene TXNDC5 is divided into k2 = 2
subsets. It can be remarked that the sizes of the subsets for gene PCSK6 are 19, 2, 12 and 21
while equal to 10 and 26 for gene TXNDC5. Therefore, the maximum number of SNPxSNP
interaction tests between the two subsets is 33 × 26 = 858 which is lower than 900. In a
second step, each pair of subsets is tested for interaction leading to a vector of six p values
[p11 = 0.11, p21 = 0.87, p31 = 0.21, p41 = 0.05, p12 = 0.30, p22 = 0.10, p32 = 0.78, p42 = 0.30].
These six p values are combined into a single p value by taking the minimum of Benjamini-
Hochberg corrected p values. The overall p value is therefore given by 0.2925908.
These two steps are implemented in the minP.test function and are invisible to the user. The
following code lines detail the output of the minP.test function when testing for interaction
between the two genes PCSK6 and TXNDC5. We start by importing the disease status Y:

R> resp <- system.file(file.path("extdata", "response.txt"),
+ package = "GeneGeneInteR")
R> Y <- read.csv(resp, header = FALSE, stringsAsFactors = TRUE)

With the three following lines, the two sets of SNPs (i.e., the two genes PCSK6 and TXNDC5)
are imported:
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Figure 2: Constraint hierarchical trees obtained for genes PCSK6 and TXNDC5. The
rectangles correspond to the subsets of SNPs estimated by our proposed strategy.

R> load(system.file(file.path("extdata", "dataImputed.Rdata"),
+ package = "GeneGeneInteR"))
R> PCSK6 <- selectSnps(data.imputed$snpX, data.imputed$genes.info,
+ "PCSK6")$snpX
R> TXNDC5 <- selectSnps(data.imputed$snpX, data.imputed$genes.info,
+ "TXNDC5")$snpX

We can then check the number of SNPs that belong to each gene:

R> ncol(PCSK6)

[1] 54

R> ncol(TXNDC5)

[1] 36

Finally, the testing of the interaction between these two genes can be performed directly with
the minP.test function as follows:

R> set.seed(1234)
R> minP.test(Y = Y, G1 = PCSK6, G2 = TXNDC5)

Gene-based interaction based on minP method

data: Y and (PCSK6 , TXNDC5)
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Wmax = 0.00093876, p-value = 0.2926
alternative hypothesis: greater
sample estimates:

Wmax
0.0009387614

GATES
The GATES procedure, proposed by Li et al. (2011), is an extension of the Simes procedure
used to assess the gene level association significance. Let p(1), . . . , p(m1m2) be the ascending
SNPxSNP interaction m1 ×m2 p values, GATES p value is then defined in Equation 17:

pGATES = min
(
p(1)

me
me(1)

, p(2)
me

me(2)
, . . . , p(m1m2)

me
me(m1m2)

)
, (17)

where me is the number of effective tests among the m1 × m2 tests and me(i) the number
of effective tests among the i most significant tests associated with the lowest order p values
p(1), . . . , p(i). The number of effective tests ought to characterize the number of independent
tests equivalent to the correlated tests that are really performed and is often used to account
for dependence in a multiple testing correction.
Although no formal definition of the number of effective tests has been formulated in the
literature, several procedures have been proposed to estimate such number. All methods are
based on a transformation of the set of eigenvalues of the SNP covariance matrix assuming
that (1) if the SNPs are independent, the number of effective tests is the number of performed
tests, (2) if the absolute value of the correlation between any pair of SNPs is equal to 1, the
number of effective tests is 1. In the GeneGeneInteR package, four main methods have
been implemented within the gates.test function and can be chosen by the user with the
argument me.est: Cheverud-Nyholt method – me.est = "ChevNy" (Cheverud 2001; Nyholt
2004), Keff method – me.est = "Keff" (Moskvina and Schmidt 2008), Li and Ji method –
me.est = "LiJi" (Li and Ji 2005) and Galwey – me.est = "Galwey" (Galwey 2009).
The following code lines give examples of the use of the gates.test function with all estimated
methods for the number of effective tests:

R> set.seed(1234)
R> gates.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ me.est = "ChevNy")

Gene-based interaction based on GATES method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
GATES = 0.0099241, p-value = 0.2939
alternative hypothesis: less
sample estimates:

GATES
0.009924148

R> set.seed(1234)
R> gates.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ alpha = 0.05, me.est = "Keff")
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Gene-based interaction based on GATES method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
GATES = 0.013945, p-value = 0.1899
alternative hypothesis: less
sample estimates:

GATES
0.01394543

R> set.seed(1234)
R> gates.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ me.est = "LiJi")

Gene-based interaction based on GATES method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
GATES = 0.013945, p-value = 0.1255
alternative hypothesis: less
sample estimates:

GATES
0.01394543

R> set.seed(1234)
R> gates.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ me.est = "Galwey")

Gene-based interaction based on GATES method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
GATES = 0.013945, p-value = 0.1596
alternative hypothesis: less
sample estimates:

GATES
0.01394543

tTS and tProd
The tTS and tProd procedures are two truncated tail strength methods that aim at combining
signals from all single-SNP p values less than a predefined cutoff value (Jiang et al. 2011).
Denoting by τ the cutoff value, the two truncated p values are defined as follows (Zaykin
et al. 2002):

tTS = 1
m1m2

m1m2∑
i=1

I(p(i) < τ)
(

1− p(i)
m1m2 + 1

i

)
, (18)

tProd =
m1m2∏
i=1

p
I(pi<τ)
i , (19)
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where I is the indicator function. When p values are correlated, the null distributions of tTS
and tProd are unknown. Following the approach proposed by Zaykin et al. (2002), a p value
is obtained in the GeneGeneInteR package by computing an empirical null distribution using
Monte Carlo (MC) simulations. For each MC iteration, an empirical value for tTS (or tProd)
is obtained by simulating a vector of Wjk with respect to a multivariate normal distribution
with a vector of 0 means and Σ̂ as covariance matrix. The empirical p value is calculated as
the proportion of simulated statistics larger than the observed statistic on the “true” set of
Wjk.
The tTS and tProd methods have been implemented in the functions tTS.test and tProd.test
of the GeneGeneInteR package. Additional to the mandatory Y, G1 and G2 arguments, these
two functions have two optional arguments: tau and n.sim that control the cutoff value and
the number of simulations used to estimate the empirical value respectively. The following
code lines give an example of the use of the tTS.test and tProd.test functions:

R> set.seed(1234)
R> tTS.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ tau = 0.5, n.sim = 10000)

Gene-based interaction based on the Truncated Tail Strength method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
tTS = -0.0099127, tau = 0.5, p-value = 0.5104
alternative hypothesis: less
sample estimates:

tTS
-0.009912706

R> set.seed(1234)
R> tProd.test(Y = gene.pair$Y, G1 = gene.pair$G1, G2 = gene.pair$G2,
+ tau = 0.05, n.sim = 1000)

Gene-based interaction based on the Truncated Product method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)
tProd = 0.0001384, tau = 0.05, p-value = 0.265
alternative hypothesis: less
sample estimates:

tProd
0.0001383965

4. Analysis of a set of genes
In practice, it is very common to investigate the interaction between a collection of k > 2
genes. In this context, our package GeneGeneInteR proposes several methods to perform a
complete pipeline of analysis, going from data importation to results visualization via data
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manipulation and statistical analysis. In the remainder of this section, we illustrate our
pipeline through the analysis of a case-control dataset publicly available in the NCBI reposi-
tory GSE39428 series (Chang, Xu, Wang, Wang, Wang, and Yan 2013). The dataset contains
the genotypes of 312 SNPs from 17 genes in a total of 429 patients (266 individuals affected by
theumatoid arthritis and 163 healthy controls) and is attached to our package GeneGeneInteR
as an external file in PED format supported by the PLINK software (Purcell et al. 2007).
In the following, the description of the complete statistical pipeline is decomposed into four
main parts. In Section 4.1, we first describe the importation of the genotype and the phe-
notype data as proposed in our GeneGeneInteR package. Then, in Section 4.2, we focus on
the various functions dedicated to the manipulation of the genotype data. In Section 4.3, we
detail the statistical analysis performed on a set of genes. Finally, in Section 4.4, we introduce
two main functionalities for visualizing the obtained results.

4.1. Genotype and phenotype importation

At first, the path for the files containing genotype data and information regarding the SNP
set are loaded.

Genotype importation

R> ped <- system.file(file.path("extdata", "example.ped"),
+ package = "GeneGeneInteR")
R> info <- system.file(file.path("extdata", "example.info"),
+ package = "GeneGeneInteR")
R> posi <- system.file(file.path("extdata", "example.txt"),
+ package = "GeneGeneInteR")

The importation is performed with the importFile function:

R> data <- importFile(file = ped, snps = info, pos = posi, pos.sep = "\t")

The object data is a list of 3 elements: status, snpX (a ‘SnpMatrix’ object) and genes.info
(a ‘data.frame’). The status is available only if the imported format is PED.

R> summary(data)

Length Class Mode
status 429 factor numeric
snpX 133848 SnpMatrix raw
genes.info 4 data.frame list

We can check that the snpX object contains the genotype of 429 individuals for 312 SNPs.

R> data$snpX

A SnpMatrix with 429 rows and 312 columns
Row names: H97 ... RA345
Col names: rs1002788 ... rs9502656
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The genes.info is a ‘data.frame’ with exactly four columns that are named as follows:
Chromosome, Genenames, SNPnames and Position.

R> summary(data$genes.info)

Chromosome Genenames SNPnames Position
Min. : 1.000 PCSK6 :74 rs1002788 : 1 Min. : 7881078
1st Qu.: 6.000 TXNDC5 :69 rs1005753 : 1 1st Qu.: 11712674
Median : 8.000 DNAH9 :41 rs1006273 : 1 Median : 47863803
Mean : 9.962 CA1 :38 rs10152164: 1 Mean : 52968484
3rd Qu.:15.000 VDR :19 rs10184179: 1 3rd Qu.: 97191582
Max. :17.000 Gc :12 rs1032551 : 1 Max. :123157722

(Other):59 (Other) :306

Case-control status importation
Similar to functions introduced to analyze a single pair of genes (see Section 3), the case-
control status is stored in a numeric or a factor vector with exactly two distinct values. If the
phenotype is saved in a separate file in table form, it can thus be imported simply by using
the read.table function such as:

R> Y <- read.table(system.file(file.path("extdata", "response.txt"),
+ package = "GeneGeneInteR"), sep = ";")

If the case-control status is provided in the PED file, it can be obtained as follows:

R> Y <- data$status

4.2. Genotype data manipulation

Once genotype data have been imported, SNPs can first be selected in a filtering step in order
to improve the quality of the data or to focus on particular genomic regions. Furthermore,
we developed functions to allow the imputation of missing genotypes. These two parts are
detailed in the following paragraphs.

Data filtering
Before performing the statistical analysis, it is very common to remove some SNPs in order to
improve the quality of the data. Such a cleaning step can be performed in our GeneGeneIn-
teR package by using the function snpMatrixScour. snpMatrixScour aims at modifying a
‘SnpMatrix’ object by removing SNPs that do not meet criteria regarding the minor allele
frequency (MAF), deviation to the Hardy-Weinberg equilibrium (HWE) and the proportion
of missing values. In the following example, SNPs with MAF lower than 0.05 or SNPs with
p value for HWE lower than 0.001 or SNPs with a call rate lower than 0.9 are removed from
the object data.

R> data <- snpMatrixScour(data$snpX,genes.info = data$genes.info,
+ min.maf = 0.05, min.eq = 1e-3, call.rate = 0.9)
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A list object has been returned with elements: snpX & genes.info

The following code lines show that the dataset now contains only 209 SNPs, meaning that
103 SNPs have been filtered out.

R> data$snpX

A SnpMatrix with 429 rows and 209 columns
Row names: H97 ... RA345
Col names: rs10510123 ... rs4328262

Since the use of stringent filters could lead to the elimination of all SNPs within a gene, care
has to be taken during the filtering step. However, in such a situation a gene without SNPs
is removed from the dataset and a warning message is provided for the user.
In other situations, the user might be interested in performing the analysis on a predefined
subset of SNPs. For that purpose, the selectSnps function provides three options to extract
a collection of SNPs by specifying the argument select that should be one of the following:

• a numeric vector with only the column number in the ‘snpMatrix’ (or row number for
genes.info) of each selected SNP. The following code line allows the extraction of the
10 first SNPs:

R> selec <- selectSnps(data$snpX, data$genes.info, select = 1:10)

• a character vector with the names of each selected SNP or each selected gene. The
following example is used to extract genes DNAH9 and TXNDC5:

R> selec <- selectSnps(data$snpX, data$genes.info, c("DNAH9", "TXNDC5"))

• a character vector which elements are position bounds of genes. Each element of the
vector is either of the form "begin:end", or "chr:begin:end" if you have to specify
the chromosome of the gene. The following code allows to select SNPs from position
101342000 to 101490000 on chromosome 15:

R> selec <- selectSnps(data$snpX, data$genes.info,
+ c("15:101342000:101490000"))

Genotype imputation
Since our pipeline of analysis does not handle missing values, SNPs filtering as well as SNPs
selection can help removing missing data. As described in the previous section, this can
be done easily by applying the snpMatrixScour function with argument call.rate = 1.
However, in this case, SNPs with an acceptable call rate are also removed and the lost
information is likely to be critical. Genotype imputation is then commonly performed to
keep most of the informative SNPs in the dataset. Since our genotype data are stored into
a ‘SnpMatrix’ object, we implement the imputeSnpMatrix function that wraps functions
snp.imputation and impute.snps from package snpStats. Our imputeSnpMatrix function
mimics a leave-one-out process where missing SNPs are imputed for an individual based on
a model trained on all other individuals.
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In our example, the following code lines show that after the filtering step, 844 missing values
still remain in the dataset.

R> sum(is.na(data$snpX))

[1] 844

To impute those missing values, we used our imputeSnpMatrix function as follows:

R> data <- imputeSnpMatrix(data$snpX, data$genes.info)

|------------------------------------------------------------------| 100%

A simple check of the dataset shows that all missing values have been imputed:

R> sum(is.na(data$snpX))

[1] 0

When the amount of missing values is so large that snp.imputation is not able to find a rule
of imputation, some missing values may remain. In this case, the user can specify the action
to be done thanks to the om.rem argument:

• om.rem = "none": leave the dataset as it is,

• om.rem = "SNP": remove all SNPs with remaining missing values,

• om.rem = "ind": remove all individuals with remaining missing values.

It is noteworthy that removing all SNPs is often more parsimonious than removing individuals
and allows to get a dataset without any missing values with minimum information loss.
Although, function snp.imputation can calculate accurate rules for imputation, we encourage
the user to first impute missing genotypes with an external software (such as IMPUTE2;
Howie, Donnelly, and Marchini 2009) prior to the importation step.

4.3. Statistical analysis

The statistical analysis of a set of genes, as implemented in the GGI function, consists in
performing all possible pairwise tests between two genes. Pairwise tests are conducted by
using the method argument with one of the 10 methods detailed in Section 3. The GGI
function takes two further mandatory arguments: Y the vector of case-control status and
snpX, a ‘SnpMatrix’ object that stores the genotypes for all SNPs. It is assumed that SNPs
within the same gene are consecutive in the snpX argument. Furthermore, gene information,
such as gene ordering and the number of SNPs within each gene, has to be provided either
in the genes.length or in the gene.info argument.
The following code line allows the computation of all pairwise tests between the 17 genes of
our example dataset with the PCA-based method.
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R> GGI.res <- GGI(Y = Y, snpX = data$snpX, genes.info = data$genes.info,
+ method = "PCA")

The output of the GGI function is a an object of class ‘GGInetwork’.

R> class(GGI.res)

[1] "GGInetwork"

The class ‘GGInetwork’ is an S3 class based on a list of 4 elements statistic, p.value,
method and parameter. When method = "PCA", a fifth element, called df, is added to the
‘GGInetwork’.

R> names(GGI.res)

[1] "statistic" "p.value" "df" "method" "parameter"

Elements statistic, p.value and statistic, df are square matrices with M rows and M
columns where M is the number of genes in the dataset. The elements of each matrix are
the statistic, the p value and the degrees of freedom of the likelihood ratio test, respectively.
The element method is the name of the method used to perform the pairwise interaction
tests. Finally, the element parameter is a list of the parameters used to perform the pairwise
interaction tests.
As example, the GGI.res object generated in the previous example is a list of 5 elements.
Each cell of the output p.value matrix is the p value of the corresponding pairwise test. The
pairwise p values obtained for the 4 first genes (bub3, CA1, CDSN, DNAH9) of our dataset
can be observed as follows:

R> round(GGI.res$p.value[1:4, 1:4], digits = 4)

bub3 CA1 CDSN DNAH9
bub3 0.0000 0.1684 0.3179 0.1851
CA1 0.1684 0.0000 0.0697 0.0000
CDSN 0.3179 0.0697 0.0000 0.4539
DNAH9 0.1851 0.0000 0.4539 0.0000

Significant results can be summarized using the S3 method summary for class ‘GGInetwork’.
The method summary prints out the pairs of genes with an interaction p value lower than 0.05
after (1) no correction (2) a Bonferroni correction and (3) a Benjamini & Hochberg correction
for multiple testing.

R> summary(GGI.res)

Gene-gene interaction network of 17 genes performed with:
PCA

Significant interaction with no correction at the level of 0.05
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-------
Gene1 Gene2 Uncorrected p-value

1 TXNDC5 VDR 8.9e-10
2 DNAH9 TXNDC5 1.9e-09
[...]

Significant interaction with a bonferroni correction at the level of 0.05
-------

Gene1 Gene2 bonferroni p-value
1 TXNDC5 VDR 1.2e-07
2 DNAH9 TXNDC5 2.6e-07
[...]

Significant interaction with a Benjamini & Hochberg correction at the
level of 0.05
-------

Gene1 Gene2 BH p-value
1 TXNDC5 VDR 1.2e-07
2 DNAH9 TXNDC5 1.3e-07
[...]

4.4. Visualization

The results are visualized with the S3 method plot for class ‘GGInetwork’. Given an object
of class ‘GGInetwork’ obtained from the analysis of M genes with our GGI function, results
can be visualized through two types of representation: an heatmap-like visualization with
the method = "heatmap" argument and a network-like representation with the method =
"network" argument.

Heatmap-like visualization
The plot method can be used with the ‘GGInetwork’ object as the single input argument.
Figures 3(a) and (b) show the graphical representation where all pairwise interactions are
plotted (Figure 3(a) created with plot(GGI.res)) or only the interaction between the 3 genes
CA1, Gc and PADI1 with the argument genes (Figure 3 (b) created with plot(GGI.res,
genes = c("CA1", "Gc", "PADI1"))).
When the number of genes is below 15, p values and names are drawn to make matrix reading
easier (see Figure 3(b)). However, when the number of genes is larger than 15, p values are
not drawn and if the number of genes is even larger than 25, none of the p values or the gene
names are displayed (see Figure 3(a)). In this case, by setting the argument interact =
TRUE, the user can start an interactive process that allows to click on a cell of interest to open
a tooltip displaying which genes are involved in the selected interaction and the p value of the
interaction test. Tooltips can be closed if the user clicks anywhere else than on a cell. This
process stops when the user presses the escape button (or terminates the locator procedure
in general) or when the user clicks on any place other than a cell when no tooltip window is
open.
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(a) (b)

Figure 3: Default output of the plot method for ‘GGInetwork’ objects considering (a) the
whole set of genes or (b) a restricted set of 3 genes.

(a) (b)

Figure 4: Example of the use of plot arguments (a) when no threshold is applied to the
p values and (b) when a threshold of 0.05 is applied to the p values.

Several arguments can further be specified to customize the output graphics such as colors
(arguments col and NA.col), width of the bar for colors (argument colbar.width), and titles
(argument title). Users can also decide whether p values (argument draw.pvals) and gene
names (argument draw.names) should be drawn and they may disable the interactivity of
the plot (argument interact). To further improve plot clarity and hence allowing a better
interpretation of the results, (1) genes can be ordered according to a hierarchical clustering
(argument hclust.order), (2) p values can be reported in −log10 scale (argument use.log)
and (3) a threshold can be applied to the p values in order to distinguish between significant
and non-significant interactions (argument threshold).
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(a) (b)

Figure 5: Output of the plot function used with (a) the argument method = "network"
and (b) argument method = "network" and other customized arguments.

Figure 4 provides two plots resulting from different sets of arguments passed to the plot
function:

R> plot(GGI.res, col = c("black", "cyan", "white"), colbar.width = 0.25,
+ title = "Interaction between 17 genes", hclust.order = TRUE,
+ use.log = TRUE, threshold = NULL, NA.col = "#D3D3D3",
+ draw.pvals = FALSE, draw.names = TRUE, interact = FALSE)
R> plot(GGI.res, col = c("black", "cyan", "white"), colbar.width = 0.05,
+ title = "Interaction between 17 genes", hclust.order = TRUE,
+ use.log = FALSE, threshold = 0.05, NA.col = "#D3D3D3",
+ draw.pvals = FALSE, draw.names = TRUE, interact = FALSE)

Network-like visualization
The plot function with method = "network" aims at drawing a graph between genes where
two genes are adjacent if the p values between these two genes is below a given threshold
(argument threshold with a default value equal to 0.05). The display of the network is
performed by utilizing the graph_from_data_frame function from the igraph R package.
Two additional arguments can be used to customize the network. First, user can focus on a
specific subset of genes with the argument genes and genes not linked to other genes can be
removed from the graph with argument plot.nointer.
Figure 5(a) is created using

R> set.seed(1234)
R> plot(GGI.res, method = "network")

and displays the default network obtained with all genes. In Figure 5(b), a subset of only 12
genes have been selected to be the vertices of the graph using
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R> set.seed(1234)
R> plot(GGI.res, method = "network", genes = c("bub3", "CDSN", "Gc", "GLRX",
+ "PADI1", "PADI2", "PADI4", "PADI6", "PRKD3", "PSORS1C1", "SERPINA1",
+ "SORBS1"), threshold = 0.05, plot.nointer = FALSE)

However, genes bub3 and PADI1 do not have a p value below the threshold of 0.05 with any
of the other selected genes. Since the argument plot.nointer is set to TRUE, the two genes
bub3 and PADI1 are not drawn in the resulting network.

5. Discussion

This article presents the R package GeneGeneInteR dedicated to the detection of an in-
teraction between SNP sets in case-control genome-wide association studies. The package
includes the GGI function performing all pairwise tests between two SNP sets and produc-
ing output of the class ‘GGInetwork’. The GGI function takes two main arguments: method
and snpX, a ‘SnpMatrix’ object. The method argument allows the user to specify the sta-
tistical procedure used for pairwise interaction testing as one of the ten methods imple-
mented in GeneGeneInteR. Furthermore, several methods have been implemented in Gene-
GeneInteR to import, manipulate and impute missing values for the snpX objects. Methods
summary and plot, associated with objects of the class ‘GGInetwork’, are also proposed.
The plot method allows the production of heatmap or network visualization of the sta-
tistical interaction between SNP sets. The R package GeneGeneInteR is available from
Bioconductor (https://bioconductor.org/packages/GeneGeneInteR/) and from GitHub
(https://github.com/MathieuEmily/GeneGeneInteR) .

Since our implementation relies on ‘SnpMatrix’ objects, GeneGeneInteR could in principle
handle large datasets. However, in practice, testing for pairwise interaction remains a com-
binatorial burden and highly computationally efficient methods are needed to perform large-
scale analysis. In GeneGeneInteR, some methods are still computationally intensive (KCCA,
PLSPM, GBIGM for example) so that their use is not recommended for large datasets. Pos-
sible extensions of GeneGeneInteR could consist in speeding up the execution time either by
using parallel processing with the package parallel (R Core Team 2020) or by porting existing
R code to C++ with Rcpp (Eddelbuettel and François 2011). Another limitation raised by
the analysis of large scale datasets is the visualization of the results. However, we proposed
several options to the user in order to focus on specific parts of a big network. Furthermore,
the visualization of a big network provides information regarding a global pattern of relation-
ships between SNP sets. Since the main purpose of the package GeneGeneInteR is to search
for pairwise interactions, the detection of specific patterns in a network is beyond the scope
of this work.

Finally, one of the main advantages of the GeneGeneInteR package lies in the use of a common
pipeline of analysis for a collection of statistical procedures. Thus, GeneGeneInteR can easily
be extended with the inclusion of novel statistical procedures to detect pairwise interaction
between SNP sets. Further extensions could include the possibility to search for high-order
of interactions (such as three-way interaction) between SNP sets.

https://bioconductor.org/packages/GeneGeneInteR/
https://github.com/MathieuEmily/GeneGeneInteR
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