New genomic resources for three exploited Mediterranean fishes

Katharina Fietz, Elena Trofimenko, Pierre-Edouard Guerin, Véronique Arnal, Montserrat Torres-Oliva, Stéphane Lobréaux, Angel Pérez-Ruzafa, Stéphanie Manel, Oscar Puebla

To cite this version:

Katharina Fietz, Elena Trofimenko, Pierre-Edouard Guerin, Véronique Arnal, Montserrat Torres-
Oliva, et al.. New genomic resources for three exploited Mediterranean fishes. Genomics, 2020, 112
(6), pp.4297-4303. 10.1016/j.ygeno.2020.06.041 . hal-02997412

HAL Id: hal-02997412

https://hal.science/hal-02997412

Submitted on 20 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Running title: genomic Resources for Mediterranean fishes

Authors

Katharina Fietz ${ }^{1 *}$, Elena Trofimenko ${ }^{1 *}$, Pierre-Edouard Guerin ${ }^{2 *}$, Véronique Arnal ${ }^{2}$, Montserrat Torres-Oliva ${ }^{3}$, Stéphane Lobréaux ${ }^{4}$, Angel Pérez-Ruzafa ${ }^{5}$, Stephanie Manel ${ }^{2 * *}$, Oscar Puebla ${ }^{6,1}$ ${ }^{1}$ GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine

7 Fishes, Düsternbrooker Weg 20, 24105 Kiel, Germany
${ }^{2}$ CEFE, PSL Research University, EPHE, CNRS, Université de Montpellier, Université PaulValéry Montpellier 3, IRD, Montpellier, France
${ }^{3}$ Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
${ }^{4}$ Laboratoire d'Ecologie Alpine, CNRS; Université Grenoble-Alpes, Grenoble, France ${ }^{5}$ Departmento de Ecología e Hidrología, Facultad de Biología, Campus de Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
${ }^{6}$ Leibniz Centre for Tropical Marine Research, Fahrenheitstrasse 6, 28359, Bremen, Germany

* these authors contributed equally to this work
** corresponding author: Stephanie Manel, stephanie.manel@ephe.psl.eu

Abstract

Extensive fishing has led to fish stock declines throughout the last decades. While clear stock identification is required for designing management schemes, stock delineation is problematic due to generally low levels of genetic structure in marine species. The development of genomic resources can help to solve this issue. Here, we present the first mitochondrial and nuclear draft genome assemblies of three economically Mediterranean fishes, the white seabream, the striped red mullet, and the comber. The assemblies are between 613 and 785 Mbp long and contain between 27,222 and 32,375 predicted genes. They were used as references to map Restriction-site Associated DNA markers, which were developed with a single-digest approach. This approach provided between 15,710 and 21,101 Single Nucleotide Polymorphism markers per species. These genomic resources will allow uncovering subtle genetic structure, identifying stocks, assigning catches to populations and assessing connectivity. Furthermore, the annotated genomes will help to characterize adaptive divergence.

Keywords

Mediterranean, fishes, genomes, assembly, annotation, RAD sequencing

Introduction

Extensive fishing has led to the decline of Mediterranean fish stocks over the last decades (Colloca, Scarcella, \& Libralato, 2017; Vasilakopoulos, Maravelias, \& Tserpes, 2014). Yet the identification of stocks is often problematic due to generally low levels of population genetic structure (Calo, Muñoz, Pérez-Ruzafa, Vergara-Chen, \& García-Charton, 2016; Gkagkavouzis et al., 2019; Viret et al., 2018). In this situation, a large number of genetic markers is required to detect fine-scale population structure (Carreras et al., 2017; DiBattista et al., 2017), assign catches to genetic populations (Benestan et al., 2015) and assess levels of genetic and demographic connectivity (Waples, 1998). A large number of genetic markers can also contribute to evaluate the effect of marine protected areas (MPAs) on fished areas and optimize the efficiency of MPA networks (Xuereb et al., 2019), since Marine Protected Areas (MPAs) tend to be a reservoir of genetic richness (Pérez-Ruzafa, González-Wangüemert, Lenfant, Marcos, \& García-Charton, 2006). When genetic markers are mapped to an annotated reference genome of the same or a closely related species, they also provide the opportunity to characterize adaptive divergence (Ellegren, 2014). This aspect is particularly relevant in the Mediterranean Sea, which is a hotspet in terms of bothsubmitted to strong anthropogenic pressures (Ramirez, Coll, Navarro, Bustamante, \& Green, 2018; Stock, Crowder, Halpern, \& Micheli, 2018) and including global warming (Giorgi, 2006; Parry, 2000).

Restriction-site Associated DNA (RAD) sequencing (Etter, Bassham, Hohenlohe, Johnson, \& Cresko, 2011) and related reduced-representation approaches (Toonen et al., 2013; van Orsouw et al., 2007; Wang, Meyer, McKay, \& Matz, 2012) have become methods of choice to generate large numbers of Single Nucleotide Polymorphism (SNP) markers. Due to its applicability to non-model organisms, RAD sequencing has revolutionized the fields of ecological and conservation genomics (Andrews, Good, Miller, Luikart, \& Hohenlohe, 2016).

Yet while the utility of RAD sequencing is well recognized, procedures for library preparation, sequencing and filtering sometimes lack details that are critical to assess the quality of the data and the robustness of the results. For example, PCR clones generated during library preparation can represent a significant proportion of the data and thereby bias allele frequencies if not identified and filtered (Andrews et al., 2014). This is particularly true when the number of PCR cycles is increased, which is often needed when the starting DNA is degraded or in low concentrations. The number of RAD markers needs to be known in order to adjust the sequencing effort, yet this number is difficult to predict in the absence of a previous study or reference genome. This often results in a sub-optimal sequencing effort, i.e. too low or too high coverage. The availability of a reference genome allows to estimate the number of RAD markers generated by different restrictions enzymes (Lepais \& Weir 2014) and can greatly improve genotyping quality by providing a template to call SNP markers (Manel et al., 2016). A reference genome also allows to assess physical linkage among markers and consider population genetic statistics along scaffolds as opposed to a SNP-by-SNP basis (Catchen, Hohenlohe, Bassham, Amores, \& Cresko, 2013). Yet the process of genome assembly and annotation is complex and computationally intensive. It requires high-molecular-weight DNA with high purity and structural integrity, especially when long-read technologies are used (Dominguez Del Angel et al., 2018). Finally, stringent filtering of SNP markers with respect to sequencing coverage, missing data, minimum allele frequency, and linkage is often required for downstream population genomic analyses.

Here, we present annotated genome assemblies of three exploited Mediterranean fish species from three families, the white seabream (Diplodus sargus (Linnaeus, 1758), Sparidae), the striped red mullet (Mullus surmuletus (Linnaeus, 1758), Mullidae), and the comber (Serranus cabrilla (Linnaeus, 1758), Serranidae). These three species are exploited in the Mediterranean

Sea (Goni et al., 2008; Lloret \& Font, 2013), and previous studies have found weak to no population genetic structure for all of them (D. sargus: González-Wanguemert, Pérez-Ruzafa, Canovas, García-Charton, and Marcos (2007); González-Wanguemert, Pérez-Ruzafa, GarcíaCharton, and Marcos (2006); Lenfant and Planes (2002); M. surmuletus: Dalongeville et al. (2018); Mamuris, Stamatis, and Triantaphyllidis (1999); S. cabrilla: Schunter et al. (2011)). We use these nuclear assemblies as references to map RAD markers and characterize SNPs for the three species, which we filter stringently with respect to PCR clones, coverage, missing data, minimum allele frequency and linkage.

Results

Genome assemblies

Whole-genome sequencing of D. sargus, M. surmuletus and S. cabrilla with the Illumina HiSeq 4000 platform produced 651,649 and 755 million paired-end 150 bp reads, respectively. After quality filtering and trimming, 609, 588 and 730 million reads were kept, respectively, and used to assemble each genome with the Platanus assembler (Kajitani et al., 2014) (Table 1). First, all paired-end reads were assembled into contigs with N 50 s of $1,101,384$ and $1,135 \mathrm{kbp}$ for D. sargus, M. surmuletus and S. cabrilla, respectively. Scaffolds were then built using the mate-pair reads to link contigs into $2,344,2,190$ and 2,940 scaffolds, respectively. The assembly of D. sargus reached the highest contiguity, with a scaffold N 50 of $3,371 \mathrm{kbp}$. The assemblies of M. surmuletus and S. cabrilla were overall more fragmented (scaffold N50 of 488 kbp and 613 kbp , respectively), but they also contained very large scaffolds (Table 1) and almost all BUSCOs (Benchmarking Universal Single Copy Ortholog genes, see below). The final size of these $d e$ novo genome assemblies was 785,613 and 627 Mbp for D. sargus, M. surmuletus and S. cabrilla, which represents $72 \%, 103 \%$ and 79% of estimated genome size based on C-value
(Dolezel, Bartos, Voglmayr, \& Greilhuber, 2003), respectively. Summary statistics of several fish genome assemblies, including our study species and the best currently available fish assembly of D. labrax, are presented in Table S1.

The search for BUSCOs showed the high completeness of the three genome assemblies. From the set of 978 metazoan BUSCOs, the D. sargus assembly contains 97.5%, the M. surmuletus assembly 92.5% and the S. cabrilla assembly 96.7% (Fig. 1A, Table S2). From the set of 4,584 Actinopterygii BUSCOs, the D. sargus assembly contains 96.6%, the M. surmuletus assembly 89.9% and the S. cabrilla assembly 95.3% (Fig. 1C, Table S3). These results show that the D. sargus assembly is not only the most contiguous, but also the most complete assembly.

The mitochondrial sequences assembled into circular sequences with a length of $16,513 \mathrm{bp}-$ $16,620 \mathrm{bp}$. The mtDNA comprised 37 genes, including 13 protein-coding genes (COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4, ND5, ND6, CYTB, ND1), 22 transfer RNA genes (tRNA), two ribosomal RNA genes (rRNA) (12S rrn and 16S rrn) and the control region (Fig. S1).

Gene annotation and Ortholog gene analysis

The number of predicted genes totaled 31,055 for M. surmuletus, 32,375 for D. sargus and 27,222 for S. cabrilla. To assess these annotations, we compared the percentage of BUSCOs present in the assemblies and investigated how many we could recover as annotated gene models. The D. sargus annotation contained 96.0% of complete BUSCOs, which is close to the 97.5% found in the genome assembly. Similar results were obtained for the other two species: the S. cabrilla and M. surmuletus annotations contained 95.6% and 90.8% metazoan BUSCOs, respectively (Fig. 1B, Table S4). Of the Actinopterygii BUSCOs, the D. sargus annotation
contained 90.2%, the S. cabrilla annotation 87.6% and the M. surmuletus annotation 80.3% (Fig. 1D, Table S5).

Using OrthoMCL analysis, we identified genes that are conserved across our focal species and the D. rerio reference genome, as well as genes that are unique to our fish species (Fig. 2). Out of the total of $16,4321: 1$ orthologs identified, 6,446 genes (39%) were shared among all 4 species and 3,577 genes (21\%) were shared by our 3 target species. Just 195 (1.1\%), 321 (1.9\%) and $266(1.6 \%)$ genes were only present in D. sargus, M. surmuletus and S. cabrilla, respectively. D. sargus and M. surmuletus share 814 genes, M. surmuletus and S. cabrilla share 761 genes, while D. sargus and S. cabrilla share 1,312 genes.

RAD markers prediction

In silico digestion of the three genome assemblies with SbfI predicted 30,039, 23,078 and 29,931 restrictions sites for D. sargus, M. surmuletus and S. cabrilla, respectively, leading to an expected number of $60,078,46,156$ and 59,662 RAD markers for the three species since each restriction site generates two RAD markers (one on each side).

SNP description

RAD sequencing generated a total of $49,009,39,357$ and 52,388 RAD markers for D. sargus, M. surmuletus and S. cabrilla, respectively, which provided a total of $39,678,31,009$, and 47,954 SNPs (Table 2). After applying stringent filtering, we retained 20,074, 15,710 and 21,101 SNPs for D. sargus, M. surmuletus and S. cabrilla, respectively, corresponding to $45-65 \%$ of all SNPs (Table 2). Of these, 173, 178 and 226 were located in the mitochondrial genomes of D. sargus, M. surmuletus and S. cabrilla, respectively, representing less than 1% of the total number SNPs (Table 2). The distance between SNPs averaged 35,389, 30,717 and 28,240 bp per species,
respectively. The SNPs were spread evenly across the genomes (Fig. $3 \mathrm{~A}, \mathrm{C}, \mathrm{E}$), with a mean number of 9.81 SNPs per $400,000 \mathrm{bp}$ window in scaffolds larger than this size. The mean sequencing coverage across individuals was comparable among the three species, with 38X, 45X and 48X for D. sargus, M. surmuletus and S. cabrilla, respectively (Fig. 3 B,D,F). Of all SNPs filtered, $15 \%, 18 \%$ and 17% were located in exons for D. sargus, M. surmuletus and S. cabrilla, respectively (Table 2).

Discussion

We presented annotated nuclear and mitochondrial genome assemblies of three exploited Mediterranean fishes from three different families, the striped red mullet (M. surmuletus, Mullidae), the white seabream (D. sargus, Sparidae) and the comber (S. cabrilla, Serranidae). To our knowledge, these genome assemblies represent the first genomes for these species.

The quality of a genome assembly in terms of both completeness and continuity greatly influences its usefulness for both genome-wide marker development and gene model prediction (Yang et al., 2019). The quality of our three nuclear genome assemblies is attested by the almost complete gene content ($89.9-96.6 \%$ of Actinopterygii BUSCOs) and by the fact that the sizes of our assemblies are in the expected range based on C-value. The difficulty in genome assembly generally increases with repeat content (Sedlazeck, Lee, Darby, \& Schatz, 2018). Therefore, discrepancies between expected genome size and assembly size from short-read sequencing technologies are still common. In a meta-study of avian genomes, Peona, Weissensteiner, and Suh (2018) note that regions highly enriched in repetitive DNA or with strong deviations in nucleotide composition are often underrepresented in assemblies. The presence of such GC-rich or repeat-rich genome regions is a possible explanation for the ca. $20-30 \%$ gap between assembly sizes and estimated genome sizes for D. sargus and S.
cabrilla in the present study. Comparing contiguity, we found the D. sargus genome to be more contiguous (higher scaffold N50, Table 1) than the M. surmuletus and S. cabrilla genomes. Possible explanations could be higher molecular weight of DNA or a higher homozygosity of D. sargus in comparison to M. surmuletus and S. cabrilla (Kajitani et al., 2014).

The mitochondrial genome is essential to eukaryote life and highly conserved across vertebrate species. Our mitochondrial genome assemblies match those of other fishes and vertebrates in terms of size (mean length $=16 \mathrm{~kb}$), the presence of 37 genes (13 protein coding, 22 tRNA, and 2 rRNA genes) and the non-coding control region (Satoh, Miya, Mabuchi, \& Nishida, 2016).

In all three genomes, the annotation has identified genes that are highly conserved across metazoans with great accuracy (Fig. 1). For the benefit of providing a resource as flexible as possible, we did not filter annotated gene lists with respect to the presence of a starting codon. For comparison, filtered G. aculeatus and D. rerio genome annotations contain 20,787 and 26,152 protein-coding genes, respectively, which are fewer compared to our unfiltered output (Howe et al., 2013; Jones et al., 2012). To note is that a significant percentage of Actinopterygii specific orthologs are fragmented $(8 \%, 13 \%$ and 9.8% in D. sargus, M. surmuletus and S. cabrilla, respectively). This is probably due to the lack of RNA-seq data for our focal species, which could have allowed the training of specific gene prediction models. However, we can confirm that the three genome annotations are exhaustive and almost complete, as the percentage of missing BUSCOs is low and almost the same in the assembly and annotation (Fig. 1A and B, Tables S2 and S4). The OrthoMCL output revealed that D. sargus and S. cabrilla share more ortholog genes than the two other species pairs. This is consistent with the phylogeny of the Perciformes, which shows that Mullidae have diverged
during the early Lower Cretaceous (LC), while Sparidae and Serranidae have forked during the late LC (Meynard, Mouillot, Mouquet, \& Douzery, 2012). As such, D. sargus and S. cabrilla are more closely related to each other than to M. surmuletus (Meynard et al., 2012), which is also supported by phylogenetic findings of Albouy et al. (2015).

We used the reference genomes to generate rigorously filtered SNP datasets for the three species. Our approach with a single restriction enzyme (Sbff) recovered between 82% and 88% of the total number of RAD markers predicted by in silico digestion. These RAD markers provided between 31,000 and 47,000 SNPs pre-filtering and between 15,000 and 21,000 SNPs post-filtering that are evenly distributed across the genome. Besides providing a reference to align markers, this exemplifies that we also provide the expected number of markers. This allows knowing exactly what sequencing effort is needed to attain a given coverage. The number of high-quality markers generated here provides strong statistical power for future population genetic analyses. They can for instance be used for stock identification, investigations of population connectivity, and assignment studies. In addition, between 2,908 and 3,589 of our filtered SNPs lie in exonic regions. These markers may be used to start investigating functional variation (see e.g. Guo, DeFaveri, Sotelo, Nair, and Merila (2015), DiBattista et al. (2017)).

This study provides the first genomic resources for three economically important fish species in the Mediterranean Sea and as such lays a solid foundation for future population and conservation genomic and adaptive studies.

Materials and Methods

Genome sequencing

An individual of each species was sampled in the Western Mediterranean Sea (Table S6). Fin tissues of M. surmuletus and D. sargus were preserved in 96% ethanol at $4^{\circ} \mathrm{C}$ prior to DNA extraction, which was done within less than 24 hours. Tissues were cut into $\sim 2 \mathrm{~mm}^{2}$ pieces, dried at $70^{\circ} \mathrm{C}$ for 20 minutes, lysed in proteinase K at $56^{\circ} \mathrm{C}$ for 18 hours and incubated in RNAse A solution for 10 minutes at ambient temperature. DNA was extracted with a Macherey-Nagel Nucleospin® kit. For S. cabrilla, DNA extraction was conducted directly upon sampling. Tissues were dried out with filter paper and either flash-frozen in liquid nitrogen and crushed or cut into $\sim 2 \mathrm{~mm}^{2}$ pieces. The fragmented tissues were lysed in proteinase K at $56^{\circ} \mathrm{C}$ for 60 minutes and incubated in RNAse A for 10 minutes at ambient temperature. DNA was extracted using a Qiagen MagAttract HMW DNA kit.

For each genome, two paired-end libraries with insert sizes of 350 bp and 550 bp were generated from 1-2 $\mu \mathrm{g}$ of double-stranded DNA, as well as two mate-pair libraries with insert sizes of 3 kbp and 5 kbp from $4 \mu \mathrm{~g}$ of DNA. Libraries were sequenced on an Illumina HiSeq 4000 platform (150 bp paired-end reads). Library preparation and sequencing was conducted by FASTERIS (https://www.fasteris.com/dna).

Genome assemblies

Nuclear and mitochondrial genomes were assembled using three computing clusters, the Montpellier Bioinformatics Biodiversity platform (MBB: 64 cores, 512 Gb RAM), the High Performance Computing Platform of Occitanie / Pyrénées-Méditerranée Region of the Montpellier Mediterranean Metropole (MESO@LR: 80 cores, 1 Tb RAM), and CIMENT infrastructure in Grenoble (https://ciment.ujf-grenoble.fr, Froggy: 32 cores, 512 Gb RAM). The entire bioinformatics workflow for genome assembly is described in Appendix S1. Reads with < 50% bp with a phred quality >20 were filtered out. Adapter sequences were also filtered out and
the 3^{\prime} extremities of the retained reads were trimmed with ngsShoRT (C. Chen, Khaleel, Huang, \& Wu, 2013). Finally, reads shorter than 90 bp were removed.

Nuclear genomes were assembled using the Platanus assembler (Kajitani et al., 2014) (Fig. S2). Platanus was selected due to its excellent performance with highly heterozygous genomes (Kajitani et al., 2014), as well as with simulated datasets that we produced (data not shown). The paired-end libraries were used to assemble reads into contigs, and both the paired-end and matepair libraries were used for scaffolding and gap closing. Mitochondrial genomes were assembled and annotated using MitoZ (Meng, Li, Yang, \& Liu, 2019). Five million sequences were randomly selected as a subset of the full paired-end sequence set. Mitochondrial sequences were then identified from this subset using a ranking method based on a Hidden Markov Model profile of known mitochondrial sequences from 2,413 chordate species. Mitochondrial sequences were then used to assemble the mitochondrial genome.

Gene annotation

Each fish genome was annotated using the ab initio gene predictor Augustus v3.2.3 (Stanke, Steinkamp, Waack, \& Morgenstern, 2004) and homology-based extrinsic hints. Each genome was first repeat-masked using RepeatMasker v4.0.8 (Smit, Hubley, \& Green, 2013). Zebrafish (Danio rerio) and stickleback (Gasterosteus aculeatus) annotated protein sequences were downloaded from the Ensembl website (versions GRCz11 and BROADS1, respectively) and aligned to each repeat-masked fish genome using Exonerate (Slater \& Birney, 2005). Untranslated regions (UTRs) and alternative isoforms were not predicted due to the lack of species-specific RNA-seq data. Therefore, in each focal fish species, Augustus was run with the options "--species=zebrafish --UTR=off --alternatives-from-evidence=false" and with the respective Exonerate alignments as extrinsic hints.

All reviewed metazoan proteins were downloaded from UniProt (Bateman et al., 2019) and used as database to run a search in Blast +v 2.2 .30 (Camacho et al., 2009). The highest scoring hit was selected as the putative gene name for each gene model. To functionally annotate the predicted genes, InterProScan v5.19 (Jones et al., 2014) was run with options "-appl Pfam -b interpro -iprlookup -goterms" and functional information was added to the final annotation dataset using Annie v1.0 (Tate, Hall, \& Derego, 2014). To identify ortholog gene families and species-specific genes in each Mediterranean fish genome, the OrthoMCL pipeline (L. Li, Stoeckert, \& Roos, 2003) was used on the three annotated protein datasets along with the D. rerio protein dataset. Results were visualized with the venndiagram R package (H . Chen \& Boutros, 2011). Finally, mitochondrial assemblies were annotated using BLAST family alignments on known protein coding genes, transfer RNA genes and rRNA genes.

Quality of the nuclear genome assemblies and annotations were validated against the Metazoan and Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) with BUSCO v3.0.2 (Simao, Waterhouse, Ioannidis, Kriventseva, \& Zdobnov, 2015).

RAD markers prediction

SimRAD (Lepais \& Weir 2014) was used to perform in silico digestion of the three genome assemblies with SbfI to predict the number of restriction sites and RAD markers in the three species.

$R A D$ sequencing

A total of 90 samples (30 per species) from the Western Mediterranean were provided by local artisanal fishermen (Table S7, Fig. S3) and preserved in 96\% ethanol. RADseq libraries were prepared using $1 \mu \mathrm{~g}$ of genomic DNA per sample in $50 \mu \mathrm{l}$ reaction volume. Libraries were
prepared following the protocol described in (Etter et al., 2011) with a few modifications. At step 3.1 (restriction enzyme digestion), DNA was digested with $3 \mu \mathrm{~L}$ of the restriction enzyme SbfIHF (New England Biolabs Inc., USA) in a $50 \mu \mathrm{~L}$ reaction volume. At step 3.2 (P1 adapter ligation), we used $2 \mu \mathrm{~L}$ of barcoded P1 adapters (100 nM) in a $60 \mu \mathrm{~L}$ reaction volume and incubated the samples at room temperature for 1.5 h . Forty-eight samples were pooled per library. At steps 3.4 and 3.5 , NEB Next® Ultra $^{\mathrm{TM}}$ II DNA Library Prep Kit for Illumina (New England Biolabs Inc., USA) was used following the manufacturer's instructions to combine DNA end repair, $3^{\prime}-\mathrm{dA}$ overhang addition and P2 adapter ligation, followed by purification with a Qiagen QIAQuick PCR Purification Kit (Qiagen N.V., Netherlands). Finally, step 3.6 (PCR amplification) was run with the following settings: $30 \mathrm{~s} 98^{\circ} \mathrm{C}, 18 \mathrm{x}\left(10 \mathrm{~s} 98^{\circ} \mathrm{C}, 30 \mathrm{~s} 68^{\circ} \mathrm{C}, 30 \mathrm{~s}\right.$ $72^{\circ} \mathrm{C}$), $5 \mathrm{~min} 72^{\circ} \mathrm{C}$, hold $4^{\circ} \mathrm{C}$. P 1 and P 2 adapter sequences as well as PCR primer sequences are provided in Table S8. Each library was sequenced on one lane of a HiSeq 4000 Illumina Sequencer (paired-end, 2x 150bp) at the Institute of Clinical Molecular Biology, Kiel University, Germany.

SNP calling, genotyping and filtering
PhiX174 sequences that were used for quality control and calibration of the sequencing run were filtered out using BBMap v38.06 (Bushnell, Rood, \& Singer, 2017). Raw sequences were demultiplexed and filtered using the process_radtags pipeline in STACKS v2.2 (Catchen, Amores, Hohenlohe, Cresko, \& Postlethwait, 2011; Catchen et al., 2013). This included keeping only individuals with $>1,000,000$ reads at this step, the removal of reads with more than one mismatch in the barcode sequence, and the removal of low-quality reads (with an average raw phred-score <20 within a 0.2 sliding window). In addition, reads were trimmed to a final length of 139 bp due to a drop in read quality towards the end of the read. Taking advantage of paired-
end information, clone filter was used to remove pairs of paired-end reads that matched exactly, as the vast majority of these are expected to be PCR clones. Paired-end read sequences were subsequently aligned with BWA (H. Li \& Durbin, 2009) to the reference genomes of M. surmuletus, D. sargus, and S. cabrilla, thereby improving the reliability of stacks building. Aligned reads were sorted using SAMTOOLS 1.9 (H. Li et al., 2009) and loci were built with gstacks providing genotype calls.

In order to retain only high-quality biallelic SNPs for population genetic analysis, called genotypes were further filtered with the populations pipeline and vcftools v0.1.16 (Danecek et al., 2011). Only the first SNP was retained per RAD marker, and a SNP was retained only if present in at least 85% of individuals with a minimum minor allele frequency (MAF) of 1%. In order to reduce linkage among markers, only one locus was retained for all pairs of loci that were closer than 5000 bp or that had an r^{2} value >0.8. Finally, individuals with $>30 \%$ missing data were filtered out.

Acknowledgements

This research was funded through the 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders ANR (France), Formas (Sweden), DLR (Germany), AEI (Spain) and the CNRS for the PICS SEACONNECT.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Data Accessibility Statement

The three reference genomes have been uploaded in the European Nucleotide Archive (ENA, project accession number PRJEB38135 at https://www.ebi.ac.uk/ena/data/view/PRJEB38135), the RAD data a git repository: https://gitlab.mbb.univmontp2.fr/reservebenefit/subset_30_samples_vcf and the scripts in a git repository: https://gitlab.mbb.univ-montp2.fr//reservebenefit/genomic_resources_for_med_fishes.

Author contributions

VA processed samples for genome sequencing. KF processed samples for RAD sequencing, and contributed to write the manuscript. ET processed samples for RAD sequencing and wrote a first draft of the manuscript. SL performed genome assemblies. PEG performed genome assemblies, processed samples for RAD sequencing, and contributed to write the manuscript. MTO performed gene annotation. APR contributed to the sampling design and sampling. SM and OP designed the research, supervised the project and contributed to write the manuscript.

Animal experiments

All samples were obtained from fishermen. No experiments were conducted.

X¢9	$9 L^{\circ} \mathrm{Z}$	Z¢E	1900	06I＇乙	$\varsigma \in 1^{\prime}{ }^{\text {¢ }}$	¢8E＇691＇$冖$	L29		¿88N	$p l l . u q u s$＇S
XtL	$87^{*} \mathcal{E}$	LIE	$67^{\circ} 0$	$0+6{ }^{\text {＇z }}$	†8E		E19	dqoss x dquse	ェ¢てOOSAN	sпұวтиuıns W
XLS		8S	$L \varepsilon^{\bullet} \varepsilon$	カセÉて	I01＇I	8L0 ${ }^{\text {8 }} 80$ tr $^{\text {c }}$	¢8L	риә－рәп！${ }_{\text {d }}$	とT®OSAN	snoıus $\cdot \square$
วธิช．12л0ว		$\begin{array}{r} \text { OST } \\ \text { рІ甲уеэS } \end{array}$	$\begin{array}{r} \text { (dqu) } \\ \text { 0sN } \\ \text { pıyevs } \end{array}$	$\begin{array}{r} \text { spioyers } \\ \mathbf{j o ~ \# ~} \end{array}$	$\begin{gathered} \text { (dqy) } \\ \mathbf{0 \subseteq N} \\ \text { ธ!uou } \end{gathered}$	$\begin{array}{r} \text { six! } \mathbf{j o} \text { \# } \end{array}$		R．ır．ıq！T	ш．лоде！ su！̣nduod	sə！甲9dS

sizes larger than 4 kbp ．

Table 2: Summary statistics for the SNP markers generated by RAD sequencing for each species.

Species	Number of SNPs $^{\mathbf{1}}$	Number of filtered SNPs $^{\mathbf{1}}$	Average distance (bp) and standard deviation (SD)	SNPs in coding $^{\text {regions }}{ }^{1}$	SNPs in exons $^{\mathbf{2}}$	Number of mt SNPs
D. sargus	39,678	20,074	$35,389($ SD $34,997)$	11,978	3138	173
M. surmuletus	31,009	15,710	$30,717($ SD $29,190)$	10,304	2908	178
S. cabrilla	47,954	21,101	$28,240($ SD $27,013)$	13,107	3589	226

${ }^{1}$ Nuclear and mitochondrial genomes
${ }^{2}$ Coding SNPs which are located in a exon

Figure 1: A) Percentage of conserved Metazoan genes (BUSCOs) found in our Platanus genome assemblies (Table S2); B) percentage of conserved Metazoan genes found in our gene annotations, compared to the annotations of the D. rerio and G. aculeatus reference genomes used to train the Augustus gene prediction model (Table S4); C) percentage of conserved Actinopterygii genes found in our Platanus genome assemblies (Table S3); D) percentage of conserved Actinopterygii genes found in our gene annotations compared to the annotations the D. rerio and G. aculeatus reference genomes used to train the Augustus gene prediction model (Table S5). BUSCO stands for Benchmarking Universal Single Copy Ortholog genes.

Figure 2: Four-set Venn diagram of 1:1 orthologous genes shared by M. surmuletus, D. sargus, S. cabrilla and D. rerio. Each ellipse shows the total number of genes specific to each species. Intersections indicate orthologous genes.

Figure 3: RADseq coverage along the D. sargus (A, B), M. surmuletus (C, D) and S. cabrilla (E, F) genomes. A), C), E) Number of SNPs per $400,000 \mathrm{bp}$ sliding window along the genome; B), D), F) Coverage per SNP per individual. Each blue dot represents the coverage of one SNP in one individual and the black line represents mean coverage in $400,000 \mathrm{bp}$ sliding windows. Grey and white rectangles represent the assembly scaffolds.

References

Al-Nakeeb, K., Petersen, T. N., \& Sicheritz-Ponten, T. (2017). Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data. Bmc Bioinformatics, 18. doi:10.1186/s12859-017-1927-y
Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., \& Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17(2), 81-92. doi:10.1038/nrg. 2015.28
Andrews, K. R., Hohenlohe, P. A., Miller, M. R., Hand, B. K., Seeb, J. E., \& Luikart, G. (2014). Trade-offs and utility of alternative RADseq methods: Reply to Puritz et al. 2014. Molecular Ecology, 23(24), 5943-5946. doi:10.1111/mec. 12964

Baichoo, S., \& Ouzounis, C. A. (2017). Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment. Biosystems, 156, 72-85. doi:10.1016/j.biosystems.2017.03.003
Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Alpi, E., Bely, B., . . . UniProt, C. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506-D515. doi:10.1093/nar/gky1049
Benestan, L., Gosselin, T., Perrier, C., Sainte-Marie, B., Rochette, R., \& Bernatchez, L. (2015). RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Molecular Ecology, 24(13), 3299-3315. doi:10.1111/mec. 13245
Bushnell, B., Rood, J., \& Singer, E. (2017). BBMerge - Accurate paired shotgun read merging via overlap. Plos One, 12(10). doi:10.1371/journal.pone. 0185056
Calo, A., Muñoz, I., Pérez-Ruzafa, A., Vergara-Chen, C., \& García-Charton, J. A. (2016). Spatial genetic structure in the saddled sea bream (Oblada melanura Linnaeus, 1758) suggests multi-scaled patterns of connectivity between protected and unprotected areas in the Western Mediterranean Sea. Fisheries Research, 176, 30-38. doi:10.1016/j.fishres.2015.12.001
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., \& Madden, T. L. (2009). BLAST plus : architecture and applications. Bmc Bioinformatics, 10. doi:10.1186/1471-2105-10-421
Carnielli, C. M., Winck, F. V., \& Leme, A. F. P. (2015). Functional annotation and biological interpretation of proteomics data. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1854(1), 46-54. doi:10.1016/j.bbapap.2014.10.019
Carreras, C., Ordonez, V., Zane, L., Kruschel, C., Nasto, I., Macpherson, E., \& Pascual, M. (2017). Population genomics of an endemic Mediterranean fish: differentiation by fine scale dispersal and adaptation. Scientific Reports, 7. doi:10.1038/srep43417
Catchen, J., Amores, A., Hohenlohe, P., Cresko, W., \& Postlethwait, J. (2011). Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics, 1, 171-182.
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., \& Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11), 3124-3140. doi:10.1111/mec. 12354
Chen, C., Khaleel, S. S., Huang, H., \& Wu, C. H. (2013). NgsShoRT: a software for preprocessing Illumina short read sequences for de novo genome assembly. Proceedings of the International Conference on Bioinformatics, 706.

Chen, H., \& Boutros, P. C. (2011). VennDiagram: a package for the generation of highlycustomizable Venn and Euler diagrams in R. Bme Bioinformatics, 12. doi:10.1186/1471-2105-12-35
Chen, Q. F., Lan, C. W., Zhao, L., Wang, J. X., Chen, B. S., \& Chen, Y. P. P. (2017). Recent advances in sequence assembly: principles and applications. Brief Funct Genomics, 16(6), 361-378. doi:10.1093/bfgp/elx006
Colloca, F., Scarcella, G., \& Libralato, S. (2017). Recent Trends and Impacts of Fisheries Exploitation on Mediterranean Stocks and Ecosystems. Frontiers in Marine Science, 4. doi:10.3389/fmars.2017.00244

Dalongeville, A., Andrello, M., Mouillot, D., Lobreaux, S., Fortin, M. J., Lasram, F., . . . Manel, S. (2018). Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol Appl, 11(8), 1437-1447. doi:10.1111/eva. 12638
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., . . . Genomes Project Anal, G. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. doi:10.1093/bioinformatics/btr330
DiBattista, J. D., Travers, M. J., Moore, G. I., Evans, R. D., Newman, S. J., Feng, M., . . . Berry, O. (2017). Seascape genomics reveals fine-scale patterns of dispersal for a reef fish along the ecologically divergent coast of Northwestern Australia. Molecular Ecology, 26(22), 6206-6223. doi:10.1111/mec. 14352
Dolezel, J., Bartos, J., Voglmayr, H., \& Greilhuber, J. (2003). Nuclear DNA content and genome size of trout and human. Cytometry Part A, 51A(2), 127-128. doi:10.1002/cyto.a. 10013
Dominguez Del Angel, V., Hjerde, E., Sterck, L., Capella-Gutierrez, S., Notredame, C., Pettersson, O. V., . . . Lantz, H. (2018). Ten steps to get started in Genome Assembly and Annotation [version 1; referees: 2 approved]. F1000Research, 7(ELIXIR): 148. doi:10.12688/f1000research. 13598.1
Ellegren, H. (2014). Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol, 29(1), 51-63. doi:10.1016/j.tree.2013.09.008
Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A., \& Cresko, W. A. (2011). SNP discovery and genotyping for evolutionary genetics using RAD sequencing Methods in Molecular Biology(772), 157-178.
Giorgi, F. (2006). Climate change hotspots. Geophysical Research Letters, 33(8).
Gkagkavouzis, K., Karaiskou, N., Katopodi, T., Leonardos, I., Abatzopoulos, T. J., \& Trianta fyllidis, A. (2019). The genetic population structure and temporal genetic stability of gilthead sea bream Sparus aurata populations in the Aegean and Ionian Seas, using microsatellite DNA markers. Journal of Fish Biology, 94(4), 606-613. doi:10.1111/jfb. 13932
Goni, R., Adlerstein, S., Alvarez-Berastegui, D., Forcada, A., Renones, O., Criquet, G., .. . Planes, S. (2008). Spillover from six western Mediterranean marine protected areas: evidence from artisanal fisheries. Marine Ecology Progress Series, 366, 159-174. doi:10.3354/meps07532
González-Wanguemert, M., Pérez-Ruzafa, A., Cánovas, F., García-Charton, J. A., \& Marcos, C. (2007). Temporal genetic variation in populations of Diplodus sargus from the SW Mediterranean Sea. Marine Ecology Progress Series, 334, 237-244.
González-Wanguemert, M., Pérez-Ruzafa, A., García-Charton, J. A., \& Marcos, C. (2006). Genetic differentiation and gene flow of two sparidae subspecies, Diplodus sargus sargus and Diplodus sargus cadenati in Atlantic and south-west Mediterranean
populations. Biological Journal of the Linnean Society, 89(4), 705-717. doi:10.1111/j.1095-8312.2006.00706.x
Guo, B. C., DeFaveri, J., Sotelo, G., Nair, A., \& Merila, J. (2015). Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol, 13, 19. doi:10.1186/s12915-015-0130-8
Hahn, C., Bachmann, L., \& Chevreux, B. (2013). Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Research, 41(13). doi:10.1093/nar/gkt371
Huang, D. W., Sherman, B. T., \& Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1-13. doi:10.1093/nar/gkn923
Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W. Z., McAnulla, C., . . . Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. doi:10.1093/bioinformatics/btu031
Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., . . . Itoh, T. (2014). Efficient de novo assembly of highly heterozygous genomes from wholegenome shotgun short reads. Genome Res, 24(8), 1384-1395. doi:10.1101/gr. 170720.113
Lenfant, P., \& Planes, S. (2002). Temporal genetic changes between cohorts in a natural population of a marine fish, Diplodus sargus. Biological Journal of the Linnean Society, 76(1), 9-20. doi:10.1046/j.1095-8312.2002.00041.x
Lepais, O., \& Weir, J. T. (2014). SimRAD: an R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Molecular Ecology Resources, 14(6), 1314-1321.
Li, H., \& Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Genome Project Data, P. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352
Li, L., Stoeckert, C. J., \& Roos, D. S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res, 13(9), 2178-2189. doi:10.1101/gr.1224503
Lloret, J., \& Font, T. (2013). A comparative analysis between recreational and artisanal fisheries in a Mediterranean coastal area. Fisheries Management and Ecology, 20(23), 148-160. doi:10.1111/j.1365-2400.2012.00868.x

Luu, K., Bazin, E., \& Blum, M. G. B. (2017). pcadapt: an R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources, 17(1), 67-77. doi:10.1111/1755-0998.12592
Mamuris, Z., Stamatis, C., \& Triantaphyllidis, C. (1999). Intraspecific genetic variation of striped red mullet (Mullus surmuletus L.) in the Mediterranean Sea assessed by allozyme and random amplified polymorphic DNA (RAPD) analysis. Heredity (Edinb), 83, 30-38. doi:10.1038/sj.hdy. 6885400
Manel, S., Perrier, C., Pratlong, M., Abi-Rached, L., Paganini, J., Pontarotti, P., \& Aurelle, D. (2016). Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Molecular Ecology, 25(1), 170-184. doi:10.1111/mec. 13468
Mastretta-Yanes, A., Arrigo, N., Alvarez, N., Jorgensen, T. H., Pinero, D., \& Emerson, B. C. (2015). Restriction site-associated DNA sequencing, genotyping error estimation and
de novo assembly optimization for population genetic inference. Molecular Ecology Resources, 15(1), 28-41. doi:10.1111/1755-0998.12291
Meng, G. L., Li, Y. Y., Yang, C. T., \& Liu, S. L. (2019). MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47(11). doi:10.1093/nar/gkz173
Meynard, C. N., Mouillot, D., Mouquet, N., \& Douzery, E. J. P. (2012). A Phylogenetic Perspective on the Evolution of Mediterranean Teleost Fishes. Plos One, 7(5). doi:10.1371/journal.pone. 0036443
Parry, M. L. (2000). Assessment of potential effects and adaptations for climate change in Europe: The Europe ACACIA project. Retrieved from
Peona, V., Weissensteiner, M. H., \& Suh, A. (2018). How complete are "complete" genome assemblies?-An avian perspective. Molecular Ecology Resources, 18(6), 1188-1195. doi:10.1111/1755-0998.12933
Pérez-Ruzafa, A., González-Wangüemert, M., Lenfant, P., Marcos, C. \& García-Charton, J.A., (2006). Effects of fishing protection on the genetic structure of fish populations. Biological Conservation, 129: 244-255.
Ramirez, F., Coll, M., Navarro, J., Bustamante, J., \& Green, A. J. (2018). Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Scientific Reports, 8. doi:10.1038/s41598-018-33237-w
Satoh, T. P., Miya, M., Mabuchi, K., \& Nishida, M. (2016). Structure and variation of the mitochondrial genome of fishes. Bmc Genomics, 17. doi:10.1186/s12864-016-3054-y
Schunter, C., Carreras-Carbonell, J., MacPherson, E., Tintore, J., Vidal-Vijande, E., Pascual, A., . . . Pascual, M. (2011). Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Molecular Ecology, 20(24), 5167-5181. doi:10.1111/j.1365-294X.2011.05355.x
Sedlazeck, F. J., Lee, H., Darby, C. A., \& Schatz, M. C. (2018). Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nature Reviews Genetics, 19(6), 329-346. doi:10.1038/s41576-018-0003-4
Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., \& Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212. doi:10.1093/bioinformatics/btv351
Slater, G. S., \& Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. Bmc Bioinformatics, 6. doi:10.1186/1471-2105-6-31
Smit, A. F. A., Hubley, R., \& Green, P. (2013). RepeatMasker Open-4.0.
Stanke, M., Steinkamp, R., Waack, S., \& Morgenstern, B. (2004). AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Research, 32, W309-W312. doi:10.1093/nar/gkh379
Stock, A., Crowder, L. B., Halpern, B. S., \& Micheli, F. (2018). Uncertainty analysis and robust areas of high and low modeled human impact on the global oceans. Conservation Biology, 32(6), 1368-1379. doi:10.1111/cobi. 13141
Tate, R., Hall, B., \& Derego, T. (2014). Annie the functional annotator-initial release. ZENODO.
Tine, M., Kuhl, H., Gagnaire, P. A., Louro, B., Desmarais, E., Martins, R. S. T., . . . Reinhardt, R. (2014). European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nature Communications, 5. doi:10.1038/ncomms6770

Toonen, R. J., Puritz, J. B., Forsman, Z. H., Whitney, J. L., Fernandez-Silva, I., Andrews, K. R., \& Bird, C. E. (2013). ezRAD: a simplified method for genomic genotyping in nonmodel organisms. Peerj, 1. doi:10.7717/peerj. 203
van Orsouw, N. J., Hogers, R. C. J., Janssen, A., Yalcin, F., Snoeijers, S., Verstege, E., . . . van Eijk, M. J. T. (2007). Complexity Reduction of Polymorphic Sequences (CRoPS (TM)): A Novel Approach for Large-Scale Polymorphism Discovery in Complex Genomes. Plos One, 2(11). doi:10.1371/journal.pone. 0001172
Vasilakopoulos, P., Maravelias, C. D., \& Tserpes, G. (2014). The Alarming Decline of Mediterranean Fish Stocks. Current Biology, 24(14), 1643-1648. doi:10.1016/j.cub.2014.05.070
Viret, A., Tsaparis, D., Tsigenopoulos, C. S., Berrebi, P., Sabatini, A., Arculeo, M., . . . Durieux, E. D. H. (2018). Absence of spatial genetic structure in common dentex (Dentex dentex Linnaeus, 1758) in the Mediterranean Sea as evidenced by nuclear and mitochondrial molecular markers. Plos One, 13(9). doi:10.1371/journal.pone. 0203866
Wang, S., Meyer, E., McKay, J. K., \& Matz, M. V. (2012). 2b-RAD: a simple and flexible method for genome-wide genotyping. Nature Methods, 9(8), 808-+. doi:10.1038/nmeth. 2023
Waples, R. S. (1998). Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. Journal of Heredity, 89(5), 438-450. doi:10.1093/jhered/89.5.438
Xuereb, A., D’Aloia, C. C., Daigle, R. M., Andrello, M., Dalongeville, A., Manel, S., . . . Fortin, M. J. (2019). Marine Conservation and Marine Protected Areas. In S. N. S. AG (Ed.), Population Genomics. Switzerland: Springer Nature.
Yang, X. F., Liu, H. P., Ma, Z. H., Zou, Y., Zou, M., Mao, Y. Z., . . . Yang, R. B. (2019). Chromosome-level genome assembly of Triplophysa tibetana, a fish adapted to the harsh high-altitude environment of the Tibetan Plateau. Molecular Ecology Resources, 19(4), 1027-1036. doi:10.1111/1755-0998.13021

Author statement

Véronique Arnal processed samples for genome sequencing. Katharina Fietz processed samples for RAD sequencing, and contributed to write the manuscript. Elena Trofimenko processed samples for RAD sequencing. Stéphane Lobreau performed genome assemblies. Pierre-Edouard Guerin performed genome assemblies, processed samples for RAD sequencing, and contributed to write the manuscript. Montserrat Torres-Oliva performed gene annotation. Angel Pérez-Ruzafa contributed to the sampling design and sampling. Stéphanie Manel and Oscar Puebla: Funding acquisition, designed the research, supervised the project and contributed to write the manuscript.

New genomic resources for three exploited Mediterranean fishes

Supplementary Information

Katharina Fietz, Elena Trofimenko, Pierre-Edouard Guerin, Véronique Arnal, Montserrat TorresOliva, Stéphane Lobréaux, Angel Pérez-Ruzafa, Stephanie Manel, Oscar Puebla (see main text for affiliations)

Table S1: Summary statistics of several fish genomes, including the ones assembled in this study and one of the the best currently available fish genome (D. labrax). Sources: AlMomin et al. (2016) ${ }^{1}$, Tine et al. (2014) ${ }^{2}$, Domingos, Zenger, and Jerry (2015) ${ }^{3}$, Xu et al. (2016) ${ }^{4}$, Shin et al. (2014) ${ }^{5}$, Nakamura et al. (2013) ${ }^{6}$

Species	Year	Assembler	Library	Coverage	$\begin{aligned} & \text { N50 } \\ & \text { contig } \\ & \text { (Kbp) } \end{aligned}$	N50 scaffold (kbp)
Pampus argenteus ${ }^{1}$	2016	SOAP de novo	Paired-end 500bp insert size	58X	0.5	1.5
Dicentrachus labrax ${ }^{2}$	2015	Celera assembler	Paired-end 300bp \& 500bp \& 1kbp insert size, Mate-pair $8 \underline{\mathrm{k} b p}$ \& $20 \mathrm{k} b p$ insert size	30X	53	5100
Lates calcarifer ${ }^{3}$	2015	Velvet	Paired-end 330bp insert size	46X	15	311
Miichthys miiuy ${ }^{4}$	2016	AllPathsLG	Paired-end 180 bp to 800 bp insert size, Mate-pair 3kbp \& 8 $\mathbf{k} b p$ \& 20kbp insert size	158X	81	1150
Notothenia coriiceps ${ }^{5}$	2014	Celera Pbjelly	Paired-end $150 \mathrm{bp} \& 300 \mathrm{bp}$ \& 500bp \& 600bp insert size, Mate-pair 3kbp \& 5kbp \& 8kbp \& 20kbp insert size	38X	17	217
Thunnus orientalis ${ }^{6}$	2013	Newbler	Paired-end 300bp \& 600bp insert size, Mate-pair 3kbp \& 20kbp insert size	43X	82	136
Diplodus sargus	This study	Platanus	Paired-end 350bp \& 550bp insert size,	57X	1.1	3371
Mullus surmuletus	This study	Platanus	Mate-pair 3kbp \& 5kbp insert size	74X	0.38	488
Serranus cabrilla	This study	Platanus		63X	1.1	614

Table S2: Percentage of conserved Metazoan genes (BUSCOs) found in the genome assemblies of D. sargus, M. surmuletus and S. cabrilla.

	D. sargus	M. surmuletus	S. cabrilla
Complete BUSCOs	97.5%	92.5%	96.7%
Complete and single-copy BUSCOs	93.5%	89.1%	93.9%
Complete and duplicated BUSCOs	4.0%	3.4%	2.8%
Fragmented BUSCOs	0.8%	2.2%	0.6%
Missing BUSCOs	1.7%	5.3%	2.7%

Table S3: Percentage of conserved Actinopterygii genes_(BUSCOs), found in the genome assemblies of D. sargus, M. surmuletus and S. cabrilla.

	D. sargus	M. surmuletus	S. cabrilla
Complete BUSCOs	96.6%	89.9%	95.3%
Complete and single-copy BUSCOs	94.4%	87.2%	92.6%
Complete and duplicated BUSCOs	2.2%	2.7%	2.7%
Fragmented BUSCOs	1.4%	4.3%	2.0%
Missing BUSCOs	2.0%	5.8%	2.7%

Table S4: Percentage of conserved Metazoan genes (BUSCOs) found in the gene annotations of D. sargus, M. surmuletus and S. cabrilla.

	D. sargus	M. surmuletus	S. cabrilla
Complete BUSCOs	96.0%	90.8%	95.6%
Complete and single-copy BUSCOs	92.3%	87.3%	92.3%
Complete and duplicated BUSCOs	3.7%	3.5%	3.3%
Fragmented BUSCOs	3.4%	5.9%	3.6%
Missing BUSCOs	0.6%	3.3%	0.8%

Table S5: Percentage of conserved Actinopterygii genes (BUSCOs), found in the gene annotations of D. sargus, M. surmuletus and S. cabrilla.

	D. sargus	M. surmuletus	S. cabrilla
Complete BUSCOs	90.2%	80.3%	87.6%
Complete and single-copy BUSCOs	86.9%	77.1%	84.1%
Complete and duplicated BUSCOs	3.3%	3.2%	3.5%
Fragmented BUSCOs	8.0%	13.3%	9.8%
Missing BUSCOs	1.8%	6.4%	2.6%

Table S6: Tissue collection site, date and depth for the individuals used to assemble the reference genomes.

Species	Date	Location	Latitude (decimal degree)	Longitude (decimal degree)	Depth (m)

Table S7: Tissue collection site, date and depth of the samples used for RAD sequencing.

sp.	Label	Date	Latitude (decimal degree)	Longitude (decimal degree)	Location	Depth (m)
	1	10.07.2017	41.964	3.228	Aiguafreda	23.3
	2	12.07.2017	42.469	3.163	Banyuls	12.4
	3	12.07.2017	42.469	3.163	Banyuls	11.7
	4	12.07.2017	42.472	3.157	Banyuls	11.5
	5	12.07.2017	42.472	3.157	Banyuls	10.2
	6	12.07.2017	42.472	3.157	Banyuls	10.2
	7	10.10.2017	37.554	-0.917	Cabo del Agua	32.4
	8	27.09.2017	42.285	3.297	Cadaques	16.8
	9	27.09.2017	42.285	3.297	Cadaques	17
	10	25.09.2017	39.605	3.413	Cala Bona	21
	11	05.10.2017	39.638	3.450	Cala Bona	28
	12	13.11.2017	36.892	-1.935	Cala de San Pedro	63
	13	19.03.2018	39.707	3.468	Cala Ratjada	18.7
	14	06.09.2017	42.323	3.310	Cap de Creus	13.2
	15	18.08.2017	37.079	-1.842	Castillo Macenas	32.4
	16	05.10.2017	39.325	2.970	Colònia Sant Jordi	22
	17	04.12.2017	39.280	2.945	Colònia Sant Jordi	56
	18	26.10.2017	40.034	4.187	Fornells	27.7
	19	20.04.2018	40.073	4.080	Illa Bledes	9.8
	20	28.05.2017	39.829	0.708	Islas Columbretes	94
	21	04.06.2017	41.202	2.142	L'Hospitalet	693
	22	09.08.2017	36.864	-1.980	Las Negras	55.8
	23	06.09.2017	38.220	-0.459	Monte Faro	21.5
	24	17.10.2017	39.880	3.160	Pollença	26
	25	26.06.2017	42.521	3.148	Port Vendres	10
	26	31.08.2017	37.031	-1.867	Río Alias	36
	27	05.09.2017	38.181	-0.444	Santa Pola	21
	28	01.12.2017	38.144	-0.613	Santa Pola	13.5
	29	23.05.2017	39.276	-0.137	Sueca	64.5
	30	31.05.2017	41.027	1.377	Tarragona	129.8
	1	12.07.2017	42.514	3.138	Banyuls	19.5
	2	12.07.2017	42.515	3.139	Banyuls	24.5
	3	12.07.2017	42.515	3.139	Banyuls	24.5
	4	12.07.2017	42.515	3.139	Banyuls	24.5
	5	06.09.2017	42.490	3.135	Banyuls	21.7
	6	28.04.2018	39.756	3.250	Betlem	23.8
	7	20.10.2017	39.652	3.474	Cala Ratjada	39.7
	8	27.10.2017	39.776	3.414	Cala Ratjada	32.5
	9	20.11.2017	39.764	3.405	Cala Ratjada	32.2
	10	05.12.2017	39.786	3.440	Cala Ratjada	36.5

	11	26.09.2017	39.797	3.201	Can Picafort	27
	12	30.03.2018	39.756	3.222	Can Picafort	14.2
	13	25.10.2017	43.277	3.517	Cap d'Agde	28.4
	14	25.10.2017	43.277	3.517	Cap d'Agde	28.6
	15	06.07.2017	42.323	3.310	Cap de Creus	15.4
	16	06.07.2017	42.323	3.310	Cap de Creus	15.4
	17	06.07.2017	42.323	3.310	Cap de Creus	15.6
	18	08.08.2017	39.894	0.687	Columbretes	7
	19	09.08.2017	39.889	0.667	Columbretes	3
	20	10.08.2017	39.894	0.687	Columbretes	7
	21	13.09.2017	38.281	-0.505	El Altet	8
	22	10.10.2017	37.550	-0.981	Escombreras	59.4
	23	20.10.2017	37.753	-0.744	La Manga	1.8
	24	02.11.2017	37.702	-0.752	La Manga	3.6
	25	26.07.2017	41.801	3.071	Palamos	17.1
	26	26.07.2017	41.801	3.071	Palamos	17.1
	27	30.08.2017	41.857	3.149	Palamos	23.4
	28	27.07.2017	42.239	3.181	Roses	21.4
	29	17.10.2017	41.113	1.302	Tarragone	14.2
	30	18.09.2017	37.931	-0.672	Torrevieja	36
	1	17.10.2017	39.874	3.259	Alcudia	56
	2	07.09.2017	38.303	-0.464	Alicante	21.5
	3	04.09.2017	38.161	-0.528	Alicante	18
	4	04.09.2017	38.161	-0.528	Alicante	18
	5	04.09.2017	38.161	-0.528	Alicante	18
	6	21.09.2017	38.317	-0.447	Alicante	25
	7	12.07.2017	42.479	3.148	Banyuls	17.8
	8	12.07.2017	42.493	3.134	Banyuls	17
	9	16.10.2017	37.583	-0.794	Cabo Negro	21.6
	10	23.10.2017	37.585	-0.782	Cabo Negro	21.6
	11	15.11.2017	36.892	-1.935	Cala de San Pedro	63
	12	27.10.2017	39.824	3.471	Cala Ratjada	53.1
	13	02.11.2017	39.650	3.607	Cala Ratjada	76.6
	14	20.11.2017	39.804	3.380	Cala Ratjada	44.6
	15	11.10.2017	37.591	-0.725	Calblanque	25.2
	16	20.07.2017	40.076	4.085	Cap de Cavalleria	18
	17	31.08.2017	37.184	-1.807	Garrucha	27
	18	31.08.2017	37.197	-1.766	Garrucha	72
	19	05.10.2017	39.792	3.734	Holanda	116
	20	05.09.2017	38.172	-0.448	Isla de Tabarca	19
	21	05.09.2017	38.172	-0.448	Isla de Tabarca	19
	22	05.08.2017	39.852	0.682	Islas Columbretes	39.1
	23	08.08.2017	39.905	0.632	La Calç	47.3
	24	13.09.2017	39.831	4.345	Maó	65.8

25	01.06 .2017	41.816	3.152	Palamos	73
26	17.08 .2017	36.795	-2.285	Rambla Morales	34.2
27	08.09 .2017	39.825	3.251	S'Aucanada	39
28	16.03 .2018	39.881	3.406	Sa Muntanyota	64
29	04.12 .2017	39.280	2.945	Santanyí	56
30	04.06 .2017	41.148	1.795	Vilanova y la	55.75

Table S8: RADseq adapter sequences, $\mathrm{F}=$ Forward, $\mathrm{R}=$ Reverse. Concentrations of P 1 adapters are 25 nmole, P 1 adapter treatment = standard desalting, Phosphorothioate linkage between bases marked with * in forward P1 adapters, P2 reverse adapter and PCR primers, 5^{\prime} Phosphorylation as indicated in reverse P1 and forward P2 adapters. Concentrations of P2 adapters and PCR primers are $100 \mathrm{nmole}, \mathrm{P} 2$ adapter and PCR primer treatment $=$ HPLC purification,

ID	Name	Sequence
1F	P1-FOR-AAACGG	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAACGGTGC*A
2F	P1-FOR-AACGTT	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACGTTTGC*A
3F	P1-FOR-AACTGA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACTGATGC*A
4F	P1-FOR-AAGACG	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGACGTGC*A
5F	P1-FOR-AAGCTA	AСAСTСТTTCCCTACACGACGCTCTTCCGATCTAAGCTATGC*A
6F	P1-FOR-AATATC	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATATCTGC*A
7F	P1-FOR-AATGAG	AСACTCTTTCCCTACACGACGCTCTTCCGATCTAATGAGTGC*A
8F	P1-FOR-ACAAGA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTACAAGATGC*A
9 F	P1-FOR-ACAGCG	AСAСTСТTTCCCTACACGACGCTCTTCCGATCTACAGCGTGC*A
10F	P1-FOR-ACATAC	ACACTCTTTCCCTACACGACGCTCTTCCGATCTACATACTGC*A
11F	P1-FOR-ACCATG	ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCATGTGC*A
12F	P1-FOR-ACCCCC	AСАСТСТTTCССТАСАСGACGCTCTTCCGATCTACCCCCTGC*A
13F	P1-FOR-ACTCTT	ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTCTTTGC*A
14F	P1-FOR-ACTGGC	ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGGCTGC*A
15F	P1-FOR-AGCCAT	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCCATTGC*A
16F	P1-FOR-AGCGCA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCGCATGC*A
17F	P1-FOR-AGGGTC	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGGTCTGC*A
18F	P1-FOR-AGGTGT	ACACTCTTTCССTACACGACGCTCTTCCGATCTAGGTGTTGC*A
19F	P1-FOR-AGTAGG	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTAGGTGC*A
20F	P1-FOR-AGTTAA	ACACTCTTTCССTACACGACGCTCTTCCGATCTAGTTAATGC*A
21F	P1-FOR-ATAGTA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTATAGTATGC*A
22F	P1-FOR-ATCAAA	АСАСТСТTTCCCTACACGACGCTCTTCCGATCTATCAAATGC*A
23F	P1-FOR-ATGCAC	AСАСТСТTTCССТАСАСGACGCTCTTCCGATCTATGCACTGC*A
24F	P1-FOR-ATGTTG	ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGTTGTGC*A
25F	P1-FOR-ATTCCG	ACACTCTTTCCCTACACGACGCTCTTCCGATCTATTCCGTGC*A
26F	P1-FOR-CAAAAA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAAAAATGC*A
27F	P1-FOR-CAATCG	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAATCGTGC*A
28F	P1-FOR-CACCTC	AСАСТСTTTCCCTACACGACGCTCTTCCGATCTCACCTCTGC*A
29F	P1-FOR-CAGGCA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAGGCATGC*A
30F	P1-FOR-CATACT	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATACTTGC*A
31 F	P1-FOR-CCATTT	AСАСТСТTTCССTACACGACGCTCTTCCGATCTCCATTTTGC*A
32F	P1-FOR-CCCGGT	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCCGGTTGC*A
33F	P1-FOR-CCCTAA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCCTAATGC*A
34F	P1-FOR-CCGAGG	AСАСТСТTTCССТАСАСGACGCTCTTCCGATCTCCGAGGTGC*A
35F	P1-FOR-CCGCAT	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCGCATTGC*A
36F	P1-FOR-CCTAAC	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTAACTGC*A
37F	P1-FOR-CGAGGC	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGAGGCTGC*A
38F	P1-FOR-CGCAGA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGCAGATGC*A
39F	P1-FOR-CGCGTG	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGCGTGTGC*A
40F	P1-FOR-CGGTCC	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGGTCCTGC*A
41F	P1-FOR-CGTCTA	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTCTATGC*A
42F	P1-FOR-CGTGAT	AСACTCTTTCCCTACACGACGCTCTTCCGATCTCGTGATTGC*

P1-FOR-CTACAG P1-FOR-CTCGCC P1-FOR-CTGCGA P1-FOR-CTGGTT P1-FOR-CTTATG P1-FOR-CTTTGC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTACAGTGC*A ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTCGCCTGC*A ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGCGATGC*A AСАСТСТTTCССTACACGACGCTCTTCCGATCTCTGGTTTGC*A ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTATGTGC*A ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTTGCTGC*A
/5Phos/CCGTTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/AACGTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TCAGTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CGTCTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TAGCTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GATATTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CTCATTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TCTTGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CGCTGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GTATGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CATGGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GGGGGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/AAGAGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GCCAGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/ATGGCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TGCGCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GACCCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/ACACCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CCTACTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TTAACTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TACTATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TTTGATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GTGCATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CAACATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CGGAATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TTTTTGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CGATTGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GAGGTGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TGCCTGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/AGTATGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/AAATGGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/ACCGGGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TTAGGGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CCTCGGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/ATGCGGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GTTAGGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GCCTCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TCTGCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/CACGCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/GGACCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT /5Phos/TAGACGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

42R P1-REV-CGTGAT /5Phos/ATCACGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
43R P1-REV-CTACAG /5Phos/CTGTAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
44R P1-REV-CTCGCC /5Phos/GGCGAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
45R Pl-REV-CTGCGA /5Phos/TCGCAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
46R P1-REV-CTGGTT /5Phos/AACCAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
47R P1-REV-CTTATG /5Phos/CATAAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

```
P2-FOR /5Phos/GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCAGAACA*A CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC
P2-REV *T
```

FOR-PCR AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T REV-PCR CAAGCAGAAGACGGCATACG*A

Figure S1: Visualization of circular mtDNA for (a) D. sargus ($16,620 \mathrm{bp}$), (b) M. surmuletus ($16,577 \mathrm{bp}$) and (c) S. cabrilla ($16,513 \mathrm{bp}$). The innermost circle shows the GC content, which is calculated with a sliding-window method. The middle circle shows the coverage depth distribution with the dark green outline. Parts of the genome that have a coverage lower than 20X are shaded in red, whereas parts of genome that have coverage larger than the upper quartile are shaded in dark green. The outer circle shows the gene annotations and is shaded in orange for rRNA, in red for tRNA, and in blue for CDS.

Figure S2: Schematic workflow of DNA extraction, genome assembly and annotation.

Figure S3. Map of the sampling sites. a) Diplodus sargus b) Mullus surmuletus c) Serranus cabrilla

References

AlMomin, S., Kumar, V., Al-Amad, S., Al-Hussaini, M., Dashti, T., Al-Enezi, K., \& Akbar, A. (2016). Draft genome sequence of the silver pomfret fish, Pampus argenteus. Genome, 59(1), 51-58. doi:10.1139/gen-2015-0056
Domingos, J. A., Zenger, K. R., \& Jerry, D. R. (2015). Whole-genome shotgun sequence assembly enables rapid gene characterization in the tropical fish barramundi, Lates calcarifer. Animal Genetics, 46(4), 468-469. doi:10.1111/age. 12312
Nakamura, Y., Mori, K., Saitoh, K., Oshima, K., Mekuchi, M., Sugaya, T., . . . Inouye, K. (2013). Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 11061-11066. doi:10.1073/pnas. 1302051110
Shin, S. C., Ahn, D. H., Kim, S. J., Pyo, C. W., Lee, H., Kim, M. K., . . . Park, H. (2014). The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biology, 15(9). doi:10.1186/s13059-014-0468-1
Tine, M., Kuhl, H., Gagnaire, P. A., Louro, B., Desmarais, E., Martins, R. S. T., . . . Reinhardt, R. (2014). European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nature Communications, 5. doi:10.1038/ncomms6770
Xu, T. J., Xu, G. L., Che, R. B., Wang, R. X., Wang, Y. J., Li, J. R., . . . Yang, Q. (2016). The genome of the miiuy croaker reveals well-developed innate immune and sensory systems. Scientific Reports, 6. doi:10.1038/srep21902

