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The axisymmetric visco-resistive magnetohydrodynamic steady states allowing �ows (i.e.
non-vanishing velocity �elds) are computed for a toroidal JET-like geometry. It is shown
that a spatially inhomogeneous heating of moderate magnitude leads to an increase of
typical toroidal speeds with respect to the situation with uniform temperature with
identical mean Hartmann numbers. A symmetry argument is introduced to capture the
symmetry breaking, induced by the temperature gradient, that produces a net toroidal
plasma �ow.

1. Introduction

Plasma rotation has been recognized as a key ingredient in the con�nement properties
of heat and particles in tokamak plasmas. Large speeds could e.g. be bene�cial in
mitigating some magnetohydrodynamic instabilities. Intrinsic plasma rotation has been
reported in various devices and experimental conditions. This means that the tokamak
plasma rotates in the absence of an external torque. There is some general agreement
that this issue remains not fully understood (Ida & Rice 2014). Our present concern is to
investigate further the question of the tokamak plasma rotation at the fundamental mag-
netohydrodynamic (MHD) level. Instead of considering the equilibrium Grad-Shafranov
equation that assumes the nullity of the velocity �eld and is valid in the ideal limit,
one turns to the equation from which it originates, the axisymmetric steady-state Navier
Stokes equation including both the nonlinear (v · ∇)v and the viscous di�usion terms.
There is then the possibility to determine the steady-state velocity �eld from a numerical
resolution of the weak form of the Navier-Stokes equation coupled to Maxwell equations
for the electromagnetic �eld. This line of research was initiated by Montgomery and
coworkers (Montgomery et al. 1997; Kamp & Montgomery 2003a, 2004; Morales et al.
2015). The original visco-resistive system of equations possesses up-down symmetry
properties (Oueslati & Firpo 2020) with respect to the tokamak horizontal midplane so
that a tokamak having an up-down symmetric border possesses a naturally antisymmetric
toroidal velocity �eld, which results in a net zero toroidal �ow, unless the up-down
symmetry is broken. That up-down asymmetry of the geometry causes the generation of
a nonzero toroidal angular momentum was shown in (Morales et al. 2012). This symmetry
breaking may also enter through boundary conditions and not only through the geometry.
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An example of this is by using external magnetic perturbations which has recently been
shown (Oueslati & Firpo 2020) to enhance plasma steady-state speeds and produce a
net toroidal �ow. In the present study, another path is explored since the in�uence of an
inhomogeneous heating is considered. The impact of introducing a vertical temperature
gradient on the toroidal velocity �eld through its magnitude and up-down symmetry
properties is investigated. In Section 2 the modeling frame is introduced. The system
of equations used in the numerics is presented and terms related to inhomogeneous
temperature and resistivity derived in the Appendix A. In Section 3, simulation results
are presented on the impact of the temperature gradient. In Section 4, these results are
related to up-down symmetry properties of the toroidal velocity �eld and a symmetry
argument (order parameter-like) is introduced. Conclusions are given in Section 5.

2. Visco-resistive magnetohydrodynamic description with heat

convection-di�usion

We introduce now the modeling frame used to compute axisymmetric visco-resistive
MHD steady states allowing for non-vanishing velocity �elds. Rather than assuming a
constant resistivity as in some previous studies, we shall allow here its space variation
by imposing some temperature inhomogeneity. We shall assume that some extra heating
is applied on the top of the tokamak so that there is a vertical gradient of the plasma
boundary temperature. The temperature �eld within the tokamak plasma is assumed to
be governed by a convection-di�usion (heat) equation (2.3g). We shall use the fact that
the electrical resistivity η varies with the temperature T according to Spitzer's law

η(T ) ≡ αT−3/2 (2.1)

with

α ≡ 4

3

√
2πmee

2 lnΛ

(4πε0)
2 (2.2)

where lnΛ denotes the Coulomb logarithm.
The system of equations considered in the present study reads then

(v.∇)v = J×B−∇p+ ν∇2v (2.3a)

∇.v = 0 (2.3b)

∇.B = 0 (2.3c)

∇×E = 0 (2.3d)

∇×B = J (2.3e)

E+ v ×B = η(T )J (2.3f)

(v.∇)T = χT△T (2.3g)

The physical unknown quantities are the electric �eld E, the magnetic �eldB, the velocity
�eld v and the scalar pressure p and temperature T �elds. The conducting plasma �uid
is assumed to have a uniform density so that the mass conservation equation amounts
to write the incompressibility condition (2.3b). The steady-state Navier-Stokes equation
normalized to the mass density, ρ, is written in Eq. (2.3a) where the kinematic viscosity
ν has been assumed to be scalar and constant. These �uid equations are coupled to
the Maxwell equations (2.3c)-(2.3d)-(2.3e), to the Ohm's law (2.3f) and to the heat
steady-state convection-di�usion equation (2.3g). This system of equations is written for
dimensionless variables in the usual Alfvèn units where velocities are normalized by the
characteristic Alfvèn velocity vA = (B2/µ0ρ)

1/2. Concerning Eq. (2.3g), let us mention



3

that it does not include the heat generation by viscous dissipation. Since we have in
mind plasmas for magnetic con�nement fusion applications that have very low viscosity,
the temperature inhomogeneity induced by this term is expected to be negligible in
front of the one induced by an external inhomogeneous heating. Besides, since our focus
is on toroidally-invariant steady-states, we retain in the anisotropic heat �ux only the
transverse part and identify this to −χT∇T . The di�usion coe�cient χT is typically of
the order of 1m2.s−1 in tokamaks (Freidberg 2007) and this numerical value is taken in
our simulations.
The system (2.3) reduces to the system of coupled parabolic di�erential equations (A 5)

presented in the appendix A. It needs to be completed by the speci�cation of the problem
geometry and boundary conditions. As for the problem geometry, we consider the JET
parameters with major radius r0 = 3m, semi-minor axis r1 = 1.25m, semi-major axis
r2 = κr1 with plasma elongation κ = 1.55 and triangularity given by arcsin δ = 0.5.
Then, six boundary conditions have to be given. Four of them are associated to the
divergence-free nature of the magnetic B, current-density J, velocity v and vorticity ω
vector �elds and may be �xed by the continuity of their normal component on the plasma
boundary. There remains then two conditions on the toroidal vorticity and temperature.
As detailed below, one chooses some vertically-inhomogeneous heating that �xes the
boundary condition for T ; whereas one assumes, with some arbitrariness, that the toroidal
vorticity vanishes on the plasma border. This is written explicitly in the Appendix A.
There are two (small) dimensionless parameters in the problem, that are the resistivity

η, which is the inverse of the magnetic Reynolds number S, and the kinematic viscosity
ν, which is the inverse of the viscous Lundquist number M . Here the modeling of the
resistive and viscous e�ects has been made in the (usual) tractable scalar way. There
are also two driving parameters in the model equations associated to the magnitude of
the external curl-free toroidal magnetic �eld, B0, and to the toroidal loop voltage, E0.
The equations were solved under their weak form using the �nite element method with
FreeFem++ (Hecht 2012; Oueslati et al. 2019).

3. Simulation results with localized heating

Compared with previous frameworks, temperature is considered here as a variable of
the MHD visco-resistive system of equations. In order to study the impact of a localized
heating in breaking the symmetry of the problem, we shall mainly use a vertically linear
pro�le for the temperature on the boundary. This external temperature gradient can be
characterized by the relative di�erence∆T between the top temperature, Tup, and bottom
temperature, T0, of the plasma through ∆T = (Tup − T0)/T0. Physically speaking, we
consider positive ∆T corresponding to an inhomogeneous extra heating directed on the
top of the tokamak plasma. On the numerical side, the introduction of a non-vanishing
external temperature gradient interestingly happens to stabilize the code compared to
its �xed-temperature original version (Oueslati et al. 2019) and allows to reach larger
Hartmann numbers.
Let us de�ne by η0 = η(T0) the value of the resistivity at the bottom of the tokamak

plasma. In the numerical simulations, we used the dimensionless parameters B0 = 0.87
and E0 = 3 × 10−9 relevant to JET and a value of the maximal, bottom, resistivity
η(T0) = 6.9× 10−7. It is well known that the order of magnitude of the e�ective (scalar)
plasma viscosity in a tokamak is uncertain (Kamp & Montgomery 2004), therefore we
run simulations for a large span of values of ν, or identically a large span of Hartmann
numbers H, where the Hartmann number H is de�ned as a combination of η0 and ν
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Figure 1. Temperature pro�les (in eV units) for ∆T = 10 and Hartmann numbers (left)
H = 10, (right) H = 105.

through H = 1/
√
η0ν. Alternatively, we shall consider the mean Hartmann number ⟨H⟩

de�ned as the average value of H in the tokamak domain.
Let us �rst investigate the fate of the temperature �eld. One may actually think

that the introduction of the stationary heat equation in the model would not have any
signi�cant e�ect on the value of T in the bulk, compared to simply maintaining an a�ne
temperature everywhere. Indeed, only convective transport of temperature can make T
di�er from the Laplace equation solutions. Because poloidal speed was typically very
low in previous simulations (Oueslati et al. 2019), this would seem to suggest a rather
limited e�ect. Figure 1 partly con�rms this intuition. For H = 10, convection is clearly
not visible globally. Yet, for H = 105, the temperature pro�le happens to be deviated by
convective e�ects, meaning that, in this case, poloidal �ows are su�cient to provide some
heat transport. One observes there some tendency for a temperature homogenization in
the tokamak core at large H.
Our main interest is to examine the impact of the inhomogeneity of the heating on

the steady-state plasma toroidal speed. In the present study, this generation of the
toroidal �ow is essentially due to viscous e�ects, as emphasized in the seminal study
(Montgomery et al. 1997), meaning that, in the Navier-Stokes equation, the toroidal
contribution of the ω × v term increases with H while remaining negligible in front of
the toroidal contribution of the J×B term, that is almost independent on H.
Figure 2 represents the root mean square (rms) value of the toroidal velocity �eld as a

function of the mean Hartmann number ⟨H⟩ for ∆T = 1 in Alfvèn units. The numbersM
label di�erent meshes. Only one curve can be seen, which means that the simulations yield
identical results no matter what mesh is used, illustrating the numerical robustness of
the code (see also the Appendix B for a discussion on numerical issues at large Hartmann
numbers). For reference, the curve corresponding to a uniform temperature on the border
(∆T = 0) is also plotted. At any given mean Hartmann number, one observes that
the rms toroidal speed is larger in the inhomogeneous heating case than for constant
temperature with a di�erence increasing with ⟨H⟩. Figures 3 and 4 show velocity pro�les
that depart from previous constant temperature results (Oueslati et al. 2019) as the
Hartmann number increases. One observes that the toroidal velocity �eld goes from being
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Figure 2. Root mean square (rms) value of vφ (in Alfvèn velocity vA units) depending on the
mean Hartmann number ⟨H⟩ for ∆T = 0 and ∆T = 1 using di�erent mesh sizes (labeled by the
number of vertices on the edge of the domain).

Figure 3. Toroidal velocity �eld vφ in Alfvèn velocity vA units with ∆T = 1 for (left) H = 10
and (right) H = 100.

almost odd with respect to the midplane at H = 10 to being almost even at H = 105

with a net toroidal �ow. The toroidal velocity in itself, although higher than in previous
cases, is not particularly impressive at these Hartmann numbers. It is rather the rate at
which the velocity increases with ⟨H⟩, as shown on Figure 2, that catches our interest.



6

Figure 4. Toroidal velocity �eld vφ in Alfvèn velocity vA units with ∆T = 1 for (left)
H = 103 and (right) H = 105.

Figure 5. Root mean square of the toroidal velocity, ⟨vφ⟩rms, (in Alfvèn velocity vA units) as
a function of ⟨H⟩ for di�erent values of ∆T .

We now attempt to map the results of the simulations for di�erent ∆T , even if the
largest ∆T values may be physically unrealistic. One of our objectives is to obtain faster
�ows than were previously possible for a uniform temperature. The mean quadratic (rms)
toroidal velocities for di�erent edge temperature gradients are presented in Figure 5 for
a toroidal free-slip boundary condition and 6 for a toroidal no-slip boundary condition.
The toroidal free-slip boundary condition allows to reach somehow higher speeds than
the no-slip one for a given ⟨H⟩ which is visible from a comparison between Figures 5 and
6. Otherwise the general behavior of the curves in both plots is quite similar. The toroidal
free-slip boundary condition has been taken in our simulations unless otherwise stated. As
expected, for a given ∆T , the toroidal velocity always increases with ⟨H⟩, as the viscous



7

Figure 6. Root mean square of the toroidal velocity, ⟨vφ⟩rms, (in Alfvèn velocity vA units) as
a function of ⟨H⟩ for di�erent values of ∆T . Here the toroidal no-slip condition (u4 = 0 on the
border of the plasma domain) is used.

Figure 7. Instantaneous slopes of the logarithm of the root mean square of the toroidal velocity,
⟨vφ⟩rms, as a function of the logarithm of ⟨H⟩ for di�erent values of ∆T for the toroidal no-slip
results plotted in Figure 6.

dissipation diminishes. Moreover, the mean value of η has an easily identi�able e�ect on
velocity: for low Hartmann numbers, the more intense the heating, the higher the toroidal
velocity. Yet, for higher ⟨H⟩, the �ow behaves di�erently. The plots corresponding to the
most intense heatings are rapidly saturating: the slope of ⟨vφ⟩rms becomes small compared
to simulations with less heating and the greatest temperature gradients do not yield the
fastest �ows. Conversely, curves with softer heating follow a linear regime on the Figure 6
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Figure 8. For the same data as in Figure 6, plots of the ratio ⟨vφ⟩rms(∆T ̸= 0)/⟨vφ⟩rms(∆T = 0)
as a function of H (Hartmann number at the bottom of the tokamak) for di�erent values of ∆T .

over a large band of Hartmann numbers, with a slope equal to 2 (in the log-log scale). This
corresponds to ⟨vφ⟩rms being proportional to ⟨H⟩2. This slope is steeper than what could
be achieved without heating, and it provides a physically interesting regime. However, the
higher the temperature gradient, the sooner this regime ends (in terms of ⟨H⟩). In order
to quantify those e�ects, the instantaneous slope β(⟨H⟩,∆T ) ≡ ∂(log⟨vϕ⟩rms)/∂(log⟨H⟩)
has been plotted on Figure 7. In the in�nite viscosity limit, corresponding to ⟨H⟩ → 0,
one recovers that the quadratic mean (or root mean square) of the toroidal velocities
scales as ⟨H⟩4 (i.e. β → 4) which was analytically predicted for ∆T = 0 in (Kamp et al.

1998). One observes the aforementioned intermediate scaling ⟨H⟩2 with β plateauing
about 2 for moderate heating gradients to be compared to an intermediate scaling with
β about 3/2 taking place for ∆T → 0.
All this makes it uneasy to point out an optimal set of parameters in order to reach

fast �ow states, especially since the real, physical value of the viscosity coe�cient - and
therefore the Hartmann number - remains unknown. Besides, simulations with high ∆T
present little physical interest besides drawing a general picture of the situation, yet
moderate ∆T s provide some interesting results: as seen on Figures 2, 5 and 6, several
orders of magnitude in velocity can be gained over the uniform temperature simulations.
On the basis of Figure 1, one may propose an explanation for the dual role played by
the temperature gradient ∆T . Indeed, when both ∆T and ⟨H⟩ are large, the e�ective
temperature �eld will tend to homogenize in the core of the tokamak. The e�ect of this
homogenization is to make less e�ective or to counterbalance the symmetry breaking
induced primarily by the inhomogeneous heating imposed by boundary conditions. One
may then understand that there exists some optimum in the choice of ∆T in terms of the
maximization of mean toroidal plasma speed and that a 'moderate' up-down temperature
gradient ∆T may eventually be more e�cient than a large ∆T to make plasma rotate in
the large ⟨H⟩ values relevant to fusion tokamak plasmas.
Finally, it may be interesting to capture the e�ect of the additional, vertically (y)-

inhomogeneous, heating in terms of the toroidal plasma rotation. Figure 8 represents the
ratios ⟨vφ⟩rms(∆T ̸= 0)/⟨vφ⟩rms(∆T = 0) as a function of the Hartmann number at the
bottom of the tokamak, H, for several values of ∆T . This indicates that, for large fusion-
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Figure 9. Pro�les of the toroidal velocity �eld (in Alfvèn velocity vA units) in the case of the
toroidal no-slip boundary condition for ∆T = 0.1 and large H-values equal to (from left to right)
2 × 106, 5 × 106 and 8 × 106. Colors are varying with the relative magnitude of vφ for better
visualization.

relevant values of H (H between 106-108), the toroidal plasma rotation is maximized by
an optimal, moderate, di�erential heating corresponding to a ∆T of order one. At those
large fusion-relevant values of H, numerical simulations become challenging due to the
emergence of a boundary layer having a thickness decreasing with H. This is visible on
the plots of the toroidal velocity pro�le of Figure 9. A point on the numerical results at
large H is presented in the Appendix B.

4. Spatial symmetry of solutions

4.1. Preliminary remarks

In order to characterize more precisely the �ow modes described earlier, we shall
now study the symmetry of solutions with respect to the tokamak horizontal y = 0
mid-plane. By introducing an inhomogeneous heating along the y vertical axis, the up-
down symmetry of the problem has been broken. For the uniform temperature problem,
symmetry properties were studied in (Oueslati & Firpo 2020) and the toroidal velocity
�eld was shown to be naturally antisymmetric i.e. an odd function of y.
In the present simulations, for high Hartmann numbers we obtain some rather symmet-

ric pro�les (see e.g. Figure 4) in stark contrast to the non-heated case. This happens to be
a somewhat paradoxical situation since breaking the symmetry of the problem seems to
make the solutions go from antisymmetry to symmetry, rather than merely eliminating
any symmetry properties. Nevertheless the picture is more intricate as for instance, in
the case of intense heating, there are no longer any obvious symmetry properties for high
enough Hartmann numbers (see Figure 10).

4.2. Symmetry analysis

To go beyond the aforementioned qualitative observations and obtain more precise
information, one must quantitatively characterize the symmetry or antisymmetry of our
solutions. To that end, we consider the L2 norm of the symmetric and antisymmetric parts
of the toroidal velocity. De�ning by Ω the tokamak cross-section and by SΩ ≡

∫
Ω
dxdy

its surface, we put

Vsym =

(
1

SΩ

∫ (vφ(x, y) + vφ(x,−y)
2

)2

dxdy

)1/2

(4.1)
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Figure 10. Toroidal velocity �eld vφ for ∆T = 50 and H = 100.

Figure 11. Toroidal velocity �eld vφ for ∆T = 0.1 and (left) H = 10, (right) H = 105.

and

Vanti =

(
1

SΩ

∫ (vφ(x, y)− vφ(x,−y)
2

)2

dxdy

)1/2

. (4.2)

One has the identity

⟨v2φ⟩ = V 2
sym + V 2

anti (4.3)

which leads us to introduce a symmetry argument, χ, given by χ ≡ arctan (Vsym/Vanti).
This scalar quantity allows us to easily visualize the balance between symmetry and
antisymmetry in a given velocity �eld. This argument does not depend on the norm
of the velocity itself (which can vary by many orders of magnitude) and it is valued
between 0 and π/2. For simulations with uniform temperature, we get ⟨vφ⟩rms = Vanti
and Vsym = 0, and therefore the symmetry argument is χ = 0.

4.3. Link between velocity and symmetry

Figures 11 and 12 show a transition from antisymmetry to symmetry in the case ∆T =
0.1 as the Hartmann number increases. For low Hartmann numbers, the toroidal velocity
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Figure 12. (left) Symmetry argument χ = arctan (Vsym/Vanti) for ∆T = 0.1; (right) ⟨vφ⟩rms

for ∆T equal to 0 and 0.1 as a function of ⟨H⟩.

Figure 13. (left) Toroidal velocity vφ �eld for H = 104 and ∆T = 0.01; (middle) Symmetry
argument χ = arctan (Vsym/Vanti) for ∆T = 0.01; (right) ⟨vφ⟩rms for ∆T equal to 0 and 0.01 as
a function of ⟨H⟩.

pro�le is indistinguishable from that of the simulations done with uniform temperature:
it appears to be antisymmetric and the two plots of ⟨vφ⟩rms are identical. We then
have a rather abrupt transition around H = 1000, and the symmetry argument tends
towards π/2 (total up-down symmetry) for large H. What catches our interest is that the
transition from antisymmetry to symmetry occurs simultaneously with the separation of
the root mean square velocities of the homogeneous and non-homogeneous heating cases;
it appears that the �ow goes from a uniform temperature-like state to a faster, more
symmetric state.
This phenomenon is also encountered for other values of ∆T , although the transition

occurs at di�erent H. The plots do not reach su�ciently high Hartmann numbers to
feature the asymptotic symmetry, due to limitations in computing capabilities (somewhat
paradoxically, for small values of ∆T , the less intense the inhomogeneity of the heating,
the more numerically demanding the code becomes) as visible on Figure 13.
For higher values of ∆T , however, other phenomena occur at high H as depicted in

Figure 14. After transitioning towards symmetry, this new behavior (that cannot be easily
interpreted in terms of symmetry) seems to be correlated with the velocity saturation
mentioned earlier.

5. Conclusions

In this study, the impact of a space-inhomogeneous heating on steady �ows has been
considered. In the limit of small Hartmann numbers, the root mean square toroidal
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Figure 14. (left) Symmetry argument χ = arctan (Vsym/Vanti) for ∆T = 1; (right) ⟨vφ⟩rms for
∆T equal to 0 and 1 as a function of ⟨H⟩.

velocity has been shown to display the same scaling as that of the uniform-temperature
solution with ⟨vφ⟩rms ∝ ⟨H⟩4, with an up-down anti-symmetry of the toroidal velocity
�eld. However, it appears that the uniform-temperature, purely anti-symmetric solution
is unstable with respect to �nite temperature perturbations. Actually, no matter how
small the temperature gradient ∆T , for su�ciently high H, the steady-state solution
drastically diverges from it. In this sense, the limit ∆T → 0 is singular. Interestingly, for
non-vanishingly small ∆T , some scaling law ⟨vφ⟩rms ∝ ⟨H⟩2 (faster than the uniform-
temperature case) has been uncovered within some range of large values of the Hartmann
number which depends on T ; it coincides with a rather up-down symmetric pro�le of the
toroidal velocity �eld. Eventually, it happens that perturbing the temperature boundary
conditions at �nite H allows to obtain much higher �ow speeds at high Hartmann
numbers than the uniform-temperature case. One may, of course, question the somewhat
arbitrary choice of using a linear Ansatz for the boundary temperature pro�les: since
the system is strongly non-linear, other choices may yield di�erent results. The linear
pro�les' e�ciency seems to lie in its ability to break vertical symmetry in the domain,
which enables a divergence from the anti-symmetric solution. Finally, one may interpret
the coexistence of both symmetric and anti-symmetric solutions in the high H limit as
the signal of a bifurcation in the sense of hydrodynamics.
Fruitful discussions with N. Minesi, T. Bonnet, R. Guillot and A. Salhi are gratefully

acknowledged. HO thanks the University of Tunis El Manar and the Ministry of Higher
Education and Scienti�c Research of Tunisia for funding. This work has been performed
in the frame of the FR-FCM (Fédération nationale de Recherche Fusion par Con�nement
Magnétique - ITER).

Appendix A. Equations in terms of scalar �elds

The Reader is referred to (Kamp & Montgomery 2004) for a detailed derivation of the
system of coupled di�erential equations to be solved in the case of a constant resistivity
for computing visco-resistive MHD steady-states with realistic tokamak driving terms.
Indeed, one takes into account the drives induced by an external (thus curl-free) toroidal
magnetic �eld and by a toroidal loop voltage that serves to produce the toroidal current
density �eld that is the source of the poloidal magnetic �eld. When resistivity is no longer
constant as in the present study, the equation for Bφ is modi�ed. Taking the curl of the
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Ohm's law gives, using ∇×E = 0,

∇× (v ×B) = η∇× J+∇η × J. (A 1)

We have

B = ∇χ×∇φ+ (r0B0 + rBφ)∇φ

and

J = ∇ (rBφ)×∇φ−△∗χ∇φ.

We have similarly

v = ∇ψ ×∇φ+ rvφ∇φ

and

ω = ∇ (rvφ)×∇φ−△∗ψ∇φ.

Using the axisymmetry implying e.g. ∇χ · ∇φ = ∇ψ · ∇φ = 0 and (∇φ)2 = r−2, a
straightforward calculation gives

v ×B = − (∇ψ ×∇φ.∇χ)∇φ+
vφ
r
∇χ−

(
B0r0
r2

+
Bφ

r

)
∇ψ.

The toroidal projection of the curl of this yields

[∇× (v ×B)] · ∇φ =

[
∇
(vφ
r

)
×∇χ−∇

(
B0r0
r2

+
Bφ

r

)
×∇ψ

]
· ∇φ

We have

∇× J = ∇× [∇ (rBφ)×∇φ−∆∗χ∇φ]

giving

(∇× J) · ∇φ = −r−2∆∗ (rBφ) .

Then

(∇η × J) · ∇φ = (∇η × [∇ (rBφ)×∇φ]) · ∇φ

Consequently, we have[
∇

(vφ
r

)
×∇χ−∇

(
B0r0
r2

+
Bφ

r

)
×∇ψ

]
· ∇φ = −ηr−2 △∗ (rBφ)− r−2∇η · ∇ (rBφ) .

In the previous equations, we have made use of the second-order elliptic operator △∗

de�ned by

△∗A = ∇2A− 2

r

∂A

∂r
=
∂2A

∂2r
− 1

r

∂A

∂r
+
∂2A

∂2z
. (A 2)
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Let us de�ne the rescaled variables x = r/r0, y = z/r0 and introduce notations extending
that of (Kamp & Montgomery 2003b), namely

u1 =
ψ

r0
(A 3a)

u2 = r0rωφ (A 3b)

u3 =
rBφ

Ib
+ 1 (A 3c)

u4 =
rvφ
Ib

(A 3d)

u5 =
χ

r0
(A 3e)

u6 = r0rJφ (A 3f )

u7 = r0
T

T0
. (A 3g)

where Ib = r0B0. Let us de�ne the Poisson bracket of two functions u and v with respect
to the variables x and y as

{u, v} =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
. (A 4)

The system of equations to be solved reads �nally

△∗u1 = −u2 (A 5a)

ν △∗ u2 =
I2b
x2
∂u23
∂y

− 2
u6
x2
∂u5
∂y

(A 5b)

+
1

x
({u6, u5}+ {u1, u2}) + 2

u2
x2
∂u1
∂y

− I2b
∂

∂y
(
u24
x2

) (A 5c)

α△∗ u3 =
2u

3/2
7

x2
(u3

∂u1
∂y

− u4
∂u5
∂y

) +
u
3/2
7

x
({u1, u3}+ {u4, u5}) (A 5d)

− 3

2

α

u7

(
∂u7
∂x

∂u3
∂x

+
∂u7
∂y

∂u3
∂y

)
(A 5e)

ν △∗ u4 =
1

x
({u3, u5}+ {u1, u4}) (A 5f )

△∗u5 = −u6 (A 5g)

αu6 =
u
3/2
7

x
{u5, u1}+ Ieu

3/2
7 (A 5h)

χT △∗ u7 =
1

x
{u1, u7}. (A 5i)

We have introduced the constants α = η0r
3/2
0 and Ie = r20E0 with η0 ≡ η(T0). The

boundary conditions chosen in the numerics are u1 = u2 = u5 = 0, u3 = 1. u7 is an
a�ne function of y. As for u4, we take either (in almost all simulations) the condition
∂n(u4/r

2) = 0 corresponding to a free-slip (also called shear-stress free) in the toroidal
direction or (exceptionally) u4 = 0 corresponding to a no-slip toroidal condition. The
Reader is referred to (Oueslati & Firpo 2020) for a detailed discussion on boundary
conditions.
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Figure 15. Two di�erent meshes of the tokamak cross-section domain. The left one allows the
minimum edge size to be 0.004 where this is equal to 0.002 in the right one.

Appendix B. Focus on large-H numerical results

Obtaining robust numerical results at values of the Hartmann numbers as large as 106

to 108 is important because these are the values expected to be relevant for fusion tokamak
plasmas. The essential di�culty in attaining these values lies in the numerical treatment
of boundary layers having a thickness decreasing with H (Kamp & Montgomery 2003a)
as illustrated on Figure 9. In previous publications (Oueslati et al. 2019; Oueslati & Firpo
2020), we used a mesh re�nement on the border of the computational domain Ω. So
doing, we have been able to obtain numerical results that produced values of ⟨vφ⟩rms

that were reasonably independent of the accessible number of mesh triangles. In more
mathematical terms, the results had some reasonable stability in the L2-norm for vφ
up to H = 107 depending on boundary conditions. In this work, we have been able to
improve the numerical space resolution of some FreeFem++ simulations by decreasing the
minimum edge size parameter in the mesh re�nement due to more powerful computing
facilities. This allows to address more rigorously the numerical robustness of the code in
the large-H fusion-relevant range. An example of improving the precision of the results
by re�ning the mesh on the computational domain is given in the Figures 15 and 16.
The proper mathematical method to assess the numerical robustness of �nite element

computations is to consider a series of regular meshes and shows the convergence of the
results as the mesh size tends to zero. Consequently, as the number of triangles covering
the domain Ω tends to in�nity, one needs to observe the L2 convergence of vφ. Figure
17 gives a qualitative observation that this does take place with (and up to) H = 107.
There is moreover only a few percents discrepancy between the various rms values of vφ.
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