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The axisymmetric visco-resistive magnetohydrodynamic steady states allowing �ows (i.e.
non-vanishing velocity �elds) are computed for a toroidal JET-like geometry. It is shown
that a spatially inhomogeneous heating of moderate magnitude leads to an increase of
typical toroidal speeds with respect to the situation with uniform temperature with
identical mean Hartmann numbers. A symmetry argument is introduced to capture the
symmetry breaking, induced by the temperature gradient, that produces a net toroidal
plasma �ow.

1. Introduction

Plasma rotation has been recognized as a key ingredient in the con�nement properties
of heat and particles in tokamak plasmas. Large speeds could e.g. be bene�cial in
mitigating some magnetohydrodynamic instabilities. Intrinsic plasma rotation has been
reported in various devices and experimental conditions. This means that the tokamak
plasma rotates in the absence of an external torque. There is some general agreement
that this issue remains not fully understood (Ida & Rice 2014). Our present concern is
to investigate further the question of the tokamak plasma rotation at the fundamen-
tal magnetohydrodynamic (MHD) level. Instead of considering the equilibrium Grad-
Shafranov equation, one turns to the equation from which it originates, the axisymmetric
steady-state Navier Stokes equation, and do not assume the nullity of the velocity �eld
in it so that the nonlinear (v · ∇)v term is retained. There is then the possibility to
determine the steady-state velocity �eld from a numerical resolution of the weak form of
the Navier-Stokes equation coupled to Maxwell equations for the electromagnetic �eld.
This line of research was initiated by Montgomery and coworkers (Montgomery et al.

1997; Kamp & Montgomery 2003a, 2004; Morales et al. 2015). The original system of
equations possesses up-down symmetry properties (Oueslati & Firpo 2020) with respect
to the tokamak horizontal midplane so that a tokamak having an up-down symmetric
border possesses a naturally antisymmetric toroidal velocity �eld, which results in a
net zero toroidal �ow, unless the up-down symmetry is broken. This symmetry breaking
may enter through boundary conditions. An example of this is by using external magnetic
perturbations which has recently been shown (Oueslati & Firpo 2020) to enhance plasma
steady-state speeds and produce a net toroidal �ow. In the present study, another path
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is explored since the in�uence of an inhomogeneous heating is considered. The impact
of introducing a vertical temperature gradient on the toroidal velocity �eld through its
magnitude and up-down symmetry properties is investigated. In Section 2 the modeling
frame is introduced. The system of equations used in the numerics is presented and
terms related to inhomogeneous temperature and resistivity derived in the Appendix A.
In Section 3, simulation results are presented on the impact of the temperature gradient.
In Section 4, these results are related to up-down symmetry properties of the toroidal
velocity �eld and a symmetry argument (order parameter-like) is introduced. Conclusions
are given in Section 5.

2. Visco-resistive magnetohydrodynamic description with heat

convection-di�usion

We introduce now the modeling frame used to compute axisymmetric visco-resistive
MHD steady states allowing for non-vanishing velocity �elds. Rather than assuming a
constant resistivity as in some previous studies, we shall allow here its space variation
by imposing some temperature inhomogeneity. We shall assume that some extra heating
is applied on the top of the tokamak so that there is a vertical gradient of the plasma
boundary temperature. The temperature �eld within the tokamak plasma is assumed to
be governed by a convection-di�usion (heat) equation (2.3g). We shall use the fact that
the electrical resistivity η varies with the temperature T according to Spitzer's law

η(T ) ≡ αT−3/2 (2.1)

with

α ≡ 4

3

√
2πmee

2 lnΛ

(4πε0)
2 (2.2)

where lnΛ denotes the Coulomb logarithm.
The system of equations considered in the present study reads then

(v.∇)v = J×B−∇p+ ν∇2v (2.3a)

∇.v = 0 (2.3b)

∇.B = 0 (2.3c)

∇×E = 0 (2.3d)

∇×B = J (2.3e)

E+ v ×B = η(T )J (2.3f)

(v.∇)T = κ△T (2.3g)

The physical unknown quantities are the electric �eld E, the magnetic �eldB, the velocity
�eld v and the scalar pressure p and temperature T �elds. The conducting plasma �uid
is assumed to have a uniform density so that the mass conservation equation amounts
to write the incompressibility condition (2.3b). The steady-state Navier-Stokes equation
normalized to the mass density, ρ, is written in Eq. (2.3a) where the kinematic viscosity
ν has been assumed to be scalar and constant. These �uid equations are coupled to
the Maxwell equations (2.3c)-(2.3d)-(2.3e), to the Ohm's law (2.3f) and to the heat
steady-state convection-di�usion equation (2.3g). This system of equations is written
for dimensionless variables in the usual Alfvèn units where velocities are normalized by
the characteristic Alfvèn velocity vA = (B2/µ0ρ)

1/2. κ is a di�usion coe�cient that is
typically of the order of 1m2.s−1 in tokamaks (Freidberg 2007).
The system (2.3) reduces to the system of coupled parabolic di�erential equations (A 5)
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presented in the appendix A. It needs to be completed by the speci�cation of the problem
geometry and boundary conditions. As for the problem geometry, we consider the JET
parameters with major radius r0 = 3m, semi-minor axis r1 = 1.25m, semi-major axis
r2 = κr1 with plasma elongation κ = 1.55 and triangularity given by arcsin δ = 0.5.
Then, six boundary conditions have to be given. Four of them are associated to the
divergence-free nature of the magnetic B, current-density J, velocity v and vorticity ω
vector �elds and may be �xed by the continuity of their normal component on the plasma
boundary. There remains then two conditions on the toroidal vorticity and temperature.
As detailed below, one chooses some vertically-inhomogeneous heating that �xes the
boundary condition for T ; whereas one assumes, with some arbitrariness, that the toroidal
vorticity vanishes on the plasma border. This is written explicitly in the Appendix.
There are two (small) dimensionless parameters in the problem, that are the resistivity

η, which is the inverse of the magnetic Reynolds number S, and the kinematic viscosity
ν, which is the inverse of the viscous Lundquist number M . Here the modeling of the
resistive and viscous e�ects has been made in the (usual) tractable scalar way. There
are also two driving parameters in the model equations associated to the magnitude of
the external curl-free toroidal magnetic �eld, B0, and to the toroidal loop voltage, E0.
The equations were solved under their weak form using the �nite element method with
FreeFem++ (Hecht 2012; Oueslati et al. 2019).

3. Simulation results with localized heating

Compared with previous frameworks, temperature is considered here as a variable of
the MHD visco-resistive system of equations. In order to study the impact of a localized
heating in breaking the symmetry of the problem, we shall mainly use a vertically linear
pro�le for the temperature on the boundary. This external temperature gradient can be
characterized by the relative di�erence∆T between the top temperature, Tup, and bottom
temperature, T0, of the plasma through ∆T = (Tup − T0)/T0. Physically speaking, we
consider positive ∆T corresponding to an inhomogeneous extra heating directed on the
top of the tokamak plasma. On the numerical side, the introduction of a non-vanishing
external temperature gradient interestingly happens to stabilize the code compared to
its �xed-temperature original version (Oueslati et al. 2019) and allows to reach larger
Hartmann numbers.
Let us de�ne by η0 = η(T0) the value of the resistivity at the bottom of the tokamak

plasma. In the numerical simulations, we used the dimensionless parameters B0 = 0.87
and E0 = 3 × 10−9 relevant to JET and a value of the maximal, bottom, resistivity
η(T0) = 6.9× 10−7. It is well known that the order of magnitude of the e�ective (scalar)
plasma viscosity in a tokamak is uncertain (Kamp & Montgomery 2004), therefore we
run simulations for a large span of values of ν, or identically a large span of Hartmann
numbers H, where the Hartmann number H is de�ned as a combination of η0 and ν
through H = 1/

√
η0ν. Alternatively, we shall consider the mean Hartmann number ⟨H⟩

de�ned as the average value of H in the tokamak domain.
Let us �rst investigate the fate of the temperature �eld. One may actually think

that the introduction of the stationary heat equation in the model would not have any
signi�cant e�ect on the value of T in the bulk, compared to simply maintaining an a�ne
temperature everywhere. Indeed, only convective transport of temperature can make T
di�er from the Laplace equation solutions. Because poloidal speed was typically very
low in previous simulations (Oueslati et al. 2019), this would seem to suggest a rather
limited e�ect. Figure 1 partly con�rms this intuition. For H = 10, convection is clearly
not visible globally. Yet, for H = 105, the temperature pro�le happens to be deviated by
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Figure 1. Temperature pro�les (in eV units) for ∆T = 10 and Hartmann numbers (left)
H = 10, (right) H = 105.

convective e�ects, meaning that, in this case, poloidal �ows are su�cient to provide some
heat transport. One observes there some tendency for a temperature homogenization in
the tokamak core at large H.
Our main interest is to examine the impact of the inhomogeneity of the heating on

the steady-state plasma toroidal speed. Figure 2 represents the root mean square (rms)
value of the toroidal velocity �eld as a function of the mean Hartmann number ⟨H⟩ for
∆T = 1 in Alfvèn units. The numbers 180, 200, 220 correspond to the number of vertices
of the mesh on the edge of the domain. Only one curve can be seen, which means that the
simulations yield identical results no matter what mesh is used, illustrating the numerical
robustness of the code. For reference, the curve corresponding to a uniform temperature
on the border (∆T = 0) is also plotted. At any given mean Hartmann number, one
observes that the rms toroidal speed is larger in the inhomogeneous heating case than
for constant temperature with a di�erence increasing with ⟨H⟩. Figures 3 and 4 show
velocity pro�les that depart from previous constant temperature results (Oueslati et al.
2019) as the Hartmann number increases. One observes that the toroidal velocity �eld
goes from being almost odd with respect to the midplane at H = 10 to being almost even
at H = 105 with a net toroidal �ow. The toroidal velocity in itself, although higher than
in previous cases, is not particularly impressive at these Hartmann numbers. It is rather
the rate at which the velocity increases with ⟨H⟩, as shown on Figure 2, that catches our
interest.
We now attempt to map the results of the simulations for di�erent ∆T , even if the

largest ∆T values may be physically unrealistic. One of our objectives is to obtain faster
�ows than were previously possible for a uniform temperature. The mean quadratic (rms)
toroidal velocities for di�erent edge temperature gradients are presented in Figure 5 for
a toroidal free-slip boundary condition and 6 for a toroidal no-slip boundary condition.
The toroidal free-slip boundary condition allows to reach somehow higher speeds than
the no-slip one for a given ⟨H⟩ which is visible from a comparison between Figures 5 and
6. Otherwise the general behavior of the curves in both plots is quite similar. It has been
taken in our simulations unless otherwise stated. As expected, for a given∆T , the toroidal
velocity always increases with ⟨H⟩, as the viscous dissipation diminishes. Moreover, the
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Figure 2. Root mean square (rms) value of vφ (in Alfvèn velocity vA units) depending on the
mean Hartmann number ⟨H⟩ for ∆T = 0 and ∆T = 1 using di�erent mesh sizes (labeled by the
number of vertices on the edge of the domain).

Figure 3. Toroidal velocity �eld vφ in Alfvèn velocity vA units with ∆T = 1 for (left) H = 10
and (right) H = 100.
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Figure 4. Toroidal velocity �eld vφ in Alfvèn velocity vA units with ∆T = 1 for (left)
H = 103 and (right) H = 105.
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Figure 5. Root mean square of the toroidal velocity, ⟨vφ⟩rms, (in Alfvèn velocity vA units) as
a function of ⟨H⟩ for di�erent values of ∆T .

mean value of η has an easily identi�able e�ect on velocity: for low Hartmann numbers,
the more intense the heating, the higher the toroidal velocity. Yet, for higher ⟨H⟩, the
�ow behaves di�erently. The plots corresponding to the most intense heatings are rapidly
saturating: the slope of ⟨vφ⟩rms becomes small compared to simulations with less heating
and the greatest temperature gradients do not yield the fastest �ows. Conversely, curves
with softer heating follow a linear regime on the Figure 6 over a large band of Hartmann
numbers, with a slope equal to 2 (in the log-log scale). This corresponds to ⟨vφ⟩rms being
proportional to ⟨H⟩2. This slope is steeper than what could be achieved without heating,
and it provides a physically interesting regime. However, the higher the temperature
gradient, the sooner this regime ends (in terms of ⟨H⟩). In order to quantify those



Steady-state �ows with inhomogeneous heating 7

 1x10-25

 1x10-20

 1x10-15

 1x10-10

 1x10-5

 0.01  0.1  1  10  100  1000  10000  100000  1x106  1x107

<
φ>

rm
s

<H>

 ∆T = 0
 ∆T =0.01

 ∆T =0.1
∆T =1
∆T =5

∆T =20
∆T =50

Figure 6. Root mean square of the toroidal velocity, ⟨vφ⟩rms, (in Alfvèn velocity vA units) as
a function of ⟨H⟩ for di�erent values of ∆T . Here the toroidal no-slip condition (u4 = 0 on the
border of the plasma domain) is used.
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Figure 7. Instantaneous slopes of the logarithm of the root mean square of the toroidal velocity,
⟨vφ⟩rms, as a function of the logarithm of ⟨H⟩ for di�erent values of ∆T for the toroidal no-slip
results plotted in Figure 6.

e�ects, the instantaneous slope β(⟨H⟩,∆T ) ≡ ∂(log⟨vϕ⟩rms)/∂(log⟨H⟩) has been plotted
on Figure 7. In the in�nite viscosity limit, corresponding to ⟨H⟩ → 0, one recovers that
the quadratic mean (or root mean square) of the toroidal velocities scales as ⟨H⟩4 (i.e.
β → 4) which was analytically predicted for ∆T = 0 in (Kamp et al. 1998). One observes
the aforementioned intermediate scaling ⟨H⟩2 with β plateauing about 2 for moderate
heating gradients to be compared to an intermediate scaling with β about 3/2 taking
place for ∆T → 0.
All this makes it uneasy to point out an optimal set of parameters in order to reach
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Figure 8. Toroidal velocity �eld vφ for ∆T = 50 and H = 100 (after the cuto�).

fast �ow states, especially since the real, physical value of the viscosity coe�cient - and
therefore the Hartmann number - remains unknown. Besides, simulations with high ∆T
present little physical interest besides drawing a general picture of the situation, yet
moderate ∆T s provide some interesting results: as seen on Figures 2, 5 and 6, several
orders of magnitude in velocity can be gained over the uniform temperature simulations.
On the basis of Figure 1, one may propose an explanation for the dual role played by
the temperature gradient ∆T . Indeed, when both ∆T and ⟨H⟩ are large, the e�ective
temperature �eld will tend to homogenize in the core of the tokamak. The e�ect of this
homogenization is to make less e�ective or to counterbalance the symmetry breaking
induced primarily by the inhomogeneous heating imposed by boundary conditions. One
may then understand that there exists some optimum in the choice of ∆T in terms of the
maximization of mean toroidal plasma speed and that a 'moderate' up-down temperature
gradient ∆T may eventually be more e�cient than a large ∆T to make plasma rotate in
the large ⟨H⟩ values relevant to fusion tokamak plasmas.

4. Spatial symmetry of solutions

4.1. Preliminary remarks

In order to characterize more precisely the �ow modes described earlier, we shall
now study the symmetry of solutions with respect to the tokamak horizontal y = 0
mid-plane. By introducing an inhomogeneous heating along the y vertical axis, the up-
down symmetry of the problem has been broken. For the uniform temperature problem,
symmetry properties were studied in (Oueslati & Firpo 2020) and the toroidal velocity
�eld was shown to be naturally antisymmetric i.e. an odd function of y.

In the present simulations, for high Hartmann numbers we obtain some rather symmet-
ric pro�les (see e.g. Figure 4) in stark contrast to the non-heated case. This happens to be
a somewhat paradoxical situation since breaking the symmetry of the problem seems to
make the solutions go from antisymmetry to symmetry, rather than merely eliminating
any symmetry properties. Nevertheless the picture is more intricate as for instance, in
the case of intense heating, there are no longer any obvious symmetry properties for high
enough Hartmann numbers (see Figure 8).
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Figure 9. Toroidal velocity �eld vφ for ∆T = 0.1 and (left) H = 10, (right) H = 105.

4.2. Symmetry analysis

To go beyond the aforementioned qualitative observations and obtain more precise
information, one must quantitatively characterize the symmetry or antisymmetry of our
solutions. To that end, we consider the L2 norm of the symmetric and antisymmetric parts
of the toroidal velocity. De�ning by Ω the tokamak cross-section and by SΩ ≡

∫
Ω
dxdy

its surface, we put

Vsym =

(
1

SΩ

∫ (vφ(x, y) + vφ(x,−y)
2

)2

dxdy

)1/2

(4.1)

and

Vanti =

(
1

SΩ

∫ (vφ(x, y)− vφ(x,−y)
2

)2

dxdy

)1/2

. (4.2)

One has the identity

⟨v2φ⟩ = V 2
sym + V 2

anti (4.3)

which leads us to introduce a symmetry argument, χ, given by χ ≡ arctan (Vsym/Vanti).
This scalar quantity allows us to easily visualize the balance between symmetry and
antisymmetry in a given velocity �eld. This argument does not depend on the norm
of the velocity itself (which can vary by many orders of magnitude) and it is valued
between 0 and π/2. For simulations with uniform temperature, we get ⟨vφ⟩rms = Vanti
and Vsym = 0, and therefore the symmetry argument is χ = 0.

4.3. Link between velocity and symmetry

Figures 9 and 10 show a transition from antisymmetry to symmetry in the case ∆T =
0.1 as the Hartmann number increases. For low Hartmann numbers, the toroidal velocity
pro�le is indistinguishable from that of the simulations done with uniform temperature:
it appears to be antisymmetric and the two plots of ⟨vφ⟩rms are identical. We then
have a rather abrupt transition around H = 1000, and the symmetry argument tends
towards π/2 (total up-down symmetry) for large H. What catches our interest is that the
transition from antisymmetry to symmetry occurs simultaneously with the separation of
the root mean square velocities of the homogeneous and non-homogeneous heating cases;
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Figure 10. (left) Symmetry argument χ = arctan (Vsym/Vanti) for ∆T = 0.1; (right) ⟨vφ⟩rms

for ∆T equal to 0 and 0.1 as a function of ⟨H⟩.

Figure 11. (left) Toroidal velocity vφ �eld for H = 104 and ∆T = 0.01; (middle) Symmetry
argument χ = arctan (Vsym/Vanti) for ∆T = 0.01; (right) ⟨vφ⟩rms for ∆T equal to 0 and 0.01 as
a function of ⟨H⟩.

it appears that the �ow goes from a uniform temperature-like state to a faster, more
symmetric state.
This phenomenon is also encountered for other values of ∆T , although the transition

occurs at di�erent H. The plots do not reach su�ciently high Hartmann numbers to
feature the asymptotic symmetry, due to limitations in computing capabilities (somewhat
paradoxically, for small values of ∆T , the less intense the inhomogeneity of the heating,
the more numerically demanding the code becomes) as visible on Figure 11.
For higher values of ∆T , however, other phenomena occur at high H as depicted in

Figure 12. After transitioning towards symmetry, this new behavior (that cannot be easily
interpreted in terms of symmetry) seems to be correlated with the velocity saturation
mentioned earlier.

5. Conclusions

In this study, the impact of a space-inhomogeneous heating on steady �ows has been
considered. In the limit of small Hartmann numbers, the root mean square toroidal
velocity has been shown to display the same scaling as that of the uniform-temperature
solution with ⟨vφ⟩rms ∝ ⟨H⟩4, with an up-down anti-symmetry of the toroidal velocity
�eld. However, it appears that the uniform-temperature, purely anti-symmetric solution
is unstable with respect to �nite temperature perturbations. Actually, no matter how
small the temperature gradient ∆T , for su�ciently high H, the steady-state solution
drastically diverges from it. In this sense, the limit ∆T → 0 is singular. Interestingly, for
non-vanishingly small ∆T , some scaling law ⟨vφ⟩rms ∝ ⟨H⟩2 (faster than the uniform-
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Figure 12. (left) Symmetry argument χ = arctan (Vsym/Vanti) for ∆T = 1; (right) ⟨vφ⟩rms for
∆T equal to 0 and 1 as a function of ⟨H⟩.

temperature case) has been uncovered within some range of large values of the Hartmann
number which depends on T ; it coincides with a rather up-down symmetric pro�le of the
toroidal velocity �eld. Eventually, it happens that perturbing the temperature boundary
conditions at �nite H allows to obtain much higher �ow speeds at high Hartmann
numbers than the uniform-temperature case. One may, of course, question the somewhat
arbitrary choice of using a linear Ansatz for the boundary temperature pro�les: since
the system is strongly non-linear, other choices may yield di�erent results. The linear
pro�les' e�ciency seems to lie in its ability to break vertical symmetry in the domain,
which enables a divergence from the anti-symmetric solution. Finally, one may interpret
the coexistence of both symmetric and anti-symmetric solutions in the high H limit as a
bifurcation in the sense of hydrodynamics; this makes sense since, as viscosity is reduced,
the system becomes strongly turbulent.
Fruitful discussions with N. Minesi, T. Bonnet, R. Guillot and A. Salhi are gratefully

acknowledged. HO thanks the University of Tunis El Manar and the Ministry of Higher
Education and Scienti�c Research of Tunisia for funding. This work has been performed
in the frame of the FR-FCM (Fédération nationale de Recherche Fusion par Con�nement
Magnétique - ITER).

Appendix A. Equations in terms of scalar �elds

The Reader is referred to (Kamp & Montgomery 2004) for a detailed derivation of the
system of coupled di�erential equations to be solved in the case of a constant resistivity
for computing visco-resistive MHD steady-states with realistic tokamak driving terms.
Indeed, one takes into account the drives induced by an external (thus curl-free) toroidal
magnetic �eld and by a toroidal loop voltage that serves to produce the toroidal current
density �eld that is the source of the poloidal magnetic �eld. When resistivity is no longer
constant as in the present study, the equation for Bφ is modi�ed. Taking the curl of the
Ohm's law gives, using ∇×E = 0,

∇× (v ×B) = η∇× J+∇η × J. (A 1)

We have

B = ∇χ×∇φ+ (r0B0 + rBφ)∇φ
and

J = ∇ (rBφ)×∇φ−△∗χ∇φ.
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We have similarly

v = ∇ψ ×∇φ+ rvφ∇φ
and

ω = ∇ (rvφ)×∇φ−△∗ψ∇φ.
Using the axisymmetry implying e.g. ∇χ · ∇φ = ∇ψ · ∇φ = 0 and (∇φ)2 = r−2, a
straightforward calculation gives

v ×B = − (∇ψ ×∇φ.∇χ)∇φ+
vφ
r
∇χ−

(
B0r0
r2

+
Bφ

r

)
∇ψ.

The toroidal projection of the curl of this yields

[∇× (v ×B)] · ∇φ =

[
∇
(vφ
r

)
×∇χ−∇

(
B0r0
r2

+
Bφ

r

)
×∇ψ

]
· ∇φ

We have

∇× J = ∇× [∇ (rBφ)×∇φ−∆∗χ∇φ]
giving

(∇× J) · ∇φ = −r−2∆∗ (rBφ) .

Then

(∇η × J) · ∇φ = (∇η × [∇ (rBφ)×∇φ]) · ∇φ
Consequently, we have[
∇

(vφ
r

)
×∇χ−∇

(
B0r0
r2

+
Bφ

r

)
×∇ψ

]
· ∇φ = −ηr−2 △∗ (rBφ)− r−2∇η · ∇ (rBφ) .

In the previous equations, we have made use of the second-order elliptic operator △∗

de�ned by

△∗A = ∇2A− 2

r

∂A

∂r
=
∂2A

∂2r
− 1

r

∂A

∂r
+
∂2A

∂2z
. (A 2)

Let us de�ne the rescaled variables x = r/r0, y = z/r0 and introduce notations extending
that of (Kamp & Montgomery 2003b), namely

u1 =
ψ

r0
(A 3a)

u2 = r0rωφ (A 3b)

u3 =
rBφ

Ib
+ 1 (A 3c)

u4 =
rvφ
Ib

(A 3d)

u5 =
χ

r0
(A 3e)

u6 = r0rJφ (A 3f )

u7 = r0
T

T0
. (A 3g)

where Ib = r0B0. Let us de�ne the Poisson bracket of two functions u and v with respect
to the variables x and y as

{u, v} =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
. (A 4)
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The system of equations to be solved reads �nally

△∗u1 = −u2 (A 5a)

ν △∗ u2 =
I2b
x2
∂u23
∂y

− 2
u6
x2
∂u5
∂y

(A 5b)

+
1

x
({u6, u5}+ {u1, u2}) + 2

u2
x2
∂u1
∂y

− I2b
∂

∂y
(
u24
x2

) (A 5c)

α△∗ u3 =
2u

3/2
7

x2
(u3

∂u1
∂y

− u4
∂u5
∂y

) +
u
3/2
7

x
({u1, u3}+ {u4, u5}) (A 5d)

− 3

2

α

u7

(
∂u7
∂x

∂u3
∂x

+
∂u7
∂y

∂u3
∂y

)
(A 5e)

ν △∗ u4 =
1

x
({u3, u5}+ {u1, u4}) (A 5f )

△∗u5 = −u6 (A 5g)

αu6 =
u
3/2
7

x
{u5, u1}+ Ieu

3/2
7 (A 5h)

κ△∗ u7 =
1

x
{u1, u7}. (A 5i)

We have introduced the constants α = η0r
3/2
0 and Ie = r20E0 with η0 ≡ η(T0).

The boundary conditions chosen in the numerics are u1 = u2 = u5 = 0, u3 = 1.
u7 is an a�ne function of y. As for u4, we take either (in almost all simulations)
the condition ∂n(u4/r

2) = 0 corresponding to a free-slip in the toroidal direction or
(exceptionally) u4 = 0 corresponding to a no-slip toroidal condition. The Reader is
referred to (Oueslati & Firpo 2020) for a detailed discussion on boundary conditions.
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