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Purpose: Performing a transrectal ultrasound (TRUS) prostate biopsy is at the heart of the
current prostate cancer detection procedure. With today’s 2D live ultrasound (US) imaging
equipment, this task remains complex due to the poor visibility of cancerous tissue on TRUS images
and the limited anatomical context available in the 2D TRUS plane. This paper presents a rigid
2D/3DUS registration method for navigated prostate biopsy. This allows continuous localization of15

the biopsy trajectory during the procedure.
Methods: We proposed an organ-based approach to achieve real-time rigid registration without
the need for any probe localization device. The registration method combines image similarity and
geometric proximity of detected features. Additions to our previous work include a multi-level
approach and the use of a rejection rate favouring the best matches. Their aim is to increase the20

accuracy and time performances. These modifications and their in-depth evaluation on real clinical
cases and comparison to this previous work are described. We performed static and dynamic
evaluations along biopsy trajectories on a very large amount of data acquired under uncontrolled
routine conditions. The computed transforms are compared to a ground truth obtained either from
corresponding manually detected fiducials or from an already evaluated registration method.25

Results: All results show that the current method outperforms its previous version, both in terms
of accuracy (the average error reported here is 12 to 17% smaller depending on the experiment)
and processing time (from 20 to 60 times faster compared to the previous implementation). The
dynamic registration experiment demonstrates that the method can be successfully used for
continuous tracking of the biopsy location w.r.t the prostate at a rate that varies between 5 and 1530

Hz.
Conclusions: This work shows that on the fly 2D/3DUS registration can be performed very
efficiently on biopsy trajectories. This allows us to plan further improvements in prostate navigation
and a clinical transfer.
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I. INTRODUCTION

Prostate cancer is the second most common cancer in men and the fourth most common cancer overall according
to the World Research Cancer Fund (WRCF). Prostate screening tests may include a Prostate Specific Antigen test
(PSA) or a Digital Rectal Examination test (DRE), but to determine whether or not prostate cancer is present, biopsy
series must be performed. If some samples are positive, they will also be used as raw material to determine the cancer40

grade (through the Gleason score [1]) and to make decisions about the more appropriate treatment.
As a result, performing transrectal ultrasound (TRUS) biopsy of the prostate is an essential proficiency for urologists.

The procedure itself (see Figure IV) is a complex task that requires extensive anatomical and technical knowledge
and good hand-eye coordination. In many countries, medical authorities currently recommend the biopsy of twelve
regions uniformly distributed over the prostate, along with some specific targeted locations if additional MRI exams45

have revealed suspicious regions.
With current 2D live ultrasound imaging equipment, the false negative rate for this procedure could reach thirty

percent [2]. This is a consequence of the poor visibility of cancerous tissues in TRUS images and the limited anatomical
context available in the 2D TRUS plane. This results in a very limited knowledge about the actual position of biopsy
cores. Over the years, significant efforts have been made to lower this rate through the accurate localization of biopsy.50

Accuracy requirements may be related to the notion "clinically significant tumour": 0.5cc is a consensus value accepted
by the urology community [3]. This corresponds approximately to a sphere having a radius of 5mm.

As a first attempt for computer-assisted prostate biopsy, some authors proposed to follow the probe during the
examination using an external measurement device. We will refer to these approaches as sensor-driven. Various
types of devices have been used, from external tracking (optical / magnetic [4]) to inertial units or robotized arms [5]55

attached to the probe. These approaches generally use a 3D MR reference image acquired during the preoperative
stage. This 3D image is rigidly registered to a 3D TRUS image acquired at the start of the intraoperative phase. This
first 3D / 3D registration serves as a reference and is continuously updated by "adding" the probe movement during
the examination estimated using the tracking device. If these solutions can be performed at a high frequency, none of
them takes into account the fact that the prostate can roll over or become deformed due to contact with the head of60

the probe during the procedure. Some authors [6] report large errors even in the initial MR/TRUS registration phase:
up to 10mm. Due to prostate drifts during the operation, these errors will increase and obviously lead to biopsies
far from the targets. Finally, most of these methods do not use an appropriate TRUS 3D probe but reconstruct 3D
volumes from 2D images using the information given by the tracking device. This reconstruction process is not free
from the introduction of prostate movements and deformations resulting from the movement of the probe itself.65

To cope with these motions and deformations, techniques based on image fusion have given promising results. We
refer to them as organ-driven approaches. One of the first attempts was proposed by Baumann et al.[7]. In this
work a first stage consists in the elastic registration of preoperative MR images with 3D TRUS images acquired at
the start of the intraoperative phase. Unlike the previously introduced methods, this initial MR/TRUS registration
is updated using another registration performed during the procedure. It relates the initial 3D TRUS volume to 3D70

TRUS volumes acquired all along the procedure. This allows to update the target positions based on the real live
observed anatomy. For example, in the Urostation (a commercial platform from Koelis SAS), 3D TRUS images are
acquired before each biopsy and are registered rigidly or elastically on this first 3D TRUS image. This allows to
provide very accurate maps of targeted locations in a reference volume (MRI and TRUS).

However, even with this approach, the physician has no information other than their mental representation between75

two 3D acquisitions, while they are navigating with the flow of 2D TRUS images. To guide them towards the biopsy
locations as efficiently and accurately as possible, an important issue is to link the 2D TRUS flow to the initial 3D
image. Refreshing the target position information from 10 to 15 times per second is most likely sufficient to guide
the clinician. Some authors have proposed methods for registering the 2D TRUS images to a 3D TRUS reference
image. For instance, De Silva et al. [8] use normalized cross-correlation as an objective similarity function to rigidly80

register 2D images onto the 3D reference. A passive arm holding the US probe allows to initialize the unknown
transform before registration. The functional is optimized with the Powell Brent method in order to speed up the
computation time by avoiding the computation of derivatives. But even with an optimized version of this method and
the delegation of parallelized computation to a GPU [9], they had to sub-sample the input images by a factor of 4 to
reach the real-time constraint, i.e. 10-15 Hz. However, to perform a GPU calculation, the ultrasound platform must85

be equipped with a specific board which is a strong constraint on current existing hardware. Moreover, this approach
also requires a passive arm holding the probe. This potentially makes US probe motion less natural.

To alleviate these constraints, our team [10] has proposed a different organ-based approach to achieve real-time
registration on a standard CPU without the need for a passive arm. This method can be seen as a variant of the
iterative closest point method (ICP). An hybrid metrics combines image similarity and geometric proximity of detected90

features. It is used to match points that are finally registered by means of a rigid transform. This first version was
tested on a clinical database of more than 100 3D US volumes from 20 patients.
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Based on this first evaluation which was already very promising and to which we will compare, further work was
necessary to increase accuracy (i.e. decrease average error and variability) while decreasing computation time. We
also wanted to evaluate the method on a much larger clinical dataset. In this paper, we present the modifications and95

optimizations we made to the method and the evaluations we performed on a large dataset composed of more than
900 biopsy volumes from real clinical data. Moreover, our previous work was limited to static 2D/3D registrations.
Additional experiments have been conducted to test the ability to track the prostate all along the procedure by testing
high frequency 2D/3D registrations along probe trajectories. These dynamic experiments are also reported.

II. MATERIALS AND METHODS100

A. Proposed approach

The inputs of the algorithm are a 3D TRUS reference image and a 2D TRUS image. Let us underline that a single
3D US probe allows both acquisition modes. The first 3D reference is acquired just before starting the biopsy series.
During the procedure, a new 3D reference is acquired just before the needle insertion for each tissue sampling. The
2D image comes from the US flow acquired when navigating the US probe from one biopsy site to the next. Matching105

the 2D image on the fly to the latest 3D reference volume will provide information suitable for guiding the physician
towards the next biopsy site. Figure 2 illustrates the integration of our method in a routine clinical process, where
continuous 2D/3D registrations would be performed between two biopsies. The following sections provide information
about the different steps of the registration method. We invite the interested reader to refer to [10] where different
solutions and their parametrizations have been studied and are presented in full details.110

1. Multi-resolution approach

In order to improve the seminal work proposed by Selmi [10], we have introduced a multi-resolution approach
to the orignal workflow. Multi-resolution approaches are used to obtain more precise and accurate results with a
generally better computation time. Regarding registration, this results in finding more distant solutions since a larger
search radius can be used at the coarser levels (see section IIA 3). In other words, it allows the method to perform a115

more efficient and extensive search within the solution spaces which size increases with the level. The computational
efficiency is also improved as many iterations (inexpensive in computing time) are performed at coarser levels to align
the set of points globally and fewer iterations (more expensive in computing time) are needed at finer levels to refine
this alignment.

Our algorithm repeats the steps described in the sections IIA 2, IIA 3 and IIA 4 at each resolution level and uses120

the result (the rigid transformation) of one level as input for the next one. As rather classically done, for a trade-off
between efficacy and accuracy, we used a three-level pyramid of images with a halving shrinking factor at every level.

The process performed for each 2D live image is summarized by the flowchart of figure 3.

2. Features detection & Description

As it has been shown by Gillies et al. [9], performing 2D/3D registration based on image similarity analysis requires125

offloading calculations to a GPU unit. To achieve real-time registration on a standard CPU, it is necessary to shift
toward a less greedy registration technique. This is why we decided to use, instead of the full voxel matrix, a sparser
representation of image: features points.

They correspond to specific locations inside the images which are selected by a feature detector chosen to be reliable
and coherent inside a stream of successive images. In our implementation, we use the well-known Harris detector130

[11]. This simple but robust detector works on both 2D and 3D images. This ability ensures the consistency of the
detected points for the next steps of our algorithm. This detector use a gradient-based strategy to detect robust
features named "corners".

A descriptor is attached to each of these corners. It contains the coordinates of the corner expressed in the ultrasound
probe coordinate frame - we call it feature point. The descriptor also includes grey level information about the point135

and its neighborhood Ω (the average intensity and a local histogram of the region aound the corner). Based on the
results of previous experiments [12], this neighborhood is a 5x5 pixels or 5x5x5 voxels region whatever the resolution
level where it is computed.



4

3. Matching

The next step consists in matching the sets F2D and F3D of feature points respectively describing the 2D and 3D140

images. A first transformation is necessary to map the set of feature points describing the current 2D image into
the 3D reference space as illustrated in Figure 4. This initial transformation would be given either by the result of
the 2D/3D registration of the previous 2D image to the 3D current reference or by the last 3D/3D registration when
navigation to the next biospy site starts. Let us remind that a single probe enables both 2D and 3D acquisitions:
without probe motion, the 3D volume is acquired by rotating the 2D sensor from its resting position (most often the145

volume is symmetric with respect to this resting position its median slice corresponds to the 2D live image position).
Calibration information allows representing 2D and 3D acquired information in a single reference frame. Therefore,
having registered a volume to the reference (panorama), the median slice of this volume can be easilly mapped to the
panorama. This gives a good prior for next live image.

Pairing combines feature similarity and geometric consistency. Each 2D feature f2D ∈ F2D has to be paired to a 3D150

feature f3D ∈ F3D located in its neighborhood. Let us remind that, during registration, the method has to iteratively
determine the neighbourhood of feature points as ICP iteratively computes closest points. To do this efficiently, a
KD-Tree is precomputed from the set of 3D features once for all 2D/3D registrations during navigation to the next
biopsy site. This first selection based on geometric distance allows to work only on a subset of potential but realistic
3D matches for each 2D feature.155

Then, the previously selected pairs, based on geometric distance, are matched using image intensity information.
For each pair we compute a distance d:

d(f2D, f3D) = α1d1 + α2d2 + α3d3, (1)

where
∑3

i=1 αi = 1, d1 compares the mean intensity in the neighborhood Ω of the features, d2 uses the Bhattacharyya
distance which quantifies the similarity of two normalized histograms, d3 is the sum of squared differences computed
in Ω. Finally, for each point of the 2D set, only the best 3D match is kept.

In order to improve the registration quality, one solution is to keep among all 2D/3D pairs resulting from the
previous stages, only those with the highest similarity values. This selection is based on a fixed rejection rate of the160

worst pairs and requires implementing an efficient sorting method with respect to the similarity values. Conversely
to [10] where this rejection rate was not used because of its computational cost, the current implementation makes
efficient use of a sorted multi-set container of C++. Such special container can support multiple elements with the
same similarity value while maintaining an insertion rate with a logarithmic complexity. The position of the previously
inserted element and the comparison to this element is used to estimate the location of the new element. In this special165

case the computational complexity can even be constant amortized.

4. Finding the transform

When the feature points are paired, the algorithm proposed by Arun [13] for non iterative least square minimization
allows to compute the rigid transform that best matches the pairs. This algorithm aims to minimize the geometric
distance between the given pairs. The computed transformation is given in the form of an Euclidean transform T
with 6 degrees of freedom. To give more importance to information inside the prostate, we use a variant that allows
the assignment of weights. T is computed to minimize

n∑
i=1

wi × d(ai, T (bi))2 (2)

where wi is the weight given to one of the n pairs of matched features (ai, bi) ∈ F3D × F2D. Pairs that have a 3D
point inside the pre-segmented prostate are considered more meaningful and are therefore weighted with a higher
coefficient than points in the rest of the image. Favouring information inside the prostate combined with the high170

frequency registration partially overcome the lack of elastic registration.

5. Optimization - Stopping Criterion

Subsections IIA 3 and IIA 4 are repeated until a stable transformation is found. The algorithm stops when the
Euclidean distance between the 2D points registered between two successive iterations is lower than a given threshold
or after reaching a maximum number of iterations given as input.175
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B. Evaluation on reference [10] dataset

To assess the presented method, we firstly used the same protocol and database than what was used to evaluate the
method proposed by Selmi [10]. This protocol focuses on the evaluation of the method under controlled conditions
using data from clinical examinations. Here, the objective is to explore in a systematic way the limits of the presented
approach on static 2D/3D registrations. This first evaluation is intended to show, in a direct way, the effect of the180

additions we made to [10]. The following section presents the details of this benchmark. We are also taking advantage
of this first evaluation to carry out a study of the sensitivity of the method to the main parameters (search radius
and rejection rate).

1. Patient data set

In this experiment, the database is composed of 160 TRUS volumes for a total of 20 patients. These volumes185

were acquired during routine clinical biopsy series using two different commercial ultrasound systems (Urostationr
and Trinityr from Koelis SAS). The clinical procedures were performed by six different operators from two different
hospitals (Grenoble University Hospital and Paris La Pitié University Hospital). Acquired data include for each patient
an initial 3D image, named reference or panorama volume (TRUSpano) and a set of 3D images (TRUSbiopsy) acquired
all along the biopsy protocol. To simulate 2D images, the median slice of each TRUSbiopsy volume is extracted for190

2D/3D registration to TRUSpano. As mentioned in section IIA 3, this median slice corresponds to the live image that
would be produced using the 2D mode instead of the 3D one having ths US probe in the same position.

2. Ground truth

For all the patients, we used fiducials (visible micro-calcifications) in order to compute the ground truth: the 6D
transform that maps the 2D image to the 3D reference. Four to six anatomical landmarks within the prostate (visible195

both in TRUSbiopsy and in TRUSpano) were required to create fiducial pairs. Volumes that did not contain enough
visible micro-calcifications were discarded from the validation database (and are not included in the 160 mentioned
above). These fiducial pairs allow to compute the ground truth TGT (cf. figure 5) using paired-point matching. The
fiducial localization error was evaluated to 0.38 mm and the fiducial registration error FRE after pair-point matching
was 0.74 mm (±0.34) (cf. reference [10] for more details).200

3. Simulated transforms

To simulate the movements of the TRUS probe or prostate, artificial rotations and translations were generated from
the initial TGT to produce TInitial from which 3D/2D registration will be executed. For each volume in the biopsy
sequence and each simulated perturbation, TInitial is applied to the biopsy volume (see Figure 6) before extracting
the median slice to be registered to the reference volume.205

Similarly to [10], two different experiments were conducted. In the first one, rigid transforms are generated by
modifying one of the six degrees of freedom at a time. The range of allowed perturbations is systematically explored:
rotations (resp. translations) range from −15◦ to 15◦ (resp. −15;mm to 15 mm). The step is 1◦ (resp. 1 mm)
for rotations (resp. translations). In the second experiment, random rigid transforms are produced by changing the
6 position and orientation parameters at the same time. The explored ranges of perturbations were [−5◦, 5◦] and210

[−7.5 mm, 7.5 mm]. These ranges are chosen deliberately larger than the values encountered during examinations (as
if the method operated in real time on the 2D image stream) in order to show its limits. The obtained transform is
noted TReg.
To evaluate the registration method described in section IIA, two TRE values between the reference volume fiducials

and the matched biopsy volume fiducials are obtained. The first TRE value is computed before the registration process
when TInitial has been applied to the biopsy volume fiducials. The second TRE value is determined after registration
when TReg has been applied to the biopsy volume fiducials. The TRE formula is written has:

TRE(mm) =

√√√√∑Nf

i=1

∥∥∥f i
ref − T (f i

biopsy)
∥∥∥2

Nf
(3)
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where T stands for the homogeneous transform matrix TInitial or TReg and
(
f i

ref , f
i
biopsy

)
corresponds to the Nf

pairs of fiducials manually selected in the reference and biopsy volumes. The Figure 6 shows the different transforms215

involved in the computation of the TRE.
We also recorded for every fiducial f i and every transform T j , the residual error on the transformed fiducial

Df(mm) =
∥∥f i

ref − T j(f i
biopsy)

∥∥ (4)

As explained previously, TGT is computed using a direct least square minimization of the distance between corre-
sponding fiducials from two different volumes. TGT can be interpreted as the best transform that can be computed
from the handled experimental data and the residual error can be seen as the lowest bound of registration accuracy
achievable for such an experiment. Therefore, a useful information for the evaluation of TReg is to compare it to TGT .
This can be done by measuring the distance between the fiducials of the biopsy image transformed by TGT and by
TReg :

δreg(mm) =

√√√√∑Nf

i=1

∥∥∥TGT (f i
biopsy)− TReg(f i

biopsy)
∥∥∥2

Nf
(5)

Thanks to our 3D data, the evaluation is not restrained to bi-dimensional fiducials as it is often the case for
evaluation of 2D/3D registration (cf. reference [8]). This might have led to an under estimation of the out-of-plane
motion. In this paper, the evaluation is based on true 3D point pairs from two 3D volumes and results give a more
accurate view of the performance of the method. Let us remind that the 2D/3D registration result is to be applied to220

the whole reference volume for navigation purpose towards a target which is most often not included in the 2D image
plane; this is why such a 3D evaluation is more adequate.

4. Parameter settings

Except for the search radius and rejection rate for which the settings have been studied specifically (see section
IIIA 1), the other parameters were set according to results of [10]. The maximum number of 2D and 3D feature points225

is 900 and 40,000 respectively. The size of the neighborhoods is 5x5 pixels in 2D and 5x5x5 voxels in 3D. The weight
assigned to feature points is 4 when they are located inside the prostate and 1 otherwise. Regarding the stopping
criteria, the convergence threshold is set to 1e-3mm and the maximum number of iterations is 50.

C. Evaluation on a larger dataset

1. Patient data set230

In this experiment, again focused on static 2D/3D registration, a larger database was used; it was composed of 900
additional TRUS volumes for a total of 80 additional patients. These volumes were acquired during routine biopsy
series with two different commercial US-based guidance systems (Urostationr and Trinityr from Koelis SAS), by
urologists from the Grenoble University Hospital. No constraints or special protocols were imposed on physicians to
perform these procedures. These data have been declared to the CNIL (French data protection authority) under the235

reference MR3711140520.

2. Ground truth

Because of the large dataset, it was not feasible to define fiducials on each volume in order to get the ground truth
value of the searched transform as previously. Therefore, we have evaluated the registration quality differently. When
using the cited guidance systems, in order to map MRI targets to the US data, urologists have first to segment the240

prostate on the first acquired US volume (named panorama or reference volume). Moreover, during the intraoperative
phase, the guidance software provided by the platform, also estimates the 3D/3D rigid transform between the reference
volume and volumes acquired whole along the biopsy procedure using a widely evaluated image-based registration
[7, 14].
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This transform will be considered as the ground truth TGT for this evaluation. In a way rather similar to what
was described in section II B 2, the accuracy of the registration method is measured by computing the point-to-
point distance between the mesh of the reference volume transformed by TGT and the mesh transformed by another
transform: TInitial (before registration) or TReg (after registation). It is defined as:

TRE(mm) =

√√√√∑N
i=1

∥∥∥meshi
ref − T

(
T−1

GT

(
meshi

ref

))∥∥∥2

N
(6)

where T stands for TInitial and TReg, meshi
ref is the ith vertex of the reference mesh, N is the number of vertices of245

this mesh.
We also applied this mesh-based evaluation to a subset of 100 volumes taken in the dataset of the fiducial-based

evaluation (cf II B 1). This enabled the comparison between the fiducial-based evaluation and the mesh-based evalu-
ation.

3. Simulated transforms250

To simulate only realistic transformations we used the same protocol that has been used for the second experiment
of the previous section (see II B 3 and see Figure 5). The random rigid transforms composed to TGT include variations
of the 6 position and orientation parameters at the same time to produce TInitial. The range used to simulate rotations
was [−5◦, 5◦] and was [−7.5 mm, 7.5 mm] for the translations.

D. Evaluation on trajectory255

1. Data generation & Ground truth

As introduced in section I, all previous evaluations concerned 2D/3D static registration. Because the intended use
of the method is for navigational assistance during biopsy, additional evaluation along biopsy trajectories of the TRUS
probe was mandatory. Capturing live 2D images along real trajectories during clinical procedures and being able to
compute a ground truth raises both technical difficulties including the need for probe tracking, clinical additional260

burden and regulatory issues. This is why we designed a different approach based on a biopsy simulator developed
by our team [15] and thoroughly evaluated ([16, 17]). This simulator provides a virtual environment for educational
and research purposes. It includes patient data collected from real biopsy series when using the Urostation or Trinity
guidance system (Koelis, France). Again, preoperative MRI scans, intraoperative 3D TRUS volumes and meshes are
associated with each recorded patient among other information. Using a mock-up of the US probe attached to a265

haptic device (Phantom Omni, Sensable Devices Inc.), the trainee can train and execute virtual biopsy series. Thanks
to the haptic device, the position and orientation of the probe is known and a 2D live US image can be generated
from the recorded TRUS volume and displayed to to him/her in real-time.

Using the simulator, real biopsy trajectories can be executed and the associated 2D on-the-fly images can be
generated from the TRUSpano volume acquired at the beginning of the examination. Thus, the ground truth TGT is270

easily known by tracking the probe mock-up.

2. Simulated trajectories

For the purposes of this experiment, we executed two types of stereotyped trajectories. The first one is a classical
exploration of the anatomical environment with combined rotations of the probe. This type of trajectory is generally
encountered during exams when the urologist moves the probe to find the target area. The second is a pure rotation275

of the probe. This movement is usually performed when the urologist wants to align the needle to a localized target
position, without losing the line of sight he/she has on it [18].

For each trajectory, we tested two different registration strategies. One (noted sequential) consists in using the
result of the previous 2D/3D registration as input for the current one. In this case, two image processing frequencies
are used: 1 out of 2 and 1 out of 5 images. This corresponds approximately to physical acquisition frequencies ranging280

from 5 to 15 Hz. The other strategy (noted non-sequential) is to register all the images independently. In this case,
for each new image, the initial transformation is the same as the one that was used for the first image in the sequence.

The method used to evaluate the registration quality is mesh-based as presented in section IIC (cf. equation 6).
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III. RESULTS

A. Evaluation on reference [10] dataset285

The results obtained for the comparative experiments aiming at evaluating our additions to [10] are synthesized in
Table I. TRE is given before and after registration for the two methods. For complete comparison to [10], this table
also provides the percentage of registrations which resulting TRE is lower than 5 mm.

The results show that we have improved the performance of the method in terms of accuracy (average value and
standard deviation) compared to reference [10]. Indeed for the first experiment, Table I shows that the average error290

is 12% smaller while the standard deviation is divided by 3. Regarding the clinical threshold, more than 80% of
the results were already lower than 5 mm. It is now 11% better. Decreasing the variance is also crucial because
it shows the repeatability of the method. The results of the second experiment follow the same trend in a more
realistic evaluation, since the movement of the hand is never done on a single degree of freedom. Whilst starting farer
("TRE before" is larger), our method results in an improvement of performances : 17% less for the average error, the295

standard deviation is divided by 1.6 and 11% more registrations result in TRE values below the clinical threshold.
Regarding the current method described in this paper, we performed a statistical analysis of performances. Figure 7

illustrates the distribution of errors (TRE and Df) obtained for the experiments 1 and 2 on the dataset. Table II gives
the percentage of errors below the clinical threshold for the conducted experiments. The Shapiro-Wilk test allowed
to verify that the Df and TRE distributions were not normal. Therefore, we performed a Wilcoxon statistical test300

between pre and post registration Df and TRE values. This test shows a very significant difference between the TRE
values before and after registration. For experiment 1, conducted on 29,760 samples, the p-value is 2.34e−18. For
experiment 2, on 4,000 samples, the p-value is 3.62e−17. Regarding Df, Wilcoxon returns a zero value, highlighting a
very significant difference between before and after registration error distributions (on respectively 127,000 and 17,000
samples).305

For the experiments 1 and 2 the δreg distance is respectively equal to 3.09 mm (±0.82) and 2.59 mm (±0.46).
Since the typical voxel size of an ultrasound image is about 0.33 mm on each dimension after reconstruction, this
corresponds to a relatively small error (less than 8 voxels). For comparison, let us remind that the FRE corresponding
to TGT is 0.74 mm (±0.34).
Finally, in terms of computing time, the proposed algorithm is able to perform 2D/3D registrations at a frequency310

that varies between 5 and 15 Hz on a standard CPU (Intel Xeon W2145 with 8 cores @3.74 Ghz). These performances
vary according to the value of the parameters and these variations are mostly correlated to the size of the chosen
search radii. Indeed, with larger search radii, more points are considered potential matches and need to be evaluated.
The effect of parameter settings on the performances are discussed in the next section.

1. Sensitivity to parameter changes315

a. Search radius Table III shows the analysis of the registration accuracy when varying the search radius pa-
rameter within the KD tree tested by running experiment 2. The impact of this parameter on the method is clearly
visible: the larger the radius, the more it will be possible to find a large perturbation. However, this will have a
slightly negative impact on the accuracy of the method in case of small perturbations. The underlying reason is that
this search introduces more false positives at the beginning of the optimization as more points can be falsely coupled.320

b. Rejection rate Table IV shows the impact of the rejection rate (RR) tested by running experiment 2. One can
see that this parameter allows to obtain more precise results. Indeed, the results with a non-zero RR are better than
zero RR where all the pairs are kept. This is a direct consequence of eliminating the worst pairs that can be considered
false positives. Nevertheless, increasing the RR improves the quality of the registration to a certain extent. Beyond
this threshold, too many pairs are removed and the optimization fails to find a precise transformation, especially for325

larger perturbation. This setting also has a positive impact on computation time because fewer pairs are used in the
registration process.

From these two sensitivity analyses, we decided to use two different parameter configurations depending on the
computing time requirements. The first one was used for the static registration experiments (sections IIIA and
III B): the search radii was (5, 3, 2) mm and the rejection rate was 10%. The second one used for prostate tracking330

experiments on trajectories (section III C) was chosen to be faster: the search radius was (3, 3, 3) mm and the rejection
rate was 10%.
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B. Evaluation on a larger dataset

For each of the 900 volumes, 10 perturbations were randomly generated and used 3D/2D registration was performed
for these 1000 cases. The corresponding results are summarized in Table V. This experiment demonstrates that scaling335

up is consistent with the results of the section IIIA. The average accuracy is almost similar to what was obtained in
section IIIA (3.80mm now versus 3.60) as well as the percentage of registrations below the clinical threshold (86%
versus 87). It can also be seen that the standard deviation is lower than in the previous experiment (0.48 versus 1.59).
This can be explained by the better quality of the input images which were acquired with a more recent ultrasound
platform which has a better image quality.340

As for the smaller dataset, we performed a stastical analysis of performances. Figure 8 plots the distribution of TRE
errors obtained for this experiment. Again, the Shapiro-Wilk showed that the TRE distributions were not normal and
the Wilcoxon statistical test between pre and post registration TRE values gave a very significant difference (p-value
= 0) between before and after registration error distributions.

Finally, regarding the comparison of mesh-based and fiducial-based evaluation on the subset of a 100 volumes from345

the data-set of the fiducial-based evaluation, the average post-registration TRE found was 3.43 mm (±0.51) when
using fiducials and 3.88 mm (±0.53) when using the meshes.
As our mesh based TRE calculation is based on a single mesh for both images, the meaning of this mesh-based

TRE value is rather similar to the distance (δreg) obtained with the fiducials in the section IIIA. Indeed, the mesh
is transformed with the help of the ground truth transformation, to bring it from the panorama to the biopsy image.350

The residual error computed on the biopsy fiducials was equal to 2.98 mm (±0.89) while the mesh evaluation gives
3.88mm. Considering that the vertices of the meshes are much more numerous than fiducials and distributed in a
larger volume, these results look consistent.

Therefore, all these results prove that the mesh-based evaluation is consistent to the fiducial-based evaluation and
that the results obtained for the 900 volumes can be trusted.355

C. Evaluation on trajectory

Although, we tested more trajectories, we selected only one trajectory of each type to illustrate this experiment.
All conducted experiments worked very similarly to these two.

The results for the exploration trajectory are given in Figure 9. They demonstrate the advantage of using the
sequential approach over the non-sequential approach. Indeed, even if the non-sequential approach is able to register360

the images (the TRE is always better after registration than before), the efficiency of the approach is limited and
shows more limitations when the initial position is far from the solution. The sequential approach is more efficient as
the previous registration result is used to initialize the current registration. This figure also shows that in the case of
fast motions in different directions, corresponding to the peaks of the TRE before registration, the ability to perform
registrations at a higher frame rate makes the method more robust. This is shown by the two peaks on the orange365

curve that are not present on the green curve.
Regarding pure rotation trajectories, the results are presented in Figure 10. This experiment shows very clearly the

advantages of the sequential registration. When the method is applied in a non-sequential way, it is unable to find a
solution when the TRE increases very strongly (values higher than 10 mm). In the case of this stereotyped trajectory,
the frequency at which the registration is performed is less crucial because the movement is relatively smooth during370

the trajectory. We can nevertheless notice that the light bump at the beginning of the movement is better smoothed
in the case where one image out of two is processed (green curve).

By observing the results from these two scenarii, it seems that the TRE in the sequential approach is even smaller
that what was described in the previous sections. However, let us underline that no deformation exists between the
3D volume and the 2D image due to the use of the simulator. Getting the real TRE value will require extensive375

clinical experiments. This is a further step.

IV. DISCUSSION AND CONCLUSION

In this paper, we have described a method for efficiently registering a live stream of TRUS 2D images to a TRUS
3D reference image. The ultimate objective is to improve the quality and reliability of the prostate biopsy procedure.
Our method is based exclusively on the live 2D stream and a 3D image acquired at the beginning of the procedure; no380

external sensors or robotic arms are required. In addition, our method can operate in near real time on a conventional
ultrasound platform and does not require a dedicated GPU unit. These performances are reached because we use
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feature points, a subset of key landmarks that are automatically detected on the images, instead of processing all the
pixels of these images in a conventional image-to-image registration framework.

Although previous work regarding 3D/3D registration proved that the prostate moves and is deformed during the385

biopsy process, our guess was that these movements and deformations would keep small between two successive 2D
US live images processed at a high rate. This is why we implemented a rigid registration method. This allows to
keep computational cost compatible with navigation requirements (around 10 to 15 Hz). To make registration more
accurate, we also gave more importance to information inside the prostate. Results demonstrate that these choices
provide a good trade-off between accuracy and processing time requirements.390

We performed three different evaluations on a very large amount of data acquired under uncontrolled routine
conditions (more than a hundred patients and more than a thousand volumes in total). We also used two different
methodologies to assess our results. They both rely on 3D transformations estimated from 3D data from manual
and automatic methods for more reliability. To our knowledge, no other approach in this field has used such a
large amount of data from real clinical patients to validate their algorithm. From a technical point of view, most of395

the other methods proposed in the literature like [8, 9, 18] do not use motorized 3D probes but reconstruct these
volumes by combining the data from a localization device and the captured stream of 2D images. This acquisition
protocol does not allow them to estimate their ground truth from real 3D data, which in our opinion may introduce
an underestimation of out-of-plane displacements.

Compared to our previous work [10], we have introduced several changes such as the multi-resolution approach,400

a rejection ratio of matched feature pairs and a more robust stopping criterion computed using displacement error.
Combined with optimizations in the choice of data structures and in the implementation, these improvements have
allowed us to achieve better performance both in terms of computation time (initially 0.25 Hz now 5-15Hz) and
accuracy (15 % on average with a standard deviation divided by 1.5).

In all conducted experiments, TRE after registration is lower than before registration. The difference has been405

statistically tested when possible (i.e. for fiducial-based evaluation) and is very significant. Coming back to the
clinical requirements, let us remind that 5mm is considered as the minimum radius of clinically significant tumors.
Therefore, ideally, all biopsy targets should be located with a maximum error of 5 mm. Observing directly the error
on fiducials (Df) on a large sample of registration experiments and on many data coming from routine acquisitions
allows to be optimistic about the clinical applicability of the method: for experiment 1 (resp. 2), Df after registration410

is in average equal to 3.23 mm (resp. 3.41 mm) and is below 5mm for 89% (resp. 87%) of the cases. To avoid any
mislocation of prostate cores, a final check of the current position with respect to the target can be performed using
3D/3D registration before tissue sampling.

The complementary experiments we have conducted allow us to show that registrations can be carried out even
more efficiently on trajectories using a sequential approach. Similar trends were found in [8], on phantom data and on415

a small number of clinical images (16 registrations in total): they report an improvement of the registration accuracy
(from 1.63 to 1.81 mm in average). Nevertheless, their method require the use of an arm to initialize the registration
algorithm for each acquisition. As a final remark, let us stress the fact that our algorithm, when used in a tracking
context (which is our final goal), is not very sensitive to variations in the input parameters. The good performances
of our approach relies more on its ability to work at high frequencies as illustrated by our experience with trajectories.420

Our next objective will be to integrate this approach on an ultrasonic platform in order to achieve real-time 2D/3D
registrations on trajectories performed in clinical routine by an urologist.
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Captions

1. TRUS-guided biopsy procedure470

2. Workflow of the biopsy procedure

3. Main steps of a 2D/3D registration of the live 2D image to the 3D reference image. 3D features are extracted
once before series of 2D/3D registrations

4. Features iterative matching. In blue (resp. orange: the 3D (resp. 2D) feature points set from the reference US
volume (resp. 2D on-the-fly US image) for a given stage of the iterative registration475

5. Computing the ground truth: TGT is computed from visible fiducials in two US volumes and allows to evaluate
the accuracy of registering the median slice extracted in one volume to the other volume.

6. Transformations used by the method. TGT is the ground truth transformation from the biopsy volume and
the panorama, TInitial is the initial transformation applied on the biopsy volume and TReg is the output of the
registration algorithm.480

7. Distribution of Df (top) and TRE (bottom) errors for experiments 1 (left) and 2 (right).

8. Distribution of TRE errors for the experiments on the large dataset.

9. Results of the registration for the trajectory simulating an exploration around a given position.

10. Results of the registration for the trajectory simulating a pure rotation around the probe axis.

Figure 1. TRUS-guided biopsy procedure
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Experiment 1 TRE before TRE after TRE after < 5 mm Df before Df after Df after < 5 mm

Reference [10] 8.06 mm (±4.83) 3.91 mm (±3.22) 81% * * *
Proposed 8.06 mm (±4.83) 3.44 mm (±1.11) 92% 7.98 mm (±5.12) 3.23 mm (±1.88) 89%

Experiment 2

Reference [10] 7.48 mm (±2.25) 4.37 mm (±2.62) 76% * * *
Proposed 8.02 mm (±1.95) 3.60 mm (±1.59) 87% 7.94 mm (±3.21) 3.41 mm (±1.91) 87%

Table I. Summary of the results obtained for the two experiments (section II B) with registration initializations and datasets
similar to [10] - reminder of [10] performances. Df was not computed in [10] and is replaced by *

Experiment 1 Before After

Df 44% 89%
TRE 40% 92%

Experiment 2

Df 19% 87%
TRE 20% 87%

Table II. Percentage of errors below the clinical threshold (5mm) before and after registration.

Search radii per level TRE (std)

(4., 2., 1.) 4.17 mm (±1.97)
(3., 3., 3.) 3.54 mm (±1.32)
(5., 3., 2.) 3.48 mm (±1.04)

Table III. Impact of the search radius in mm (rejection rate: 0., maximum iteration number: 50)

Figure 2. Workflow of the biopsy procedure
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Extract the 2D features
Initialize T (last 3D/3D or previous 2D/3D)

Apply T to the 2D features

Select all the 3D features in the
search radius of each 2D features

For each 2D features having possible matches,
choose the 3D features maximizing d (eq. 1)

Reject worst pairs based on d

Weight remaining pairs (prostate / non-prostate)

Find best transform T (eq. 2)

End?
no

yes

Figure 3. Main steps of a 2D/3D registration of the live 2D image to the 3D reference image. 3D features are extracted once
before series of 2D/3D registrations

Rejection rate per level TRE (std)

(0.3, 0.3, 0.3) 3.70 mm (±1.36)
(0.3, 0.2, 0.1) 3.60 mm (±1.30)
(0., 0., 0.) 3.48 mm (±1.04)
(0.1, 0.1, 0.1) 3.44 mm (±1.11)

Table IV. Impact of the rejection rate (maximum iteration number: 50, search radii in mm: (5., 3., 2.))

Experiment TRE before (mm) TRE after (mm) TRE after < 5 mm

Proposed 8.56 (±4.83) 3.80 (±0.48) 89%

Table V. TRE errors for experiments on the large dataset.
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Figure 4. Features iterative matching. In blue (resp. orange: the 3D (resp. 2D) feature points set from the reference US
volume (resp. 2D on-the-fly US image) for a given stage of the iterative registration

Figure 5. Computing the ground truth: TGT is computed from visible fiducials in two US volumes and allows to evaluate the
accuracy of registering the median slice extracted in one volume to the other volume.
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Figure 6. Transformations used by the method. TGT is the ground truth transformation from the biopsy volume and the
panorama, TInitial is the initial transformation applied on the biopsy volume and TReg is the output of the registration
algorithm.

Figure 7. Distribution of Df (top) and TRE (bottom) errors for experiments 1 (left) and 2 (right).
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Figure 8. Distribution of TRE errors for the experiments on the large dataset.

Figure 9. Results of the registration for the trajectory simulating an exploration around a given position.
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Figure 10. Results of the registration for the trajectory simulating a pure rotation around the probe axis.
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