
HAL Id: hal-02997292
https://hal.science/hal-02997292

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ordinal Polymatrix Games with Incomplete Information
Nahla Ben Amor, Hélène Fargier, Régis Sabbadin, Meriem Trabelsi

To cite this version:
Nahla Ben Amor, Hélène Fargier, Régis Sabbadin, Meriem Trabelsi. Ordinal Polymatrix Games with
Incomplete Information. 17th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2020), Principles of Knowledge Representation and Reasoning, Incorporated (KR,
Inc.), Sep 2020, Rhodes, Greece. pp.99-108, �10.24963/kr.2020/11�. �hal-02997292�

https://hal.science/hal-02997292
https://hal.archives-ouvertes.fr


Ordinal Polymatrix Games with Incomplete Information

Nahla Ben Amor1 , Hélène Fargier2 , Régis Sabbadin3 , Meriem Trabelsi1,2
1LARODEC, ISG-Tunis, Tunis University, Tunisia

2IRIT, Toulouse University, France
3INRAE-MIAT, Toulouse University, France

nahla.benamor@gmx.fr, helene.fargier@irit.fr∗, regis.sabbadin@inrae.fr, merieme.trabelsi@gmail.com

Abstract

Possibilistic games with incomplete information (Π-games)
constitute a suitable framework for the representation of or-
dinal games under incomplete knowledge. However, repre-
senting a Π-game in standard normal form requires an ex-
tensive expression of the utility functions and the possibil-
ity distribution, namely, on the product spaces of actions and
types. In the present work, we propose a less costly view
of Π-games, namely min-based polymatrix Π-games, which
allows to concisely specify Π-games with local interactions.
This framework allows, for instance, the compact representa-
tion of coordination games under uncertainty where the satis-
faction of an agent is high if and only if her strategy is coher-
ent with all of her neighbors, the game being possibly only
incompletely known to the agents. Then, an important result
of this paper is to show that a min-based polymatrix Π-game
can be transformed, in polynomial time, into a (complete in-
formation) min-based polymatrix game with identical pure
Nash equilibria. Finally, we show that the latter family of
games can be solved through a MILP formulation. Experi-
ments on variants of the GAMUT problems confirm the fea-
sibility of this approach.

1 Introduction
Game theory (Morgenstern and Von Neumann 1944; Nash
1950) essentially aims at representing, explaining, and op-
timizing situations in which several agents, the “players”,
have to choose between several decisions, the “actions”, –
the final utility of each player depending on the actions of
the other players. In non-cooperative games under complete
information, the players cannot coordinate their actions but
each of them knows everything about the game: the players,
their available actions and all their utilities.

This assumption of complete knowledge cannot always
be satisfied. In the real world, players are not so well in-
formed and have only limited knowledge about the game.
This is why incomplete information games, and more partic-
ularly Bayesian games (Harsanyi 1967) have been proposed
to model problems where the utility degrees are additive in
essence and the knowledge of the players is quantified in a
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probabilistic way. If a rich, quantifiable, information about
the real world is not attainable, pure ordinal frameworks
should rather be considered. This is why the original frame-
work of ordinal games (Xu 2000; Cruz and Simaan 2000;
Ouenniche, Boukouras, and Rajabi 2016) has been recently
extended:

• In possibilistic Boolean games (De Clercq et al. 2018), the
knowledge of each player is expressed in the framework
of possibilistic logic and the players do not receive any
private information before playing. Therefore, the authors
consider the problem from the external point of view of
an observer who proceeds to a fusion of these pieces of
knowledge and computes the possibility and the necessity
of a given profile of actions being a Nash equilibrium in
the usual sense;

• The framework described in (Ben Amor et al. 2019a)
stays at the semantic level. Nevertheless, it allows both
the expression of common knowledge and the possibil-
ity for the players to get some information – captured by
the notion of “type”, in the same way as in Harsanyi’s in-
complete information games. These “possibilistic games
with incomplete information” (called Π-games) provide a
purely ordinal notion of best response and pure equilib-
rium in the sense of Nash. It has been shown that any
Π-game can be transformed into a standard normal form
game with equivalent pure Nash equilibria (PNE) – this
transformation being interesting from a descriptive point
of view only, since exponentially costly in the size of the
input. Notice that the input itself (the Π-game) is not
precisely compact: it requires an extensive expression of
the utility functions and of the possibility distribution –
namely, on the product spaces of actions and types.

In the present work, we propose a less costly view of Π-
games. We define the framework of min-based polymatrix
Π-games, which allows to concisely specify Π-games with
local interactions. This framework allows, for instance, the
compact representation of coordination games under pos-
sibilistic uncertainty. A motivating example, along with
the basic notions on which the paper relies, is presented
in Section 2. Section 3 then defines the general represen-
tation framework that we propose: min-based polymatrix
Π-games, and applies it to the running example. Section 4
shows that any 2-player Π-game can be transformed into an



equivalent min-based polymatrix game. This result is the
qualitative counterpart of Howson and Rosenthals’s theorem
(1974) linking Bayesian games to polymatrix games. Fur-
thermore, as soon as a simple condition on the coherence
of the players’ knowledge about the world is satisfied, any
polymatrix Π-game can be transformed in polytime into an
equivalent min-based and complete information polymatrix
game. Finally, Section 5 proposes a MILP formulation of
the problem of deciding whether a polymatrix Π-game ad-
mits a PNE and presents experimental results.

2 Background
2.1 A Motivating Example
Let us consider a game where several agents have to choose
between multiple competing offers, e.g., choosing an in-
ternet provider. This game is a kind of “coordination
game” (Simon and Wojtczak 2017). An agent is satisfied at a
high degree if and only if all her neighbors choose the same
service as she does - for instance, because the satisfaction of
the agent is relative to the security of her communications
with her neighbors and the security level of the network is
not guarantee when different services are used.

This kind of game is typically based on a graph and the
satisfaction of an agent is the minimum, over all her neigh-
bors, of the satisfaction she gets in local games with single
neighbor. Of course, agents may have more gradual pref-
erences, e.g., because they prefer some providers to other
ones.

The preferences of the agents may also depend on an ex-
ternal event, e.g., an incentive that some of them receive -
typically, an offer from some provider. Of course, the belief
of a player about what offers her neighbors receive depends
on what the player receives herself: normally, if I receive an
offer, so do my neighbors; and if I do not receive anything,
they do not either. But I may receive something while my
neighbors do not.

In order to model such an example, we rely on two groups
of works: polymatrix games on the one hand and games un-
der incomplete information on the other hand.

2.2 Standard Normal Form Games and
Polymatrix Games

A strategic game or standard normal form game is defined
as follows:

Definition 1 (Standard normal form game (SNF)). A stan-
dard normal form game is a triple G = 〈N,A, µ〉 where:

• N = {1, . . . , n} is a finite set of players;
• A = ×i∈NAi, where Ai is a finite set of actions avail-

able to player i. ∀a ∈ A, ai is the action of i in the
joint action a, a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈
A−i = ×j 6=iAj is its restriction to all the players but
i and “.” denotes the concatenation, e.g., ∀(a′i, a−i),
a′i.a−i = (a1, . . . , ai−1, a

′
i, ai+1, . . . , an);

• µ = {(µi)i∈N} is a set of real-valued utility functions:
µi(a) captures the utility i gets from the joint action a. In
a SNF game, each µi is given explicitly, by a table of |A|
entries.

A joint (or “pure”) strategy a ∈ A is a pure Nash equilib-
rium (PNE) if no player can improve her utility by unilater-
ally changing her strategy. Formally:
Definition 2 (Pure Nash equilibrium (PNE)). A strategy pro-
file a ∈ A is a PNE iff: ∀i ∈ N, ∀a′i ∈ Ai:

µi(ai.a−i) ≥ µi(a′i.a−i) (1)

Example 1. Consider a coordination game between n play-
ers, each choosing between two actions, x and y. A player
is satisfied iff all her neighbors play the same action, and is
satisfied to a lower level otherwise. Of course, players may
have an prior preference for x or for y (e.g. a preference for
some provider).
Let Neigh(i) denotes the set of neighbors of player i.

In this game N = {1, . . . , n} and for any i: Ai = {x, y}
and µi is defined as follows:
• µi(x.a−i) = αi,x if ∀j ∈ Neigh(i), ai = aj = x;
• µi(y.a−i) = αi,y if ∀j ∈ Neigh(i), ai = aj = y;
• µi(a) = β if ∃j ∈ Neigh(i), s.t., ai 6= aj , i.e., when, for

some j, players i and j do not coordinate.
Typically, in a coordination game, β is lower than the α’s.

For players who prefer to coordinate on x rather than to
coordinate on y, we have αi,x > αi,y and the contrary for
players who prefer a coordination on y than on x. Table 1
presents such a game for the two players case.

Player 2
x y

Player 1 x α1,x, α2,x β, β
y β, β α1,y , α2,y

Table 1: A coordination game with two players.

When only two players are involved inN , (x.x) and (y.y)
are the two PNE of the game (because β is low).

If we consider the three-player game where a central
player, say player 2, is related to the two other ones, while
player 1 and 3 are related to the central player only (see the
graph of Figure 1), (x.x.x) and (y.y.y) are still the only two
PNE when β is low. Suppose now that player 1 really dis-
likes action x, i.e., β > α1,x. Then (x.x.x) is not a PNE
anymore (player 1 would prefer to move to y).

1 2 3

Figure 1: A graph of neighborhood between three players.

Without placing constraints on the players’ utilities, de-
scribing a game in SNF involving n players, each facing d
possible actions, requires listing n utility functions of size
dn. Therefore, as mentioned by (Gottlob, Greco, and Scar-
cello 2005), “for large population games (modeling for in-
stance, agents interactions over the internet), the SNF is
practically unfeasible, while the more succinct graphical
normal form works very well, and is actually a more nat-
ural representation”. In many cases indeed, the utility of a
player does not depend on the actions of all the other ones –



the influence of what the other players decide is often local,
as in our running example.

Polymatrix games (Yanovskaya 1968) have been pro-
posed in the late 60’s as a convenient way to represent games
with multiple players and pairwise interactions. Polymatrix
games are defined as:

Definition 3 (Polymatrix game). A polymatrix game is a
four-tuple G = 〈N,E,A, µ〉 where:

• N = {1, . . . , n} is a finite set of players;
• E is a set of pairs of players of N ;
• A = ×i∈NAi, where Ai is the set of actions available to

player i;
• µ = {(µi,j , µj,i), {i, j} ∈ E} is a set of pairs of utility

functions on Ai × Aj: µi,j(ai.aj) is the local utility for
player i of the joint action (ai.aj) ∈ Ai ×Aj .
(N,E) is a graph where nodes N represent the players

and edges E capture the interactions between players. An
absence of edge corresponds to a pair of players which util-
ities are independent of the actions of the other. Each edge
(i, j) ∈ E corresponds to a local 2-player game Gi,j =
〈{i, j}, Ai × Aj , {µi,j , µj,i}〉. Gi,j is a game in SNF, i.e.,
represented by two matrices – hence the name “polymatrix
game”.

Classical polymatrix games are sum-based: the global
utility function of a player is the sum of the utilities gath-
ered by this player in the local games she is involved in.

Definition 4 (Sum-based polymatrix game). A sum-based
polymatrix game is a game G = 〈N,E,A, µ〉 where the
utility of any player i for the joint action a is defined as:

∀i ∈ N, µi(a) =
∑

j,{i,j}∈E

µi,j(ai.aj) (2)

In other terms, if G is sum-based, its equivalent standard
normal form is the game 〈N,A, µ〉 where utilities are com-
puted using Equation (2).

Polymatrix games can be much more frugal in memory
space than SNF games – a polymatrix game indeed involves
at most 2 ·n · (n−1) utility functions of size d2 (d being the
maximum number of actions available to one player) – to be
compared to the n utility functions of size dn required by
its standard normal form equivalent. For instance, in coor-
dination games, the satisfaction of an agent may depend on
the number of neighbors choosing the same provider as this
agent (Simon and Wojtczak 2017). Unfortunately, since a
min operation cannot be captured by a sum (min is idempo-
tent, sum is not), sum-based polymatrix games cannot cap-
ture the problem of Example 1, as soon as more than two
players are involved. Thus, min-based polymatrix games
have been recently proposed by (Azzabi et al. 2020).

Definition 5 (Min-based polymatrix game). A min based
polymatrix game is a polymatrix game G = 〈N,E,A, µ〉
where the utility of player i for the joint action a is defined
as:

∀i ∈ N, µi(a) = min
j,{i,j}∈E

µi,j(ai.aj) (3)

The µi,j functions take their value in an ordinal scale ∆
Any ordered scale equipped with an order reversing operator
n may be used. For the sake of readability (and without any
loss of generality), in the following we take ∆ = [0, 1] with
n(x) = 1− x.

2.3 Games with Incomplete Information
A game with incomplete information can be first understood
as a set S of states of nature, each state corresponding to
a classical game. The utility of a player depends not only
on the actions played but also on the real state of nature.
Just before playing, each player iwill receive some informa-
tion τi(s) (a “signal”). After having observed τi(s), player
i knows more about the real game, but several games may
still be plausible; the player then conditions her knowledge
according to the information received and decides which ac-
tion to play. Notice that the players may have different in-
formation functions τi, and thus will not share the same pos-
terior knowledge on S. Let Θi be the possible pieces of in-
formation which can be received by player i: Θi is called
the set of “types” of i. The question is then, for each player,
to determine an action for each of her types. Thus, in games
with incomplete information, as defined by Harsanyi (1967),
the set of states of the world is omitted and only the types
are considered. Θi is the local state space for player i and
Θ = Θ1 × · · · ×Θn is the effective global state space 1.

The question is then to determine which action to play for
each type received: a pure strategy for player i is a function
σi that maps each possible information θi ∈ Θi to an action
ai ∈ Ai and a joint strategy is a tuple σ = (σ1, . . . , σn) of
such functions. Formally:

Definition 6. A strategy is a vector σ = (σ1, . . . , σn) of
functions σi : Θi → Ai.

σi(θi) specifies the action that player i will execute when
receiving the private information θi. In the following, Σi
denotes the set of all functions from Θi to Ai and Σ =
Σ1 × · · · × Σn the set of all joint strategies. Sticking to our
notation, any σ ∈ Σ is the concatenation of σi (the strategy
of i) and σ−i (the strategies of all the players except i).

Example 2. Let us consider the coordination game with in-
centives (for the sake of brevity we assume that incentives
concern only action x): each player has two types ri (“i re-
ceives an incentive for x”) and ri (“i does not receive an
incentive for x”), so Θ = {r1, r1} × · · · × {rn, rn}.

A possible strategy is σi(ri) = x; σi(ri) = y if (αi,y >
αi,x) and σi(ri) = x otherwise: a player plays x if receiving
an incentive and her preferred action otherwise.

1The idea of Harsanyi when defining types was that a player’s
local state can encapsulate all the information to which the player
has access: it contains the status of the external world that the
player has observed but can also contain her introspective men-
tal states. See (Brandenburger 1993; J. Aumann and Branden-
burger 1995; Battigalli and Bonanno 1999; Brandenburger 2008;
Eddie and Marciano 2015) for the links between belief states and
types, and more generally for further developments about epistemic
game theory. This kind of interpretation also complies with the se-
mantics of epistemic logic (Fagin et al. 1999).



In Bayesian games, the common knowledge over Θ is
given by a probability distribution and each strategy is evalu-
ated by its expected utility. If quantitative information about
the real world is not attainable, the framework of possi-
bilistic games should rather be considered: in a possibilistic
game with incomplete information (Π-game) (Ben Amor et
al. 2019a), the common knowledge is given by a possibility
distribution π over the possible combinations of types, i.e.,
is a mapping from Θ to the ordered scale ∆.

Possibilistic games with incomplete information (Π-
games) are defined as:
Definition 7 ((Standard Normal Form ) Π-game). A Π-game
is a tuple 〈N,A,Θ, π, µ〉 where:

• N = {1, . . . , n} is a finite set of players;
• A = ×i∈NAi where Ai is the set of actions of player i;
• Θ = ×i∈NΘi, where Θi is the set of types of player i;
• π: Θ 7→ ∆ is a joint possibility distribution over Θ;
• µ = {(µi)i∈N} where µi : A × Θ 7→ ∆ is the utility

function of player i.

Recall that according to possibility theory (Zadeh 1978;
Dubois and Prade 1988), a possibility distribution is a func-
tion from a universe of discourse (here, Θ) to an ordered
scale (typically, the unit interval). π is assumed to be nor-
malized: there is at least one totally possible state (s such
that π(s) = 1). From π, one can compute the possibil-
ity Π(E) and the necessity N(E) of any event E ⊆ S:
Π(E) = sups∈E π(s) evaluates to what extent E is con-
sistent with the knowledge represented by π while N(E) =
1 − Π(E) = 1 − sups/∈E π(s) corresponds to the extent to
which ¬E is inconsistent and thus evaluates at which level
E is certainly implied by the knowledge. As for condition-
ing, Π-games use Hisdal’s definition (1978) in order to stick
to the ordinal framework:

π(θj |θi) =

{
1 if π(θi.θj) = π(θi)
π(θi.θj) otherwise.

Example 3. In our example ∀i ∈ N , Ai = {x, y} and
Θi = {ri, ri}. The satisfaction of player i is equal to β
if she does not coordinate with her neighbors. If she co-
ordinates, her satisfaction when playing x is increased to
δ > max{αi,x, αi,y} if she receives an incentive and re-
mains αi,x if not. Hence the following utility functions:

• if ∃j ∈ Neigh(i), s.t., ai 6= aj then:
– µi(a, θ) = β, ∀θ;

• if ∀j ∈ Neigh(i), ai = aj then:
– µi(x.a−i, ri.θ−i) = αi,x, ∀θ−i;
– µi(x.a−i, ri.θ−i) = δ, ∀θ−i;
– µi(y.a−i, θ) = αi,y , ∀θ.

Table 2 details the utility functions for the two players case.

There are two “normal” states in Θ = {r1, r1} ×
· · · × {rn, rn}: everybody receives an incentive for x (state
r = (r1, r2, . . . , rn)) and nobody receives anything (state
r = (r1, r2, . . . rn)). Cases were only some players have an
incentive are of course possible. This knowledge is captured
by a joint possibility distribution on Θ: π(r) = π(r) = 1

Player 2
r2 r2

P
l
a
y
e
r

1

r1

x y x y

x δ,δ β,β x δ,α2,x β,β
y β,β α1,y ,α2,y y β,β α1,y ,α2,y

π(r1.r2) = 1 π(r1.r2) = γ

r1

x y x y

x α1,x,δ β,β x α1,x,α2,x β,β
y β,β α1,y ,α2,y y β,β α1,y ,α2,y

π(r1.r2) = γ π(r1.r2) = 1

Table 2: A coordination Π-game between two players (and two
types per player).

and π(θ) = γ (with 0 ≤ γ ≤ 1 for other combinations of
types θ ∈ Θ\{r, r}.

If player i receives an incentive, she conditions her knowl-
edge and we get: π(r−i|ri) = 1 and π(θ−i|ri) = γ if θ−i 6=
r−i, i.e., she rather believes that her neighbors also receive
an incentive. Symmetrically, when she does not receive an
incentive, we get: π(r−i|ri) = 1 and π(θ−i|ri) = γ if
θ−i 6= r−i.

Considering qualitative (possibilistic) problems of deci-
sion under uncertainty, qualitative decision theory (Dubois
and Prade 1995; Dubois, Prade, and Sabbadin 2001) pro-
poses to evaluate the satisfaction of a player on the totally
ordered scale ∆ (the higher µi(a, θ) (resp. π(θ)), the more
satisfied player i (resp. the more plausible θ)). µi(a, θ) eval-
uates to what extent i is satisfied by a if the real situation is
θ. But, when receiving θi and deciding what to play, player
i does not know the full θ. Her posterior knowledge about
Θ−i is the distribution π(.|θi). In other words, the utility of
player i of type θi for the joint action a depends on (i) the
posterior knowledge of i on the types of the other players
and (ii) on the strategy σ−i of the other players. Then, the
principles of qualitative decision theory yield the following
definitions for the utility of joint strategies:
Definition 8 (Utility of an action / of a strategy). The utility
of the action ai for player i of type θi in the context of σ−i
is:

Upesi (ai, σ−i, θi) =

min
θ−i∈Θ−i

max
(

1−π(θ−i|θi), µi(ai.σ−i(θ−i), θi.θ−i)
)

(4)

The utility of strategy σ to player i of type θi is:

Upesi (σ, θi) = Upesi (σi(θi), σ−i, θi) (5)

Note that Upesi (σi(θi), σ−i, θi) is independent of the
choices of player i when her type is different from θi.

When considering her possible strategies σi : Θi 7→ Ai,
player i aims at maximizing the response given the strategy
σ−i of the other players. As in any kind of game, a pure
Nash equilibrium (PNE) is a joint strategy from which no



player i will deviate unilaterally knowing σ−i. In the possi-
bilistic context, this leads to the following definition:

Definition 9 (Pure Nash equilibrium in a Π-game). σ is a
pure Nash equilibrium (PNE) iff: ∀i ∈ N, ∀θi ∈ Θi,∀a′i ∈
Ai,

Upesi (σi(θi), σ−i, θi) ≥ Upesi (a′i, σ−i, θi)

Example 4. In the small three-player game (based on the
graph of Figure 1), the equilibria are the following:

• The pure joint strategy σx = x (every player
unconditionally plays x) is a PNE when β ≤
min{δ, α1,x, α2,x, α3,x}.

• The pure joint strategy σy = y (every player
unconditionally plays y) is a PNE when β ≤
min{{αi,x, αi,y}i=1,2,3}.

• The pure joint strategy σ such that any player i plays
σi(ri) = x and σi(r̄i) = y is also a PNE, when γ is
low (1 − γ ≥ max{β, αi,x, αi,y}i=1,2,3) and β is low
(β ≤ min{δ, α1,y, α2,y, α3,y}).
Notice that when γ and β increase (knowledge tends to

total ignorance), there will be a point where the above third
strategy will not be an equilibrium anymore.

3 Polymatrix Π-games
The normal form representation of an incomplete informa-
tion game with n players, t types and d actions per player is
very costly (n utility functions of size tn.dn and a distribu-
tion over Θ, i.e., of size tn) even when the problem involves
local interactions only. In our example, the type vector is
fixed, the satisfaction of one player is the minimum of what
this player gets in a series of two-player games as the one
presented in Table 1. In order to efficiently represent such
games, we now define polymatrix Π-games as min-based
polymatrix games where each local game is a Π-game. Such
a game can be much more compact than the equivalent SNF
Π-game.

Definition 10 (Polymatrix Π-game). A polymatrix Π-game
is a tuple G = 〈N,E,A,Θ, µ, π〉 where:

• N = {1, . . . , n} is the set of players;
• E is a set of pairs of players of N ;
• A = ×i∈NAi, where Ai is the set of actions of player i;
• Θ = ×i∈NΘi, where Θi is the set of types of player i;
• µ = {(µi,j , µj,i), {i, j} ∈ E}, a set of pairs of utility

functions on Ai×Aj ×Θi×Θj taking their values in ∆;
• π = {πi,j : θi × θj 7→ ∆, {i, j} ∈ E} a set of pairwise

possibility distributions on the Θi ×Θj product sets.

In other terms, a polymatrix Π-game is a polymatrix game
where each local game is a Π-game 〈{i, j}, Ai × Aj ,Θi ×
Θj , πi,j , {µi,j , µj,i}〉.

The condition of “common knowledge” is less natural in
the present context of a series of local games than in SNF Π-
games – here, we assume that the knowledge of each local
Π-game is common to the two players involved in, but not
to the full community of players. Each player is “myopic”
and her knowledge is restricted to what she knows about her

neighborhood. The knowledge of player i about the config-
urations of types of the global incomplete information game
is:

πi(θ) = min
j,{i,j}∈E

πi,j(θi.θj)

We thus replace the condition of “common knowledge”
by a condition of “coherent knowledge”: there should be a
π on Θ from which the πi,j’s derive:

Assumption 1. ∃π : Θ 7→ ∆ such that

∀i, j ∈ N, πi,j(θi.θj) = max
θ−{i,j}

π(θi.θj .θ−{i,j})

π is unknown, but one knows that πi,j(θi.θj) =
maxθ−{i,j} π(θi.θj .θ−{i,j}).

Let us now study the global utility functions of the play-
ers. Each θ defines a min-based polymatrix game. The
global utility of player i for the joint action a when the con-
figuration of types is θ is thus:

Definition 11 (Global utility in a polymatrix Π-game).

µi(a, θ) = min
j,{i,j}∈E

µi,j(ai.aj , θi.θj)

If one considers all the types and the associated distri-
bution, the polymatrix Π-game (compactly) represents the
SNF Π-game 〈N,A,Θ, π, µ〉. Then from the definition of
the utility of a joint action/strategy for a player in a Π-game
(Definition 8) we have:

Definition 12 (Utility of a strategy in a polymatrix Π-game).

Upesi (σ, θi) = min
θ−i∈Θ−i

max(1−π(θ−i|θi), µi(σ(θi.θ−i), θ))

Definitions 10, 11 and 12 constitute, to the best of our
knowledge, the first attempt to introduce a way to cope with
uncertainty in ordinal polymatrix games and more generally
in ordinal graphical games.

Notice that in Definition 11, we compute, for each player
and each type configuration, the utility of a player in the
configuration and then compute the pessimistic utility of the
player. We could have proceeded in the other way: compute
the pessimistic utility in each local game and then aggregate
the pessimistic utilities. The theory is fortunately sound: the
two approaches (that we can call “ex-ante” and “ex-post” by
reference to (Harsanyi 1967; Myerson 2004)) coincide. We
can indeed prove that2

Proposition 1.

Upesi (σ, θi) =

min
j,{i,j}∈E

min
θj∈Θj

max
(

1− πi,j(θj |θi), µi,j(σ(θi.θj), θi.θj)
)

As far as spatial complexity is concerned, it is easy to
show that a polymatrix Π-game can be exponentially more
compact than its standard normal form equivalent. Consider
our running example:

2The proofs are omitted to the sake of brevity; a version with
the proof can be found at (Ben Amor et al. 2020)



Example 5. The SNF Π-game of Example 3 is captured by
the polymatrix Π-game G = 〈N,E,A,Θ, µ, π〉 (same play-
ers, same actions and same types) where E is the neigh-
borhood relation of the original game and where the utility
function µi,j of player i (w.r.t. j, (i, j) ∈ E) is:
• µi,j(x.y, θi.θj) = µi,j(y.x, θi.θj) = β;
• µi,j(x.x, ri.θj) = δ since δ ≥ αi,x, αi,y;
• µi,j(x.x, ri.θj) = αi,x;
• µi,j(y.y, θi.θj) = αi,y .

This polymatrix game contains 2 · |E| possibility distribu-
tions of size 2 ·2, and 2 · |E| utility functions of size 2 ·2 ·2 ·2,
while the original SNF game involves one possibility distri-
bution of size 2n and n utility functions of size 2n ·2n, what-
ever the connectivity of the neighborhood graph.

As far as time complexity is concerned, deciding whether
a polymatrix Π-game admits a pure Nash equilibrium is an
NP-hard problem because (i) any 2-player Π-game is a (de-
generated) polymatrix game and (ii) deciding whether a Π-
game admits a pure Nash equilibrium is an NP-complete
problem (Ben Amor et al. 2019a). We show in the following
Section that the question is “only” NP-complete. In other
terms, the possible gain in compactness does not result in an
increase in complexity.

4 From Polymatrix Π-games to Min-based
Polymatrix Games

In the following, we show that any polymatrix Π-game can
be transformed into a min-based polymatrix game, the Nash
equilibria of which are in bijection with the ones of the orig-
inal game. To this extent, we first show that any 2-player
Π-game can be transformed into an equivalent min-based
polymatrix game - this result can be viewed as a qualita-
tive counterpart of Howson and Rosenthals’s theorem link-
ing Bayesian games to polymatrix games (1974).

4.1 Transforming a 2-player Π-game into a
Min-based Polymatrix Game

The idea is to consider as many players as the number of
pairs (i, θi), i.e., the number of players is equal to |Θ1| +
|Θ2|. Each player (i, θi) has Ai as a set of available actions.
For each joint strategy a ∈ A, the utility of player (i, θi)
in the game ((i, θi), (j, θj)) ∈ E in the polymatrix game is
equal to the utility of the joint action a ∈ A, to player i of
type θi where j is of type θj .
Definition 13 (Polymatrix repr. of a 2-player Π-game).
Given a 2-player Π-game G = 〈N = {1, 2}, A,Θ, π, µ〉,
G̃ = 〈Ñ , Ẽ, Ã, µ̃〉 is the min-based polymatrix game where:

• Ñ = {(i, θi),∀i ∈ {1, 2},∀θi ∈ Θi};
• Ẽ = {((i, θi), (j, θj)), i 6= j};
• Ã(i,θi) = Ai, ∀(i, θi) ∈ Ñ ;

• µ̃(i,θi),(j,θj)(a) = max
(

1− π(θj |θi), µi(a, θi.θj)
)

,

∀a ∈ Ã,∀i, j ∈ N , s.t., i 6= j,∀θi ∈ Θi,∀θj ∈ Θj .
Intuitively, each combination of types (θ1.θ2) in G is

mapped to an edge ((1, θ1), (2, θ2)) ∈ E.

Definition 14 (Transformation of a pure strategy). Let G =
〈N,A,Θ, π, µ〉 be a 2-player Π-game, G̃ = 〈Ñ , Ẽ, Ã, µ̃〉
its polymatrix representation and σ be a pure strategy in G.

We define aσ as the joint action in Ã such that:

aσ(i,θi) = σi(θi)

Based on Definition 5:
µ̃(i,θi)(a

σ) = min
θj∈Θj

µ̃(i,θi),(j,θj)(a
σ
(i,θi)

.aσ(j,θj)).

We can then show that the utilities of σ in G and aσ in G̃
are equal:

Proposition 2. Let G be a 2-player Π-game, G̃ its polyma-
trix game representation. It holds that, for any pure strategy
σ of G: ∀i = 1, 2, j 6= i, (θi.θj) ∈ Θ:
Upesi (σ, θi) = µ̃(i,θi)(a

σ) =
minθj∈Θj µ̃(i,θi),(j,θj)(a

σ
(i,θi)

.aσ(j,θj)).

Finally, we can show that the PNE are the same in both
games:

Proposition 3. σ is a PNE in the 2-player Π-game G =
〈N,A,Θ, π, µ〉 iff aσ is a PNE in its polymatrix representa-
tion G̃ = 〈Ñ , Ẽ, Ã, µ̃〉.

Example 6. The equivalent polymatrix game G̃ of the two
players coordination Π-game depicted in Table 2 contains
four players: Ñ = {(1, r1), (1, r1), (2, r2), (2, r2)}, all
having the same set of actions {x, y}.
G̃ contains 4 local games (4 edges) and the utilities of

each player in the equivalent game are detailed in Figure 2.

1,r1 2,r2

2,r21,r1

G(1,r1),(2,r2)

G(1,r1),(2,r2) G(1,r1),(2,r2)

G(1,r1),(2,r2)

• G(1,r1),(2,r2)

2, r2

1, r1

x y
x δ, δ β, β
y β, β α1,y , α2,y

• G(1,r1),(2,r2)

2, r2

1, r1

x y
x max(1− γ, δ), max(1− γ, α2,x) max(1− γ, β), max(1− γ, β)
y max(1− γ, β), max(1− γ, β) max(1− γ, α1,y), max(1− γ, α2,y)

• G(1,r1),(2,r2)

2, r2

1, r1

x y
x max(1− γ, α1,x), max(1− γ, δ) max(1− γ, β), max(1− γ, β)
y max(1− γ, β), max(1− γ, β) max(1− γ, α1,y), max(1− γ, α2,y)

• G(1,r1),(2,r2)

2, r2

1, r1

x y
x α1,x, α2,x β, β
y β, β α1,y , α2,y

Figure 2: The polymatrix game equivalent of the 2-player Π-game
depicted in Table 2.



The joint action aσ = (x.x.x.x) of G̃ corresponds to σx

in G. Using Equation (3), the utilities of aσ in G̃ are:
µ(1,r1)(a

σ) = min
(
δ,max(1− γ, δ)

)
= δ,

µ(1,r1)(a
σ) = min

(
max(1− γ, α1,x), α1,x

)
= α1,x,

µ(2,r2)(a
σ) = min

(
δ,max(1− γ, δ)

)
= δ,

µ(2,r2)(a
σ) = min

(
max(1− γ, α2,x), α2,x

)
= α2,x.

It can be checked that aσ is a PNE in the equivalent min-
based polymatrix game.

Notice that the nodes of the polymatrix game G̃ represent
the types in Θ1∪Θ2, that the edges of G̃ correspond to types
combinations θ in the Π-game G and that the graph of G̃ is
bipartite. More generally, the transformation of G to G̃ is
polynomial:
Proposition 4. The transformation of a 2-player Π-game G
into an equivalent polymatrix representation G̃ is in O(d2 ·
t2) where t (resp. d) is the maximal number of types (resp.
actions) per player.

Therefore, the transformation of G into G̃ is polynomial in
time and space, contrarily to the transformation into a SNF
game proposed in (Ben Amor et al. 2019a).

4.2 From polymatrix Π-games to Min-based
Polymatrix games with Complete Information

When it comes to general polymatrix Π-games, we can show
that polymatrix Π-games are not more expensive than clas-
sical (complete information) min-based polymatrix games.
Indeed, recall that for any polymatrix Π-game, we have
shown (Proposition 1) that:

Upesi (σ, θi) =

min
j,{i,j}∈E
θj∈Θj

max
(

1− πi,j(θj |θi), µi,j(σi(θi).σj(θj), θi.θj)
)

We now reuse, for every pairs of players, the transfor-
mation of the previous Section, transforming a 2-player Π-
game into an equivalent min-based polymatrix game:
Definition 15. Given a polymatrix Π-game G =
〈N,E,A,Θ, µ, π〉, G̃ = 〈Ñ , Ẽ, Ã, Ũ〉 is the min-based
polymatrix game where:

• Ñ = {(i, θi),∀i ∈ N, ∀θi ∈ Θi};
• Ẽ = {((i, θi), (j, θj)), i 6= j, θi ∈ Θi, θj ∈ Θj};
• Ã(i,θi) = Ai, ∀(i, θi) ∈ Ñ ;

• Ũ(i,θi),(j,θj)(ai.aj) =

max
(

1− πi,j(θj |θi), µi(ai.aj , θi.θj)
)

,

∀(i, j) ∈ E, ∀ai.aj ∈ Ai ×Aj , ∀θi.θj ∈ Θi ×Θj .
Using this definition and Proposition 1, it follows that:

Proposition 5. Let G be a n-player polymatrix Π-game, G̃
be the corresponding min-based polymatrix representation,
σ be a pure strategy forG and aσ its transformation accord-
ing to Definition 14. It holds that ∀i ∈ N, ∀θi ∈ Θi,

Upesi (σ, θi) = min
j,{i,j}∈E
θj∈Θj

{Ũ(i,θi),(j,θj)(a
σ
(i,θi)

.aσ(j,θj))}

So, the utility of σ in G is equal to the utility of aσ in G̃.
Since the set of pure strategies in G is bijectively related

to the action set Ã of G̃, the following proposition holds:

Proposition 6. σ is a PNE in the n-player polymatrix Π-
game G = 〈N,E,A,Θ, µ, π〉 iff aσ is a PNE in the min-
based polymatrix game G̃ = 〈Ñ , Ẽ, Ã, Ũ〉.

4.3 Complexity
We can show that the size of the transformed min-based
polymatrix game G̃ is in O(|E| · d2 · t2) where t (resp. d) is
the maximal number of types (resp. possible actions) per
player: each local Π-game (we have |E| local Π-games)
is transformed using the transformation described in Sec-
tion 4.1, the complexity of which is in O(d2 · t2). Hence,
the global computation cost is O(|E| · d2 · t2) in time and
space. Now, recall that deciding the existence of a PNE
in a 2-player Π-game is a NP-hard problem (Ben Amor
et al. 2019a). Because any Π-game can be transformed in
polytime and space into an equivalent min-based polymatrix
game, we first derive that 3:

Proposition 7. Determining whether there exists a PNE in
a min-based polymatrix game is NP-complete. The result
holds even when the graph is bipartite.

A second consequence is that deciding whether a polyma-
trix Π-game admits a PNE is NP-complete but not harder.
The problem is NP-hard because deciding whether a 2-
player Π-game admits a PNE is NP-complete and belongs
to NP since the previous transformation allows to solve it
through a polytime reduction to a polymatrix min-based
game.

Proposition 8. Determining whether there exists a PNE in
a polymatrix Π-game is NP-complete.

Hence, the possible gain in compactness offered by poly-
matrix Π-games w.r.t. SNF Π-games come with no increase
in theoretical complexity.

5 Computing a Pure Nash Equilibrium in
Min-based Polymatrix Games

5.1 A MILP Formulation
The basic computational problem is the search for an equi-
librium in min-based polymatrix games. Taking advantage
of the efficiency of modern solvers, we propose a Mixed In-
teger Linear Programming (MILP) formulation of the prob-
lem.

The main decision variables are boolean variables encod-
ing the strategy searched for: each σi,ai is a boolean vari-
able indicating whether action ai is prescribed for player i,
∀i ∈ N, ∀ai ∈ Ai, σi,ai ∈ {0, 1}.

Utilities are encoded by continuous variables (we assume
∆ = [0, 1]). Ui,ai,j is a continuous variable indicating the
utility of player i playing action ai given the strategy of
player j. ∀{i, j} ∈ E,∀ai ∈ Ai, Ui,ai,j ∈ [0, 1]. Ui,ai is a

3The membership to NP is easy to show, by a simple loop over
players, actions and neighbors.



continuous variable indicating the utility of player i playing
action ai: ∀i ∈ N, ∀ai ∈ Ai, Ui,ai ∈ [0, 1].

We will also use boolean variables Vi,ai,j ∈ {0, 1}
(∀i, j ∈ N , s.t., {i, j} ∈ E,∀ai ∈ Ai) to express the con-
straints that Ui,ai = min

j,{i,j}∈E
Ui,ai,j (and not only lower

than).
The constraints are the following:

∀i ∈ N,
∑
ai∈Ai

σi,ai = 1 (6)

∀i ∈ N, ∀ai, a′i ∈ Ai, s.t., ai 6= a′i,

Ui,ai − Ui,a′i ≥ σi,ai − 1 (7)

∀i, j ∈ N , s.t., {i, j} ∈ E,∀ai ∈ Ai,

Ui,ai,j =
∑
aj∈Aj

µ(i,j)(ai.aj)× σj,aj (8)

Ui,ai ≤ Ui,ai,j (9)

Ui,ai + Vi,ai,j ≥ Ui,ai,j (10)

∀i ∈ N, ∀ai ∈ Ai,
∑

j,{i,j}∈E

(1− Vi,ai,j) = 1 (11)

Constraints (6) ensure that the strategy σ searched for
specifies exactly one action ai for each player i. Constraints
(7) require that the strategy built (the σi,ai which are set to
1) is a PNE: when σi,ai = 1, it writes Ui,ai ≥ Ui,a′i , and
thus requires that player i has no incentive to deviate from
ai. When action ai is not chosen for player i, (σi,ai = 0) the
constraint is always satisfied (Ui,ai −Ui,a′i is always greater
than −1). Constraints (9), (10) and (11) implement Equa-
tion (3). Constraints (9) ensure that the utility of player i
playing ai is lower than the minimum of utilities in local
games played with players j ∈ N , i.e., the µ(i,j)(ai.aj).
Constraints (10) and (11) ensure that Ui,ai is equal to the
above minimum. Whenever Vi,ai,j = 1, Equation (10)
holds, and Equation (11) ensures that (10) is an equality for
a single j (minimizing Ui,ai,j).

Let us denote d the maximal number of actions of any
player in the polymatrix game and b the maximal number of
local games in which a player can be involved. The MILP
formulation contains:
• O(n · d · b) continuous variables Ui,ai,j , O(n ·d) contin-

uous variables Ui,ai , O(n · d) boolean variables σi,ai and
O(n · d · b) boolean variables Vi,ai,j ;

• O(n) constraints (6), each involving O(d) variables;
• O(n · d2) constraints (7), each involving 3 variables;
• O(n · b ·d) constraints (8), each involving O(d) variables;
• O(n · b · d) constraints (9), each involving 2 variables;
• O(n · b · d) constraints (10), each involving 3 variables;
• O(n · d) constraints (11), each involving O(b) variables.
The MILP can then be easily encoded in a matrix of size
O(n2 · b · d2 · (b+ d)).

|Θi| 2 3 4 5 6 7 8 9 10

BoS 0.12 0.02 0.15 0.03 0.22 0.05 0.22 0.08 0.26 DE
0.02 0.02 0.03 0.02 0.04 0.06 0.06 0.10 0.09 PE

CG 0.12 0.02 0.15 0.04 0.52 0.75 1.33 1.52 2.08 DE
0.02 0.02 0.03 0.03 0.35 0.77 1.12 1.50 1.89 PE

MEG 0.12 0.02 0.15 0.02 0.22 0.04 0.22 0.07 0.25 DE
0.02 0.02 0.03 0.02 0.04 0.05 0.05 0.09 0.08 PE

Table 3: Average execution time (s) of direct encoding (DE) and
polymatrix encoding (PE), |Ai| = 2.

|Ai| 2 3 4 5 6 7 8 9 10

|Θi| = 4
0.07 0.08 0.23 0.19 0.19 0.19 0.24 0.26 0.36 DE
0.07 0.07 0.18 0.15 0.18 0.20 0.23 0.23 0.33 PE

|Θi| = 7
0.14 0.16 0.18 0.28 0.33 0.39 0.39 0.53 0.73 DE
0.14 0.14 0.16 0.26 0.28 0.39 0.40 0.51 0.78 PE

|Θi| = 10
0.14 0.28 0.31 0.48 0.51 0.67 0.72 1.11 3.28 DE
0.13 0.26 0.31 0.44 0.51 0.74 0.70 1.16 3.32 PE

Table 4: Average execution time (s) of direct encoding (DE) and
polymatrix encoding (PE) for MEG.

5.2 Experiments
The goal of the first part of the experimental study is to com-
pare the efficiency of the polymatrix encoding (PE) of 2-
player Π-games to the one of the direct encoding (DE) (pro-
posed by (Ben Amor et al. 2019a)), and beyond, to prove that
the resolution of polymatrix Π-games is not out of reach.

To conduct our experimental study, we have used the gen-
erator of Π-games proposed in (Ben Amor et al. 2019a).
This generator, based on GAMUT (Nudelman et al. 2004),
is available at (Ben Amor et al. 2019b) and is essentially
based on the approach of (Ceppi, Gatti, and Basilico 2009)
for the generation of Bayesian games. The Π-game gener-
ator first takes as input the class of the game, the number
of degrees in ∆, if necessary the number of players n, the
number of actions |Ai| and types |Θi| of player i. Then, this
generator uses GAMUT to generate |Θ| normal form games
of the class given in input. Finally, a normalized distribution
π : Θ 7→ ∆ is generated.

In our experiments, we study the results of the class of
coordination games available on GAMUT: Battle Of The
Sexes (BoS), Collaboration Game (CG) and Minimum Ef-
fort Game (MEG) (Vaughan 2004).

We start by studying 2-player Π-games. We varied, for
each player, the number of types from 2 to 10. Then, ac-
cording to the game’s parameters, we varied just for MEG
games the number of actions of each player (since in the
BoS games both players have just 2 actions and CG games
the number of actions of each player is equal to the num-
ber of players in the game). Then, we fixed the number of
degrees ∆ to 5, i.e., ∆ = {0, 0.25, 0.5, 0.75, 1}.

Furthermore, for each combination of the parameters, we
generated 100 different instances and we measured the aver-
age time necessary to get a PNE by solving the MILP pro-
posed in (Ben Amor et al. 2019a) (we denote this approach
DE, for direct encoding) and by transforming the Π-game
into an equivalent min-based polymatrix game and solving
the above MILP of the equivalent polymatrix game proposed
in Definition 13 (we denote this approach PE, for polyma-
trix encoding). All experiments were conducted on an Intel
Xeon E5540 processor and 64GB RAM workstation. We
used CPLEX (CPLEX 2009) as a MILP solver.
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trix Π-game, |Ai| = 2.
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Figure 4: Average execution time (s) to find one PNE in a polyma-
trix Π-game, |Θi| = 2.

Table 3 presents the average of execution times (in sec-
onds) needed by DE and PE to find one PNE, for 3 games
classes. In the experiment reported in Table 3, we fixed the
number of actions per player to 2, i.e., |Ai| = 2 and we
varied the number of types |Θi| from 2 to 10.

Table 4 presents the average of execution times (in sec-
onds), to find one PNE in a MEG (we tested just for MEG
since the numbers of players and of actions per player in the
BoS (resp. CG) game is equal to 2). We varied the number
of types |Θi| from 2 to 10 and we varied the number of ac-
tions per player |Ai| from 2 to 10. We present the results for
3 different types’ numbers (4,7 and 10).

The results show that whether we vary the number of ac-
tions or the number of types, the execution time needed to
find a PNE in a 2-player Π-game using direct encoding is
very close to the execution time needed to find a PNE using
polymatrix encoding.

The second part of experiments was dedicated to polyma-
trix Π-games. We generated coordination games with dif-
ferent numbers of players. We varied the number of players
from 5 to 80. Then, we generated random interactions be-
tween players (ensuring that the interaction graph was con-
nected). Then, for each edge, i.e., interaction, we generated
a Π-game between 2 players using the Π-game generator
proposed in (Ben Amor et al. 2019b). We varied the number
of types from 2 to 9 and the number of actions (for MEG)
from 2 to 10. Then we computed the average execution time
needed to find a PNE by transforming the original game
into its equivalent min-based polymatrix game (using Def-
inition 15) and solving the MILP of the latter. Notice that,
the equivalent min-based polymatrix game contains n · t2
players where t is the maximal number of types per player.

Figure 3 presents the average execution time needed to get
one PNE in 3 different game classes. We fixed the number
of actions per player to 2.

Figures 4 (resp. 5) presents the average execution time
needed to find one PNE in a MEG fixing the number of types
per player to 2 (resp. the number of player to 25).
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Figure 5: Average execution time (s) to find one PNE in a polyma-
trix Π-game, n = 25.

Globally, MILP results confirm the feasibility of the qual-
itative approach of min-based polymatrix. Furthermore, the
results also show that the execution time needed to solve
a polymatrix Π-game increases “reasonably” (less than 20
seconds for any configuration) when increasing the number
of actions or types of players.

6 Conclusion
The main contributions of this paper are threefold. First, we
have defined a new framework for ordinal games, namely
polymatrix Π-games, where local games are Π-games. Such
games can be exponentially more compact than the equiv-
alent SNF Π-games. Second, we have shown that any 2-
player Π-game can be transformed into an equivalent min-
based polymatrix game, proving a qualitative counterpart of
Howson and Rosenthal’s theorem linking Bayesian games to
polymatrix games (Howson, Joseph, and Rosenthal 1974).
Then we have shown that any polymatrix Π-game can it-
self be transformed in polytime into an equivalent min-based
polymatrix game. As a consequence, the potential gain in
succinctness comes with no increase in time complexity.

We have also studied the problem of deciding whether a
min-based polymatrix game admits a pure Nash equilibrium
(the problem is NP-hard) and we have proposed a MILP for-
mulation of this NP-hard problem. The experimental results
confirm the theoretical ones: solving a 2-player Π-game
through the transformation is not more expensive than a di-
rect solution. This underlines the importance of the basic
problem, solving min-based polymatrix games.

From the point of view of knowledge representation, a
straightforward extension of our work is to study, theoret-
ically and algorithmically, the search for mixed equilibria
in the sense of (Ben Amor, Fargier, and Sabbadin 2017;
Hosni and Marchioni 2019). Other developments include
the extension of our results to other kinds of succinct games,
e.g., hypergraphical games.

Finally, in the present paper, we have suggested solving
the problem through a MILP formulation, taking advantage
of the available state of the art solvers. This allowed us to
prove the feasibility of our approach, but a detailed algo-
rithmic study of the direct solution of min-based polymatrix
games with incomplete information is still an objective of
further research. A natural extension of this paper is the de-
velopment of dedicated algorithms inspired, for example, by
the NashProp algorithm (Ortiz and Kearns 2003), adapted to
the possibilistic framework.



7 Proofs
Proof of Proposition 1. Note that

Upesi (σ, θi)) = min
θ−i

max
(

1− π(θ−i|θi), µi(σ(θ), θ)
)
.

Now, from Definition 11, we have (slightly simplifying no-
tations for readability):

µi(σ(θ), θ) = min
j,{i,j}∈E

µij(σ, θi · θj).

So, we have, for all j such that {i, j} ∈ E:

Upesi (σ, θi)) ≤ min
θ−i

max
(

1− π(θ−i|θi), µij(σ, θi · θj)
)
,

≤ min
θj

max
(

min
θ−ij

(1− π(θ−i|θi)),

µij(σ, θi · θj)
)
,

≤ min
θj

max
(

1−max
θ−ij

π(θ−i|θi)),

µij(σ, θi · θj)
)
,

≤ min
θj

max
(

1− πij(θj |θi)), µij(σ, θi · θj)
)
.

Thus,

Upesi (σ, θi)) ≤ min
j,{i,j}∈E

min
θj

max
(

1− πij(θj |θi)),

µij(σ, θi · θj)
)
.

Conversely, let j∗ be such that µi(σ(θ), θ) =
µij∗(σ, θi, θj∗). We have,

Upesi (σ, θi)) = min
θ−i

max
(

1− π(θ−i|θi), µij∗(σ, θi · θj∗)
)
,

= min
θj∗

max
(

min
θ−ij∗

(1− π(θ−i|θi)),

µij∗(σ, θi · θj∗)
)
,

= min
θj∗

max
(

1− max
θ−ij∗

π(θ−i|θi)),

µij∗(σ, θi · θj∗)
)
,

= min
θj∗

max
(

1− πij∗(θj∗ |θi)), µij∗(σ, θi · θj∗)
)
.

Thus,

Upesi (σ, θi)) ≥ min
j,{i,j}∈E

min
θj

max
(

1− πij(θj |θi)),

µij(σ, θi · θj)
)
.

Proof of Proposition 2. Let us consider player 1 (the same
proof holds for player 2, by symmetry). By Definition 8, we
get that:

Upes1 (σ, θ1) = min
θ2∈Θ2

max (1− π(θ2|θ1), µ1(σ(θ), θ))

Now, in G̃, we have, by definition of σ = aσ and of the
utility of a joint strategy in a min-based polymatrix game,
and the fact that player (i, θi)’s utility is independent of the
actions of players (i, θ′i) for θ′i 6= θi:

µ̃(1,θ1)(a
σ) = min

θ2∈Θ2

µ̃(1,θ1),(2,θ2)(σ1(θ1), σ2(θ2)),

and, from the definition of µ̃(1,θ1),(2,θ2) in Definition 13:

µ̃(1,θ1)(a
σ) = min

θ2∈Θ2

max
(

1− π(θ2|θ1), µ1(σ(θ), θ)
)

= Upes1 (σ, θ1).

Proof of Proposition 3. We have proved in Proposition 2
that the utility of any pure strategy σ in G is equal to the
utility of aσ in G̃. In order to prove the equivalence of
PNE in both games, it is enough to prove that the relation
σ → aσ forms a bijection between Σ = Σ1 × Σ2 and Ã.
To do so, simply note that (i) the cardinals of Ã and Σ are
equal (to

∏
i |Ai||Θi|), and (ii) the transformation is injec-

tive, i.e., if σi(θi) differs from σ′i(θi) for any (i, θi), then the
pure strategies aσ and aσ

′
will differ in their components

aσ(i,θi) 6= aσ
′

(i,θi)
. As a result, the transformation is bijective,

and since utilities of strategies are preserved, Nash equilibria
are identical.

Proof of Proposition 4. Note that the space and computa-
tion times of the transformation are dominated by the com-
putation of the tables µ̃(i,θi),(j,θj)(a). There are 2·|Θ1|·|Θ2|
such tables, each of size |A1| · |A2|. The computation of
µ̃(i,θi),(j,θj)(a) for a given tuple (θi, θj , ai, aj) is given in
Definition 13:

µ̃(i,θi),(j,θj)(a) = max
(

1− π(θj |θi), µi(a, θi.θj)
)
.

This computation takes constant time, so the overall time
(and space) complexity is O(d2.t2).

Proof of Proposition 5. The proof follows immediately
from Proposition 1 and Definition 15.

Proof of Proposition 6. The proof is similar to that of
Proposition 3 and is based on the bijection between the ac-
tions set in G̃ and the pure strategies set in G.

The proofs of the two last propositions are immediate and
sketched in the main text.
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