
HAL Id: hal-02997243
https://hal.science/hal-02997243v1

Submitted on 31 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards software reuse through an enterprise
architecture-based software capability profile

Abdelhadi Belfadel, Emna Amdouni, Jannik Laval, Chantal Cherifi, Néjib
Moalla

To cite this version:
Abdelhadi Belfadel, Emna Amdouni, Jannik Laval, Chantal Cherifi, Néjib Moalla. Towards software
reuse through an enterprise architecture-based software capability profile. Enterprise Information
Systems, 2022, 16 (1), pp.29-70. �10.1080/17517575.2020.1843076�. �hal-02997243�

https://hal.science/hal-02997243v1
https://hal.archives-ouvertes.fr


Towards Software Reuse Through an Enterprise Architecture-based

Software Capability Profile

Abdelhadi Belfadela, Emna Amdounia, Jannik Lavala, Chantal Bonner Cherifia and
Nejib Moallaa

a University Lumiere Lyon 2, DISP Laboratory, Lyon, France

ARTICLE HISTORY

Compiled May 31, 2023

ABSTRACT
Most of today’s software development projects depend on the usage of existing solu-
tions to save time and development cost. We target in this research work the design
of a software capability profile that provides a broader view of an organization’s
internal and external software, along with an exploitation model in line with re-
quirements engineering and enterprise architecture to fill the gap between the goals
of the stakeholders and what can be delivered as a practical solution. For this pur-
pose, we define a Framework that offers a qualification that helps to gather the
initial requirements that guided the development of existing software. This quali-
fication is based on a proposed Enterprise Architecture Capability Profile and its
associated ontology covering business, operational and technical aspects for service-
oriented software. Furthermore, an exploitation methodology is proposed and based
on the alignment of requirements engineering with software architecting actions that
evolve together, to investigate the highest compatibility of the desired functionali-
ties. Our contribution aims to improve the reuse of existing services, by upgrading
these technical components to the level of end-user’s requirements for accelerating
future business application development. An implementation and a case study are
proposed to demonstrate the effectiveness of this approach.

KEYWORDS
Software Reuse; Software Capability Profile; Enterprise Architecture;
Requirements Specification; Service-Oriented Architecture; Ontology

1. Introduction

In today’s world, business organizations need an information system to track all their
business activities. These activities related to business processes can be assisted by
software tools and enterprise applications whose objective is the automation of the ex-
changes in the business environment. Business processes are a set of activities that de-
fine how specific business tasks are performed, and need to be adapted as a response to
evolution in internal and external environments that become more and more complex.
In this scenario, variations in stakeholders’ needs or a new collaboration development

CONTACT A. B. Author. Email: Abdelhadi.Belfadel@univ-lyon2.fr

E. A. Author. Email: Emna.Amdouni@univ-lyon2.fr

J. L. Author. Email: Jannik.Laval@univ-lyon2.fr

C. C. Author. Email: Chantal.BonnerCherifi@univ-lyon2.fr

N. M. Author. Email: Nejib.Moalla@univ-lyon2.fr



are examples of change inductors [1; 2].
The necessity for companies to modernize or design a new process by reusing features

from existing software and integrate their applications within and across organiza-
tional boundaries can be of great value. By taking advantage of previous development
and considering internal solutions of companies enriched with external ones, this con-
tributes to facilitate the development of complex systems with controlled costs while
maintaining delivery schedules.

SOA is one such approach that has received much attention as an architecture for
integrating platform, protocol, and legacy systems [3]. As an architectural approach, it
decomposes business applications into individual processes and functions as services.
These latter are considered as an abstract business concept, which represents the func-
tionalities of business [4]. Each of such discrete components of software functionality
can be recomposed to build alternative applications. It can be exposed also to other
functions and systems as services that enable different applications to reuse common
parts [3].

In this perspective of reusability to lower the development cost and quickly provide
values to enterprises, the center Blackduck for open source research and innovation
releases in 2017 an open source 360-degree survey 1. This study was sent to practition-
ers, consumers and contributors of open source solutions. Over 800 people responded
to the survey, spanning industries from financial services through manufacturing and
retail to technology companies. The results show that approximately 60% of respon-
dents increased usage of open source software, following strong usage growth in 2016.
A lack of vendor lock-in and the ability to build internal applications by customizing,
or simply reusing functionalities offered by software were considered as three of the
key reasons respondents choose to use open source. However, companies are facing
problems to implement new (ICT) solutions, finding challenges both from IT vendors’
expensive integrated digital solutions and from a myriad of disparate highly focused
technological open source solutions for specific functions.

Many practitioners and research work as [5], [6], [7] and [8] have studied the reuse
potential of freely available softwares. Still, no standardized process has been proposed,
as practitioners still use ad-hoc methods for identifying the most suitable artifacts to
reuse [9]. Indeed, the complexity of the external software ecosystem leads to difficulties
in searching, evaluating and retrieving technical components to reuse. Factors such as
lack of documentation, uncertainty on the quality of the technical components, and the
difficulty in searching and retrieving these components are the most important factors
preventing reuse [10]. Moreover, companies’ eagerness for a quick result based on a
reuse approach is a big challenge, especially if the targeted system must be integrated
within a company’s software ecosystem with a controlled cost.

We aim in this context to design a software capability container that provides a
broader view of an organization’s internal and external software. This to respond to
stakeholder requirements and efficiently reuse the qualified solutions, by investigating
the highest functional and non-functional compatibility of the desired functionalities
and related constraints. Therefore, we aim in this research work to achieve three main
goals: (i) Define a Software Capability Profile that describes software components ca-
pabilities from several perspectives, including organizational, functional, technical and
technological viewpoints along with its associated quality and constraints; (ii) Enable
the reuse of solutions by considering a process which includes requirements engineer-
ing capabilities for formalizing stakeholder requirements and constraints; (iii) Define

1https://www.blackducksoftware.com/open-source-360deg-survey

2



an exploitation model of the software capability profiles in line with a requirement
engineering and enterprise architecture (EA), to fill the gap between the goals of the
stakeholders and what can be delivered as a practical solution.

However, to attend the indicated objectives we faced several problems. The first
problem is how to identify the architecture artifacts and initial requirements used to
guide the development of existing solutions? The second problem is how to align re-
quirements and architecture artifacts in an engineering cycle for the consolidation and
refinement of requirements, to facilitate the discovery and reuse of existing solutions?
The third problem is how to formalize, organize and capitalize artifacts produced dur-
ing the evaluation and the exploitation phases to guide an organization maximizing
the reuse? Therefore, the main research problem that this research addresses is how
to manage the complexity of the exploitation of an organization’s internal or external
software capability profiles, based on an alignment of a requirement engineering and
architecting process to select the best candidate components to act as building blocks
in a new system.

To respond to the research problem, this paper is organized as follows: Section
2 focuses on the related work. We focus afterward on the principal building blocks
of the proposed solution in section 3 and present the proposed EACP Framework
with its related meta-model and exploitation plan. Section 4 presents the derived
ontology from the proposed meta-model. Section 5 presents a concrete use case and an
implementation of the Framework. Section 6 discusses our work and finally a conclusion
is drawn in Section 7.

2. Related Work

2.1. Enterprise information systems engineering and enterprise
architecture

In the highly dynamic industrial and economic environments, enterprises’ information
systems became an important assets for organizations to obtain integrated support for
managerial decision making [11]. However, those information systems require constant
reorganization to meet changing market requirements and technological evolution [12].

Organizations are complex systems and are strongly influenced by the environment
in which they operate. The design of an enterprise information system that underpins
the operations of an enterprise is guided by the development of strategy, management
of programs and enterprise architecture (EA) [13]. The latter supports practitioners to
handle enterprise information system engineering and changes [14], and align business
strategies with IT to catch unexploited opportunities that has placed enterprises in
competitive disadvantage in emerging market due to inadequate alignment [15].

EA is sometimes in confusion with traditional architectural approaches such as in-
formation system architecture or software architecture. While traditional architectural
approaches tend to focus on technological concerns, the EA approach is more business-
related than IT-related and therefore promotes an effective alignment of information
technology and business.

EA can be employed in several domains. For example in smart cities context, the
need to develop complex information systems has been amplified. Therefore, EA helps
to address the problems of complexity of information systems deployed in cities [16].
Authors in [17] stated that the growing complexity and lack of integration across sys-
tems results in organizational barriers to stakeholder collaboration in smart cities. In

3



this context, authors identified that EA is used to provide better support for ICT ar-
chitecture design, evaluation, diagnostics and monitoring for decision-making support
and optimization of smart services. In healthcare context, Authors in [18] proposed
a case study to build an enterprise information system for a health center [19]. The
steps applied in this study are based on the Architecture Development Method of
TOGAF Framework [20], that includes the vision, business, information systems, and
technology architecture. In the education context, authors in [18] proposed to design
a university information system architecture to achieve organizational objectives and
provide services to stakeholders and produce a blueprint of information system archi-
tecture. This study was designed by applying the TOGAF ADM method, and trans-
lated into enterprise architecture modeling. In the context of managing both business
architecture and IT architecture, authors in [21] proposed an approach to evaluate IT
investment of a business. The authors used ArchiMate framework to assess IT projects
value and to model the relationship between business processes, products, services and
software applications.

2.2. Capability Profile for Software Reuse

Describe, share or exchange capabilities of software through capability profile is an
interesting and valuable way to find and select adequate software components which
fit the requirement [22]. Based on the systematic analysis of relevant research works
published between 2012 and 2020 regarding component or service description with
consideration of our needs, Table 1 classifies the related service description works
according to the following criteria:

• C1) Technical and Functional description: description of the service interfaces,
the business functions and related inputs and outputs.

• C2) Semantic Annotations: additional information that identifies or defines a
concept in a semantic model. The annotations can be used during Web service
discovery and/or composition.

• C3) QOS description: description or measurement of the overall performance of
a service

• C4) Technology platform & environment description: Technology platforms and
their decomposition, determining the combinations of technology needed to
achieve a particular technology stack. Regarding the environments and locations,
it is a grouping of the targeted technology into computing environments (e.g.,
development, production) in a specific location (cloud, on-premise or hybrid).

• C5) Organizational impact: description of the stakeholders, business problems,
goals and objectives that guided the development of the application exposing
the services.

• C6) Implementation and standards specification: subset of the architecture re-
quirements specification that provides a quantitative view of the solution, stat-
ing measurable criteria that should be met during the implementation of the
architecture. The typical content of these architectural requirements contains
the implementation guidelines, implementation specifications, implementation
standards, and Interoperability requirements.

• C7) Constraints specification: specification of different constraints that guided
the development of the services as technical, business, implementation, standard,
interoperability or technology constraints.

• C8) Reasoning capabilities: to infer logical consequences from a set of asserted

4



facts or axioms.

Out of Table 1, the related work based on OWL-S and WSMO have a wide cov-
erage for describing services regarding the needed criteria to achieve a wider view
coverage for service capabilities. However, very few works have considered the con-
straints specification, technology platform and execution environment regarding the
software exposing the services, nor the organizational impact that the service has on
the organization where it is used.

To maximize and enable the reuse of the exposed features, we should go beyond
current research and service descriptions as depicted in Table 1. A representation of a
high-level view of IT systems and enterprises business processes consuming the services
is needed to provide a wider view qualification. Taking into consideration the business,
operational and technical views of software and their related services.

Table 1. Software and Service Description Works

Software/Service Capability
Description

C1 C2 C3 C4 C5 C6 C7 C8

Barros et al., 2012 [23], Ghazouani
et al., 2017 [24]

+ +

Matsuda et al., 2012 [22] + + +
Mezni et al., 2012 [25], Keppeler et
al., 2014 [26]

+ +

Zheng et al., 2012 [27], Zhang et al.,
2013 [28], Wei et al., 2014 [29], Ro-
man et al., 2015 [30], Chhun et al.,
2016 [31], Ghazouani et al., 2017 [32]

+ + + +

Pedrinaci et al., 2014 [33] + + +
Narock et al., 2014 [34] + + + + +
Khanfir et al., 2015 [35] + + + + +
De et al., 2017 [36],
Khodadadi et al., 2015 [37]

+

Benfenatki et al., 2017 [38] + + + +
Haniewicz et al., 2012 [39], Ver-
borgh et al., 2013 [40], Bravo et al.,
2014 [41], Kapitsaki et al., 2014 [42],
Alarcon et al., 2015 [43], Beydoun et
al., 2019 [44]

+ +

2.3. Requirements Engineering and Feature Selection

Some research projects addressed the issue of features selection based on consumers’
requirements. Xu et al. [45] propose a paradigm for software service engineering to
reuse services for developing new applications more rapidly with the aim of satisfying
individualized customer requirements. The proposed approach uses service context
as a mediating facility to match a service requirement with a service solution. The

5



requirements are defined by the targeted business functionality, service performance,
and value. However, no details about the service pattern description or repository, the
requirement template nor an implementation of the approach are proposed. Chen et
al. [46] propose a method that allows users of services to express their requirements.
The authors propose a meta-model for elements required in service consumption such
as process, goal or role. The proposed method helps to discover errors and conflicts
during requirement refinement. Zachos et al. [47] propose a service selection algorithm
based on textual requirement expressed by the service consumer. The service selection
is based on a discovery algorithm, that uses XQuery and WordNet and focuses on
the disambiguation and completeness of the requirements and retrieving discovered
services from UDDI registry. There are additional ontology-based research work such
as Verlaine et al. [48], where the authors took the CORE Ontology (for Core Ontology
for REquirements) [49] for requirement elicitation, and established a relationship with
the concepts of WSMO [50].

Architectures are profitably used both in requirements analysis and design for new
applications or business processes [51]. When EA work is implemented, it results sev-
eral benefits such as reuse of different type of artifacts that provide a representation of
the organization and guidelines for its development [52]. From an EA and requirements
engineering perspective, some latest research work such as [53] and [14] proposed to
identify some EA models by using different reverse engineering or mining techniques
to discover artefacts to reuse. This allows, for instance, to facilitate the identification
of stakeholders’ concerns or build other missing models.

2.4. Knowledge Management and Service Repositories for Service Reuse

Research on repositories for an effective and useful management and discovery of
services for service-oriented paradigm has recently earned significant impulse. In what
follows, we list the works of the literature published between 2012 and 2020 regarding
service discovery with consideration of our needs, Table 2 classifies the related service
registry and discovery works according to the following criteria:

• C1) Organizational level: exploitation based on the identification of the stake-
holders, business problems, goals and objectives of the targeted project.

• C2) Functional level: exploitation based on service interfaces, the business func-
tions and related inputs and outputs.

• C3) Technical level: exploitation based on the identification of relevant technical
requirement, interoperability requirement and technology constraints

• C4) Technology level: exploitation based on the identification of the platforms
and infrastructure decomposition, determining the combinations of technology
needed to achieve a particular technology stack.

• C5) Non-functional properties (QOS, Security...)
• C6) Exploitation based on a Requirements Engineering Process (it concerns all

the mentioned levels)

Out of Table 2, we notice that several research works considered the functional level
and QoS to manage service repository and matchmaking, but few of them considered
the other levels such as the organizational level, the technical or technology level. We
notice also that few research works considered the exploitation of the service registry
in a software engineering cycle using a requirement engineering process to manage
the user requirements for service discovery and matchmaking. Architecting actions

6



helps to manage the complexity of software by providing an abstraction of the system.
Requirement engineering process drives the architecture actions, whereas decisions
made in the architectural phase can affect the achievement of initial requirements and
thus change them. We should go through these two fundamental activities namely re-
quirement engineering and software architecting during the engineering process. These
activities should evolve together to offer support to the developer or architect for for-
malizing the requirements and architectural artifacts to enable software and service
discovery and reuse. There is, however, no structured solution (as depicted in Table
2) on how to perform the co-development of requirements and architecture actions to
select the suitable software or services to reuse for the development of new business
software.

Table 2. Service repository and discovery for reuse

Service Repository and Discovery C1 C2 C3 C4 C5 C6
Yu et al., 2012 [54], Haniewicz et al., 2012 [39],
Hog et al., 2013 [55], Yoo et al., 2013 [56], Kep-
peler et al., 2014 [26], Narock et al., 2014 [34],
Moradyan et al., 2015 [57],

+ +

Seba et al., 2012 [58], Paliwal et al., 2012 [59],
Xue et al., 2015 [60]

+

Rathore et al., 2013 [61] + (+)
Li et al., 2013 [62] + (+)
Becha et al., 2014 [63] + (+)
Rodriguez-Garcia et al., 2014 [64], Kapitsaki et
al., 2014 [42], Chiplunkar et al., 2014 [65]

+

Matsuda et al., 2014 [66] + (+)
Alarcon et al., 2015 [43] + +
Elshater et al., 2015 [67] + +
Boissel et al., 2015 [68] + (+)
Khanfir et al., 2015 [35] + + +
Chhun et al., 2016 [31] + + (+)
Purohit et al., 2016 [69] +
Zeshan et al., 2017 [70] + + +
Mu et al., 2018 [71] + + (+)
Elgazzar et al., 2014 [72], Smiari et al., 2020 [7] + + +

2.5. Scientific relevance and discussion

From the state-of-the-art on service-oriented software reuse, we analyzed that cur-
rently ad-hoc methods are still used to identify the most suitable service-oriented
software or artifacts to reuse, and a methodology or standardized process enabling
this is still missing. Moreover, the description, the capability or qualification of these
software are lacking wider view qualification taking into consideration the business,
operational and technical views of the software and their related services. In addition,
no solution has been provided to fit the requirement engineering along with the impact
of architecture on requirements when dealing with the identification of the most suit-

7



able components and avoid the misevaluation during the selection phase. Therefore,
enhance the capability description of the software and its related services in different
levels of service description, along with its exploitation based on requirement engineer-
ing and architecting actions is a big challenge. This analysis highlighted the need for
an Enterprise Architecture-based methodology for describing and classifying different
artifacts produced during previous engineering lifecycles to be available as building
blocks for reuse in future projects.

From the above analysis, we propose the following research directions: (i) Improve
software and related service capability profile to bring value-in-use of the qualified
feature for an organization that is interested into reuse; (ii) Shape a mechanism to
identify the most suitable software with specific features or functionalities helping
to overcome the use of ad-hoc methods; (iii) Improve the reuse of service-oriented
solutions by considering a process which includes a requirement engineering and ar-
chitecting actions for formalizing the requirements; (iv) Finally, ontologies enable to
address the major challenges regarding software capability description by providing a
standard vocabulary to prevent semantical problems and establish a common foun-
dation for sharing enterprise architectural knowledge and perform software discovery,
requirement consolidation, and reuse. Therefore, creating an ontology-based reposi-
tory enables us to organize existing architecture and solution artifacts by considering
internal solutions of companies enriched with external ones, along with artifacts that
result from new business process development to be available as building blocks and
facilitate the development of complex systems.

3. Enterprise Architecture Capability Profile Framework

Our goal is to maximize the reuse of an organization’s internal and external software by
improving the capability description, discovery, and sustainability of existing solutions,
and by investigating the highest functional and non-functional compatibility of the
desired functionalities and related constraints. For this purpose, we propose the EACP
Framework which is based on The Open Group Architecture Framework (TOGAF) and
its related Architecture Development Method (ADM). This proposed Framework offers
higher-level of functional representations and covers the qualification and discovery of
service-oriented software from the organizational, business, operational and technical
aspects.

3.1. Overview of the EACP Framework

The EACP Framework is presented in Figure 1 and is composed by three main pro-
cesses. The first process annotated with number (1) is called ”Qualification Process”.
This latter takes as inputs a software and its related service endpoints. A wider view
qualification is realized on the selected service-oriented software and creates a link
between a feature (from a business point of view) and corresponding physical compo-
nent (in this case the service endpoint). This process is composed of three activities
as illustrated in Figure 1. The first activity called ”Quality Check” where a quality
assessment on the software and its related service endpoints is realized. Then for each
service, an enterprise architecture-based qualification starts. Then, the activity called
”Common Software Unit Requirement” guides the first qualification attempt based on
an ISO 16100 Capability Profile specifically enhanced for service-oriented solutions.
This latter specifies the functional properties, common software unit requirement, the

8



Figure 1. EACP Framework

activity name of the qualified functionality, needed parameters, and any functional
dependency. This ISO-based profile assesses the qualification process before going to
the next EA model-based qualification task.

Indeed, in the next task “Enterprise Architecture Capability Profile”, a TOGAF-
based model qualification is realized, and the output of this last task is characterized
as EACP. The result of this qualification process offers a wider view of the software
and its related exposed services. For each service, it results the organizational impact,
details about the execution environment, non-functional properties, QOS attributes,
and corresponding constraints. The meta-model of this qualification process is detailed
in section 3.2.

The output of the qualification process is considered as an input to the EAKR
process annotated with number (2). Each resulted EACP profile is annotated using
semantic annotations related to a specific ontology which is detailed in section 4, and
offers a standard vocabulary for the produced capability profile and a formal language
to reason about software semantic annotation tags and infer new knowledge to answer
to future business needs. This output is stored in a repository annotated in Figure 1
called EAKR gathering all software capabilities resulted from the qualification process.
A continuous quality check is applied on already qualified solutions to bring up to date
quality indicators. The design steps of the EAKR and examples are presented further
in section 4.

To enable the discovery and reuse of already qualified solutions in the EAKR, the
process annotated with number (3) and called “Exploitation Process” carry out the
discovery and exploitation of service-oriented open source solutions and artifacts (such

9



as requirement templates produced during last exploitation instances) by considering
a process which includes a requirement engineering and architecting actions for for-
malizing and consolidating the requirements of an end-user as depicted in Figure 1.

During the exploitation process, user requirements are expressed following a pro-
posed template described later in section 3.4. The activity “Exploitation Plan” helps to
guide the end-user to fetch and match his business requirements described in different
levels following the ADM-based Method of TOGAF with qualified software compo-
nents in the EAKR to consolidate the requirement with architecting actions and better
evaluate the existing building blocks to reuse. Furthermore, after validation of each
exploitation level, this exploitation activity saves the requirements gathered as arti-
facts in the EAKR to leverage these artifacts in next exploitation activity and serve
as examples in the definition of the requirements.

The result of this exploitation plan is a set of Solution Building Blocks that cor-
respond to the services that meet expressed needs. These SBBs serve as inputs to
the next activity annotated by “Rankings of SBBs” in Figure 1. This activity ranks
theSBBs based on a specific exploitation model that end-user specifies and based on
a proposed template presented in section 3.4 where QOS parameter measured during
the qualification process are used in this task for the ranking.

The resulted ranking enables to select the first SBB that corresponds best to the
business function required by the end-user. However, for the business functions that
don’t correspond to any existing SBBs due to the one-one selection algorithm of the
proposed methodology, we propose a tool that helps to generate the source-code skele-
ton to develop the required API and facilitate the development process. This activity is
annotated as “Generate the remaining APIs” in Figure 1 and is based on the proposed
ISO 16100 Capability Profile where the developer describes only the functionality and
a project skeleton could be downloaded to develop the API. This tool is presented in
previous work in [73].

At this stage, and as an output, the selected technical services (and the remaining
APIs to develop) are orchestrated to generate an implemented BPMN, representing
the prototype needed by the end-user and enables to evaluate the desired business
application based on selected service-oriented open source software.

In what follows, we present in detail the meta-model of the EACP Framework, each
process and related tasks, along with the proposed EA-based qualification models and
requirement templates for the exploitation process.

3.2. Meta-Model for Software Qualification and Exploitation for Reuse

The proposed meta-model is depicted in Figure 2 and gathers functional and non-
functional specifications; the organizational impact of a feature; and it links the fea-
tures to their related physical components. The proposed meta-model as depicted in
Figure 2 is composed of 6 packages:

(1) Organization package: Composed by the organizational unit, with its related
business goals and objectives that guided the development of existing service-
oriented software.

(2) Architecture Building Block (ABB) package: This entity is constructed accord-
ing to the life-cycle creation of ABBs based on the Architecture Development
Method (ADM) of TOGAF. ABBs are divided into 2 categories. The first level of
an ABB which is initialized during phase B of the ADM, describes the business
problem for which this component was developed, it’s implementation specifi-

10



Figure 2. Proposed meta-model

cation, standards used, and the stakeholders. The second level of an ABB en-
riched in phase C, contains more details and concerns the operational vision of
the component. It defines the business function of the ABB, its attributes and
constraints, data and application interoperability requirements, and design-time
quality attributes.

(3) Solution Building Block (SBB) package: SBBs represent the physical equivalent
of ABBs and describe the component exposed by software. The SBB is linked
to the exposed service or API for instance over the web in case of a REST-
based application. This latter is defined by the URI, the HTTP method needed
to get access to the resource, the related parameters and the serialization used
in communication (for instance JSON). It defines run-time quality attributes
(for instance performance and availability) which might be updated according
to the defined frequency for each attribute. Other transversal attributes are
defined such as the Security setup of the software exposing the service such as
authentication or authorization parameters.

(4) Application package: Describes the technical requirements of the service-oriented
software in general with its exposed components (for instance REST services).
It describes also the execution environments on which the application is running
(e.g Platform class).

(5) Business Process package: This package is used in the exploitation phase and rep-

11



resents the “to-be” business application to realize. It is composed of the activities
that compose the new business application, the roles, and actors concerned by
the activities and the event that triggers the process.

(6) Requirements package: This package is used in the exploitation phase and rep-
resents the requirements elicitation process, helping to guide the developer or
the architect during the engineering lifecycle. The requirements are elicited in
each phase of the ADM, going from the definition of project driver to the def-
inition of the use cases and requirements in different levels (functional, non-
functional, technical, interoperability requirements and constraints with its dif-
ferent level such as implementation, technical, business, standard, and technology
constraints).

The resulted EACP profile instances are saved in the EAKR as an ontology instance,
to discover and reuse when developing the business application based on specified user
requirements. The related Ontology to EAKR repository is presented afterward in
section 4.

3.3. Qualification Process

The qualification process is composed of three main activities as illustrated in Figure 1
and follows a bottom-up approach, enabling to qualify existing SBBs and then define
the ABBs and motivation aspects reflecting the business goals and objectives targeted
by the qualified software. To avoid severe unexpected consequences for organizations
that aim to reuse service-oriented software in future business development due to
quality metrics not in line with business requirements, the first activity concerns the
quality assessment of the software in general and its related services in particular.

3.3.1. Quality Check

The overall quality and subsequent success of an application design depends on how it
responds to a range of quality attributes such as security, reusability, and performance.
In case of services or Web APIs, QOS parameters such as availability, response time,
reliability, throughput and documentation, are among the most important ones [74].
However, the design of services is influenced by the environment, the context and
other decisions made by service designers [75], and this may lead to violations of
quality principles known as antipatterns [75]. Thus, to guide an organization in a future
exploitation and reuse of any solution, whether it’s an internal or external company’s
solution, we aligned different metrics from ISO 25010 [76] recommended technical
indicators, extended with best practices from Microsoft R© Application Architecture
Guide [77] and TOGAF Technical Reference Model [78] which is universally applicable
used to build any system architecture and, therefore, is considered later on in the
exploitation phase. Obviously, the proposed meta-model may be enhanced with new
indicators if necessary.

In the following, we present the categories of service quality indicators used in
the construction of the meta-model in run-time: (i) Performance: Indicates system
responsiveness to execute an action within a given time interval; (ii) Availability: It
defines the percentage of time that the service is up and working; (iii) Reliability:
It defines the ability of a system to remain operational over time; (iv) Security: It
defines the ability of a system to prevent accidental or malicious actions outside of the
designed usage and aims to protect assets and prevent unauthorized modification of

12



information.
The aforementioned attributes belong to runtime category and are linked to SBB

level as depicted in Figure 1. Like any software system, services or Web APIs design
should comply with a set of guiding and widely recognized design quality standards
such as cohesion, coupling, modularity, and complexity ([79], [80], [75]). Design deci-
sions and poorly planned changes may result into different anti-pattern instances such
as god object web services and fine-grained web services which are the two most com-
mon antipatterns in web services [81]. God object web service aggregates too many
methods into a single service and is not easily reusable due to its low cohesion. Regard-
ing the too fine-grained Web service, it offers few operations and whose communica-
tions and maintenance outweighs its utility. Therefore, we selected three design-time
metrics proposed in the literature for the selection of best candidate component to
reuse ([79], [80], [75], [82]), and considered as best practices in ISO 25010 quality char-
acteristics and Microsoft R© Application Architecture Guide. They are linked to the
ABB level and corresponds to the maintainability category. Maintainability defines
the cohesion, coupling and complexity of the component.

The aforementioned attributes in design and run-time will serve to define the con-
sumption model or the accepted thresholds for each quality indicator of the targeted
system. It will enable also to rank the SBBs that offer the same functionality and
choose the best candidate that has the highest compatibility level and that fits the
specified conditions about non-functional requirements.

Once these indicators are measured, we go further in the qualification process. We
present in the following the different qualification levels derived from the meta-model.
These levels target the different criteria presented in Table 1. It enables at the end of
this process to get a wider view qualification with a specific view about the functional
specification, technical specification, organizational level, related QOS measured, the
related technology and environment platform, the implementation specification along
with the standard and constraint specifications if it exists.

3.3.2. Enterprise Architecture-based Qualification

Once the measurements are realized, a bottom-up qualification approach is carried out.
The first activity concerns the retrieval of the common software unit requirements with
the functional specification that concerns each technical service. This first qualification
level is based on the ISO 16100 standard. It enables also to assess the qualification
process before going to the next EA model-based qualification task.

Each exposed service is considered as software unit in terms of ISO 16100 spec-
ification. A software unit to be profiled must be analyzed and a template must be
filled to build a profile. This profile describes the action performed by the exposed
service and offers a functional specification as for instance input and output, data
types, class name, method or function name. Furthermore, it describes the technical
requirements of the application in general. Figure 3 describes the conceptual structure
of the common part of an ISO 16100 Capability Profile where we can find for instance
information about the vendor of the software, the version, the required computing
facilities to run this software and pricing data if applicable.

Once the specific part of the profile is produced for each service, it is used in the
next task by the EACP as depicted in Figure 4. EACP enables to:

• Gather the common software unit resulted from the ISO 16100 Capability Profile,
with the technical specifications of the exposed component (in this case the

13



Figure 3. Common part of an ISO 16100 Capability Profile [83]

service). It describes also the execution environments on which the application
is running. The related meta-model to this qualification level is depicted in Figure
2-Application Package.

• Link between the SBB and the corresponding physical component. This latter is
related to the resource exposed over the web and accessed by a URI as it is the
case of the service-oriented software. It defines also the related non-functional
specification and QOS with all technical indicators measured during the process
presented in section 3.3.1, along with the constraints and technologies considered
during the development of the qualified software. The related meta-model to
this qualification level is depicted Figure 2-Solution Building Block Package. A
derived model of this package is depicted in Figure 5.

• Link the feature from the business point of view considered as ABB to the
related SBB. There is a definition of the business problem for which this feature
was developed, it’s implementation specification, standards used, interoperability
requirement and the stakeholders and constraints that should be respected when
developing this component such as the solution of infrastructure constraints. In
addition, dependencies between features and between physical components are
also considered. The related meta-model to this qualification level is depicted in
Figure 2-Architecture Building Block Package.

• Define the organizational impact of the exposed service to an organization, by
describing the business goals and business objectives of the related feature and
the organization using it in case the qualification concerns an internal solution of
an enterprise. The related model to this qualification level is depicted in Figure
2-Organization Package.

Once all the EACP models are completed, it results a capability profile for each
service, and all linked to specific service-oriented software that is ready to be discovered
for reuse purpose. This capability profile enables to cover all the criteria defined Table
1 except for the semantic annotations and reasoning capabilities. These are presented
in detail in section 4 and are considered as a basis for the design of the EAKR. But

14



Application
Package

Gather SBB
package 

information
Solution

Building Block
Package

Gather ABB
package 

information
Architecture

Building Block
Package

     Gather Organization
package 

information
Organization

package

Final
EACP Profile

Store

EACP Profile

Technical
service to

qualify

Gather application
package 

information

Inputs from ISO Capability Profile

ISO 16100
Capability

Profile

EAKR
Repository

Figure 4. Qualification process to create the EACP Capability Profile

Figure 5. Proposed Model for SBBs

before going further in the design of this repository, we present in what follows the
last process of the EACP Framework which is the exploitation process enabling the
discovery and reuse of the qualified solutions based on the proposed EACP Capability
Profile.

3.4. Exploitation Process

In order to reach the objective of designing a new business application based on qual-
ified services of the EAKR, the developer or architect goes through a proposed re-
quirement elicitation process. This latter is enrolled in an engineering cycle structured
in several phases inspired by the TOGAF Framework and its ADM method. It con-
cerns four phases starting by the architectural and requirement vision, going through
the business architecture phase, data, application, and technology architecture phase,
leading to the generation of an implemented BPMN which consumes the qualified
services if a match confirmed.

Figure 6 refers to the task “Exploitation Plan” in the process number 3 of the
EACP Framework (Figure 1) corresponding to the exploitation process. It depicts
the proposed exploitation plan guiding gradually the architect or the developer from
the analysis till the discovery of SBBs and the production of the targeted business
application. In the following, we present in detail the actions to realize in each phase,

15



enriched with a concrete example to strengthen the understanding.

M2

Enterprise 
Architecture 
Knowledge 
Repository

(EAKR)

M2

Enterprise 
Architecture 
Knowledge 
Repository

(EAKR)

Architecture Artifacts
TOGAF

Architecture Artifacts
TOGAF

Requirements
Volere

Requirements
Volere

Requirement Patterns
Phase A

Requirement Patterns
Phase A

Architecture 
Artifacts 
Phase A

Architecture 
Artifacts 
Phase A

Requirement
Phase A

Requirement Patterns
Phase B

Requirement Patterns
Phase B

Architecture 
Artifacts 
Phase B

Architecture 
Artifacts 
Phase B

Requirement
Phase B

Requirement Patterns
Phase C

Requirement Patterns
Phase C

Architecture 
Artifacts 
Phase C

Architecture 
Artifacts 
Phase C

Requirement
Phase C

Requirement Patterns
Phase D

Requirement Patterns
Phase D

Architecture 
Artifacts 
Phase D

Architecture 
Artifacts 
Phase D

Requirement
Phase D

Implemented BPMNImplemented BPMN

Fetch

Patterns

Presentation

Validation

Figure 6. Exploitation Plan

3.4.1. Phase A: Architecture vision

The exploitation process starts by the requirement elicitation for Phase A (Architec-
ture vision). The objective of this phase is to develop a high-level vision of the business
value to be delivered as a result of the project. This phase is focused on gathering the
business goals and related objectives of the targeted project. Other architecture arti-
facts are asked for the developer during the process to structure the project drivers,
such as defining the organizational model of the company, the concerned stakeholders,
and KPI helping to evaluate the targeted business application. Based on the architec-
tural artifacts of phase A, which corresponds to the definition of the business goals
and objectives from the developer, we fetch requirement patterns constructed during
previous projects to guide and offer support to the developer for the upcoming re-
quirement definition. If templates are found, they are presented to the developer as
examples for the formalization of next inputs. The developer formalizes his require-
ments by defining, in complementary to the architecture artifacts, the project drivers
such as the business actors, the client, and customer if applicable. These inputs help
to consolidate the elicitation phase and redesign his requirements before going further

16



in the process. All the artifacts once validated are saved in the EAKR to be reused
if needed in future exploitation process. An exploitation algorithm (Figure 7) is pro-
posed for this phase. This latter uses business objectives and goals as filter lever, but
it can be modified according to the preferences of the user if he doesn’t wish to rely
on these two inputs.

Figure 7. Phase A: Requirements template selection

Figure 8 illustrates the models of architecture artifacts for phase A. The main inputs
are the definition of business goals and objectives of the targeted system, along with
stakeholders that define people who have an interest in the targeted system and whose
inputs is needed to build the product.

Figure 8. Models of Architecture artifacts for Phase A

3.4.2. Phase B: Business Architecture

The objective of this phase is to develop the target business architecture that describes
how the enterprise needs to operate to achieve the business goals previously defined
and responds to stakeholder concerns.

The most important architectural artifact in this phase is the high-level business
scenario. This latter is designed using the BPMN modeling tool which is a standard
for business process modeling. This first high-level modelization is designed using the

17



ArchiMate 2 core language which is recognized as a standard for EA modeling by
the Open Group [81]. This high-level modelization helps to define the business-entity
relationship to know which entities are needed for every business action or behavior.

This is designed based on the three aspects proposed by ArchiMate: (i) The Active
Structure Aspect which represents the structural elements or the subject; (ii) The
Behavior Aspect which represents the behavior performed by the active structure;
(iii) The Passive Structure Aspect which represents the objects on which behavior is
performed.

Figure 9. Models of Architecture artifacts for Phase B

This business model is enriched with other architectural artifacts such as the ac-
tor catalog updated with their related roles, and the definition of the architecture
requirements specification which form a major component of an implementation con-
tract and provides quantitative statements as required in ADM’s Phase B outputs.
It requires the definition of the implementation specifications to guide the develop-
ment work, implementation standards in case the implementation should follow some
specific standard. Figure 9 depicts the model of the different architecture artifacts
managed during this phase.

Once these elements are defined, a request is sent to the EAKR to fetch require-
ment templates of phase B produced during last projects to be reused. The proposed
algorithm for the requirement template selection is presented in Figure 10. The aim
is to guide the developer to define the project constraints and the functional require-
ments. The resulted templates from the algorithm in Figure 10 present the scope of
the existing projects related to the actual context, the business events connected to
the actual business scenario, the use cases of the project or solution, and a set of
functional requirements related to the selected use cases and their type, i.e service
type component related to an SBB or user task activity if it is a user action. These
resulted templates are presented to the developer to guide him during this phase B for

2https://www.archimatetool.com/

18



Figure 10. Phase B: Requirements template selection

the consolidation of his requirements. It helps to offer support for defining and con-
solidating the use-cases and related functional specifications. The proposed template
is inspired from the Atomic Requirement Template which is presented by Robertson
et al. in [84]. This phase B ends with well formalized, testable and categorized as user
or service task functional requirements.

3.4.3. Phase C: Information Systems Architecture

The objective of Phase C is to develop the target information system architecture. It
involves a combination of data and application architecture. Therefore, this phase is
composed of two sub-phases:

3.4.3.1. Data Architecture. This phase enhances the definition of the relation
between data entities and targeted business functions previously defined in phase B.
We have already depicted in Phase B the models that enable to link data entities
associated to each business function. Then, the next needed action is to define the
properties of each business entity involved in the business functions using relevant
data models such as the Class Diagram in UML. Additional architecture requirements
specifications are as-well formalized such as Data Interoperability and Technology Ar-
chitecture Constraints. These constraints have the same description template as for
requirements. The data interoperability requirement is needed to formalize specific
needs for security policies as for example input validation or for data format and
serialization. Regarding the technology architecture constraint, helps to identify con-
straints on the infrastructure about to be designed. During this phase, architecture
artifacts and requirements are defined at the same time because we are reaching the
low-level description regarding the business application to develop. Based on these
inputs, a request is sent to the EAKR to fetch and map the ABBs and business func-
tions using the defined data entities, and which are compliant with the constraints if
defined. Figure 11 depicts the algorithm that aims to retrieve the ABBs and related
data entities to provide support and guidance during this phase. Moreover, the re-

19



lated SBBs and their corresponding applications are gathered to highlight potential
problems of integration.

Figure 11. Phase C - Data Architecture: Requirements template selection Algorithm

3.4.3.2. Application Architecture. This phase concerns the Application Archi-
tecture artifacts and related requirements. The developer or architect is guided to de-
fine technical requirements based on the same template as for the atomic requirement .
Technology or infrastructure constraints and application interoperability requirement
are either defined in this phase. Those constraints are added to previous ones to fetch
the SBBs and related applications. Figure 12 depicts the algorithm that aims to re-
trieve the application list according to the requirements and constraints defined in this
phase. The resulted SBBs and related application offer the first overview of existing
applications and related services to reuse. These solutions fit the requirements and
constraints from a functional, technical and technology constraint side.

Up to this requirement level, a first version of the targeted business application
based on BPMN 2.0 is defined. The user and service tasks are designed and a link
between service tasks and a set of existing services is performed based on the elements
defined during previous phases.

3.4.4. Phase D: Technology Architecture

The last phase D is about the technology architecture artifacts. The objective of this
last phase is to define the basis of the implementation work. As part of phase D,
the developer or architect needs to consider what relevant resources are available in
EAKR to ensure that the target system will meet some or all the requirements and
constraints. It is important to recognize that in practice it will be rarely possible to
find and reuse components that reach 100% coverage of all defined requirements and
constraints. During the previous phase C, technical and technological constraints are
formalized. These latter are considered during this phase D when matching the final
SBBs, enriched with non-functional properties that are defined based on the atomic
requirement model enabling the definition of the Quality of Service needed from the
existing services.

20



Figure 12. Phase C - Application Architecture: Requirements template selection Algorithm

As a result, the retrieved SBBs, if they match, reflects strongly the defined require-
ments and constraints. This helps to implement the business process already produced
during the last phase with the final SBBs, and related services with their service end-
points to support the business application. Figure 13 depicts the algorithm that aims
to retrieve the list of SBBs according to the requirements defined in this phase.

3.4.5. SBBs Ranking and Selection phase

The template provided during phase D about non-functional requirements reflects the
consumption model needed and is used to rank and select the Solution Building Blocks
that have the highest compatibility level. The QOS parameters are calculated during
the quality assessment as described in section 3.3.1. As illustrated in the algorithm of
Figure 13, services are ranked according to the consumption model before selecting
the final SBB and generate an implemented business process. We have introduced a
priority parameter during the definition of the non-functional properties of phase D,
to personalize the priority of each QoS during the ranking process. To facilitate the
priority definition, we choose three priorities level. The value 1 refers to low priority,
value 2 to medium and value 3 to high priority. In case no priority property is defined
in the template, 1 is the default value assigned. There are two calculation methods as
already defined in [38] for QOS ranking. For some QOS parameter, the highest the
value is, the better the SBB is, for instance the availability rate metric. Whereas for
some other QoS as for instance the response time metric, the lowest the value is, the
better the SBB is. To calculate the ranking for each SBB, we consider that QoSupper

and QoSlower are respectively the ranks regarding the two kinds of QOS parameters.

21



Figure 13. Phase D - Technology Architecture: Requirements template selection algorithm

Let SBBi be a solution building block and Qj be a QOS parameter.

QoS(SBBi, Qj) =

{
QoSupper = V al(SBBi,Qj)

Max(Qj) ∗ Priority

QoSlower = (1 − V al(SBBi,Qj)
Max(Qj) ) ∗ Priority

Where:

• V al is the value of the QOS parameter for a given SBB
• Max is the maximum value of the QOS parameter among all selected SBBs

related to a Business Function
• And, Priority is the priority previously assigned to the QoS parameter by the

user during Phase D

Finally, the global score of an SBB is represented by R(SBBi) where :

R(SBBi) =

∞∑
j=0

QoS(SBBi, Qj)

The result of this ranking process is used during the generation of the implemented
BPMN, where for each business function (only service tasks), we assign the first ranked
SBB to the related task. In the next section, we present the development method of
the EAKR and its related ontology based on the proposed meta-model.

4. Enterprise Architecture Knowledge Repository

We note that actually, there is no agreed methodology for the development of ontologies
and no consensus on how ontologies should be evaluated. To develop our ontology, we
considered the Uschold and King’s methodology presented in [85]. In the following
subsections, we present the different steps that we followed in our work.

22



4.1. Design of the EACP Ontology

First, we identified some state-of-the-art ontologies and selected those that cover our
needs, and are relevant to our domain. We selected BFO which is a top-level ontology
and four domain ontologies, namely OWL-S [86], TOGAF ontology [87], BPMN 2.0
Ontology [88] and IAO [89]. Third, we managed the selected foundational and domain
ontologies, by integrating and extending in a coherent way the different ontologies into
the targeted EACP ontology using the Protégé Ontology Editor. Finally, we evaluated
the consistency and inferences of the resulted model using the Fact++ reasoner. In
the following subsections, the ”Italic” form is used to designate semantic classes and
ontology relationships. Regarding the latter, labels such as BFO, OWL-S or TOGAF
are used instead of the URI for the stake of legibility.

4.2. Reuse of Existing Ontologies

We used the following ontologies to standardize the representation of the information
that are contained in the proposed meta-model. Indeed, no existing ontology can cover
all the information of the meta-model. We selected the existing domain ontologies by
considering the following aspects: (i) The free access and availability of the ontology
on the Web; (ii) The proper definition of ontology classes and relationships to ensure
appropriate reuse of the extracted entities; (iii) The coverage of the entities of the
targeted domain to design a minimum set of terms; (iv) The stability of the selected
ontology, so that future changes or updates do not affect the proposed model;

We used Protégé to analyze and select classes and relationships to be extracted.
We adopted a modular architecture, consisting of the main ontology importing several
modules. The main motivation for such a modular architecture was the ability to
easily re-extract entities from existing ontologies. However, several situations must be
considered, depending on the reused ontologies. The following subsection illustrates
how we integrated TOGAF, OWL-S, BPMN and IAO ontology modules into a coherent
semantic model, and how we used the imported OWL-DL descriptions to automatically
query the resulted EA knowledge repository using a semantic reasoner.

4.3. Construction Steps of the EACP ontology

We depict in this section the construction steps of the EACP ontology from the meta-
model presented with regards to the main steps of our ontology building approach.

4.3.1. Step 1: identification of existing ontologies

In the proposed semantic model, we described all entities of the meta-model. The
resulted ontology contains 230 classes, 78 object properties, and 30 data properties.

The targeted modular EACP ontology defines its entities and relations under the
BFO framework. This latter is designed to support information analysis, retrieval and
integration from different semantic resources [90]. To map EACP entities to BFO, we
have realized an alignment work based on the methodology described in [90].

To the best of our knowledge, BFO ontology has not yet been used for the integration
of TOGAF enterprise architecture components although, some research works as for
instance [91] and [92] has expressed the need to link the information system modeling
to an upper-level ontology to facilitate the integration of existing various meta-models
and resolve inconsistency problems. Moreover, we chose to reuse TOGAF 9 ontology for

23



three main reasons: first, TOGAF 9 ontology, developed in Knowledge-Projects 3, is the
most suitable terminological model that represents meta-data of TOGAF 9 artifacts.
Second, it has been used in other research works in [93] and [94], to semantically
manage and share enterprise architecture information and third, TOGAF 9 ontology
meets some of main modeling needs that are expressed in the meta-model as the
description of entities that describe Business Architecture Component (e.g., actor,
organizational unit, objective, goal, and event). In our work, we used the OWL formal
language in the specification of the TBox and in the generation of RDF [95] triples.

4.3.2. Step 2: integration of existing ontologies into the BFO ontology (classes and
relations)

To build our OWL ontology, we first analyzed the class hierarchy of our semantic
modules (namely, TOGAF, BPMN, IAO and OWL-S). Then, we aligned existing on-
tologies’ classes to the BFO class hierarchy. By doing this alignment work, we im-
proved the definition of key concepts of the TOGAF ontology by making them more
clear, for example the class ”TOGAF:core content” regroups heterogeneous sub-classes
as ”TOGAF:function”, ”TOGAF:process”, ”TOGAF:capability”, ”TOGAF:process”,
”TOGAF:role” and ”TOGAF:organization unit”. As we can notice, the meaning of the
”TOGAF:core content” class as it is defined within the TOGAF ontology is confusing
and ambiguous regarding the description of the kind of data that it covers i.e, does it
refer to functions? roles? processes? dispositions? objects? or data items? In order to re-
move this confusion and inconsistency, we first defined the class ”TOGAF:content clas-
sification” as a ”BFO:entity” and then we defined the classes like ”TOGAF:function”,
”TOGAF:role”, ”TOGAF:capability” as sub classes of ”TOGAF:core content” and
”BFO:specifically dependent continuant” given that they describe a continuant that
inheres in or is borne by other entities. As consequence, the meanings of theses sub-
classes are more explicit and clear under the BFO framework.

4.3.3. Step 3: extension of existing ontologies

New 30 additional classes are inserted in the EACP ontology based on the proposed
meta-model. For example, we introduced the ”EACP:ABB service category” class as
a direct subclass of ”IAO:data item” and an indirect subclass of ”BFO:generically
dependent continuant”. Therefore, ”EACP:ABB service category” is assumed to be
a superconcept of the classes ”EACP:capability category” or ”EACP:interoperability
category”.

We enriched the ontology with semantic axioms in order to define in a concise way
classes and relations and to improve the ontology with reasoning capabilities.

In our work, we made some modeling decisions about the description of some unclear
TOGAF aspects: we interrelate classes using a min number of relationships than those
proposed in TOGAF ontology, this will improve the reasoning performance of our
ontology. In TOGAF, there is a mix between class hierarchy and necessary conditions
for example, the ”TOGAF:business architecture” is defined as ”TOGAF:architecture”
and (”BFO:hasContinuantPart” some ”TOGAF:business architecture component. We
modified the some OWL restriction with a some necessary condition as explained
above. This correction is valid for all the kind of business architecture component of
the TOGAF ontology.

Finally, we completed the definition of our ontology with textual annotations that

3https://sites.google.com/site/ontologyprojects/home

24



Figure 14. Data validation and querying result on the EAKR repository using the FACT++ reasoner, Protégé

Ontology Editor

aim to give the users more details about our ontology components; in this annotation
task we based our textual definitions on the documentation of TOGAF 9.

4.3.4. Step 4: evaluation of the consistency

To check the validity and the correctness of the designed ontology we used the Fact++
reasoner, the classification result is presented in Figure 14, no errors are found and all
classes and relations are correctly classified.

5. Framework Implementation

We implement the exploitation process of the EACP Framework as a Web Applica-
tion as depicted in Figure 15. EACP Framework’s source code is available at Github
repository 4. The video of this technical presentation is available here 5 and the of the
entire use case is available here 6. We chose AngularJS [96] as a Web Framework that
enables the development of single-page applications following the MVC pattern for
the front-end environment, and NodeJS Framework [97] which is a popular platform
for building server-side Web Applications written in Javascript. Regarding the EAKR
repository, we deploy the EACP Ontology along with example of qualified open source
solutions from vf-OS 7 and FITMAN project 8 in Apache Jena Fuseki [98].

4https://github.com/AbdBelf/EacpFramework
5http://bit.ly/eacpTechnicalP
6http://bit.ly/exploitP
7www.vf-OS.eu
8http://www.fiware4industry.com

25



Figure 15. EACP Web Application - Phase A : Architecture Artifacts

In the next section, we present the use case on which we apply the EACP Framework,
then we show in what way the developer can interact with the Framework in each
phase, the inputs needed, how the information is presented and how the validation
occurs.

5.1. Use Case Scenario

This use case scenario concerns two companies. The first company is specialized in
plastic manufacturing, and the second in metal manufacturing. Both companies have
significant expertise in engineering and transforming plastic and metal, respectively,
parts using several technologies. Their key business issue is the difficulty to detect
the most appropriate business collaboration opportunities among common customer
projects. Starting from a CAD description of customer projects, the companies’ con-
sortium needs to quickly detect the set of projects that they are enabled to produce.
The proposed use case aims to accelerate and maintain a collaboration channel in two
complementary business domains. The objectives are to reduce project quotation costs
and reduce the delay of customer quote treatment.

Currently, clients send product requests to one of the companies in the form of
CAD/PDF files. Then, the chosen company decomposes all the project’s features (e.g.
parts, dimensions, type of surface, and type of raw material) to understand customer
needs to verify the feasibility of the product, and to determine the relevance of the
business opportunity in terms of ROI. After the decomposition and if there is a need
for subcontracting (especially for multi-physical and complex products), the two com-
panies will carry out a succession of negotiations, explore several ways to reach the
client’s requirements and submit their best offer to the client. For this purpose, we de-
rive from this use case all needed requirements that we need to develop in the EACP
Framework to discover existing services that allow to reduce cost and development

26



time. In what follows, we present how the developer goes through an architecture and
requirement elicitation process to discover existing services and develop the needed
business application. We present the inputs needed in each phase of the exploitation
process and the screenshots of the prototype in each phase. The video of this use case
scenario is available here 9.

5.2. Phase A: Architecture Vision

In this phase, one of the artifacts to provide is about the business goals and associated
objectives of the targeted project. The offered design possibility is to upload the inputs
designed in ArchiMate using the motivation extension. Figure 15 depicts an example
from the proposed use case of the motivation diagram. An export in XML format
is needed to import it to the EACP Web Application to parse it and retrieve the
needed inputs for phase A. Figure 15 depicts the phase A of the Web application, The
first column concerns the architecture and requirement elicitation process guiding the
developer to consolidate and validate his requirement during this phase. The second
column displays the actual phase state and the progression rate of the process. The
developer can as well add other stakeholders not mentioned in the motivation diagram
to be considered for the next actions.

Once the motivation diagram uploaded to the framework, a parsing of the XML
source file is realized to retrieve the defined business goals and objectives. Based on
these inputs, a request is sent to the EAKR (see the proposed algorithm in Figure 7)
to fetch existing requirement templates guiding the developer during this requirement
elicitation phase. Since it is the first instance of this process, we are not supposed to
get any template. However, and for illustrative reasons, we defined one template that
shares the same business goal to have an example of a template to reuse for defining
and consolidating the required requirements for this phase. As we may notice in Figure
16, the requirements needed are the definition of the business context, the client and
the customer of the system which is not applicable in this context, and the users that
will interact with the targeted system. The retrieved templates are presented in the
”EAKR Templates Requirement” side. The process progression column is updated,
and the application now is waiting for the validation of the requirements to redirect
the developer to phase B of the exploitation process.

5.3. Phase B: Business Architecture

Based on ArchiMate Business Entity Relationship diagram, the developer uploads
the designed diagram to the architecture artifacts user interface. This latter is parsed
to retrieve the actors, the business processes and related data entities involved in
each business process or use case. These inputs are considered during the requirement
pattern search in the EAKR repository and retrieved using the algorithm depicted in
Figure 10.

Requirements specification of phase B concerns the functional requirements and
project constraints. Based on the use case list and their related data entities, we fetch
the previous project that has been saved to the EAKR based on a string similarity.
These existing requirements help to offer support for defining and consolidating the
use-cases and functional specifications close to the actual context, the business events
connected to the actual business scenario and a set of functional requirements related

9http://bit.ly/exploitP

27



Figure 16. EACP Web Application - Extract of Phase A : Architecture Artifacts

to the selected use cases and their type (i.e service type component related to an
SBB or user task activity if it is a user action). In the case of our business scenario,
no template has been found but for illustrative reasons, we initialized requirement
templates that correspond to the actual business scenario to be reused as depicted in
Figure 17.

In this phase, there is a possibility to enrich the functional specifications by adding
required constraints or architecture requirements specification such as the specification
of implementation or the usage of a specific standard for the future development of
the functional requirements. In the context of this proposed scenario, we link an im-
plementation standard to the functional requirement “Visualize CAD file“ as depicted
in Figure 18.

5.4. Phase C: Data Architecture

Data architecture phase enhances the definition of the relation between data entities
and targeted business functions previously defined in phase B. Then, the next needed
action is to define the properties of each business data involved in the business functions
using relevant data models such as the Class Diagram in UML that is serialized to
retrieve the entities with their related attributes.

Based on these inputs, the application fetches and maps in the EAKR the busi-
ness functions with the architecture building blocks using the defined data entities,
and which respects the interoperability and infrastructure constraints as defined in
algorithm of Figure 11. This latter matches between the defined functional require-
ments with business functions defined in ABB model. ABBs that corresponds to the
conditions are selected with their related SBB and corresponding applications. The
objective is to highlight potential problems of integration in case any selected ABB
presents data interoperability constraint which is different from the defined constraint
in this phase C. The results are presented in the proposed template of the EACP ap-
plication as depicted in Figure 19. For instance, the qualified service from the EAKR
matches with the functional requirement named “Visualize CAD file”. It is selected
among other qualified ABBs from FITMAN project that offer the same business func-

28



Figure 17. EACP Web Application - Extract of

Phase B : Architecture Artifacts

Figure 18. EACP Web Application - Phase B : Re-

quirement Specification

tion, and that respects the implementation standard that was already defined in Phase
B.

5.5. Phase C: Application Architecture

The developer is guided to define the technical requirement using the same template
as for the functional requirements. Technology or infrastructure constraint is either
defined. Those constraints are added to previous ones to select the SBBs as described
in algorithm of Figure 12.

For instance, in this use case scenario, we define a technical requirement related to
the targeted business function “Visualize CAD File”. Indeed, we target an SBB which
manages the CAD Objects with a specific file extension “STL extension”, and that is
based on the Javascript library Three.js. Then the action “Fetch ABBs” triggers the
selection of the targeted ABBs and related SBBs in the EAKR that respect the defined
technical requirement for each business function along with the technology constraints
if defined. The result of this action is depicted in Figure 20.

To this level, these inputs enable to download a first version of the targeted business
application based on BPMN 2.0 specification. Based on the functional requirements
defined in phase B which are composed by user and service tasks, we generate an XML
template.

5.6. Phase D: Technology Architecture

During the previous phase, technical and technological constraints are formalized.
These latter are considered when matching the final SBBs, enriched in this phase with
non-functional properties defining the Quality of Service needed from the existing
services. This to consider what relevant resources are available in EAKR to ensure
that the target system will meet the requirements and constraints. In the proposed

29



Figure 19. EACP Web Application - Phase C : Requirement Specification

use case scenario, we define an example for the consumption plan which is depicted
in Figure 21 (NFR List). We set the average instance time metric as a non-functional
requirement applicable for all the targeted services. After validation, SBBs are ranked
based on the defined QOS threshold values defined in the consumption plan.

For each business function, we select the first SBB resulted from the ranking process
as a building block to reuse for the implementation of the targeted business application.
As a final result, we get a last version of an implemented BPMN with the related service
endpoints of the solution building blocks.

6. Discussion

In this work, we propose an Enterprise Architecture Capability Profile specifically
designed for service-oriented software enabling the qualification, the discovery, the
reuse, and the sustainability for new business applications development. We demon-
strate how the EACP Framework can assist developers or architects in the qualification
process using the semantic Enterprise Architecture Knowledge Repository, based on
a proposed meta-model inspired mainly from TOGAF and ISO 16100 Standard and
formalized using semantic web techniques. This helps to offer a wider view qualifica-
tion process that deals with the two perspectives of services which are the business
perspective which brings value-in-use of the qualified feature for an organization that
is interested into reuse, and the technical side along with a quality of service of the
feature encapsulated by the software service. An exploitation methodology is defined
in the proposed EACP Framework helping to overcome the use of ad-hoc methods to
identify the most suitable components or artifacts to reuse. The proposed exploitation
plan is designed based on the alignment of architecting actions with a requirement
engineering process, and evolve together helping to investigate the highest functional
compatibility of the desired functionalities and its related constraints.

30



Figure 20. EACP Web Application - Phase C :
Requirement Specification Figure 21. EACP Web Application - Phase D :

Requirement Specification

The use of a semantic approach helped us in the formalization of the content of
the proposed meta-model through the use of OWL language that explicitly specifies
the meaning of EA meta-model entities and relations. Added to this, the proposed
semantic model called EACP ontology supports as we demonstrate in our experimen-
tal work, advanced reasoning and querying requests on the EAKR that facilitates the
comprehension and reuse of service-oriented software meta-data (capabilities, parame-
ters, requirements, etc.). We note that the automatic content-based data management
cannot be achieved in existing EA meta-models that do not use semantic markup.
We adopted a semantic approach to describe EA information and we presented the
different steps that we followed to design the EACP ontology.

Unlike existing EA ontologies mainly TOGAF first, the developed ontology is based
on a foundational ontology namely BFO. Second, it is based on existing well-defined
ontologies to cover all the meta-model components (functional, operational and tech-
nical). Third, the EACP ontology is modular, thus it can be easily extended by future
users. Finally, the EACP ontology defines a data properties hierarchy to specify con-
crete values of concepts use cases.

The use of BFO has facilitated the integration of heterogeneous knowledge from
different ontologies into a unique coherent semantic model. And the remove of con-
cepts and relations ambiguity as for example the concept “TOGAF: core content“ by
distinguishing between information data, qualities, functions, and processes. In most
cases the alignment was not a trivial task for us for two main reasons: the complexity
of the meta-model on one hand, and on another hand the ambiguity of TOGAF OWL
concepts and object relations. The usage of an ontology for designing the model-based
EAKR helps to achieve the targeted objectives and address the major challenges,
namely create a software capability container that is modular, flexible, and extensible
with a standard vocabulary to qualify existing solutions with semantic annotations.
This helps either to capitalize on existing knowledge produced during the proposed
engineering methodology and infer new knowledge to answer future business needs.
One of the advantages of the proposed ontology is that it can serve alone without
necessarily linking it to the proposed exploitation plan as a qualification and service
description tool to describe the properties, design constraints, and capabilities of the
service-oriented software.

31



As discussed in [99], architectural requirements can be significantly more important
than their domain-specific equivalents. For instance, if we are designing a life-support
machine, the availability or ”up time” metric would be with a high importance. Re-
garding the proposed exploitation plan, it carries the validation of the requirements
and drives the design of the foundations (ie, architecture) and the requirement defi-
nition of the business application we are building. This means at least, we offer the
necessary structure for defining and validating architectural artifacts and requirement
specifications, and at best, propose templates and artifacts of precedent projects or
qualified solutions for recycling and reuse to meet the business need.

Regarding the exploitation process, as you may notice at run-time, the EACP
Framework finds few results because no precedent project with its related require-
ments has been already introduced and capitalized. Also, it depends on the number
of the qualified solutions and related services considered as architecture and solution
building blocks in the EAKR. Continuous qualification is needed to maximize the
exploitation and must be realized frequently to take full advantage of this proposed
methodology.

Due to the modular, flexible and extensible properties of the proposed EACP-
Ontology, several perspectives for the exploitation of the proposed EAKR are possible
as for instance in case of no ABB or SBB is retrieved. Indeed, a connection with an
external repository as ”ProgrammableWeb.com” which has documented over 12.000
open web APIs and thousands of applications in its repository would be with a great
value for companies. This helps to gather this open knowledge and exploit it in an
efficient manner in the same way as we proposed in our exploitation plan.

The reusability potential of existing and proposed solutions is part of the techni-
cal and managerial contribution of software reuse to stimulate innovation and market
penetration through shorter production cycles that promise strategic business advan-
tages [100], in addition to several benefits that have been reported from successful
reuse adoptions to reduce cost and accelerate development [101; 102], standardized
architecture [101], and risk reduction [102] by means of known artefacts.

With a forward-looking perspective, next generation systems help the organizations
to deliver outstanding value through a culture of innovation and speed [103]. Those
systems are mass personalized, massively distributed, self-adapting system of systems,
realized in an iterative and incremental development process to enable faster time
to delivery and value realization [103]. This research work is a footstep for creating
those next generation systems by enabling the discovery, design and delivery of new
solutions that enables faster time to delivery and create alternatives.

7. Conclusion

In this work, we defined the EACP Framework for new business applications devel-
opment based on the service reuse and orchestration. The Framework is based on a
proposed meta-model enabling the design of an advanced software capability profile.
The latter is designed based on an Enterprise Architecture Framework (TOGAF) and
the best practices related to the implementation of ISO 16100 standard concepts. An
enterprise architecture knowledge repository is proposed with a modular, flexible and
extensible ontology (EACP-Onto). This resulted ontology is derived from the proposed
models that offer a wider view qualification for service-oriented software covering busi-
ness, technical and organizational aspects. Moreover, the proposed EACP Framework
offers a methodology to guide the developers or architects during the qualification

32



process of existing solutions. An exploitation plan is proposed for designing new busi-
ness application based on requirements engineering and software architecting actions
to support requirement elicitation during the engineering life-cycle. Furthermore, the
proposed approach helps to capitalize on artifacts produced during the engineering
cycle of the projects and offers more visibility and sustainability to software for accel-
erating business application development. Finally, we validated the proposed approach
with an implementation and an industrial use case.

Acknowledgment

This paper presents work developed in the scope of the project vf-OS. This project
has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement no. 723710. The content of this paper does not reflect
the official opinion of the European Union. Responsibility for the information and
views expressed in this paper lies entirely with the authors.

References

[1] G. Valenca, C. Alves, V. Alves, and N. Niu, “A systematic mapping study on business
process variability,” International Journal of Computer Science & Information Technol-
ogy, vol. 5, no. 1, p. 1, 2013.

[2] G. S. Leal, W. Guédria, and H. Panetto, “Enterprise interoperability assessment: a re-
quirements engineering approach,” International Journal of Computer Integrated Man-
ufacturing, vol. 33, no. 3, pp. 265–286, 2020.

[3] L. Da Xu, “Enterprise systems: state-of-the-art and future trends,” IEEE Transactions
on Industrial Informatics, vol. 7, no. 4, pp. 630–640, 2011.

[4] M.-E. Iacob and H. Jonkers, “A model-driven perspective on the rule-based specification
and analysis of service-based applications,” Enterprise information systems, vol. 3, no. 3,
pp. 279–298, 2009.

[5] S. Raemaekers, A. van Deursen, and J. Visser, “An analysis of dependence on third-party
libraries in open source and proprietary systems,” in Sixth International Workshop on
Software Quality and Maintainability, SQM, vol. 12, pp. 64–67, 2012.

[6] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irlbeck, “On the
extent and nature of software reuse in open source java projects,” in International Con-
ference on Software Reuse, pp. 207–222, Springer, 2011.

[7] P. Smiari, S. Bibi, and D. Feitosa, “Examining the reuse potentials of iot application
frameworks,” Journal of Systems and Software, vol. 169, p. 110706, 2020.

[8] A. Mockus, “Large-scale code reuse in open source software,” in Emerging Trends in
FLOSS Research and Development, 2007. FLOSS’07. First International Workshop on,
pp. 7–7, IEEE, 2007.

[9] M.-E. Paschali, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, and I. Stamelos, “Reusabil-
ity of open source software across domains: A case study,” Journal of Systems and Soft-
ware, vol. 134, pp. 211–227, 2017.

[10] G. Kakarontzas, P. Katsaros, and I. Stamelos, “Component certification as a prerequisite
forwidespread oss reuse,” Electronic Communications of the EASST, vol. 33, 2010.

[11] N. Niu, L. Da Xu, and Z. Bi, “Enterprise information systems architecture—analysis and
evaluation,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2147–2154,
2013.

[12] D. Chen, G. Doumeingts, and F. Vernadat, “Architectures for enterprise integration
and interoperability: Past, present and future,” Computers in industry, vol. 59, no. 7,
pp. 647–659, 2008.

33



[13] M. Snoeck, “Enterprise information systems engineering,” The MERODE Approach,
2014.

[14] R. Perez-Castillo, F. Ruiz-Gonzalez, M. Genero, and M. Piattini, “A systematic mapping
study on enterprise architecture mining,” Enterprise Information Systems, vol. 13, no. 5,
pp. 675–718, 2019.

[15] P. Saint-Louis and J. Lapalme, “An exploration of the many ways to approach the dis-
cipline of enterprise architecture,” International Journal of Engineering Business Man-
agement, vol. 10, p. 1847979018807383, 2018.

[16] P. Saint-Louis, M. C. Morency, and J. Lapalme, “Examination of explicit definitions
of enterprise architecture,” International Journal of Engineering Business Management,
vol. 11, p. 1847979019866337, 2019.

[17] B. Anthony Jnr, “Managing digital transformation of smart cities through enterprise
architecture–a review and research agenda,” Enterprise Information Systems, pp. 1–33,
2020.

[18] I. Arifin, “Design of architecture enterprise model information system academic and
student administration bureau using togaf adm,” 2019.

[19] Y. Putra and A. Hadiana, “Designing enterprise architecture for public health center
based on togaf architecture development method,” in IOP Conference Series: Materials
Science and Engineering, vol. 879, p. 012163, IOP Publishing, 2020.

[20] R. Harrison, TOGAF R© 9 Certified Study Guide. Van Haren, 2011.
[21] D. Quartel, M. W. Steen, and M. M. Lankhorst, “Application and project portfolio

valuation using enterprise architecture and business requirements modelling,” Enterprise
Information Systems, vol. 6, no. 2, pp. 189–213, 2012.

[22] M. Matsuda, “Manufacturing software interoperability services which iso 16100 brings
about,” in International IFIP Working Conference on Enterprise Interoperability,
pp. 60–70, Springer, 2012.

[23] A. Barros and D. Oberle, Handbook of Service Description. Springer US, 2012.
[24] S. Ghazouani and Y. Slimani, “A survey on cloud service description,” Journal of Net-

work and Computer Applications, vol. 91, pp. 61–74, 2017.
[25] H. Mezni, W. Chainbi, and K. Ghedira, “Aws-policy: an extension for autonomic web

service description,” Procedia Computer Science, vol. 10, pp. 915–920, 2012.
[26] Jonas, P. Brune, and H. Gewald, “A description and retrieval model for web services

including extended semantic and commercial attributes,” in 2014 IEEE 8th International
Symposium on Service Oriented System Engineering, pp. 258–265, IEEE, 2014.

[27] X. Zheng, Q. Wu, D. Ke, H. Li, and Y. Shi, “Social context enabled description model for
web services,” in International Conference on Information Computing and Applications,
pp. 9–15, Springer, 2012.

[28] C. xiao Zhang, G. bing Zhang, S. xia Xing, and L. Xu, “An improved algorithm of
fuzzy on the qos evaluation of web services based on owl-qos ontology,” in 2013 Interna-
tional Conference on Advanced Computer Science and Electronics Information (ICAC-
SEI 2013), Atlantis Press, 2013.

[29] M. Wei-bing, W. Wen-guang, Z. Yi-fan, and Y. Fa-yi, “Semantic web services description
based on command and control interaction user context,” in 2014 IEEE 7th Joint In-
ternational Information Technology and Artificial Intelligence Conference, pp. 541–544,
IEEE, 2014.

[30] D. Roman, J. Kopeckỳ, T. Vitvar, J. Domingue, and D. Fensel, “Wsmo-lite and hrests:
Lightweight semantic annotations for web services and restful apis,” Journal of Web
Semantics, vol. 31, pp. 39–58, 2015.

[31] S. Chhun, N. Moalla, and Y. Ouzrout, “Qos ontology for service selection and reuse,”
Journal of Intelligent Manufacturing, vol. 27, no. 1, pp. 187–199, 2016.

[32] S. Ghazouani and Y. Slimani, “Towards a standardized cloud service description based
on usdl,” Journal of Systems and Software, vol. 132, pp. 1–20, 2017.

[33] C. Pedrinaci, J. Cardoso, and T. Leidig, “Linked usdl: a vocabulary for web-scale service
trading,” in European Semantic Web Conference, pp. 68–82, Springer, 2014.

34



[34] T. Narock, V. Yoon, and S. March, “A provenance-based approach to semantic web
service description and discovery,” Decision Support Systems, vol. 64, pp. 90–99, 2014.

[35] E. Khanfir, R. B. Djmeaa, and I. Amous, “Quality and context awareness intention web
service ontology,” in 2015 IEEE World Congress on Services, pp. 121–125, IEEE, 2015.

[36] B. De, “Api management,” in API Management, pp. 15–28, Springer, 2017.
[37] F. Khodadadi, A. V. Dastjerdi, and R. Buyya, “Simurgh: A framework for effective

discovery, programming, and integration of services exposed in iot,” in 2015 International
Conference on Recent Advances in Internet of Things (RIoT), pp. 1–6, IEEE, 2015.

[38] H. Benfenatki, C. F. Da Silva, A.-N. Benharkat, P. Ghodous, and Z. Maamar, “Linked
usdl extension for describing business services and users’ requirements in a cloud con-
text,” International Journal of Systems and Service-Oriented Engineering (IJSSOE),
vol. 7, no. 3, pp. 15–31, 2017.

[39] K. Haniewicz, “Local controlled vocabulary for modern web service description,” in
International Conference on Artificial Intelligence and Soft Computing, pp. 639–646,
Springer, 2012.

[40] R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. Van de Walle, and J. G. Vallés,
“Capturing the functionality of web services with functional descriptions,” Multimedia
tools and applications, vol. 64, no. 2, pp. 365–387, 2013.

[41] B. C. Oliveira, A. Huf, I. L. Salvadori, and F. Siqueira, “Ontogenesis: an architecture
for automatic semantic enhancement of data services,” International Journal of Web
Information Systems, vol. 15, no. 1, pp. 2–27, 2019.

[42] G. M. Kapitsaki, “Annotating web service sections with combined classification,” in 2014
IEEE International Conference on Web Services, pp. 622–629, IEEE, 2014.

[43] R. Alarcon, R. Saffie, N. Bravo, and J. Cabello, “Rest web service description for graph-
based service discovery,” in International Conference on Web Engineering, pp. 461–478,
Springer, 2015.

[44] G. Beydoun, A. Hoffmann, R. V. Garcia, J. Shen, and A. Gill, “Towards an assess-
ment framework of reuse: a knowledge-level analysis approach,” Complex & Intelligent
Systems, pp. 1–9, 2019.

[45] X. Xu, R. Liu, Z. Wang, Z. Tu, and H. Xu, “Re2sep: A two-phases pattern-based
paradigm for software service engineering,” in 2017 IEEE World Congress on Services
(SERVICES), pp. 67–70, IEEE, 2017.

[46] H. Chen and K. He, “A method for service-oriented personalized requirements analysis,”
Journal of Software Engineering and Applications, vol. 4, no. 01, p. 59, 2011.

[47] K. Zachos, N. Maiden, X. Zhu, and S. Jones, “Discovering web services to specify more
complete system requirements,” in International Conference on Advanced Information
Systems Engineering, pp. 142–157, Springer, 2007.

[48] B. Verlaine, I. Jureta, and S. Faulkner, “Towards conceptual foundations of requirements
engineering for services,” in Proceedings of the Fifth IEEE International Conference on
Research Challenges in Information Science (RCIS 2011), Gosier, Guadeloupe (I. Com-
puter, ed.), pp. 147–157, IEEE Computer society, 2011. Publication editors : IEEE
Computer Society.

[49] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “A core ontology for requirements,” Applied
Ontology, vol. 4, no. 3-4, pp. 169–244, 2009.

[50] D. Roman, U. Keller, H. Lausen, J. De Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel, “Web service modeling ontology,” Applied ontology, vol. 1,
no. 1, pp. 77–106, 2005.

[51] D. Quartel, W. Engelsman, H. Jonkers, and M. Van Sinderen, “A goal-oriented re-
quirements modelling language for enterprise architecture,” in 2009 IEEE International
Enterprise Distributed Object Computing Conference, pp. 3–13, IEEE, 2009.

[52] E. Niemi and S. Pekkola, “Using enterprise architecture artefacts in an organisation,”
Enterprise information systems, vol. 11, no. 3, pp. 313–338, 2017.

[53] P. Drews, I. Schirmer, B. Horlach, and C. Tekaat, “Bimodal enterprise architecture
management: The emergence of a new eam function for a bizdevops-based fast it,” in 2017

35



IEEE 21st International Enterprise Distributed Object Computing Workshop (EDOCW),
pp. 57–64, IEEE, 2017.

[54] J. Yu, Q. Z. Sheng, J. Han, Y. Wu, and C. Liu, “A semantically enhanced service
repository for user-centric service discovery and management,” Data & Knowledge En-
gineering, vol. 72, pp. 202–218, 2012.

[55] C. E. Hog, R. B. Djemaa, and I. Amous, “Adaptable web service registry for publishing
profile annotation description,” in 2013 IEEE 10th International Conference on Ubiq-
uitous Intelligence and Computing and 2013 IEEE 10th International Conference on
Autonomic and Trusted Computing, pp. 533–538, Dec 2013.

[56] H. Yoo, Y. Park, and T. Lee, “Ontology based keyword dictionary server for semantic
service discovery,” in 2013 IEEE Third International Conference on Consumer Electron-
ics ¿ Berlin (ICCE-Berlin), pp. 295–298, Sep. 2013.

[57] K. Moradyan, O. Bushehrian, and R. Akbari, “A query ontology to facilitate web service
discovery,” in 2015 2nd International Conference on Knowledge-Based Engineering and
Innovation (KBEI), pp. 202–206, Nov 2015.

[58] H. Seba, S. Lagraa, and H. Kheddouci, “Web service matchmaking by subgraph match-
ing,” in Web Information Systems and Technologies (J. Filipe and J. Cordeiro, eds.),
(Berlin, Heidelberg), pp. 43–56, Springer Berlin Heidelberg, 2012.

[59] A. V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. Adam, “Semantics-based automated
service discovery,” IEEE Transactions on Services Computing, vol. 5, no. 2, pp. 260–275,
2011.

[60] Y. Xue, C. Zhang, and Y. Ji, “Restful web service matching based on wadl,” in 2015
International Conference on Cyber-Enabled Distributed Computing and Knowledge Dis-
covery, pp. 364–371, IEEE, 2015.

[61] M. Rathore and U. Suman, “An arsm approach using pcb-qos classification for web
services: a multi-perspective view,” in 2013 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), pp. 165–171, IEEE, 2013.

[62] R. Li, K. He, and S. Wang, “An ontology-based process description and reasoning ap-
proach for service discovery,” in Proceedings of 2013 3rd International Conference on
Computer Science and Network Technology, pp. 320–325, IEEE, 2013.

[63] H. Becha and S. Sellami, “Prioritizing consumer-centric nfps in service selection,” in
International Conference on Conceptual Modeling, pp. 283–292, Springer, 2014.

[64] M. Á. Rodŕıguez-Garćıa, R. Valencia-Garćıa, F. Garćıa-Sánchez, and J. J. Samper-
Zapater, “Ontology-based annotation and retrieval of services in the cloud,” Knowledge-
Based Systems, vol. 56, pp. 15–25, 2014.

[65] N. N. Chiplunkar et al., “Dynamic search and selection of web services,” in 2014 IEEE
International Conference on Advanced Communications, Control and Computing Tech-
nologies, pp. 1532–1536, IEEE, 2014.

[66] M. Matsuda, K. Kodama, S. Noguchi, S. Onishi, T. Asano, T. Horikita, and K. Komat-
subara, “Configuration of a production control system through cooperation of software
units using their capability profiles in the cloud environment,” Procedia CIRP, vol. 17,
pp. 416–421, 2014.

[67] Y. Elshater, K. Elgazzar, and P. Martin, “godiscovery: Web service discovery made
efficient,” in 2015 IEEE International Conference on Web Services, pp. 711–716, IEEE,
2015.

[68] N. Boissel-Dallier, F. Benaben, J.-P. Lorré, and H. Pingaud, “Mediation information
system engineering based on hybrid service composition mechanism,” Journal of Systems
and Software, vol. 108, pp. 39 – 59, 2015.

[69] L. Purohit and S. Kumar, “Web service selection using semantic matching,” in Pro-
ceedings of the International Conference on Advances in Information Communication
Technology & Computing, p. 16, ACM, 2016.

[70] F. Zeshan, R. Mohamad, M. N. Ahmad, S. A. Hussain, A. Ahmad, I. Raza, A. Mehmood,
I. Ulhaq, A. Abdulgader, and I. Babar, “Ontology-based service discovery framework for
dynamic environments,” IET Software, vol. 11, no. 2, pp. 64–74, 2017.

36



[71] W. Mu, F. Benaben, and H. Pingaud, “An ontology-based collaborative business service
selection: contributing to automatic building of collaborative business process,” Service
Oriented Computing and Applications, vol. 12, no. 1, pp. 59–72, 2018.

[72] K. Elgazzar, H. S. Hassanein, and P. Martin, “Daas: Cloud-based mobile web service
discovery,” Pervasive and Mobile Computing, vol. 13, pp. 67–84, 2014.

[73] A. Belfadel, J. Laval, C. B. Cherifi, and N. Moalla, “Toward service orchestration through
software capability profile,” in Enterprise Interoperability VIII, pp. 385–395, Springer,
2019.

[74] E. Al-Masri and Q. H. Mahmoud, “Qos-based discovery and ranking of web services,” in
2007 16th international conference on computer communications and networks, pp. 529–
534, IEEE, 2007.

[75] A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide, “Search-based web service an-
tipatterns detection,” IEEE Transactions on Services Computing, vol. 10, no. 4, pp. 603–
617, 2015.

[76] I. O. for Standardization, “Iso/iec 25010:2011 systems and software engineering – systems
and software quality requirements and evaluation (square) – system and software quality
models,” 2011.

[77] M. Patterns and P. Team, Microsoft R© Application Architecture Guide, 2nd Edition (Pat-
terns and Practices). Microsoft Press, 2009.

[78] T. O. Group, The Open Group Architecture Framework TOGAFTM Version 9. Basharat
Hussain, 2009.

[79] C. Mateos, M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo, “Measuring the
impact of the approach to migration in the quality of web service interfaces,” Enterprise
Information Systems, vol. 9, no. 1, pp. 58–85, 2015.

[80] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, “Specification and detection
of soa antipatterns in web services,” in European Conference on Software Architecture,
pp. 58–73, Springer, 2014.

[81] A. Josey, M. Lankhorst, I. Band, H. Jonkers, and D. Quartel, “An introduction to the
archimate R© 3.0 specification,” White Paper from The Open Group, 2016.

[82] J. M. França and M. S. Soares, “Soaqm: Quality model for soa applications based on iso
25010.,” in ICEIS (2), pp. 60–70, 2015.

[83] I. O. for Standardization, “Iso 16100-1:2009 industrial automation systems and integra-
tion – manufacturing software capability profiling for interoperability – part 1: Frame-
work,” 2009.

[84] S. Robertson and J. Robertson, Mastering the requirements process: Getting requirements
right (3rd Edition). Addison-wesley, 2012.

[85] M. Uschold and M. King, “Towards a methodology for building ontologies,” 1995.
[86] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,

B. Parsia, T. Payne, M. Sabou, M. Solanki, et al., “Bringing semantics to web services:
The owl-s approach,” in International Workshop on Semantic Web Services and Web
Process Composition, pp. 26–42, Springer, 2004.

[87] A. Gerber, P. Kotzé, and A. Van der Merwe, “Towards the formalisation of the togaf
content metamodel using ontologies,” 2010.

[88] M. Rospocher, C. Ghidini, and L. Serafini, “An ontology for the business process mod-
elling notation.,” in FOIS, pp. 133–146, 2014.

[89] W. Ceusters, “An information artifact ontology perspective on data collections and as-
sociated representational artifacts.,” in MIE, pp. 68–72, 2012.

[90] R. Arp, B. Smith, and A. D. Spear, Building ontologies with basic formal ontology. Mit
Press, 2015.

[91] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider, “Sweetening ontolo-
gies with dolce,” in International Conference on Knowledge Engineering and Knowledge
Management, pp. 166–181, Springer, 2002.

[92] L. Peņicina, “Choosing a bpmn 2.0 compatible upper ontology,” pp. 89–96, 2013.
[93] A. Czarnecki and C. Or lowski, “Ontology as a tool for the it management standards

37



support,” in KES International Symposium on Agent and Multi-Agent Systems: Tech-
nologies and Applications, pp. 330–339, Springer, 2010.

[94] W. Chen, C. Hess, M. Langermeier, J. von Stülpnagel, and P. Diefenthaler, “Semantic
enterprise architecture management.,” in ICEIS (3), pp. 318–325, 2013.

[95] O. Lassila, R. R. Swick, et al., “Resource description framework (rdf) model and syntax
specification,” 1998.

[96] B. Green and S. Seshadri, AngularJS. ” O’Reilly Media, Inc.”, 2013.
[97] M. Cantelon, M. Harter, T. Holowaychuk, and N. Rajlich, “Node. js in action, greenwich,

ct,” 2013.
[98] A. Jena, “Fuseki: serving rdf data over http,” 2014.
[99] P. Eeles, “Capturing architectural requirements,” 2005. Accessed: 2020-06-10.

[100] V. M. Bauer, Analysing and supporting software reuse in practice. PhD thesis, Technische
Universität München, 2016.

[101] O. P. N. Slyngstad, A. Gupta, R. Conradi, P. Mohagheghi, H. Rønneberg, and E. Landre,
“An empirical study of developers views on software reuse in statoil asa,” in Proceedings
of the 2006 ACM/IEEE international symposium on Empirical software engineering,
pp. 242–251, 2006.

[102] J. Varnell-Sarjeant, A. A. Andrews, and A. Stefik, “Comparing reuse strategies: An
empirical evaluation of developer views,” in 2014 IEEE 38th International Computer
Software and Applications Conference Workshops, pp. 498–503, IEEE, 2014.

[103] A. Pendse and H. Amre, “Software 4.0: ’how’of building’next-gen’systems,” in Proceed-
ings of the 11th Innovations in Software Engineering Conference, pp. 1–2, 2018.

Glossary

ABB Architecture Building Block. 10–14, 19, 28, 29, 32
ADM Architecture Development Method. 8, 10, 15
API Application Programming Interface. 10–13

BFO Basic Formal Ontology. 23, 24, 31
BPMN Business Process Model Notation. 10, 15, 20, 22, 23, 29, 30

EACP Enterprise Architecture Capability Profile. 3, 8–10, 12–15, 23–26, 28, 30–32
EAKR Enterprise Architecture Knowledge Repository. 9, 10, 12, 14, 15, 17–20, 22,

25, 27–29, 31, 32

HTTP Hypertext Transfer Protocol. 11

IAO Information Artifact Ontology. 23
ICT Information and Communication Technology. 2

JSON JavaScript Object Notation. 11

MVC Model View Controller. 25

OWL-DL Ontology Web Language Description Logics. 23
OWL-S Web Ontology Language for Web Services. 5, 23

QOS Quality of Service. 4, 6, 9, 10, 12–14, 21, 22, 30

RDF Resource Description Framework. 24
REST Representational State Transfer. 11

38



SBB Solution Building Block. 10–15, 18, 20–22, 28–30, 32
SOA Service Oriented Architecture. 2

TOGAF The Open Group Architecture Framework. 4, 8–10, 12, 15, 23–25, 30

UDDI Universal Description Discovery and Integration. 6
UML Unified Modeling Language. 19, 28
URI Uniform Resource Identifier. 11, 14, 23

WSMO Web Service Modeling Ontology. 5, 6

39


