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ABSTRACT
Point spread function (PSF) reconstruction (PSF-R) is a well established technique to
determine reliably and accurately the PSF from Adaptive Optics (AO) control loop
data. We have successfully applied this technique to improve the precision on photom-
etry and astrometry to observation of NGC6121 obtained with SPHERE/ZIMPOL as
it will be presented in a forthcoming letter. Firstly, we present the methodology we
followed to reconstruct the PSF combining pupil-plane and focal-plane measurements
using using our PSF-R method PRIME (Beltramo-Martin et al. 2019), with upgrade
of both the model and best-fitting steps compared to previous papers. Secondly, we
highlight that PRIME allows to maintain the PSF fitting residual below 0.2% over 2
hours of observation and using only 30 s of AO telemetry, which may have important
consequences for telemetry storage for PSF-R purpose on future 30-40 m class tele-
scopes. Finally, we deploy PRIME in a more realistic regime using faint stars so as to
identify the precision needed on the initial guess parameters to ensure the convergence
towards the optimal solution.

Key words: instrumentation: Adaptive optics – atmospheric effects – methods:data
analysis – methods: analytical

1 INTRODUCTION

Point Spread Function (PSF) analysis of seeing and diffrac-
tion limited images in crowded stellar fields became a consol-
idate technique since the late eighties. There are several com-
monly used astronomical packages that successfully apply
this technique, such as STARFINDER (Diolaiti et al. 2000),
SEXTRACTOR (Bertin & Arnouts 1996), or DAOPHOT
(Stetson 1987). These are essentially based on the extraction
and the modeling of the PSF using isolated stars across the
scientific Field of View (FoV). This task can be particularly
challenging in two opposite cases, in very dense stellar fields,
like the core of globular clusters, where a solid PSF model-
ing is compromised by confusion, as well as in sparsely dense
fields surrounding isolated galaxies, where no or few point-
like sources are available for PSF modeling. These two sit-

? E-mail: olivier.beltramo-martin@lam.fr

uations become even more demanding when observing with
Adaptive Optics (AO) instruments since the size of the im-
aged FoV ranges typically from tens of arcsec to few arcmin,
thus preventing us very often to have isolated stars at dis-
posal for a robust PSF analysis. Furthermore, when dealing
with AO systems, the complexity of the PSF increases when
compared with seeing limited images and, last but not least,
the real time turbulence correction make the PSF changing
across the FoV, the time and the spectrum. The combination
of source crowding and PSF inhomogeneity strongly affects
the estimate of source parameters like magnitude and posi-
tion (Massari et al. 2016a,b; Schödel 2010; Yelda et al. 2010).
Photometric and astrometric accuracy can be enhanced us-
ing innovative approaches that account for AO PSF spatial
variations models (Ciurlo et al. 2018; Witzel et al. 2016).

In the new era of Giant Segmented Mirror Telescopes
(GSMTs), mainly fed by AO modules, our ability in per-
forming good PSF fitting will be crucial. In fact, we aim to

c© 2019 The Authors

ar
X

iv
:2

00
1.

10
26

7v
1 

 [
as

tr
o-

ph
.I

M
] 

 2
8 

Ja
n 

20
20



2 O. Beltramo-Martin et al.

improve the photometric and astrometric accuracy and pre-
cision by at least a factor three, while the complexity of the
PSF structure will increase. In this context, an alternative
PSF determination approach, the so-called PSF reconstruc-
tion (PSF-R), is investigated since 20 years. This method
uses information from the AO control loop data in order to
build a theoretical PSF model as reminded in Sect. 2. As
analyzed in Ascenso et al. (2015), PSF-R is truly promising
to tackle actual limitations of standard standalone image
processing pipeline. However, PSF-R has never reached the
point to be fully integrated into a dedicated software for im-
age analysis and operable for astronomers, calling for push-
ing PSF-R to a more suitable mode for later implementation
into a pipeline.

Moreover, one of the major issues PSF-R developers experi-
enced is the calibration of scalar system parameters, such
as seeing and WFS optical gains for instance. Although
it remains feasible to identify these parameters from the
telemetry, estimates are usually provided with 10% accu-
racy (Jolissaint et al. 2018), which limits the PSF-R accu-
racy to closely at the same percentage as we illustrate in
Sect. 2.3. Another way to say it is that handling the sole
AO telemetry alone is not sufficient to reach 1% level accu-
racy on the PSF. However, a very accurate PSF estimates
at 1% level may be needed, especially for stellar popula-
tions analysis In this context, we have introduced PRIME
(Beltramo-Martin et al. 2019) as a novel approach that com-
bines pupil-plane (AO telemetry) and focal-plane (imager
frames) data to overcome the problem of system parameters
identification and therefore optimize the PSF-R.

We have successfully deployed PRIME on NGC6121 im-
ages obtained in 2018 with the Zurich IMaging POLarimeter
(ZIMPOL) instrument (Schmid et al. 2018) mounted at the
focal plane of the Spectro Polarimetric High-contrast Exo-
planet REsearch (SPHERE) instrument (Beuzit et al. 2019)
at the Very Large Telescope (VLT). Results showed a factor
10 improvement on photometric precision and will be pre-
sented in an upcoming paper (Massari et al. 2020). Firstly,
we are willing in this paper to present the exact methodology
we followed to reconstruct the PSF using an upgraded ver-
sion of PRIME presented in Sect.3.1. Secondly, another ma-
jor drawbacks of PSF-R for future GSMTs lies in the large
amount of telemetry data we must handle and archive every
observation. With PRIME, we show in Sect. 3.2 that we can
mix 30 s of telemetry data with images acquired 2 h later
and still achieve an accurate PSF determination below 0.2%
of mean residual, which offers the possibility to not store the
full AO telemetry during observation. Finally, in Sect. 4, we
present an utilization of PRIME in a more realistic scenario
using faint stars (mV=15-16 mag) and compared the recon-
structed PSF with the on-axis bright source (mV=10.6 mag)
of the NGC6121 field. In order to mitigate noise propagation
into the criterion solving, we compare different methods to
constrain the solution using either hard-bounds or Gaussian
statistics assumption on parameters and conclude about the
best strategy. Discussions and conclusions are given in Sect.
5.

2 RECONSTRUCTING THE PSF

PSF-R inherits from image formation theory proposed by
Roddier (1981) to connect the focal-plane image to the in-
coming wavefront distortions within the pupil plane. In the
case we neglect scintillation effect and assume that the phase
of the electric field in the pupil plane is spatially stationary,
the long-exposure (e.g. the acquisition time is much larger
than the turbulence coherence time) Optical Transfer Func-
tion (OTF), defined as the PSF Fourier transform, is de-
composed as the following multiplication:

h̃(ρ/λ) = h̃T(ρ/λ).h̃ε(ρ/λ). (1)

where ρ/λ is the angular frequency with λ the observation
wavelength, h̃ the total OTF, h̃T the telescope + instrument
OTF that is derived from the pupil function autocorrelation
and h̃ε the residual atmospheric OTF. PSF-R aims at esti-
mating h̃ε from

h̃ε(ρ/λ) = exp (Bε(ρ)− Bε(0)), (2)

where Bε is the residual phase covariance function that can
be theoretically captured from the AO control loop data, i.e.
the Wavefront Sensor (WFS) measurements and commands
applied to the Deformable Mirror (DM). Bε is split into a
sum of covariance error terms, assumed to be independent
each other as follows

Bε(ρ) = B⊥(ρ) + B‖(ρ) + B∆(ρ), (3)

B⊥ refers to uncompensated spatial frequencies while B‖ in-
clude AO residual only and B∆ corresponds to the aniso-
planatism effect. The calculation of this latter can be found
in multiple references (Beltramo-Martin et al. 2018; Britton
2006; Flicker et al. 2003; Fusco et al. 2000; Whiteley et al.
1998). In the case of SPHERE/ZIMPOL, we must only ac-
count for angular anisoplanatism that is produced by the
spatial decorrelation of the incoming wavefront. In V-band,
the typical isoplanatic angle at Paranal has been measured
to θ0 = 2 arcsec (Osborn et al. 2018; Masciadri et al. 2014),
which is the separation from the guide star beyond which the
PSF becomes significantly elongated by the anisoplanatism
effect.

2.1 Reconstruction of uncompensated modes

B⊥(ρ) is calculated from the perpendicular Power Spectrum
Density (PSD) as follows

B⊥(ρ) = F−1 [W⊥(k/λ)] , (4)

where F−1 is the Fourier operator and W⊥ is the Von-
Kármán atmospheric PSD filtered by the corrected frequen-
cies

W⊥(k) =

{
0.0229r

−5/3
0 (k2 + 1/L2

0)−11/6 if k > kAO

0 otherwise
(5)

with r0 is the Fried’s parameter (connected to the seeing),
k = |k| and kAO is the AO cut-off frequency approximated
by kAO ' nact/2D, where nact is the number of actuators
per row and D the pupil diameter. This cut-off frequency
is a function of the number of controlled modes, but we
can still define an equivalent value of nact that produces the
same fitting error, in the sense that this approximation is not
critical for the following. The fitting PSD can be calculated
once and scaled regarding the r0 value.

MNRAS 000, 1–15 (2019)



PSF reconstruction for SPHERE/ZIMPOL 3

2.2 Reconstruction of corrected modes

B‖ is computed directly from the AO telemetry (Veran et al.
1997). However, some care must be given to the aliasing that
affects WFS measurements and the PSF morphology. In the
case of large bandwidth system (with a measurements rate
of 1380 Hz, SPHERE complies with this hypothesis), Veran
et al. (1997) shows that the phase produced by the DM
is anticorrelated to the WFS aliasing perturbation created
by high-order modes. Therefore, calculations show that to
account for aliasing in the PSF-R process, one must add
the aliasing closed-loop covariance to the covariance func-
tion derived from WFS slopes (that is contaminated by the
aliasing). Moreover, tip-tilt modes are corrected by using
a Linear Quadratic Gaussian (LQG) algorithm (Petit et al.
2014), while higher order modes are controlled using a modal
optimization-based integrator (Petit et al. 2008). This does
not matter in the present case, expect for noise variance
modeling for faint guide stars, however we will have to han-
dle tip-tilt modes differently from other corrected ones in
Sect. 3 and we introduce herein a split reconstruction for
latter use. Eventually, we have

B‖(ρ) = BAO(ρ) + BTT(ρ) + BAL(ρ) (6)

where BAO is the tip-tilt excluded AO residual phase covari-
ance, BTT is the residual jitter covariance, BAL the model
of the aliasing covariance that affects the PSF.

2.2.1 Reconstruction of tip-tilt excluded modes

Methodology for calculating BAO from WFS measurements
is highly spread in the literature (Beltramo-Martin et al.
2019; Ragland et al. 2018; Jolissaint et al. 2015; Gilles et al.
2012; Veran et al. 1997); practically we used the Vii algo-
rithm proposed by (Gendron et al. 2006) where

BAO(ρ) =

nact∑
i

Λ(i, i)Vii(ρ), (7)

being Vii the Vii functions obtained from the eigen decom-
position of the matrix of the High-order DM (HODM) in-
fluence functions (HODM influence matrix). The use of the
Vii functions allows us to speed up significantly the covari-
ance calculation. Λ is the diagonal matrix that contains
the eigenvalues of the covariance matrix CAO. This latter is
estimated empirically from the tip-tilt excluded WFS mea-
surements as follows (Vigan et al. 2019)

CAO =

(
2π

λ

)2

RAO

(〈
s.st

〉
−
〈
η.ηt

〉)
RtAO, (8)

where RAO is the matrix that reconstructs the point-wise
wavefront from the WFS measurements s that are contam-
inated by an additive noise η and where

〈
x.xt

〉
refers to

the empirical covariance matrix of vector x. The noise co-
variance can be estimated using analytical formula (Rousset
et al. 1987), from the measurements temporal autocorrela-
tion (Gendron & Léna 1995) or from their temporal PSD
(Jolissaint et al. 2015) to mention only these approaches. In
the specific case of SPHERE/ZIMPOL, the reconstructor
RAO is derived from successive multiplications of calibrated
matrices:

RAO =

(
632.10−9

2π

)
iF.PM2V.P S2M.PAO, (9)

where

• iF is the calibrated HODM influence matrix that con-
verts HODM voltages to a wavefront at 632 nm. It has a
dimension of 2402 × nact, where 240 is the pupil resolu-
tion in pixel during the calibration, which is interpolated
to 2× nact + 1 for speeding up the reconstruction.
• PM2V is the mode-to-voltage matrix that transforms

nmode Karhunen-Loève (KL) modes to nact HODM voltages
in stroke units.
• P S2M is the slope-to-mode matrix that projects 2 ×

nsubap slope measurements in pixel to nmode KL-mode.
• PAO is a 2nsubap×2nsubap matrix that filters the tip-tilt

modes out from the slopes measurements.

2.2.2 Reconstruction of tip-tilt modes

The tip-tilt covariance function in Eq.3 is derived as follows:

BTT(ρ) =
1

D2
(CTT(1, 1).ρ2

x + CTT(2, 2)ρ2
y

+2× CTT(1, 2)ρxρy) ,
(10)

where ρx, ρy are the x/y projection of the separation vector
ρ from −D/2 to D/2 and CTT the tip-tilt covariance matrix.

CTT =

(
2π

λ

)2

RTT

(〈
s.st

〉
−
〈
η.ηt

〉)
RtTT, (11)

whereRTT permits to reconstruct the tip-tilt wavefront over
the pupil in meter using

RTT =
2.6× π ×D
180× 3600

.(PTT.DV2S)†.PTT, (12)

with (x)† the generalized invert matrix and

• PTT is a 2 × 2nsubap matrix that projects the slopes
measurements onto tip-tilt modes.
• DV2S is the 2nsubap × 2 calibrated tip-tilt interaction

matrix that converts the two tip-tilt DM commands into
WFS slopes.

2.2.3 Reconstruction of the aliasing

The aliasing covariance function is derived from a model of
the aliasing PSD WAL (Correia & Teixeira 2014; Jolissaint
2010; Flicker 2008) that accounts for the spatial filtering of
the Shack-Hartmann WFS and the temporal propagation of
the aliased measurement through the AO loop. Eventually
we have

BAL(ρ) = F−1 [WAL(k)] , (13)

with WAL calculated for any considered atmospheric layer
by, firstly aliasing the Von-Kármánn atmospheric PSD
around multiple of 1/d, with d the sub-aperture size, sec-
ondly propagating the PSD through the Shack-Hartmann
spatial filter (Rigaut et al. 1998) and the temporal rejec-
tion function of the loop, which is spatialized by replacing
temporal frequencies with f = k.vl where vl is the velocity
vector (norm is the windspeed value, angle is the wind di-
rection) of the lth layer. We obtain the following expression

MNRAS 000, 1–15 (2019)



4 O. Beltramo-Martin et al.

for the aliasing PSD in closed-loop operation

WAL(k) =
0.0229r

−5/3
0

4sinc (kd)
×

ζ∑
p=−ζ
p6=0

ζ∑
q=−ζ
q 6=0

nL∑
l=1

fl
(k−1.kpq)

2sinc (kpd) sinc (kqd)

(k2 + 1/L0(l)2)11/6
.Hcl(l),

(14)

with

Hcl(l) =

g2sinc (kpvlxti) sinc (kqvlyti) exp(2iπ(kpvlx + kqvly)td)

1− 2(ι− g) cos (2πkpvlxti) cos (2πkqvlyti) + (ι− g)2

(15)

where

• kpq = (kp, kq) with kp = kx − p/d and kq = ky − q/d
as the x/y frequency vectors shifted by respectively p/d and
q/d.
• ζ is a unitless number defined by the highest frequency

seen by the WFS normalized by the DM cut-off frequency
kAO. This number accounts for the spatial filtering in the
WFS optical path that has been implemented to mitigate
as much as possible the aliasing effect (Poyneer et al. 2006).
• vlx = vl cos(ωl) and vly = vl sin(ωl) are the components

of the velocity vector at height hl, projected respectively on
the x-axis and y-axis of the frequency plan, with vl, ωl the
corresponding turbulence velocity and wind direction values
at height hl.
• L0(l) is the outer scale vertical profile. Practically, we

have chosen a flat profile and L0 = 25, but methods exist to
retrieve the integrated outer scale value from the telemetry
(Andrade et al. 2019).
• ti and td are respectively the WFS temporal sampling

frequency and the loop delay, that is 2.3 frames (Cantalloube
et al, in prep).
• g is the average of modal gain vector (Petit et al. 2008).

To be more accurate, we should evaluate how the WFS alias-
ing propagate through each controlled KL mode and though
the AO loop by taking into account the modal optimiza-
tion. However such a description would drastically increase
the complexity of the aliasing PSD computation for a small
improvement eventually.
• ι is the integrator leak factor set to 1 (no leak) in the

rest of this paper.

2.3 Application to SPHERE/ZIMPOL

2.3.1 Data

We have acquired observations of NGC6121 with the ZIM-
POL V-filter (central wavelength 554 nm, width 80.6 nm)
in the context of technical calibrations 1 granted after the
2017 ESO calibration workshop http://www.eso.org/sci/

meetings/2017/calibration2017.
With a pixel scale of 7.2 mas/pixel, the detector was cov-
ering a 3.5 arcsec × 3.5 arcsec field of view as illustrated in
Fig.1. We summarize the acquisition time in Tab 1 as the
corresponding airmass value as well. The AO system ran at
300 Hz, instead of the nominal 1380 Hz owing to of the

1 ESO program ID of observations: 60.A-9801(S)

Figure 1. Stack of the 26 frames of NGC6121 observations ob-
tained with SPHERE/ZIMPOL on June 26th 2018. Coordinates

correspond to the distance in arcsec from the bright AO guide

star. The field was 3.5 arcsec × 3.5 arcsec large and four off-axis
stars, encircled in white and numbered, were imaged.

faintness (V=10.6 mag) of the AO guide star and the grey
dichroic used to share visible light between ZIMPOL and
the WFS. The data were acquired in field stabilization with
the Slow Polarimetry readout mode, which provides a read-
out noise 7 times smaller that the standard imaging mode,
to enhance the S/N of the fainter off-axis sources. The data
were reduced using the SPHERE Data and Reduction Han-
dling pipeline (DRH) to extract the intensity image, sub-
tract a bias frame and correction for the flat-field. Dedicated
Python routines were later used to recenter the individual
frames, correct for bad-pixels and average the frames in a
single reduced image as shown in Fig. 1.
The imaged field belongs to the central region of the afore-
mentioned globular cluster, and includes five stars, the
brightest of which was used to guide the AO system. The
four others are more than 1.7 arcsec away from the guide
star. This field has been selected in order to quantify achiev-
able limits on photometry and astrometry estimates of faint
stars confused in the guide star halo and accurate HST mea-
surements exist for comparison purpose.
On top of that, we had synchronous atmospheric parameters
measurements delivered by, on the one hand, the MASS-
DIMM at Paranal (Butterley et al. 2018; Tokovinin & Ko-
rnilov 2007) as well as the stereo-SCIDAR (Osborn et al.
2018), on the other hand, from the AO real time computer
called SPARTA (Fedrigo et al. 2006). We present the tem-
poral evolution during the observation in Fig.2. As already
noticed by Milli et al. (2017), there are large discrepancies
between SPARTA and MASS-DIMM estimates, but both
claim that observing conditions were quite stable over the
two observing slots. According to SPARTA, seeing and tur-
bulence coherence time median values reached respectively

MNRAS 000, 1–15 (2019)
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PSF reconstruction for SPHERE/ZIMPOL 5

Table 1. Summary of NGC6121 data successively acquired with

ZIMPOL on the 26th June 2018 night, with a total of 26 images

of 200s-exposure (NDIT=2, DIT=100s) each.

Acquisition date Airmass Acquisition date Airmass

First slot of observations

05:03:57

+ AO data
1.169 05:26:06 1.238

05:07:17 1.18 05:29:26 1.243

05:11:27 1.191 05:33:23 1.265

05:14:47 1.201 05:36:43 1.282

05:18:49 1.213 05:42:11 1.300

05:22:09 1.225 05:45:31 1.315

Second slot of observations

06:43:43

+ AO data
1.672 07:08:57 1.934

06:47:03 1.704 07:12:55 1.977

06:51:00 1.737 07:16:15 2.177

06:54:20 1.771 07:20:19 2.077

06:58:18 1.809 07:23:39 2.118

07:01:38 1.849 07:27:36 2.186

07:05:37 1.889 07:30:56 2.271

0.6 arcsec and 11 ms during the first part of the night, which
evolved to 0.5 arcsec and 9 ms during the second slot.
Finally, we have also two 30 s-long data sets of AO control
loop data (WFS slopes, DM commands, calibrated matrices)
obtained at 05h04m and 06h44m simultaneously with the
beginning of ZIMPOL observations, as reported in Tab.1.
From the image, we have estimated a Strehl-ratio (SR) in
V-band from the integration of the OTF over angular fre-
quencies normalized to the diffraction limit OTF. We ob-
tained of 1.4 %± 0.63 % over the whole observation, which
corresponds to 182 nm ± 10, with a drop of 40% in perfor-
mance between slot 2 and slot 1.

2.3.2 On-axis PSF-R results

We have followed the mathematical formalism presented in
Sect. 2 to reconstruct the PSF from the two AO data sets
acquired at the beginning of each observing time slot. The
methodology to treat the AO control loop data was strictly
the very same, and we present in Fig. 3 reconstruction re-
sults compared to on-axis image. To obtain a proper com-
parison, we have adjusted the photometry and astrometry
by using a weighted best-fitting to scale the PSF over the
on-axis image. Results are somehow disappointing for sev-
eral reasons. First of all, PSF wings are not systematically
correctly retrieved, as we see with the second case for which
r0 is underestimated, ie. the atmospheric disturbances are
expected to be stronger than they were actually. Moreover,
the reconstruction of the PSF core does not behave similarly
although the data processing is kept identical. We may have
overestimation as well as underestimation of the PSF peak
intensity.
This situation occurs systematically when trying PSF-R:
current algorithms usually fail achieving a stable, efficient
and reproducible reconstruction across the multiple data
sets they are tested on. There is a necessary need to cal-
ibrate a posteriori the algorithm over a sub-sample of data
to approach the ultimate algorithm that would provide the
same level of relative accuracy whatever the observing con-
ditions. This calibration consists generally in applying some

Figure 2. Top: Seeing estimation at zenith and 500 nm Bottom:

Turbulence coherence time estimation with respect to observing
hour. Blue areas indicate the time window we had acquired ZIM-

POL data.

fudge factors to the telemetry (Ragland et al. 2016; Martin
et al. 2016; Clénet et al. 2008), or/and to the noise variance.
The main conclusion of more than 20 years of efforts
doing PSF-R is that PSF-R is not going to achieve
proper PSF estimation by using the standard PSF-R
framework.

2.3.3 Off-axis PSF-R results using SCIDAR data

As illustrated in Fig. 1, the field also contains off-axis stars
that are sufficiently distanced from the guide star to be
potentially contaminated by the anisoplanatism effect. We
have access to stereo-SCIDAR data at Paranal (Osborn et al.
2018) acquired during the same time slot than ZIMPOL im-
ages. We report in Fig. 4 the C2

n(h) evolution across time and
the corresponding ZIMPOL observations time slots. This
shows that the atmosphere was particularly concentrated
into the first km, which does not produce a significant aniso-
planatism. This latter was mostly generated by jet-streams
between 8 and 12 km, whose strength has slightly vanished
across time.
We report in Tab. 2 the r0, average altitude and isoplanatic
angle values obtained from the SCIDAR measurements at
zenith and λ = 500 nm. The r0 value is calculated as follows

MNRAS 000, 1–15 (2019)



6 O. Beltramo-Martin et al.

Figure 3. Azimuthal average of sky and reconstructed PSFs ob-

tained with 05:04 (up) and 06:43 (down) data. The PSF was
reconstructed using the very same formalism presented in Sect.

2.

(Fried 1965)

r0(h > H) =

(
0.423

(
2π

λ

)2 ∫ ∞
H

C2
n(h)dh

)−3/5

, (16)

where H is the height above which the r0 is measured from.
The mean-weighted altitude h̄ gives the layer height that
would produce the same anisoplanatism regarding the C2

n

distribution and is defined as (Fried 1982)

h̄ =

(∫∞
0
h5/3C2

n(h)dh∫∞
0
C2
n(h)dh

)3/5

. (17)

Finally, the isoplanatic angle that defines the separation an-
gle from the guide star above which the PSF evolves aniso-
planatically is calculated from

θ0 = 0.057λ6/5

(∫ ∞
0

h5/3C2
n(h)dh

)−3/5

. (18)

Values in Tab. 2 show a mitigation of the anisoplanatism ef-
fect during the second observing slot, but because the large
telescope zenith angle (60deg), the S/N at off-axis stars di-
rections has drastically diminished due to (i) atmospheric
extinction that lessens the number of collected photons (ii)
more anisoplanatism effect in the telescope line of sight that
decreases the ensquared energy.

Figure 4. C2
n(h) estimated by the SCIDAR at Paranal (Osborn

et al. 2018) across time. White bands corresponds to ZIMPOL

observing time.

Table 2. Atmospheric characteristics given by the stereo-

SCIDAR at zenith and 500 nm.

First slot Second slot

r0 (cm) 11.6 ± 1.1 13.8 ± 1.1

r0(h>1 km) 15.3 ± 1.4 18.5 ± 1.9

h̄ (km) 6.4 ± 0.4 6.4± 0.8

θ0 (arcsec) 1.2 ± 0.1 1.4± 0.2

θ0 (line of sight) 1.1 ± 0.1 0.9± 0.1

Table 3. PSFs FWHM for the five stars in the field derived from

reconstructed PSF models.

FWHM (mas)

Diffraction @ 554 nm 14

On-axis PSF 33.1 ± 2.0

Off-axis PSF 1 37.4 ± 3.2

Off-axis PSF 2 36.2 ± 2.8

Off-axis PSF 3 38.9 ± 3.9

Off-axis PSF 4 38.6 ± 3.8

Regarding θ0 and stars distance from on-axis, off-axis im-
ages should be slightly affected by the anisoplanatism effect.
We have measured the PSF Full Width at Half Maximum
(FWHM) of the five stars as reported in Tab. 3, that in-
dicates that the AO system did not reach the diffraction
at 554 nm, which was expected (Fusco et al. 2014). How-
ever, separation between the AO correction area and PSF
wings is not very clear in Fig. 8, advocating that there is
an atmospheric or instrumental effect, which looks like to a
residual jitter according to the elongated PSF pattern, that
blurs the image. This is likely introduced by the low frame
rate of 300 Hz, which corresponds to the typical coherence
time, that introduce a large servo-lag error. Consequently,
off-axis PSFs are not significantly larger than the on-axis
PSF, which suggests that the anisoplanatism is there, but
the PSF morphology is dominated by the servo-lag error.
Our point is now to determine whether there is a need to
account for anisoplanatism to calibrate the PSF model from
off-axis stars. To do so, we have best-fitted off-axis images
to retrieve photometry/astrometry using two different PSF
models (i) the on-axis image (ii) the off-axis PSFs calculated
by convolving the on-axis PSF with an anisoplanatism spa-
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Figure 5. Mean square error as calculated in Eq. 22 obtained by
best-fitting (Stellar parameters only) off-axis sources using a off-

axis model (on-axis PRIME + SCIDAR) or the on-axis PRIME

PSF. Results were obtained of the 12 first ZIMPOL frames.

tial filter calibrated from SCIDAR measurements. If there is
a real anisoplanatism, the second model should give better
results. Because S/N reasons, we have treated only the 12
first ZIMPOL frames that were acquired at a lower telescope
zenith angle.
In Fig 5, we compare the residual error obtained with Eq.
22 computed with versus without use of SCIDAR data. We
see that the off-axis PSF model barely improves the PSF
model, but this improvement remains marginal enough to
claim that the anisoplanatism does not contribute to PSF
inhomogeneity, despite that the stars separation is larger
than θ0. We show this in more detail for the off-axis star
#1 in Fig. 5: clearly, the residuals do not improve by in-
cluding the effect of anisoplanatism. This is likely due to
a large residual jitter effect in the PSF that creates an
elongated pattern that masks the anisoplanatism feature.
In other words, accounting for the anisoplanatism produces
only a very marginal improvement on the PSF modeling;
therefore we chose to consider the PSF homogeneous across
the field, which means that we will derive the PSF from the
integrated r0 value only.

3 PRIME: A COMPLEMENTARY TOOLS TO
IMPROVE CLASSICAL PSF-R SCHEME

3.1 Introduction to PRIME

New approaches must be envisioned to step into the next
level of PSF-R. We have introduced the so-called method
PRIME (Beltramo-Martin et al. 2019) that yields a built-
in parametric PSF model using AO measurements. As dis-
cussed, the reconstruction relies usually on fudge factors
which are learned by comparing PSF-R to on-sky images and
set up as constants afterwards. There were no tentative so
far to figure out whether these fudge factors vary accordingly
with observing conditions changes. This is what PRIME is
going to achieve: it retrieves these factors by adjusting them
to match available PSFs in the field. In other words, we com-
bine pupil-plane (PSF-R framework) and focal-plane (best-
fitting technique) to calibrate the PSF model across field
and spectrum. PRIME permits to avoid collecting specific

calibration data for PSF estimation purpose. For instance,
there is no more need of offsetting the telescope or request-
ing technical time to test PSF-R. The major drawbacks is
the need of stars in the field, which does not comply with
all science cases so far, but we will discuss in Sect. 3.3 what
are the considered strategies to deliver a PSF regardless of
the science field configuration. Assuming that we have stars
in the field, PRIME achieves the PSF calibration as follows

• Step 1: Instantiate the PSF model by calculating the
covariance matrices introduced in Sect. 2.
• Step 2: Extract sub-fields of the image (user-defined)

that contains one or several PSFs.
• Step 3: Define PSF model parameters to be adjusted.

In the following, we will estimate only four parameters using
the following parametrization

Bε(ρ) = r
−5/3
0 × (B⊥(ρ, r0 = 1) + gal × BAL(ρ, r0 = 1))

+ gao × BAO(ρ) + gtt × BTT(ρ)

(19)

where we assume to work in the isoplanatic regime, e.g.
there is no need to include the anisoplanatism covariance
function. On top of the r0 value that will be estimated on
the focal-plane image, we include three system parameters
gao, gtt, gal that allow to play on the residual variance level.
For a given AO data set, we calculate BAO, BTT and BAL,
while B⊥ is computed for once. Contrary to the model pre-
sented in Beltramo-Martin et al. (2019), we have introduced
the gain gal to calibrate the aliasing model. The use of gal

allows us to account for fluctuations in the wind speed pro-
file, which enters the computation of the aliasing mode via
Eq. 14 but can not readily be determined from telemetry
data alone.
• Step 4: Minimizing a criterion by using a non-linear

least-squares minimization algorithm (this is the current
implementation, but others may be explored). We have
used Matlabr non-linear problem-fitting facilities based on
a trust region reflective algorithm, as done by Fétick et al.
(2019), in order to minimize the following criterion

J (µ, γ,α) =

npx∑
i,j

wij [γ × δα ∗ hij(µ)− dij + ν]2 (20)

where . ∗ . is the convolution product and

• hij and dij are the (i, j) pixel intensity values of re-
spectively the numerical PSF model and sky observation.
The image is converted into e- units using an uniform de-
tector gain of 1.5 e-/ADU (slow Pol mode).,
• µ = [r0, gao, gtt, gal] is the set of parameters to be

adjusted,
• δα is the Dirac distribution shifted by the astrometric

position α and multiplied by the photometric factor γ,
• ν is an additional degree of freedom to account for a

residual background,
• wij is the weighting coefficient for the (i, j) pixel.

Identically to what has been done by Fétick et al. (2019)
and Mugnier et al. (2004), the weighting factor is set to

wij =
1

max {dij , 0}+ σ2
RON

, (21)

where σ2
RON = 3e- for the ZIMPOL detector (slow pol
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Figure 6. 2D comparison of PSFs using a hyperbolic arcsinus scale. From left to right: off-axis star 1 image, on-axis PSF + SCIDAR,

corresponding residual, PRIME without SCIDAR, corresponding residual. Reconstructed PSFs were obtained using the 05:04 AO data

set.

readout mode) (Schmid et al. 2018). The detector noise is
assumed to be Gaussian and independent from the data.
Also, Eq. 20 stresses that the model adjustment process
does retrieve the PSF model parameters (r0, gao, gtt, gal) and
the stellar parameters (γ,α) simultaneously. This steps au-
tomatically output the astrometric/photometric measure-
ments of calibration sources.
• Step 5: Extrapolate the PSF to any desired field and

spectrum position.

PRIME offers multiple applications, as image-assisted error
breakdown and photometry and astrometry measurements
as discussed in Beltramo-Martin et al. (2019). In this paper,
we focus on the PSF estimation only. In order to quantify
the quality of the PSF fitting, we will evaluate the relative
mean square error given by

εh =

√∑npx

i,j [γ̂ × δα̂ ∗ hij(µ̂)− dij + ν̂]2∑npx

i,j dij
. (22)

where γ̂, α̂, µ̂ and ν̂ are the estimated fitting parameters.
The weighting process is particularly helpful to recover all
spatial frequencies, without giving more importance to the
AO corrected area where pixels are brighter. Especially, this
ensures to mitigate biases in the r0 estimation that depends
significantly on the extended, low-intensity PSF wings. Note
that this mean square error does not include the weight ma-
trix as well as any regularization term we introduce in Sect.
4. This metric allow to assess how far the reconstructed PSF,
regardless the approach, is from the on-axis sky image and
allow to analyze different techniques to each others regard-
ing the residual error thay lead to.
In the following, we will distinguish between forward PSF-R,
as the reconstruction process that relies on a priori param-
eters (r0 from telemetry, gao = gtt = gal = 1), and PRIME
as the PSF obtained after adjustment over the focal-plane
image.

3.2 Maximizing the utmost PSF-R performance

We have tested PRIME by tuning PSF model parameters
over the very bright on-axis star, i.e., the star guiding the
AO system. The on-axis star is not necessarily present in
the field, in particular for laser-assisted systems, in a way
relying on this very bright source is not a nominal situation
to deploy PRIME. However, the study of this on-axis star
is optimal to test the utmost performance of PRIME, which
will seek all the possible information on the PSF which are

missing in the telemetry data directly on the image itself.
On top of that, the very accurate best-fit parameters found
for the on-axis star can then be used as a reference and
compared to those (less accurate) found for the faint off-
axis sources, to assess how PRIME performs in less optimal
situations as we do in Sect. 4. Finally, in order to provide ev-
idence that PRIME is a good solution for PSF-fitting prob-
lems post-AO, we have also compared herein results with
a Moffat-fitting using the exact same model-fitting process.
The Moffat function was defined over 7 parameters (Fétick
et al. 2019) to allow fitting of asymmetric PSF shape.
We report in Fig. 7 the comparison between the on-axis PSF
profile with PRIME and Moffat-fitting as we did with for-
ward PSF-R in Sect. 2.3.2. Moreover, we present a 2D com-
parison in Fig. 8 that compares forward PSF-R, PRIME and
Moffat fitting and show a factor 2 at least improvement on
the residual brought by PRIME, especially on the PSF core.
The best-fitting achieves an excellent reproduction of the
original image and in both cases, stressing that the calibra-
tion of additional factors on top of the AO telemetry treat-
ment is a must. We also illustrate that the Moffat does not
match the on-axis PSF as well as PRIME does, especially
due to the PSF structure that contains an AO-corrected
part and seeing-limited wings. We see an improvement of
the Moffat-fitting on the second case for which the airmass
was larger, though. In this situation, the line-of-sight seeing
is worse than it was previously and the atmospheric residual
is large enough to smooth the PSF and attenuate the transi-
tion sharpness between the AO corrected and non-corrected
areas. However, the Strehl ratio was assessed at 1-2% for
these observations and at the imaging wavelength of 554 nm.
As a conclusion, even in a very poor correction regime, e.g.
when the PSF structure is limited by atmospheric residual,
it is already worth using PRIME instead of an analytical
model that is designed to fit seeing-limited images.

3.3 Mitigating required data amount for PSF-R

So far we did not treat all the ZIMPOL frame we have at
hand, only the one that have been synchronously acquired
with AO telemetry. A question that appear when talking
about PSF-R for next generation of AO-assisted instrument
is related to the amount of data we need for performing
PSF-R. Especially, there are some concerns about what it
demands in terms of storage capability to record systemati-
cally all the AO telemetry and associated calibrated matri-
ces. With PRIME, we can address this question: do we nec-
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Figure 7. Azimuthal average of sky, PRIME and Moffat-fitted

PSFs obtained with 05:04 (up) and 06:43 (down) data.

essarily need synchronous AO telemetry with science frame?
To provide hints, we have utilized the two AO data sets to
reconstruct two different PSF models using either forward
PSF-R or PRIME. We end up with four PSF models. With
forward PSF-R, the PSF was firstly reconstructed and then
best-fitted (photometry/astrometry) to match the observa-
tion. with PRIME, both stellar and PSF parameters were
jointly estimated through the model-fitting.
We present in Fig. 9 the mean residual error as function of
the estimated r0 from PRIME and calculated from residual
obtained using forward PSF-R, PRIME or a Moffat model.
Several conclusions can be drawn. First of all, PRIME works
much better than forward PSF and decreases the residual
error by a factor 3 up to 10 over the 26 frames compared
to forward PSF-R, and a factor 2 up to 4 compared to the
Moffat model. Then, forward PSF-R efficiency degrades sig-
nificantly when the AO telemetry is not synchronous with
the imager frame, especially because variations of seeing con-
ditions. Finally, PRIME achieves a very stable reconstruc-
tion whose residual remains pretty much constant, even two
hours after having recorded AO telemetry. In other words,
temporal variability of atmospheric disturbances can be ap-
proximated as a scaling fluctuation of covariance functions
introduced in Sect. 2. Their structure remains quite similar
across time, for these specific observations, though.
On top of that, we report in Fig. 10 photometry measure-
ments using either forward PSF-R, PRIME and aperture

Figure 8. 2D comparison of PSFs (05:03:57) using a hyper-

bolic arcsinus intensity scale. From left to right: forward PSF-R,

Moffat-fitting, PRIME. Bottom images are residual obtained by
subtracting the reconstruction to the sky observation.

Figure 9. Mean square error as calculated in Eq. 22 obtained

with both forward PSF-R and PRIME models instantiated with
either the 05:04 AO data set (set 1) or the 06:44 set (set 2), as

well as the Moffat-fitting results. Dash lines gives quadratic trends

with respect to the r0 estimates obtained with PRIME.

photometry (sum of pixels). We clearly put into light that
PRIME achieves accurate photometry measurements, while
forward PSF-R is highly biased and imprecise. This is also
indicated by the flux decreasing, due to atmospheric extinc-
tion and ensquared energy diminution, that does not decay
with a similar slope. Precise assessment of photometry and
astrometry capability of PRIME, with comparison to stan-
dard post-processing pipeline will be led at a later stage.
Furthermore, we have compared r0 estimates provided by
both SPARTA (AO telemetry) and PRIME as function of
SCIDAR measurements as presented in Fig. 11. As already
observed in Fig. 2, we have a large offset between SPARTA
and SCIDAR measurements, which no longer appear when
comparing with PRIME results, i.e. PRIME and SCIDAR r0

estimates seem to comply during this observing night. This
also advocates that SPARTA overestimates the r0 by a sig-
nificant amount, which can be unbiased through calibration
using PRIME over as many data as possible.
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Figure 10. Photometry measurements obtained on the 26 ZIM-
POL frames as function of the telescope airmass. Dash lines refer

to trends in airmass−3/5. Error bars are obtained from the fitting

minimization function.

Figure 11. r0 estimates obtained from SPARTA and PRIME

with respect to SCIDAR r0.

Finally, we present in Fig. 12 the evolution of retrieved gains
with respect to r0. Identically to what we have done for r0

estimations, gain values are averaged over results obtained
with the two AO data sets, and uncertainties show that they
were similar and correlated. Trends with respect to the r0

estimates from PRIME are obtained using a polynomial fit.
These trends allows to visualize how much the parameters
vary with respect to the turbulence’s strength; they are quite
obvious for gao and gal: when the r0 increases, the turbulence
strength and the WFS spot size diminish and consequently
the gain value gao is lessened as well. SPARTA involves a
weighted center of gravity algorithm to convert WFS pixels
(Petit et al. 2008) into WFS slopes, which may introduce
optical gain variations across time as well. Aliasing gain
slightly increases with respect to r0, e.g. for weaker turbu-
lence, which also corresponds to shorter turbulence time (so
higher wind speed) according to SPARTA measurements in
Fig. 2. As we previously discussed, the aliasing PSD model is
effectively sensitive to turbulence velocity variations though
modifications of the aliasing transfer function Hcl given in
Eq. 14. This one is derived from the AO closed-loop temporal

Figure 12. Retrieved values of gao, gtt and gal as functions of the

estimated r0 value with PRIME. Dash line corresponds to trends

in r
−5/3
0 using the r0 estimates from with PRIME.

transfer function (Gendron & Léna 1994) that is converted
into a spatial transfer function by turn the temporal fre-
quencies to spatial frequencies using the wind speed value.
Higher wind speed values tend to introduce more spatial
filtering and therefore decrease the aliasing energy. Conse-
quently, PRIME must boost gal in order to match the PSF
as we observe in Fig. 12. Furthermore, gtt seems to slightly
vary with respect to r0 as well, although the trend is not
completely clear. We stress that in V-band the Strehl ratio
is about 2% and the AO performance is dominated by atmo-
spheric residuals, particularly residual tip-tilt. This latter is
influenced by both the seeing and turbulence velocity, espe-
cially for those observations were the system was running
at 300 Hz. Fig. 8 illustrates that the PSF is elongated in
the 45 degree direction, certainly due to the combination of
the turbulence velocity and AO system servo-lag. In other
words, gtt variations must be driven by atmospheric turbu-
lence’s temporal properties as well. More generally, discrep-
ancies around the r

−5/3
0 trends are trackers to detect that

BTT structure changes across time. As we handle the AO
telemetry acquired unsynchronously with the imager frame,
we compensate the atmospheric turbulence properties by
scaling a multiplicative factor that apply to those covari-
ance matrices, i.e. we assume that theirs structures remain
identical, only the amplitude changes. PRIME will always
retrieve the parameters set that provides the best match
with the observed PSF; in other words, these degrees of
freedom will absorb any variability of the covariance ma-
trix structure. If we want to use PRIME as a PSF-fitting
facility for PSF determination purpose, there is no absolute
need to built the PSF model from synchronous telemetry as
PRIME will manage to restore the best PSF model for the
observed data set. However, if one cares about the physical
meaning of retrieved parameters, we must (i) refine the PSF
model as accurate as possible by including all physical effects
(static aberrations, cophasing errors, WFS optical gains,...)
(ii) confront a PSF model to synchronous observations to
mitigate temporal drifts of observing conditions that could
be absorbed into the parameters fitting as observed in Fig.
12.
To summarize PSF estimation performance, we report in
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Table 4. Final accuracy on Strehl ratio and FWHM obtained

with either forward PSF-R (no model adjustment) or PRIME.

∆ SR (%) ∆ FWHM (mas)

bias std bias std

Forward PSF-R slot 1 27 12 4.2 2.1

Forward PSF-R slot 2 12 21 3.5 4.0

PRIME slot 1 0.2 2.9 -0.4 0.9

PRIME slot 2 -0.4 2.2 -0.8 1.6

Tab. 4 SR and PSF FWHM estimation accuracy. We com-
pare forward PSF-R and PRIME: we highlight that (i)
PRIME strongly unbiases estimation of PSF metrics, al-
though some improvement can be pursued on the FWHM,
by including the WFS noise model for instance, (ii) PRIME
permits to reduce the relative error in average by a fac-
tor 7 and 2 on respectively the SR and FWHM. Note that
the standard-deviation is also increased by the quite small
amount of data we have, the image noise that contaminates
the PSF calibration and the very poor seeing conditions. in
this respect, Tab. 4 provides best results on a worst-case
scenario.
In order to provide more confidence into the retrieval pro-
cess, we have built a a posteriori AO error breakdown to ob-
tain a SR values to compare with the image measurements.
We estimate the residual error from

σ2
ε = σ2

ao + σ2
tt + σ2

⊥ + σ2
noise, (23)

where

• σao =
√
gao × tr(CAO)/1377 is the tip-tilt excluded AO

residual. This is assessed to 135 nm±10 nm over the full ob-
servation.
• σtt =

√
gtt × tr(CTT). We have retrieved 190 nm ±

18 nm.
• σ⊥ =

√
0.2(d/r0)5/3 is the DM fitting error that

reached 69 nm±5 nm.
• σnoise is estimated on open loop slopes including tip-tilt

and was measured at the level of 46 nm±18 nm.

We present in Fig.13 the residual wavefront error determined
from either the SR image or the error breakdown described
above. Thanks to PRIME, AO parameters are estimated ac-
cordingly to the final residual error we must retrieve. On top
of the PSF fitting, this gives another evidence that param-
eters found by PRIME are connected to the system perfor-
mance.
PRIME offers a new opportunity: instead of acquiring syn-
chronous AO control loop data with science observations,
one may record AO telemetry time to time, along a sufficient
time to make atmosphere characteristics converges, proba-
bly at least 30 s (Martin et al. 2012). However, this demands
to investigate few questions, which are (i) how frequent we
should acquire AO data, in other words how frequent co-
variance functions structure changes? (ii) can we find proper
descriptors (seeing, turbulence velocity, telescope elevation)
to track structure changes? (iii) can we enable accurate for-
ward PSF-R by inferring what should be gao, gtt, gal and r0

from contextual data (AO telemetry, external C2
n(h) profil-

ers, telescope data)? Provide insights on these questions will
be next step of this work.

Figure 13. Residual wavefront error with respect to r0 calculated

either from the image SR or the AO telemetry and the PRIME-

adjusted parameters. Dash lines give trends in r
−5/6
0 using the r0

estimates from with PRIME.

4 APPLICATION TO FAINT STARS

So far, we have deployed PRIME on the on-axis bright star,
with very good conditions of S/N and absence of crowding.
However, PRIME can provide accurate PSF in more chal-
lenging conditions, where other alternatives are not feasible.
We aim in this section to test the PSF model calibration us-
ing off-axis stars, which are much fainter (mV = 15-16 mag).
One must consequently rely on a PSF-fitting algorithm to re-
cover the PSF morphology and this situation is ideal to test
PRIME capabilities in such a scheme. Besides, we have high-
lighted in Sect. 2.3.3 that the PSF is shift-invariant across
the field. In other words, the ground-truth is given by the
on-axis PSF; the best performance PRIME can achieve on
present images are provided in Sect. 3.2. Nevertheless, in
order to mitigate the noise propagation in our fitting proce-
dure, we must regularize the criterion presented in Sect. 20.
We have followed the present strategy:

• Step 1: PSF model parameters r0, gao, gtt, gal are cal-
ibrated using off-axis stars #1 and #2 with different regu-
larization strategies presented in Sect. 4.1. We obtain even-
tually a calibrated 2D PSF model.
• Step 2: The resulting PSF model is used to retrieve

the on-axis star’s photometry and astrometry, and the final
accuracy depends on the PSF fitting performance during
step 1. Eventually, we assess a mean square error using Eq.
22. Thanks to results presented in Sect. 3.2, we analyze how
the different regularization strategies affect the PSF fitting
residual and the PSF parameters identification.

4.1 Regularization

We have tested two different regularization strategies:

• Bounds regularization: We minimize the criterion
presented in Eq. 20 by limiting the parameter space with
strict boundaries, inside which the parameter probability
distribution is uniform. Bounds are defined relatively to µ0,
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the solution we have retrieved in Sect. 3.2:

JB(µ, γ,α) =

{
J(µ, γ,α) if ‖µ− µ0‖ ≤ σµ
+∞ else

(24)

where the constrain is component-wise as µ includes
several parameters. Therefore, if bounds are set to 0 (no
uncertainty) we retrieve the PSF we obtain in our first
scenario in Sect. 3.2 where we use the central star to adjust
those parameters. By enlarging bounds around the optimal
solution, we make the minimization process more sensitive
to the image noise and check how the solution deviates
from the optimal one.

• Gaussian regularization: we assume that PSF pa-
rameters follow a Gaussian distribution N (µ0,σµ), where
µ0 is the prior on parameters and σ2

µ the distribution vari-
ance. In order to regularize the problem, we update the cri-
terion given in Eq. 20 by adding a regularization term on
the PSF parameters as follows:

JG(µ, γ,α) = J (µ, γ,α) + Γ

nµ∑
i=1

∥∥∥∥µ− µ0

σµ

∥∥∥∥2

, (25)

where nµ is the number of adjusted PSF parameters (we
have nµ = 4 in the present analysis) and Γ a scalar factor
that weights the contribution of the regularization term.
The present formulation is convenient to separate the
parameters precision σµ that is identified from calibration
(optical gains) of an estimation process (r0) from Γ, which
is a user-defined factor that reflects how much we are
confident into the µ0 a priori by balancing the weight
between the data-based and regularization terms. For
instance, if one apply PRIME over successive frames, σµ
will be delivered for each processed frame as a confidence
interval on retrieved parameters that depends on the sole
frame only. Thus, we obtain a new µ0 vector for the next
frame, and depending how much correlated are those two
frames, the user may decide to give more weight to the
regularization (boost Γ) or not. Potentially, we can have
very precise model-fitting, but the found parameters won’t
necessarily represent the PSF when treating another frame
acquired few minutes later due to observing conditions
variations. On the contrary, we could also have badly precise
estimates due to poor S/N conditions, but stationarity of
the observing conditions. Having both parameters σµ and
Γ allows to discriminate PSF parameters precision and
accuracy.

However, one must understand that regardless the regu-
larization, we are going to bias the PSF fitting results by
forcing the solution space to stick around µ0. The bounds
regularization means that the parameters Probability Den-
sity Function (pdf) is a gate function and is relevant when
we have physical constrains to limit the solution space. Thus,
we expect this strategy to propagate more noise, i.e. the PSF
fitting residual will degrade, with respect to the pdf width.
On top of that, the pdf is uniform over the space of accept-
able solutions, which means that we do not specifically trust
or give more weight to the initial set that feeds PRIME for
instantiating the first iteration. The Gaussian regularization
differs one this point: we must have some confidence in the
prior meaningfulness to choose such a regularization.
Our purpose is now to identify how PRIME behaves with

respect to (i) the regularization strategy, either uniform pdf
over a bounded space or Gaussian (ii) the degrees of freedom
of each of those, i.e. σµ (both of them) and Γ (Gaussian pdf
only).

4.2 PSF fitting results

Firstly, we have tried PRIME without any regularization
which led to an inefficient reconstruction with a mean resid-
ual error (Eq. 22) of 3%, while we obtained about 0.1% in
Sect. 3.2. The r0 and gal parameters estimates were particu-
larly biased and physically meaningless, which calls for reg-
ularization. In order to provide concise an readable results,
we do not have set the parameters precision independently
to each others. Instead, we have made vary σµ relatively,
from 0% to 90%, to µ0. Each parameter pdf width will be
absolutely different, but will have the same relative width
regarding the optimal solution. Eventually, this methodol-
ogy will permit to define which overall parameters precision
is required to achieve a given accuracy on the PSF. Besides,
for the Gaussian regularization, we have also tested differ-
ent values of Γ (0.001 up to 0.1). The prior µ0 in Eq. 25
has been set to the optimal solution found from PRIME on
the on-axis image in Sect. 3.2. Therefore, if we choose a too
large value for Γ, the criterion in Eq. 25 will be dominated
by the regularization term and the solution will stick to µ0,
i.e. we must retrieve the residual error we have got in Sect.
3.2. On the contrary, if Γ is too low, the regularization term
has not impact on the solution and we will propagate too
much noise in the solution and obtain meaningless results.
The point of this analysis is then to identify which range of
Γ must be envisioned to improve results compared to the
bounds regularization.
We present the residual error in Fig. 14. Residual errors
are calculated by comparing the reconstructed PSF (step 2)
with the on-axis image using Eq. 22. As expected, wider
pdf (σµ larger) conducts to more noise propagation and
worse PSF fitting results. Using the bounds regularization,
the residual error grows up quite linearly with respect to σµ
and we may be able to maintain the residual error below
1% by containing parameters within 40% from the ground
truth, while the Gaussian regularization allows to control
the slopes of this degradation. According to Fig. 12, PSF pa-
rameters may varies significantly across time, but variations
seem to remain within 50% for this night. If AO telemetry
is systematically available with synchronous focal-plane im-
ages, these variations should be controlled as the telemetry
signal scales directly with the real r0 values. In other words,
the precision we must consider is given by the standard-
deviation of parameters estimates from the r

−5/3
0 trends pre-

sented in Fig. 12, which stands up to 10-20%, meaning that
PRIME is able to maintain the mean residual error below
0.5% if synchronous telemetry is provided.
Fig. 15 illustrates how the PSF fitting degrades with respect
to σµ and Γ. We notice that the inner AO corrected region is
firstly overestimated for low values of σµ. For larger values,
the residual is mostly dominated by the non-corrected spa-
tial frequencies with an underestimation of the PSF wings
(overestimation of the r0) and an overestimation of the back-
ground in Eq. 20. In other words, adjusted parameters de-
grade in opposite direction due to noise confusion, in a way
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Figure 14. Mean square error as calculated in Eq. 22 as function
of σµ for several regularization strategies. Errors bars are given

by averaging values over the 12 first ZIMPOL frames.

Figure 15. On-axis PSF fitting residual obtained after cali-

bration using off-axis stars and displayed in hyperbolic arcsinus

(model underestimation in black) scale. From left to right σµ =
1, 5 10, 20, 30 and 40 %. From top to bottom: bounds regular-

ization, Gaussian regularization with Γ = 0.002, 0.005 and 0.01.

the total energy (or flux) is relatively well conserved while
the PSF structure is not.
Fig. 16 and 17 present the SR and FWHM estimation er-
ror as function of σµ and Γ. We retrieve similar behavior
compared to what we have shown in Fig. 14. The FWHM
estimates is getting worse, but remains within 10% as long as
the initial guess remains within 40% from the truth. The SR
error evolves differently; first it increases and finally drops
down to negative value: there is a switch that occurs at a
σµ value that depends on Γ. Below this threshold, the noise
propagation through the criterion solving shifts the solution
from he ground truth but without modifying significantly
the PSF morphology (the FWHM is reconstructed at few
percents). Above this threshold value, PRIME seems to fall
into a different local minimum by injecting too much en-
ergy in the background and not enough in the PSF wings.
However, SR error stays below 10% despite the PSF struc-
ture is badly reconstructed, which advocates for exploring
alternatives metrics for PSF fitting quality assessment.

Figure 16. Strehl-ratio error with respect to σµ using different
regularization strategies.

Figure 17. FWHM error with respect to σµ using different reg-

ularization strategies.

Previous conclusions are confirmed when looking in Fig. 18
that shows the retrieved parameters as function of σµ and
regarding several regularization strategies. The bounds reg-
ularization shows that gal and gtt degrades linearly with
respect to σµ. The noise confusion brings already a PSF de-
generacy on parameters retrieval, but those ones are quite
orthogonal, i.e. their impact on the PSF is significantly dif-
ferent. However, the r0 varies quadratically, which reinforces
the idea that PRIME confuses the energy between the back-
ground and the PSF wings that speeds up the r0 estimates
degradation. On the contrary, gao remains well estimated
within 10% as it refers to the AO corrected area, where the
S/N is maximal. This is also reassuring to confirm that the
gao estimation is decoupled from others PSF parameters.
Regarding PSF fitting and parameters estimation results,
we distinguish three different regimes:

• Γ < 0.002: the problem is under-regularized and the
fitting residual error increases with respect to σµ rapidly up
to the worse case scenario (no regularization). This configu-
ration must be avoided in favor of the bounds regularization
if µ0 is not trusted or if we only know physical constrains
to bound the solution space.
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Figure 18. Estimation error on PSF model parameters ob-

tained with PRIME on off-axis stars with respect to σµ using
different regularization strategies: (Top:) Bounds regularization

(Bottom) Gaussian regularization with Γ = 0.005.

• 0.002 ≤ Γ < 0.01: there is a good balance between
data-based and regularization terms and this configuration
should be preferred to the bounds regularization, as long
as we have some confidence into the priors µ0, i.e. we have
some evidence that the solution must be close to µ0. Such
confidence can be brought by processing successive frames,
or using models of spatial PSF variations to perform the
fitting on good S/N PSF first before treating fainter stars
scenarios.
• 0.01 ≤ Γ: the problem is over-regularized and the ad-

justed parameters remain very close to µ0, i.e. the solu-
tion is highly biased. This configuration should only serve
to slightly update a solution that has been determined over
an image highly correlated with the current processed.

Regarding these results, we may envision to perform the
PSF fitting with PRIME in a sequentially manner: (i) use
bright PSFs in the field to constrain the model with a bounds
regularization and obtain a preliminary set of parameters
with associated precision, (ii) redo this process starting from
the retrieved parameters as an initial guess and a prior µ0

with a Gaussian regularization and Γ = 0.002 (iii) repeat
step 2 with larger and larger Γ value until reaching the best
precision on parameters. On top of that, we can apply step 2
on fainter stars to refine the model sequentially using more
information without propagating too much noise.

5 CONCLUSION

In this article, we presented an innovative application of the
PSF-R method to SPHERE/ZIMPOL data. This is a cru-
cial experiment since the diffraction limit achieved in optical
with a 10-meter class of telescope is comparable to ELTs in
near infrared. Thus, this kind of studies paves the road for
exploiting ELTs data reduction.

We have first described how we perform classical PSF-R
using SPHERE control loop data. Unfortunately, the cur-
rent PSF-R framework do not allow us to achieve a proper
and stable PSF estimation. In order to be improved, this
would require to push deeply our AO system understanding
through several calibration, thus demanding a substantial
amount of observing and/or technical time.

To overcome this problem, we have introduced the PRIME
approach, that is a PSF-fitting technique that inherits from
the PSF-R framework to calibrate the PSF model. This is
initially instantiated from the AO control loop data. We
have shown that PRIME allow us to achieve a very accurate
PSF modeling at better than 0.1% of mean residual, with
AO telemetry unsynchronized from scientific images; acquir-
ing 30 s of AO data every hour was sufficient for obtaining
excellent results with PRIME.

Finally, we have tested PRIME over faint stars to compare
the calibrated PSF to the ground-truth given by the on-
axis image. This was possible since, as verified using stereo-
SCIDAR data, the anisoplanatism does not contribute sig-
nificantly to the PSF morphology. In order to enable a mean-
ingful PSF estimation in such severe S/N conditions, we have
presented two different strategies to regularize the minimiza-
tion criterion, either using a truncated but uniform pdf or a
Gaussian one. PRIME ensures to obtain 1% of mean residual
error on the PSF by bounding the solution space within 40%
from the optimal solution. The Gaussian regularization al-
lows to increase estimates accuracy up to the optimal achiev-
able performance depending on how much we trust PSF pa-
rameters prior. The Gaussian regularization allows the user
to adapt the data-based/regularization terms balance in the
minimization criterion regarding how much priors on param-
eters are trusted. Furthermore, thanks to the PSFR frame-
work, the spatial PSF variations can be accurately modeled,
which offers alternative possibilities for PSF-fitting problems
(1) use all external information we have to define PSF pa-
rameters priors (Stereo-scidar for instance) (2) instantiate
the PSF model calibration on available PSFs with good S/N
and poor crowding using a bounds regularization (3) use the
retrieved information plus variations models to fit the PSF
on fainter stars using a Gaussian regularization (4) repeat
step 2 and 3 with updated information on the PSF using a
Gaussian regularization until reaching the minimal residual.

We plan to push this work further by collecting more sci-
ence observations, including crowded stellar field. When a
large sample of data sets will be at disposal, we will ap-
ply statistical inference tools in order to capture how PSF
model parameters vary with respect to contextual data. This
will enable forward PSF estimation in case of lack of point
sources in the field and enhance PRIME efficiency for stellar
fields applications.

The next step will be to plug PRIME within a standard
image analysis pipeline in order to combine the strengths
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of both PSF-R techniques and multi-source image process-
ing tools. This is a necessary step in order to allow a large
diffusion of the use of the PSF-R which is nowadays only
confined to very few experts.
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Gendron E., Léna P., 1994, A&A, 291, 337
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