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Machine Learning and big data are currently revolutionizing 
our way of life, in particular with the recent emergence 
of deep learning. Powered by CPU and GPU, they are 
currently hardware limited and extremely energy intensive. 
Photonics, either integrated or in free space, offers a very 
promising alternative for realizing optically machine 
learning tasks at high speed and low consumption. We here 
review the history and current state of the art of optical 
computing and optical machine learning. 
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SSince the dawn of 
micro-electronics 
and the emergence 
of lasers, both op-
tics and electronics 
platforms have been 
competing for infor-

mation processing and transmission. 
While electronics has been overwhel-
mingly dominating computing for the 
last 50 years thanks to Moore’s law, op-
tics and photonics have been increa-
singly dominant for communications, 
from long distance communications 
with optical fibers to optical inter-
connects in data centers. Machine 
Learning, that also originated in the 
1950s, has seen tremendous develop-
ments in the last decade. The emer-
gence of deep neural networks has 
become the de facto standard for big 
data analysis and many of the tasks 
that we today consider normal: from 

voice recognition to translation, 
image analysis to future self-driving 
cars. However, machine learning’s 
progress requires exponentially in-
creasing resources, be it in memo-
ry, raw computing power, or energy 
consumption. We introduce in this 
article the basics of neural networks, 
and see how this new architecture 
shatters the status quo and provides 
optics a new opportunity to shine in 
computing, whether in free space or 
in integrated photonics circuits. 

EXPECTED CONTENTS
Optical computing. Classical com-
puting, such as the one running on 
our PC, is based on the so-called Von-
Neuman architecture laid out in the 
1940s, where a program is stored in 
a memory, and instructions are read 
and executed on a processor, while 
input and output are exchanged in 

the memory through a communi-
cation bus. This architecture has 
been basically unchanged since its 
inception, and only improved thanks 
to the progress of microelectronics 
and nanolithography, allowing the 
feature sizes of components to shrink 
to 7 or less nanometers nowadays. 
This has consequently diminished 
tremendously the Ohmic losses and 
the energy consumption to a few pJ/
operation, and allowed the increase 
of the operating clock frequencies 
of the components to reach several 
GHz. Thus, component density has 
driven the number of transistors on 
a processor to several tens of billions, 
while driving its cost down. This is 
the well-known Moore’s law, lea-
ding to the observation that a good 
desktop PC nowadays has a proces-
sing power of several TeraFlops (1012 

floating point operations per second). 
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Optics has several advantages 
compared to electronics: its intrin-
sic parallelism, its almost unlimited 
bandwidth, the ability of simple 
transformation by simple propaga-
tion (such as a Fourier Transform) 
compared to electrons [1]. Thus, 
optics has from the very start been 
considered as a viable alternative for 
analog computing. In the eighties, the 
emergence of optical non-linearities, 
semi-conductor lasers and optical 
memories has given hope that optics 
may be used to build an all-purpose 
computing platform. Alas, the pro-
gress in optics failed to match Moore’s 
law exponential pace, and the hope 
of building such an all-purpose opti-
cal computer was abandoned in the 
nineties [2]. Still, optics found nume-
rous applications in storage, and of 
course in telecommunications, both 
in long-distance with optical fibers, 
and more recently in interconnects. 

Neural networks. In parallel, a 
computing paradigm, resolutely 
different from conventional pro-
gramming, emerged also in the 
1950’s: Artificial neural networks or 
ANN, on which all modern artificial 
intelligence is based. It is (loosely) 
inspired from the structure and be-
haviour of the brain, where neurons 

are connected to each other in very 
complex networks, and where the 
response of a neuron can be trig-
gered in a complex and non-linear 
way by the electric influx it receives 
from many other neurons. Artificial 
neural networks are similarly made 
of “neurons” or nodes, that integrate 
signals from other neurons, with va-
rious weights, and emit a resulting 
signal based on a non-linear activa-
tion function. This signal is, in turns, 
fed to a number of other neurons. 

The network also includes input and 
output neurons, that either receive or 
send information to and from the out-
side world. Just like the brain, a neu-
ral network can be made to “learn”, 
i.e. be optimized for a given task, by 
adjusting its weights, for instance 
being fed at the input with images, 
being able to classify them into cate-
gories. The analogy with the brain 
stops there: while the brain counts 
approximately 80 billions neurons 
and 100 trillions connections, ANNs 
have to be limited to much less neu-
rons and weights, and to much sim-
pler architectures, in order to make 
the training of the network possible. 
Several typical architectures have 
been developed over the last decades, 
to maximize efficiency on a given 
task, while keeping the training of 
the neural network computationally 
tractable. Most of the time, neurons 
are organized in layers of various sizes 
(number of neurons) and connecti-
vity. It ranges from the simplest 
networks, such as the perceptron 
(a single layer linking N inputs to a 
single output) which was one of the 
earliest ANN, to multi-layered fee-
dforward neural networks (where 
neurons are organized in successive 
layers and information is passed from 

Figure 1. 
Some historical examples of optical computing. 
Left: the 1972 Tilted Plane Optical processor 
used for synthetic Aperture Radar all optical 
image processing (from Kosma et al.  Applied 
Optics 11.8 (1972): 1766-1777), right, a vector-
matrix-multiplier with optical feedback  
(from Psaltis et al. Optics Letters 10.2 (1985):  
98-100) Reprinted with permission from  
© The Optical Society.

Figure 2. 
Structure of an artificial neural network. Left: 
an artificial “neuron” comprising several inputs 
value, and one or many outputs, result of the 
non-linear combinations of the inputs. Center 
and left: two popular ANN architectures.
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layer to layer) to recurrent networks 
(where information can flow backwards 
and be fed back to previous layers). The 
connections from a layer to the next can 
be very sparse, in particular convolutio-
nal layers, or dense (all-to-all connected). 
The performance of ANNs depends on 
its structure, for instance a perceptron 
is good for simple linear classification, 
but more complex tasks require more 
complex network structures.

Deep learning. While artificial intel-
ligence saw good progresses, until the 
early 2000s, its overall performance for 
day-to-day tasks remained modest and 
did not find any clear real-life applica-
tions. This changed tremendously in the 
last two decades, thanks to the emer-
gence of a powerful architecture: Deep 
learning, and its corollary networks, 
known as Deep Neural networks. Deep 
Neural networks are layered networks 
with a large number of “hidden” layers. 
Pioneers such as Yann Lecun, Yoshua 
Bengio and Geoffrey Hinton, have shown 
that deep neural networks have an abi-
lity to solve highly complex problems 
[3]: in essence, while the first layers can 
pre-process the input information (for 
instance contours in images, or words 
in text), deeper layers can gradually 
distil more abstract concepts, such as 
identifying an object, or extracting the 
sense of a text. Nowadays, deep learning 
has demonstrated unprecedented per-
formance at tasks that we only recently 
believed would be forever out of reach of 
machines, from beating the best player 
at the game of Go, to self-driving cars, to 
language translation, to give just a few 
salient examples. Such deep networks 
have grown to unbelievable sizes, up to 
tens of billions of parameters (weights) to 
be trained. Thus, a key-enabling concept 
that has allowed deep learning to scale to 
large size is the ability to train such large 
network efficiently: the back-propagation 
algorithm, a concept perfectly matched 
to deep architectures, where the network 
can be trained layer by layer from the last 
to the first with a gradient-descent algo-
rithm. Thanks to these, machine learning 
has entered the ability to make sense of 
complex and very large size information; 
this is sometimes coined as “big data”. 

GPU and CPUs. The rise of deep 
learning and big data has been mostly 
powered by Moore’s law, allowing trai-
ning and inference of very large neural 
networks. An important factor driving 
deep learning is the transition to Graphic 
Processing Units (GPU). Initially de-
signed for computer graphics, these 
specialized processors were optimized 
for parallel processing of large vectors 
and matrices. For neural networks, 
where training and inference require 
a vast number of such multiplications, 
GPUs turned out to be much more power-
ful than CPUs (Central Processor Unit) 
and are now ubiquitous - incidentally, 
NVIDIA, the leader in GPU for deep lear-
ning, has now a capitalization that is on 
par with Intel. However, GPU and CPU 
are still enormously power-hungry: it has 
been shown that training a single neu-
ral network can use as much energy as 
5 cars over their lifetime, and more glo-
bally, big data and data centers already 
account for an estimated 4% of our en-
ergy, and it may grow to over half of our 
energy consumption in the next decade, 
if nothing changes. Meanwhile, Moore’s 
law is officially stalling: nanolithography 
and transistors are reaching their phy-
sical limits, progresses in consumption 
and speed are getting much slower [4]. 
Worse, the implementation of neural 
networks on both CPU and GPU suffers 
from the so-called “Von Neumann bottle-
neck”: the bus transferring data between 
memory and computing units ultimately 
limits performance.

The dawn of optical Machine Learning. 
To overcome this fundamental problem, 
some non-conventional computing hard-
ware has been introduced, called “neu-
romorphic”, where circuits are directly 
emulating the connectivity and functions 
of a neural network, instead of a program 
on a CPU or GPU. This approach, that 
broadly belongs to non-von-Neumann 
architectures, should be much more en-
ergy efficient, and fast. Of all the possible 
implementations of neuromorphic com-
puting, Optics and Photonics stands out, 
with unique advantages. First, light can 
propagate virtually without loss or heating, 
whether in free space, in many materials, or 
in integrated waveguides. This propagation 
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can be used to emulate the connecti-
vity between two neural layers, but also 
convolutions, etc. Photons do not na-
turally interact, meaning it is possible 
to multiplex information, and power 
consumption is independent of the 
operating frequency. Finally, thanks to 
tremendous progress in optoelectro-
nics, detectors (from fast photodiodes 
to CMOS cameras), modulators (from 
fast integrated electro-optics modula-
tors to spatial light modulators), and 
source (lasers), are extremely efficient 
and can be mass-produced. The semi-
conductor industry naturally provides 
the backbone to produce photonic in-
tegrated circuits. In short, optics has 
several key-advantages to implement 
neural networks in a nearly ideal way.  
Still, optics faces several challenges, 
in particular the difficulty to achieve 
non-linearities in hidden layers, or the 
challenge to scale and tune networks 
with integrated optics, preventing the 
possibility, to date, to provide a true ver-
satile platform for deep learning. Yet, 
optics can provide a very solid alterna-
tive in specialized implementations, 
from ultrafast small scale networks, 
to convolutions and pre-processing 
in imaging, to reservoir computing (a 
type of RNN with fixed weights). After 
pioneering works in the 80s and 90s, 
many impressive advances have been 
reported in academia in the last decade, 
and industry also shown a renewed in-
terest, whether within big companies 
or through start-up creations.

 An example, LightOn. As an il-
lustration of how optics can bene-
fit machine learning, LightOn (the 
company we co-founded in 2016) 
proposed a solution to perform op-
tical machine learning, based on 
our experience in free-space light 
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propagation in complex media. In 
essence, we currently provide very 
large-scale random matrix multipli-
cation (corresponding to a dense all-
to-all connectivity) between millions 
of inputs (spatial light modulator 
pixels) and millions of outputs (came-
ra pixels). Able to operate at several 
kHz, it corresponds to doing several 
Peta-Operations per second (typical 
of supercomputers), with a matrix 
size that could not even be stored in 
the memory of a conventional com-
puter, and with a consumption of a 
few tens of Watts. While apparently 
very specific, the operation we pro-
pose can be useful in many data pro-
cessing applications, from inference 

to training [5], or even molecular 
dynamics (see Fig. 3). In fact, these 
random multiplications can be seen 
as universal compression engines, 
with performance guarantees that are 
well matched to the very statistical na-
ture of modern machine learning. Of 
course, this is just one approach to op-
tical machine learning, and other ap-
proaches, either based on free space 
or integrated optics, fixed or tunable 
weights, linear or non-linear effects, 
shallow or deep, also proposes various 
solutions to accelerate machine lear-
ning and support its future growth. 

CONCLUSION
In conclusion, we have presented an 
historic perspective of optical com-
puting and shown that, after having 
failed at proposing an all-purpose 
computing platform in the 20th cen-
tury, optics and photonics have more 
recently emerged as very appealing 
solutions for hybrid hardware imple-
mentation of neural networks, able 
to sustain the growth in computing 
power and supersede electronics, 
beyond Moore’s law. Optical neural 
networks have recently rebooted the 
interest in optical computing, and we 
believe it is just the beginning. 

Figure 3. 
LightOn’s optical processor. Left: scheme of 
the random projections principle, information 
is encoded on a spatial light modulator, then 
a random matrix multiplication is achieved by 
passing through a disordered material, and the 
result is read of a camera sensor. Right: example 
of an advanced machine learning task, here the 
automatic detection of conformational change 
of a large molecule in molecular dynamic 
calculations (here on SARS-Cov2 molecule, 
responsible for the COVID-19 disease) [5]. 


