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OPTICAL NEURAL NETWORKS:   
THE 3D CONNECTION

We motivate a canonical strategy for integrating  
photonic neural networks (NN) by leveraging 3D printing. 
Our belief is that a NN’s parallel and dense connectivity is 
not scalable without 3D integration. 3D additive fabrication 
complemented with photonic signal transduction can 
dramatically augment the current capabilities of 2D CMOS 
and integrated photonics. Here we review some of our 
recent advances made towards such an architecture.
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Several decades passed 
between the introduc-
tion and the large-scale 
exploration of neural 
networks (NN). Since 
the proposal of simple 

NNs in 1943 [1], the field has gone 
through multiple cycles of euphoria 
and challenges until reaching today’s 
large-scale interest and exploitation 
[2]. Readily available high-perfor-
mance computing systems now al-
low emulating powerful (deep) NN 
architectures whose connections are 
optimized based on computational-
ly expensive learning concepts such 
as gradient back-propagation. As a 
consequence, NN currently excel on 
previously unseen scales, but at the 
same time the constraints of today’s 
CMOS-based computing threatens to 
limit the reach of this revolution.

As illustrated by their name, the 
initial objective of NN, cf. Fig. 1(A), 
was providing a ‘logical calculus of 

the ideas immanent in nervous ac-
tivity’ [1], and as such their compo-
sition mirrors a most rudimentary 
aspect of the mammalian neo-cor-
tex: nodes are densely linked into 
a network with connections much 
like synapses, dendrites and axons 
connecting biological neurons. 
However, this is only possible in 
the context of a global structural 
property of the neocortex in which 
neurons, and even more so connec-
tions, are distributed across a 3D 
volume, cf. Fig. 1(B). The majority 
of cortical neurons are arranged in 
planes located inside the grey mat-
ter that wraps around the brain, and 
stacks of neurons form short-range 
connections (labelled a in Fig. 1(B)) 
which travers the grey matter’s vo-
lume. Crucially, grey matter encloses 
white matter, and inside this volume 
the brain’s long-range (connections 
(labelled b and c in Fig. 1(B)) connec-
tions are located. 3D connections 

are therefore a canonical feature 
of brain architecture. The scale and 
connectivity of the human brain’s 
network would otherwise simply not 
fit inside the human skull. The brain 
therefore provides a very good pri-
mer for exploiting 3D circuit topolo-
gy. Even though the 3D topology of 
brains emerged from evolutionary 
development, science and enginee-
ring can deliberately combine ad-
vantageous strategies and concepts. 
Combining the 3D network topology 
of biological brains with photonic 
signal transduction is a highly ap-
pealing strategy for next generation 
NN computing.

In this paper, we elaborate the po-
tential of 3D printing technology for 
integrated photonic NN chips. Such 
additive fabrication enables true 3D 
integration and naturally comple-
ments the mostly 2D lithography that 
struggles to implement parallel NN 
connections with a scalable strategy. 
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Photonics offers fundamental energy, 
speed and latency advantages when es-
tablishing the communication between 
NN neurons along the staggering amount 
of network connections. 3D printing is a 
potential path for 3D integration of op-
tically interconnected Si or other elec-
tro-optic chips.

CANONICAL 3D PHOTONIC NEURAL 
NETWORK ARCHITECTURE
Physically realizing dense connections 
for the large number of neurons (typi-
cally >1000 units) contained in each NN 
layer results in a formidable challenge. 
A parallel NN processor needs to pro-
vide a dedicated physical link for each 
connection, which is difficult since the 
amount of possible connections scales 
quadratically with the number of neu-
rons. A connection’s defining property 
is its strength, and its physical imple-
mentation for example by memristors, 
micro-rings or holographic memory 
always occupies some basic unit of area 
i.e. volume. Integration in 2D results in 
a quadratic scaling of the circuit’s area 
with a network’s size [3], cf. Fig. 2(A). 
In a 3D implementation weights can 
be stacked, for example, in planes, and 
for the simplest organization [3], both, 
the number of required planes and me-
mory-elements per plane scale linearly 
with the number of neurons. This miti-
gates the size-scalability roadblock and 
3D routing may well be a fundamental 

prerequisite for scalable and parallel NN 
chips. Realizing such 3D circuits electro-
nically is challenging due to the capaci-
tive coupling and the associated energy 
dissipation when sending information 
along signalling wires.

In order to overcome these challen-
ges we investigated a canonical photo-
nic NN architecture where neurons in 
the form of nonlinear components are 
arranged in 2D sheets, while connec-
tions are integrated in 3D printed 
photonic circuits, cf. Fig. 2(B). We do 
not constrain the nature of photonic 
neurons or the 3D routing strategy. 
All-optical as well as electro-optical 
components acting as neurons are 
possible, and the 3D photonic inter-
connect can be realized by refractive 
index modifications in a 3D medium, 
multiple stacks of diffractive-optics pla-
nes [4] as well as complex 3D circuitry 
of photonic waveguides [3].

3D NANO-PRINTING TECHNOLOGY
Additive manufacturing (AM) has been 
a popular method for prototyping ever 
since it was developed in the 1980s as it 
does not require special tooling or molds. 
However, its true advantage over most 
conventional manufacturing methods is 
AM’s ability to produce 3D parts of great 
complexity, which is unfeasible or even 
impossible with subtractive or 2D litho-
graphic methods. Among various AM 
techniques, two-photon polymerization 

Figure 1. 
(A) In a Neural Network (NN) typically millions of connections link simple nonlinear 
neurons which are arranged in layers. (B) In the brain short, medium and long range (a, b, 
c, respectively) neural connections are established in the volume of white and grey matter. 
Adapted from Schüz, et al., Encyclopedia of Neuroscience 2009.

Over the past de-
cade, photonic 
device integra-
tion has grown 
exponentially. 
Demanding opti-
cal systems such 
as ADAS camera 
modules, AR/VR 
headsets, and 

smartphone camera lenses are 
pushing the limits of optical design 
and manufacturing. With larger 
fields of view and broader wave-
length ranges, the lens parameters 
are constantly improving. One of 
the challenges for manufacturers 
is to qualify ever more complex 
lenses with the highest accuracy 
even though traditional metrolo-
gy instruments reach their limits. 
By working in close collabora-
tion with manufacturers, Phasics 
pushes optical testing limits and 
proposes a new metrology tool 
dedicated to the qualification of 
demanding assemblies. KALEO 
MTF is an automatic test station 
designed to provide complete lens 
qualification on-and-off axis at 
multiple wavelengths: wavefront 
error, Modulation Transfer func-
tion (MTF), trough-focus MTF as 
well as geometric and radiometric 
lens parameters. KALEO MTF is the 
dedicated solution for optical desi-
gners in search of efficient prototy-
ping and production teams looking 
for fast and accurate quality control 
and troubleshooting. 
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(TPP) is of special interest since it 
provides sub-micron feature sizes 
in materials that are transparent in 
the optical domain with refractive 
index values close to those of glass. 
TPP utilizes femtosecond lasers to 
expose and polymerize photore-
sists. The two-photon process is of 
significance as it enables feature 
sizes below the Abbe diffraction li-
mit thanks to the polymerization’s 
quadratic dependence on exposure 
intensity. One-photon processes 
in turn yield larger polymerized 
voxels due to a linear dependence 
of polymerization on exposure in-
tensity. Control of the light intensity 
threshold for polymerization and 
quenching effects further contri-
bute to sub-diffraction resolution. 
TPP exposure-dose can be controlled 
through scanning speed and laser in-
tensity, which provides control over 
the degree of photoresist's polyme-
rization and hence over the local 
refractive index. This enables the 
possibility of printing graded-index 

(GRIN) elements [5]. 3D direct-laser 
writing systems offer robust, com-
mercial TPP setups where complex 
optical elements can be printed (cf. 
Fig. 3) at different resolutions by 
selecting among different resin-ob-
jective pairs. In subsequent sections, 
we present different optical elements 
that were fabricated by a Nanoscribe 
3D printer.

For the concepts presented in this 
paper, the most important feature 
of AM/TPP is the ability to access 
independently each voxel in the 
fabrication volume, which enables 
holographic as well as wave-guide 
based photonic connections. From 
the holography point of view it is key 
to go beyond 1/M2, which is the ef-
ficiency relation where M is the nu-
mber of multiplexed holograms [6]. 
This fundamental limitation holds 
for any optical holographic material 
where recording is accomplished 
by means of multiple optical expo-
sures [7] due to the superposition 
of multiple holograms following a 
recording sequence that is designed 
to use the dynamic range of the in-
dex modulation equally. Crucially, 
efficiency could be improved to 1/M 
if the hologram were constructed 
voxel-by-voxel or in a multilayered 
fashion. TPP makes it practical to 
adopt both options. In addition, 
the ability to access each point in 
the volume enables the fabrication 
of complex 3D-routed waveguides 
that define the optical signal’s path 
in 3D, reminiscent of the dendrites 
and axons in the brain.

3D DISCRETE-WAVEGUIDE 
INTERCONNECTS
As previously introduced, connec-
tions between biological neurons 
are made by dedicated ‘wires’ formed 
by axons connected to dendrites via 

Figure 2. 
(A) Realizing the connections in 2D 
interconnects is not scalable, and 3D 
integration is essential for parallel NN 
integration. (B) In our canonical 2D/3D 
photonic NN, neurons are arranged in 2D while 
connections are established in the 3D volume 
between layers of neurons, where the NN 
correctly identifies an apple.

Figure 3. 
(A) 3D printing scheme with the objective 
focusing the femtosecond laser pulse into the 
photoresist. (B) Layer-by-layer printing process.
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synapses, and the photonic equivalent of 
such spatially discrete links is the optical 
waveguide. An optical waveguide utilizes 
the principle of total internal reflection, 
where a medium with a higher refrac-
tive index is surrounded by a medium 
with a lower refractive index. Recently 
Moughames et al. [3] 3D printed such 
optical waveguides using a Nanoscribe 
3D printer and connections in the form 
of optical splitters realized the dense 
connectivity between neurons. 

Different connection topologies were 
demonstrated. Arranging 1 to 81 split-
ters in an 15×15 input waveguide array, 
cf. Fig. 4(A), demonstrated a 3D printed 
dense interconnect for 225 neurons in 
an area of only 300×300 µm2. Inspired 
by convolutional NNs, the same authors 
realized Boolean Haar filters arranged 
in a 7×7 array, see Fig. 4(B). Such ar-
rays can filter images containing 21×21 
pixels in parallel, which in principle is 
sufficient for realizing a convolutional 
layer applied to the MNIST handwritten 
digit dataset. Most importantly the area 
of both 3D interconnects scales linearly 
with the number of inputs.

GRADIENT INDEX CONTINUOUS 
INTERCONNECTS
Multilayered diffractive optical ele-
ments, cf. Fig. 5, can also perform in-
terconnection tasks utilizing the 3D via 
optical volume elements (OVEs). OVEs 
can be designed by utilizing a nonli-
near optimization scheme, learning  

tomography (LT), which calculates the 
topography of either multilayered or 
GRIN volume elements to approximate 
desired mappings. Figure 5(A,B) shows 
an demonstration by Dinc et al., which 
acts as an angular multiplexer (lantern) 
that maps plane waves with different 
incidence angles to linearly polarized 
multimode fiber modes [4]. It provides an 
interconnect between single mode fibers 
stacked with different angles and a multi-
mode fiber to map each single mode fiber 
input/output to a specific mode of multi-
mode fiber, hence performs mode-divi-
sion multiplexing. Another example of 
LT computed OVEs realizing Haar filters 
such as demonstrated in [3] are shown in 
Fig. 5(C,D).

POSSIBILITIES  
FOR PHOTONIC NEURONS
The function of a NN neuron is the 
summation of its inputs followed by a 
nonlinear transformation. Summation 
of the individual fields impinging on 
a neuron can be realized in photo-
nics by the superposition of optical 
fields. Unfortunately, nonlinearity is 
since many years the Achilles-heel of 
photonics compared to electronics. 
However, modern photonic devices 
have significantly lowered the energy 
consumption which can now be below 
100 fJ per nonlinear transformation 
[8]. Many standard nonlinear photo-
nic components have potentially high 
modulation bandwidths, fast response 

Figure 4. 
SEM micrographs of 3D printed waveguides [3] realizing parallel interconnects with high 
connectivity (A) and according to Haar filters (B).
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times and can directly be interfaced 
with fully parallel as well as dense 
3D photonic interconnects. Photonic 
neurons combined with our 2D/3D 
canonical NN architecture therefore 
offer new concepts for addressing 
the long-standing challenges of pa-
rallelism and connection density for 
high-speed NN computers.

In order to make most effi-
cient use of the footprint and cir-
cuit volume, photonic neurons 
need to be arranged in a 2D array. 
Furthermore, neurons that accept 
multi-mode fields as their input 
could potentially be beneficial as 
this relaxes design constraints and 
allows for high-density integration 
of 3D photonic waveguides without 
a cladding. Finally, any optical trans-
formation is associated with losses 
and the 3D photonic interconnect 
is no exception; neurons including 
optical amplification would mitigate 
such losses. At this stage, we can 
imagine all-optical, electro-optical 
as well as plasmonic neurons, and 
the most promising concept will 
certainly have to strike a balance 
between speed, efficiency, flexibility 
and potentially amplification.

OUTLOOK
The viability of integrating photonic 
circuits suited for NN interconnects 
in 3D has recently been demons-
trated in principle [3, 4]. Ultimately, 
scalability is key for computing hard-
ware, which implies that stacking 2D 
neurons and 3D interconnects into 
deep photonic NNs requires optical 

losses to be counterbalanced by am-
plification without resulting in an 
unsustainable thermal energy de-
position inside the integrated pho-
tonic circuit.

However, the computational 
power of a NN relies on more 
than simply establishing specific 

connections in parallel. The non-
linearity of its neurons is a fun-
damental requirement for solving 
complex tasks, and here signifi-
cant room for improvement exists. 
Another defining feature of NN is 
the optimization of their connec-
tions during training. New, ideally 
in-situ optimization strategies are 
in urgent demand. In combination 
with plasticity such as non-volatile 
memristive effects, these concepts 
would significantly reduce the com-
plexity of potential auxiliary sup-
port circuits as well as of the 3D 
interconnect itself.
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Figure 5. 
(A) 3D rendering of the OVE in [4] with the  
ideal input and output pairs; (B) SEM image  
of the printed structure and the corresponding 
experimental results. (C) XY, YZ and XZ cut 
planes of a GRIN OVE, optimized for Haar 
filtering. The colorbar shows RI variation. (D) 
Corresponding output fields obtained by 
simulating the propagation of inputs through 
the optimized GRIN volume. All field plots have 
a window size of 32x32 μm2 and color code 
shows the normalized amplitude for each.


