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Abstract 

Daily precipitation samples were collected at 4 sites in Mount Yulong and Mount Meili regions 

of southeastern TP and analyzed for isotopic composition. Combined with water vapor isotopic 

composition derived from satellites data (IASI, TES and GOSAT), the factors controlling the 

variability in the isotopic composition of precipitation are investigated at the synoptic, intra-

seasonal and seasonal time scales. At the seasonal scale, the isotope composition in 

precipitation is controlled by processes along air mass trajectories affecting the water vapor at 

the large scale (>200km), especially upstream deep convection and air mass origin, and by 

local processes transforming the large-scale water vapor isotopic composition into the 

precipitation composition, especially rain evaporation and local circulation. At the intra-

seasonal and synoptic scales, the isotope composition in precipitation is mainly controlled by 

these local processes. The shorter the time scale of isotopic variations, the smaller the spatial 

imprint of these variations. The fact that different factors controlling the isotopic variability at 

different time scales calls for caution when applying relationships observed at these time scales 

to interpret isotopic variations at paleoclimatic time scales. While general circulation models 

successfully capture the isotopic variability and its controlling factors at the seasonal scale, it 

fails to simulate them at shorter time scales, because it fails to simulate the local processes. 

 

 

Plain Language Summary 

Water molecules can be light (one oxygen atom and two hydrogen atoms) or heavy (one 

hydrogen atom is replaced by a deuterium atom). These different molecules are called water 

isotopes. The isotopic composition of precipitation, when recorded in ice cores, can provide 

information about past climate. In southeastern TP ice cores, the isotopic records have been 

interpreted as reflecting past variations in temperature, or as reflecting past variations in 

monsoon strength. This illustrates that we need to better understand what processes control the 

isotopic composition of precipitation. We investigate the processes at the seasonal (>1 month), 

intra-seasonal (10-30 days) and synoptic (<10 days) time scales. We use precipitation samples 

collected in the southeastern TP, and satellite retrievals of water vapor isotope. We show that 

storm activity along air mass trajectories is an important factor controlling isotopic variations 

at the seasonal scale. But local processes, such as the evaporation of rain drops or local winds, 

are also important, especially at shorter time scales. The fact that the processes controlling the 

isotopic composition of precipitation depend on the time scale calls for caution when applying 

the factors observed in present-day variability to interpret isotopic ice core records at very long 

time scales. 
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1 Introduction 

The Tibetan Plateau (TP), a vast area with an average altitude above 4000 m, 

encompasses the largest number of glaciers outside the Polar Regions (Yao et al., 2012). With 

its monsoonal precipitation and glacier melt, it is also considered as a water tower for 

surrounding regions where billions of people live. Stable isotopes in precipitation provide 

integrated information on climate and water cycle processes (Galewsky et al., 2016). 

Understanding what controls the isotopic composition of precipitation in the TP region is 

necessary for several applications. First, the TP contains a large number of glaciers whose 

isotopic composition provides a unique window into past climatic variations (Thompson et al., 

1990; Yao et al., 1997a; Thompson et al., 2000a). However, the interpretation of past 

precipitation isotopic variations in the TP is debated, with isotopic variations used as a proxy 

for temperature (Thompson et al., 1990; Yao et al., 1996, 1997a, 1997b; Thompson et al., 

2000b; Yang et al., 2007) or precipitation associated with the strength of the Indian monsoon 

(Thompson et al., 2000a; Morill et al., 2006; Kaspari et al., 2007; Liu et al., 2007). This calls 

for a better understanding of the physical mechanisms controlling the isotopic composition of 

precipitation in the TP region. Second, the isotopic composition of precipitation may provide 

useful information on water cycle processes in a perspective of water resource management. 

For example, the isotopic variability of precipitation at short time scales needs to be understood 

when using isotope-based hydrograph separation to identify the different contributions to 

runoff and streamflow, or when using isotope-based methods to understand groundwater 

recharge processes (Pu et al., 2017; Cui et al., 2015; Wang et al., 2018; Kong et al., 2019a). 

Third, isotopic records of precipitation are used for paleo-altitude reconstructions of the TP 

(Rowley and Currie, 2006; Rowley, 2007a; Rowley and Garzione, 2017b), based on the 

observed depletion of precipitation with altitude at present (Dansgaard, 1964). However, recent 

studies have challenged this approach, arguing that in ancient times, a different combination of 

dynamical and hydrological processes, in particular convective processes, may lead to an 

altered relationship between precipitation isotopic composition (Ehlers and Poulsen, 2009; 

Poulsen and Jeffery, 2011; Shen and Poulsen, 2019), and even a reversed isotopic lapse rate 

(Botsyun et al., 2019). Therefore, testing our understanding of processes controlling the 

isotopic composition of precipitation is crucial for more robust paleo-elevation estimates. 

In this context, many studies have aimed at better understanding the isotopic 

composition variability in the TP precipitation at different time scales, from daily to inter-

annual time scales. To do so, they have collected precipitation samples and analyzed their 

isotopic composition. Collectively, these studies showed that in the southern part of the TP, 

which is affected by the Indian monsoon circulation, especially in summer, deep convection 

upstream air mass trajectories is the dominant factor (Ishizaki et al., 2012; Gao et al., 2013; Cai 

et al., 2016, 2017, 2018, 2019; synthesis in Table S1). In the northern part of the TP, which is 

affected by the westerlies especially during winter, local temperature is the dominant factor 

(Table S1, e.g. Yao et al., 2013; Yu et al., 2016c). Recent studies also demonstrate that the 

origin of air masses, depending on whether the moisture comes from the monsoon flow or the 

westerlies, is a critical factor (Table S1, e.g. Tian et al., 2007, 2008; Yu et al., 2008, 2014; 

Kong et al., 2019b).  
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In this study, we present daily precipitation samples and their isotopic composition in 

the southeastern TP, in Mount Yulong (at Lijiang) and Mount Meili regions (Fig. 1). The region 

is located at the convergence of air masses between the westerlies and monsoon flows from the 

Bay of Bengal and the South China Sea (Fig. 1a). We investigate what controls the observed 

isotopic variability at the synoptic to seasonal time scale. Since our observations cover less 

than two years, the isotopic variability at the inter-annual time scale, which has already been 

analyzed in other studies (e.g. Ishizaki et al., 2012; Tan, 2014; Cai and Tian, 2016; Cai et al., 

2017, 2019; Shao et al., 2017; Wang et al., 2020), is beyond the scope of this study. Compared 

to previous studies, our analysis goes further in testing the hypotheses on the physical 

mechanisms responsible for isotopic variations. First, we make use of existing satellite 

retrievals of water vapor and its isotopic composition to quantify the relative contributions from 

processes acting on the water vapor at the large-scale (here we define the “large-scale” as larger 

than the typical size of a general circulation model, e.g. 200 km), and local processes 

transforming the large-scale water vapor isotopic composition into the precipitation 

composition on the other hand. The satellite retrievals also allow us to gather a spatial view of 

isotopic variations and to assess the spatial coherence of the isotopic variability, which gives 

complementary information on the processes at play. Second, we filter the isotopic time series 

to isolate the isotopic variability at different time scales: synoptic, intra-seasonal and seasonal.  

Isotope-enabled general circulation models are often used to help understand processes 

controlling the isotopic variability in precipitation (Risi et al., 2010a; He et al., 2015). To what 

extent are the different contributions to the δ2H in precipitation (δ2Hp) variability over the TP 

caught by the models? Does it depend on the time scale? Can these results shed some new light 

on the reasons for the difficulty of models to simulate the isotopic variability over the TP (e.g. 

Yao et al., 2013)? With this aim, we compare the observed isotopic variations to those 

simulated by several isotope-enabled general circulation models. 

2 Material and methods 

2.1 Material 

2.1.1 Study area 

Located in the southernmost of Hengduan Mountains Range, Mount Yulong (27º10'- 

27º40' N, 100°9'-100°20' E) with the peak 5 596 m a.s.l. is a typical monsoonal temperate 

glacier region in China (Fig. 1a). Lijiang basin (26. 86° N, 100. 25° E, 2393 m a.s.l.) is just 

only 25 km south from Mount Yulong (Fig. 1b). The region is characterized by a typical 

monsoon climate. The south Asian/Indian monsoon results in abundant rains during the wet 

season (from May/June to October) with an average annual precipitation of 956.2 mm from 

1951 to 2013. Monsoon winds are typically from the South, bringing water vapor from the Bay 

of Bengal (blue arrow in Fig. 1a) or from the South China Sea (green arrow in Fig. 1a). In 

contrast, less precipitation occurs in the dry season (from November to the next April) because 

of the dry and warm air brought by the south branch of the westerly (Pu et al., 2017, yellow 

arrow in Fig. 1a) with an average temperature of 12.8℃, and an average annual relative 

humidity of 63% (Shi et al., 2017).  
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To assess the spatial coherence of isotopic variability in precipitation at different time 

scales, we also collected daily precipitation samples at 3 sites in Mount Meili (28°33′-28°41′ 

N, 98°30′-98°40′ E, 6740 m a.s.l.), which is located around 210 km northwest of Mount Yulong 

and has similar climatic characteristics (Fig. 1c). The 3 sampling sites are Mingyong (28.47°, 

98.79° E, 2306 m, MY), Taizimiao (28.46° N, 98.76° E, 2937 m, TZ) and Lianhuasi (28.46° 

N, 98.76° E, 3243 m, LH), respectively. 

 

2.1.2 Sampling and isotopic analysis 

Precipitation was sampled at the daily scale at 4 observation stations (Fig. 1). At Lijiang, 

precipitation was sampled from 19, March 2017 to 20, August 2018 (Fig. 2a). To assess the 

spatial coherence of the observed δ2H variability, precipitation was sampled at three other 

stations located at different altitudes near Mount Meili, from 26, June 2017 to 31, July 2018 

(MY), from 8, August 2017 to 1, August, 2018 (TZ), and from 16, July, 2017 to 1, August, 

2018 (LH), respectively (Fig. 2b-d). We make no attempt to assign values into days without 

precipitation.  

To be consistent with the time period of δ2H in water vapor retrieved from Infrared 

Atmospheric Sounding Interferometer (see section 2.1.3), only the precipitation data in 2017 

at Lijiang were analyzed in this study. This leaves us with 76 days where precipitation isotopic 

composition is analyzed. When assessing the spatial coherence of the observed δ2H variability, 

and for this purpose only, the precipitation data for the whole sampling period of the 4 stations 

are used, so as to maximize the common periods between the four stations. 

All precipitation samples were analyzed with respect to VSMOW at the Key Laboratory 

of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, 

using a liquid water isotope analyzer (Picarro L2130-i). All 2H/1H ratios were expressed in δ-

notation, with the precision of 0.5‰ for δ2H. 

 

2.1.3 Water vapor isotopic retrievals by satellite 

The precipitation forms locally from water vapor, which records an integrated history 

of phase change processes along its trajectories. Therefore, it is instructive to separate the 

isotopic variability observed in precipitation into the isotopic variability in water vapor on the 

one hand, and the isotopic difference between water vapor and precipitation on the other hand. 

We thus need the isotopic composition of the water vapor. With this aim, we use isotopic 

retrievals from three different satellites. 

We use δ2H retrievals from Infrared Atmospheric Sounding Interferometer (IASI, 

Lacour et al., 2012, 2015, 2018), which is currently the remote sensor with the best spatio-

temporal sampling capabilities for δ2H retrieval. Each location is sampled twice daily, allowing 

the δ2H variability in the vapor to be resolved at the synoptic scale. The horizontal footprint of 

IASI data is 12 km. Full tropospheric profiles are retrieved, but with very limited vertical 

resolution. We use δ2H retrievals at 5 km above ground level, close to the level of maximum 
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sensitivity of the retrievals. Since the IASI retrievals are very computationally expensive, 

retrievals were computed only for a restricted geographical domain (20-30º N, 94-106º E) for 

the year 2017.  

To put the isotopic variations into a broader regional context, we use the δ2H retrievals 

from Tropospheric Emission Spectrometer (TES, Worden et al., 2006, 2007) and Greenhouse 

gases Observing Satellite (GOSAT, Frankenberg et al., 2013). For TES, we use the optimized 

version that allows to retrieve vertical profiles with degrees of freedom spread throughout the 

troposphere (Worden et al., 2012). For consistency with IASI, we also use retrievals at 5 km 

above ground level. For GOSAT, we use the column-integrated δ2H, because no vertical 

profiles can be retrieved from this technique. Since most of the total-column vapor is in the 

lower troposphere, column-integrated δ2H is strongly weighted towards the δ2H of the 

boundary layer.  

IASI, TES and GOSAT products are from clear-sky only. We select only profiles that 

reach several quality criteria. Specifically, for GOSAT measurements, we select measurements 

that met following quality criteria (Risi et al., 2013): no cloud; retrieved precipitable water (W) 

agrees within 30% with ECMWF reanalysis; errors on retrieved W and column-integrated 

HDO are lower than 15% (Frankenberg et al., 2013); retrieval χ2 is lower than 0.3; retrieved 

δ2H is within -900‰ and 1000‰ to exclude a few obviously anomalous values. For TES, we 

select only TES measurements with a valid quality flag and a degree of freedom of the signal 

(DOFS) greater than 0.5. All these conditions reduce the spatio-temporal sampling. The TES 

measurements, retrieval methods and uncertainties are described in earlier studies (Worden et 

al., 2006, 2007; Risi et al., 2010a). Satellite products usually lack absolute calibration, and 

effectively show large offsets between each other (Risi et al., 2012). When interpreting TES, 

GOSAT and IASI retrievals, we only focus on temporal variability rather than on absolute 

values.  

TES and GOSAT have a low spatio-temporal sampling, and were not available anymore 

in 2017. Therefore, we use these products to analyze the seasonal variations only, using multi-

year-mean monthly values to describe the seasonal cycle. Years are 2004-2007 (corresponding 

to the period when the sampling frequency was maximum) for TES and 2009-2011 for GOSAT.  

We acknowledge that the seasonal cycle of the isotopic composition may vary from 

year to year, in association with inter-annual variability modes such as El Nino Southern 

Oscillation (ENSO). However, for water isotopes, inter-annual variations are generally smaller 

than seasonal variations. We checked this both in precipitation and in the water vapor. For 

precipitation, we used the Tibetan Network for Isotopes in Precipitation (TNIP) data at Lhasa 

which covers 13 years from 1994 to 2006. The multi-annual-mean seasonality in δ18O (no 

observed δ2H data), quantified as the July-August minus March-April δ18O difference, is -

12.1‰, whereas the inter-annual standard deviation of the δ18O seasonality is 6.9 ‰. This 

confirms that inter-annual variations are smaller than seasonal variations. For the water vapor, 

we assessed the robustness of the δ2H seasonality using 8 years of TES observations (2004-

2011). Over most of the TP region and China, the multi-annual-mean seasonality in δ2H is 

larger than the inter-annual standard deviation of the seasonality (Fig. S1), including Lijiang 

with a factor 2. Therefore, this gives us confidence that the seasonal variations that we analyze 

with the TES and GOSAT datasets are robust and are informative even though the time periods 
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are different. Finally, note that the year 2017, when our precipitation was sampled at Lijiang 

and Mount Meili stations, was an ENSO-neutral year at the global scale (Ramirez and Briones, 

2017). 

We will show in the results section that at the seasonal scale, TES, GOSAT and IASI 

give results that are very smooth and spatially coherent. Results are noisier and less spatially 

coherent for IASI at the intra-seasonal and synoptic time scales. To assess to what extent this 

noise and weaker spatial coherence are physical and not artifacts due to errors, we performed 

an extensive error analysis detailed in Appendix 1, including errors associated with the 

instrument sensitivity, random errors, and sampling biases in time and in space. 

2.1.4 Meteorological observations 

To look at the relationships between observed δ2H in precipitation and local 

meteorological conditions, surface air temperature, precipitation amount and relative humidity 

data were used (Fig. 3b-d).  

To assess the effect of the origin of air masses, we use wind direction at 15 m 

corresponding the daily maximum wind speed at Lijiang from the China Meteorological Data 

Service Center (CMDC). The wind direction, binned into 16 directions, was converted into 

direction in degrees between 0 and 360°, where the 0°-360° discontinuity corresponds to the 

North (Fig. 3e). The wind rose shows that the wind most often blows from the South-East or 

from the West (Fig. S2). The fact that the wind direction varies non-monotonically from 360° 

to 0° when going from North-Westerly to North-Easterly could be a problem when calculating 

correlations, because correlation analysis is designed to assess the relationships between 

monotonically varying variables. In our case, the fact that northerly wind is scarce prevents 

issues associated with this 360°-0° discontinuity. 

To explore the influence of upstream convection on the δ2H in precipitation, daily 

precipitation data from Tropical Rainfall Measuring Mission (TRMM, Huffman et al., 2007) 

is available for the sampling period with the spatial resolutions of 0.25°× 0.25°.  

To access the influence of Indian monsoon, the Indian Summer Monsoon (ISM) index 

is also defined with the 850hPa zonal winds averaged over the southern Arabian Sea region 

(5°-15° N, 40°-80º E) minus that averaged over the northern region (20º-30º N, 70º-90º E) (Fig. 

3f), reflecting the large-scale rainfall variability of the Indian summer monsoon (Wang et al., 

2009; Gao et al., 2018). The 850hpa zonal wind data at 2.5°× 2.5° resolution are obtained from 

the NCAR/NCEP reanalysis data (Kalnay et al., 1996). 

2.1.5 Model simulations 

 To assess the ability of isotope-enabled general circulation models (GCMs) to capture 

the seasonal isotopic variability at Lijiang, we use the outputs of nine simulations from seven 

isotope-enabled GCMs archived by Stable Water Isotope Intercomparison Group, Phase 2 

(SWING2, Table S2) (Risi et al., 2012). The SWING2 simulations do not all have the same 

setup: some simulations are free-running and forced by observed sea surface conditions, 

whereas in others the horizontal winds are nudged towards reanalysis data to ensure a more 

realistic simulation of the large-scale circulation (Table S2). In addition, the period of the 
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simulations does not correspond to the data period. Therefore, the simulation set-up in available 

SWING2 simulations is not perfect for this data-model comparison. However, the seasonal 

variability that we investigate using these simulations is much larger than the year-to-year 

variability, as explained in section 2.1.3. 

Only monthly outputs are archived in the context of the SWING2 project. Therefore, 

for outputs at the shorter time scale, we used simulations using the LMDZ5A version of LMDZ 

(Laboratoire de Météorologie Dynamique Zoom), which is the atmospheric component of the 

IPSL-CM5A coupled model (Dufresne et al., 2013) that took part in CMIP5 (Coupled Model 

Intercomparison Project). This version is very close to LMDZ4 (Hourdin et al., 2006). Water 

isotopes are implemented with the same way as in its predecessor LMDZ4 (Risi et al., 2010a). 

The simulation is forced by observed monthly sea-surface conditions and the winds are nudged 

towards the 6-hourly winds from the ECMWF operation analyses (Uppala et al., 2005). Such 

a simulation has already been described and extensively validated for isotopic variables in both 

precipitation and water vapor (Risi et al., 2010a; Risi et al., 2012). We use the outputs for the 

year 2017 to compare with in situ measurements at Lijiang. 

2.2 Methods 

2.2.1 δ2H filtering 

Because the daily δ2H in precipitation combines the variability at different time scales, 

we decompose the isotopic changes into 3 different time scales: “seasonal”, “intra-seasonal” 

and “synoptic” scales (eg, Fig. 3a at Lijiang). 

To do so, we filter the daily δ2H time series by applying a moving average with time 

constants of 30 days and 10 days. The moving average acts as a low-pass filter. We note δ2H10 

and δ2H30 as the 10 days and 30 days filtered δ2H time series respectively. The raw daily δ2H 

time series is decomposed into seasonal (δ2Hseaso), intra-seasonal (δ2Hintra) and synoptic 

(δ2Hsynop) components:  

δ2H = δ2Hseaso + δ2Hintra + δ2Hsynop 

 where δ2Hseaso is calculated as δ2Hseaso = δ2H30 and represents the “seasonal” part of the 

δ2H variability, δ2Hintra is calculated as δ2Hintra = δ2H10 - δ2H30 and represents the “intra-

seasonal” part, and δ2Hsynop is calculated as δ2Hsynop = δ2H - δ2H10 and represents the “synoptic” 

part (Fig. 3a). 

All other time series (eg. Fig. 3b-f, temperature, relative humidity, wind direction…) 

can be filtered in the same way. 

 

2.2.2 Precipitation δ2H decomposition 

The goal is to decompose the daily-mean isotopic variability observed in the 

precipitation into the contribution from different processes (e.g, Botsyun et al., 2016) as 

illustrated in Fig. 4. We exploit the fact that we have water vapor δ2H observations from IASI 

for the same period as our precipitation δ2H, i.e. for the year 2017. First, we write the 
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precipitation isotopic ratio (Rp) as the isotopic ratio in equilibrium with the vapor (𝛼 ∙ 𝑅𝑣𝐿𝑆) 

plus a residual: 

                                    𝑅𝑝 =  𝛼 ∙ 𝑅𝑣𝐿𝑆 + (𝑅𝑝 − 𝛼 ∙ 𝑅𝑣𝐿𝑆)           

(1) 

α is the equilibrium fractionation coefficient that depends on temperature (Majoube, 

1971) . 

RvLS is estimated from IASI retrievals at 5 km altitude. Every day, we average allprofiles in 

a 3.6°x2.5° grid box. In average, there are 26.5 profiles per day in the Lijiang grid box. 

Therefore, RvLS represents the isotopic composition of the vapor at the large scale, hence the 

subscript “LS”.   

We define 

          𝑅𝑣𝑒𝑞 = 𝑅𝑝 𝛼⁄                          (2) 

where Rveq is the isotopic composition of vapor under precipitation - vapor equilibrium. 

We further decompose α into its temporal mean over the full sampling period (𝛼) plus 

its anomaly (𝛼′): 

𝛼 = 𝛼 + 𝛼′                        (3) 

Rearranging equations yields: 

𝑅𝑝 = 𝛼′ ∙ 𝑅𝑣𝑒𝑞 + 𝛼 ∙ 𝑅𝑣𝐿𝑆 + 𝛼 ∙ (𝑅𝑣𝑒𝑞 − 𝑅𝑣𝐿𝑆)  (4) 

In delta notation, this yields: 

𝛿2𝐻𝑝 =
𝛼′ ∙𝑅𝑣𝑒𝑞

𝑅𝑠𝑚𝑜𝑤
∙ 1000 + (

𝛼∙𝑅𝑣𝐿𝑆

𝑅𝑠𝑚𝑜𝑤
− 1) ∙ 1000 +

𝛼∙(𝑅𝑣𝑒𝑞−𝑅𝑣𝐿𝑆)

𝑅𝑠𝑚𝑜𝑤
∙ 1000       (5) 

The first term on the right-hand side represents the effect of variations in the 

precipitation-vapor equilibrium fractionation factor (Fig. 4, black dashed circle). The second 

term represents the effect of variations in water vapor δ2H at the large-scale. These variations 

integrate all processes along air mass trajectories (Fig. 4, blue dashed square). The third term 

(Fig. 4, magenta dashed square) represents a combination of precipitation-vapor disequilibrium 

effects (due to variations in condensation altitude or post-condensation processes such as rain 

evaporation), variations in the vertical gradients between the surface (where the precipitation 

achieves its last equilibration, e.g. Graf et al., 2019) and 5 km (where the water vapor δ2H is 

observed by IASI) and small-scale variations in water vapor δ2H (leading to difference between 

the water vapor δ2H observed by IASI and that with which the precipitation locally 

equilibrates). 

This decomposition can be applied on raw time series, or on filtered time series (section 

2.2.1). In any case, all variables in Eq. (5) are filtered at the same time scale and following the 

same procedure. 
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2.2.3 Back trajectory analysis and cumulated precipitation along trajectories 

Many previous studies have shown the relationship between δ2Hp and precipitation 

upstream air mass trajectories (Vimeux et al., 2005; Risi et al., 2008b; Gao et al., 2013; He et 

al., 2015). To assess this effect, we compute daily back trajectories from Lijiang based on a 2D 

trajectory algorithm (Vimeux et al., 2005) and ECMWF ReAnalysis - Interim (ERA-I) (Dee et 

al., 2011) 6-hourly meridional and zonal wind fields. Each day, a trajectory is calculated with 

time steps every 6 hours backward in time, up to 7 days.  

TRMM precipitation was cumulated along the n previous days along each trajectory, n 

varying from 1 to 7. This yields a time series of cumulated precipitation along trajectories. 

3 Results 

3.1 δ2H time series and relationship with local meteorological variables 

Daily δ2Hp vary greatly from -173.5‰ to 2.4‰ during the sampling period, with a 

weighted-average value of -99.5‰ (Fig. 2a). Precipitation isotope is enriched from November 

to May, corresponding to the non-monsoon season, and depleted from June to October, 

corresponding to the Indian monsoon season. This is consistent with the previous studies in the 

southeastern TP (Yu et al., 2016b; Pang et al., 2006; Pu et al., 2017).  

In order to further asses what controls the variability of precipitation δ2H at different 

time scales (seasonal, intra-seasonal and synoptic scale), we analyze the relationships between 

δ2Hp and local meteorological factors (eg, temperature, precipitation amount, relative humidity 

and wind direction) (Table 1). In particular, the local temperature and precipitation amount are 

often explored as possible factors controlling the δ2Hp in the southern TP (Pang et al., 2006; 

Yao et al., 2013; Yu et al., 2016a). The intensity of the monsoon is also often cited (Wang et 

al., 2009; Gao et al., 2018), quantified here by the ISM. Note that when calculating correlations 

between two variables, regardless of whether they are isotopic or metrological variables, we 

always ensure that these two variables cover the same time period and that the smoothing time 

scale is the same.  

 

At all the time scales, the correlation between δ2Hp and local precipitation is weak (r =-

0.26, p< 0.05 at the seasonal scale, r=-0.27, p<0.05 at the synoptic scale), discarding the local 

amount effect as a major control of the δ2Hp variations. In contrast, the strong correlation 

between δ2Hp and the ISM (r =-0.75, p<0.01 at the seasonal scale, r =-0.41, p<0.01 at the intra-

seasonal scale) suggests that the “amount effect” upstream air mass trajectories, associated with 

deep convection along trajectories, is an important factor. This is consistent with previous 

studies (Gao et al., 2013; He et al., 2015; Dong et al., 2016) that showed that local precipitation 

is not sufficient to explain the δ2Hp variability in the southern TP, and that upstream deep 

convection is a more important factor (section 3.3). 

The correlation between δ2Hp and local temperature is very significant at the seasonal 

scale (r =-0.75, p<0.01, Table 1). Yet, in a causal relationship associated with the distillation 
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of air masses, we would expect δ2Hp to increase with temperature (Dansgaard et al 1964). We 

notice that this correlation is the same as between δ2Hp and the ISM, and that temperature and 

the ISM are strongly correlated (r = 0.97, p<0.01, Table S3). Therefore, the link between δ2Hp 

and temperature is probably simply a consequence of the link between δ2Hp and the ISM. The 

correlation between δ2Hp and local temperature is also significant, though weaker, at the 

synoptic scale (r=0.33, p<0.05). Such a positive correlation could be due to the distillation of 

air masses, or to the correlation of both δ2Hp and temperature with the local meteorological 

situation. 

The meteorological variable that correlates the most strongly with δ2Hp is local wind 

direction (r=0.94, p<0.01 at the seasonal scale, r=0.60, p<0.01 at the intra-seasonal scale). 

Precipitation δ2H is more depleted during the monsoon season when air comes from the South, 

and more enriched when the air comes from the West. This is consistent with the effect of 

moisture origin highlighted in several previous studies (Tian et al., 2007, 2008; Yu et al., 2008, 

2014; Kong et al., 2019b). However, the local wind direction observed at Lijiang is more 

representative of the local circulation or meteorological situation than the large-scale 

circulation. The correlations between local wind direction and the direction of air mass 

trajectories (e.g. quantified as the direction of the vector connecting Lijiang from the trajectory 

location 3 days before its arrival, hereafter “trajectory direction”) are weak and significant only 

at the seasonal scale ( r = 0.69, p<0.01, Table S3). The correlations between δ2Hp and trajectory 

direction are also significant, though weaker (r = 0.70, p<0.01 at the seasonal scale, r=0.53, 

p=0.01 at the intra-seasonal scale, Table 1). Therefore, both local wind direction associated 

with local circulation and meteorological situation, and to a lesser extent trajectory direction 

associated with the large-scale circulation and origin of air masses, emerge as important factors. 

The second meteorological variable that correlates the most strongly with δ2Hp is 

relative humidity (r =-0.80, p<0.01 at the seasonal scale, r=-0.41, p<0.01 at the intra-seasonal 

scale). The lower correlation between relative humidity and the ISM indicates that this cannot 

be a simple consequence of the link between δ2Hp and the ISM. Relative humidity can impact 

δ2Hp through two main mechanisms: first, low relative humidity is associated with stronger 

subsidence that bring depleted water vapor downward (Frankenberg et al., 2009, Galewsky and 

Hurley, 2010). This would lead to a positive correlation opposite to what we observe. Second, 

low relative humidity drives stronger rain evaporation that enriches δ2Hp. This probably leads 

to the negative correlation that we observe. Finally, it is also possible that both relative 

humidity and δ2Hp independently respond to the seasonal climate pattern and seasonal moisture 

transport, in a way that is slightly different from the ISM. More generally, this correlation 

analysis is useful to hypothesize what processes drive the δ2Hp variability. However, a 

correlation does not necessarily mean a causal relationship. To better understand whether rain 

evaporation is a major factor controlling the δ2Hp seasonality, we turn to our decomposition 

method. 

3.2 Decomposition of the variability in δ2H in precipitation 

To better understand what process drive the precipitation δ2H variability, the raw and 

filtered time series are decomposed into 3 contributions as explained in section 2.2.2 and 

illustrated in Fig. 4. For example, Fig. 5 shows the raw precipitation δ2H time series and its 3 
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contributions. We can check that the sum of the 3 contributions (Fig. 5, black dashed line) 

yields the initial raw precipitation time series (Fig. 5, magenta). We can see that the first 

contribution α'·Rveq (Fig. 5, black), which represents the effect of temperature variations on 

precipitation-vapor equilibrium fractionation coefficient, is very small. It can be neglected. The 

second contribution  𝛼 · 𝑅𝑣𝐿𝑆 , and the third contribution 𝛼 · (𝑅𝑣𝑒𝑞 − 𝑅𝑣𝐿𝑆)  show large 

fluctuations, and their impact on the δ2H variability at different time scales can be quantified 

by the correlation analysis that follows. Quantitatively, Table 2 summarizes the correlation 

coefficients and slopes of the three different contributions as a function of δ2Hp at different 

time scales.  

 

At the seasonal scale, δ2Hp is significantly correlated with the third contribution 𝛼 ·

(𝑅𝑣𝑒𝑞 − 𝑅𝑣𝐿𝑆) (r=0.97, p<0.01). The slope indicates that it contributes to 69% of the δ2Hp 

variations (Table 2). This suggests that processes transforming the δ2HvLS variability into the 

δ2Hp variability are the main drivers of seasonal variation in δ2Hp at Lijiang. This is consistent 

with section 3.1 that suggested a key role for local processes, especially local circulation and 

rain evaporation. The role of local circulation is further supported by the correlation between 

the third contribution and local wind direction (r = 0.97, p < 0.01). The local circulation could 

drive small-scale vertical and horizontal heterogeneities in water vapor δ2H relatively to δ2HvLS. 

The role of rain evaporation is also further supported by the correlation between the third 

contribution and relative humidity (r = -0.91, p < 0.01): as the air is drier, the precipitation 

evaporates more efficiently as it falls and gets more enriched relatively to δ2HvLS.  

Another prominent correlation at the seasonal scale is between δ2Hp and the second 

contribution 𝛼 · 𝑅𝑣𝐿𝑆 (r=0.81, p<0.01). The slope indicates that it contributes to 27% of the 

δ2Hp variations (Table 2). This probably reflects convective processes along air mass 

trajectories (section 3.3). This could also include an effect of the moisture origin: the second 

contribution also correlates significantly with local wind direction (r=0.62, p<0.01), which at 

the seasonal scale reflects both local and large-scale circulation (section 3.1, Table S3). 

At the intra-seasonal scale, δ2Hp is significantly correlated with the third contribution 

(r = 0.90, p<0.01). This indicates that processes transforming the δ2HvLS variability into the 

δ2Hp variability are the main drivers, contributing to 115 % of δ2Hp variations. This local 

contribution may reflect both the effect of rain evaporation (r=-0.33, p<0.01 with relative 

humidity) and of local circulation (r=0.79, p<0.01). The fact that this contribution exceeds 

100 % indicates that it is counter-balanced by another processes. It means that without the other 

counter-balancing process, the δ2Hp variability would be greater than observed. This counter-

balancing process is represented by the second contribution. Indeed, δ2Hp is negatively 

correlated with the second contribution, indicating that processes along trajectories are not 

drivers. Rather, these processes blur or dampen the δ2Hp variability. 

At the synoptic scale, processes transforming the δ2HvLS variability into the δ2Hp 

variability dominate (r=0.46, p<0.01), contributing to 68% of the synoptic variability in δ2Hp. 

Since no significant correlation between the third contribution and relative humidity can be 
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detected, we can discard a significant effect of rain evaporation. No significant correlation 

between the third contribution and local wind speed can be detected either, discarding an effect 

of local circulation. Small-scale vertical and horizontal heterogeneities in water vapor δ2H, 

associated with local meteorological conditions, could be the main drivers of this contribution.  

Could errors in IASI affect our result that processes transforming δ2HvLS into δ2Hp 

emerge as the most important contribution at all time scales? Actually, IASI errors tend to 

lower the contribution of this contribution (Appendix 1). Therefore, in reality we may expect 

an even larger contribution of these processes. 

3.3 Relationship with upstream convection 

To test the hypothesis that at the seasonal scale deep convection upstream air mass 

trajectories is also a key driver of δ2Hp variations, daily TRMM precipitation is cumulated 

along the n previous days along each air mass trajectories. The temporal correlation between 

δ2Hp and δ2HvLS and cumulated precipitation amount is shown as a function of n (Fig. 6). 

 

At the seasonal scale, δ2Hp is significantly anti-correlated with the cumulated 

precipitation amount from 1 to 3 days preceding the rainy event. The strongest negative 

correlation is obtained for n = 2 days (r = -0.89, p < 0.01). δ2HvLS exhibits a similar pattern, 

which is remarkable given that precipitation and water vapor δ2H are from completely 

independent sources of data. This result is consistent with previous studies highlighting the 

important role of deep convection along air mass trajectories in the TP region (Table S1), and 

in other monsoon regions of the world (Vimeux et al., 2005; Risi et al., 2008a, b; Vimeux et 

al., 2011; Tremoy et al., 2012). 

Air mass trajectories are associated with the monsoon flow in the lower troposphere. 

The mechanisms by which deep convection depletes the lower tropospheric water vapor along 

the air mass trajectories have already been documented in previous observational and modeling 

studies. First, convective or meso-scale downdrafts bring depleted water vapor from the free 

troposphere downward (Risi et al., 2008b, 2010a; Kurita et al., 2013). Second, rain evaporation 

in moist conditions and diffusive exchanges between the rain and vapor deplete the water vapor 

(Lawrence et al., 2004; Worden et al., 2007; Field et al., 2010; Lacour et al., 2018). 

At the intra-seasonal and synoptic scales, there is no significant anti-correlation with 

the cumulated precipitation. This is consistent with the result of the previous section suggesting 

that at these time scales, the observed variability is not driven by processes affecting the large-

scale water vapor, but rather by local processes transforming the large-scale water vapor 

variability into the precipitation variability. However, at the intra-seasonal scale, we observe a 

significantly positive correlation between water vapor δ2H and cumulated precipitation for all 

lags. We do not know how to interpret this correlation. We can’t find any physical mechanisms 

that would lead to such a correlation. 

3.4 Spatial scale of isotopic variability in precipitation and vapor 

To test whether the local processes produced the short-term variation in precipitation 

and vapor δ2H, we use three different datasets. 1) TES and GOSAT datasets are used to show 
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the seasonal difference of δ2H in vapor at the scale of China and nearby countries (Fig. 7); 2) 

IASI daily output of δ2H in vapor is used to show the spatial coherence of water vapor δ2H 

variations from the seasonal to synoptic scale; 3) Observed daily precipitation isotope in Mount 

Yulong and Mount Meili are used to access the spatial scale of isotopic variability.  

The TES and GOSAT data show that the seasonal variations observed at Lijiang, with 

more depleted precipitation in the monsoon season (July-August) than before the monsoon 

onset (March-April), are also observed in a wide region from about 18°N to 30°N and 85°E to 

120°E (Fig. 7). The deep convection associated with the Indian monsoon occurs over a wide 

region, thus impacting the water vapor δ2H over a wide region as well. 

 

The IASI observations allow us to assess the spatial imprint of the δ2H variability at the 

seasonal to synoptic scales (Fig. S3). At the seasonal scale, the water vapor δ2H at Lijiang 

correlates significantly with the water vapor δ2H everywhere around (r>0.8), consistent with 

the fact that the seasonality of water vapor δ2H has a very wide spatial imprint. At the intra-

seasonal scale, the correlations are significant over a smaller region of a few hundreds of 

kilometers (r>0.4). At the synoptic scale, the correlations become insignificant everywhere 

(r<0.4), consistent with purely local processes controlling the variability. 

To further assess the spatial coherence of the δ2H variability, precipitation δ2H at 

Lijiang is compared with that observed at 3 other sites distributed at different altitudes (Fig. 1, 

section 2.1.1). The correlation for each pair of sites is calculated at different time scales (Table 

3). At the seasonal scale, δ2Hp at Lijiang is strongly correlated with δ2Hp at the 3 sites at Mount 

Meili (r>0.88, p<0.01, Table 3). This is consistent with the large-scale imprint of the seasonal 

variations. 

At the intra-seasonal scale, a robust positive correlation (p<0.05) is observed only 

between δ2H at Lijiang and TZ in Mount Meili (Table 3). This confirms that the spatial scale 

of intra-seasonal variations is smaller than for seasonal variations. At the synoptic scale, there 

is no relationship between Lijiang and the three sites at Mont Meili, supporting the small spatial 

scale of synoptic variations and thus the importance of local processes. 

 

To summarize, the shorter the time scale of isotopic variations, the smaller the spatial 

imprint of these variations. 

3.5 Comparison with isotope-enabled general circulation models 

We have quantified the relative contributions of different processes to the isotopic 

variability at Lijiang, and have assessed their spatial imprint. To what extent are these different 

contributions captured by the models?  

At the seasonal scale, most models participating in SWING2 capture the seasonal cycle 

(Fig. 8, Table 4, r > 0.49 between observed and simulated δ2H at Lijiang for each model) 

because to some extent all models are able to capture the Indian monsoon and the associated 

depleting effect of deep convection. Qualitatively, the seasonality simulated by SWING2 

models shows a large spatial coherence (Fig. S4), consistent with the pattern exhibited by 
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satellite observations (Fig. 7). The capacity of GCMs to simulate the seasonality of δ2H further 

supports the importance of processes that have a large spatial imprint i.e. convection integrated 

several days along trajectories or air mass origin. However, we note that many models 

underestimate the seasonal variations observed at Lijiang (Fig 8; Table 4: the slopes of 

simulated vs observed monthly δ2Hp are all lower than 1) and more generally in the monsoon 

domain of the Tibetan Plateau and more generally in the monsoon domain of the Tibetan 

Plateau (Fig. S4 compared with Fig. 7). This underestimation had already been noticed in 

previous studies focusing on δ2Hp in China (Che et al., 2016), and more generally in the 

monsoon domain of the Tibetan Plateau (Gao et al., 2011). These studies highlight the need for 

high horizontal resolution to properly simulate the observed δ2Hp depletion during the monsoon 

season. 

 

LMDZ results are consistent with those in SWING2 models. LMDZ can capture the 

seasonal cycle very well (r = 0.99, p < 0.01; Table 5, Fig. 9a), in spite of a slight 

underestimation of the amplitude (slope of 0.8). LMDZ also captures the δ2HvLS seasonal 

variability observed by IASI, after taking into account the effect of instrument sensitivity 

(r=0.74, p<0.01, Fig. 9b, Table 5). The slightly lower correlation coefficient for the vapor can 

be explained by the different sources of IASI errors, namely random errors and sampling biases 

(Appendix 1). 

 

We now investigate the driver of the δ2Hp seasonality in SWING2 models. In all models 

but HadAM3_free, the main driver of δ2Hp is the 𝛼 ∙ 𝑅𝑣𝐿𝑆  contribution, at odds with 

observations that show a dominance of local processes (section 3.2, Table 2). Most models 

underestimate the 𝛼 ∙ (𝑅𝑣𝑒𝑞 − 𝑅𝑣𝐿𝑆) contribution (Table 4).   

The same holds for LMDZ: processes along trajectories dominate in LMDZ (Table 6, 

79%) and local processes transforming δ2HvLS into δ2Hp are secondary (Table 6, 16%). This is 

in contrast with observations, which show that processes along trajectories dominate (section 

3.2, Table 2). This mismatch cannot be due to errors from IASI (instrument sensitivity, random 

errors, sampling bias in time and in space). As shown in Table S7, errors in IASI tend to make 

the contribution of local processes weaker and even negative (Appendix 1, Table S7). 

Therefore, the mismatch is rather due to model shortcomings. 

 

It is possible that a better horizontal resolution would improve the simulation of local 

processes transforming δ2HvLS into δ2Hp, enhance their contribution, and thus enhance the 

seasonal amplitude of δ2Hp in better quantitative agreement with observations. Although 

LMDZ underestimates the contribution of local processes, it seems to be able to capture the 

drivers of this contribution. The correlation between 𝛼 ∙ (𝑅𝑣𝑒𝑞 − 𝑅𝑣) and relative humidity is 

-0.59, suggesting that in LMDZ, rain evaporation is a major driver of this contribution, 

consistent with observations (section 3.2). 
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To evaluate the capacity of GCMs to simulate the δ2Hp variability at the intra-seasonal 

and synoptic scales, we use outputs from LMDZ. LMDZ can capture the intra-seasonal 

variations to some extent (r = 0.67, p<0.01) but underestimates them (slope of 0.56, Table 5). 

Similarly, it captures the δ2HvLS variability observed by IASI, after taking into account the 

effect of instrument sensitivity (r=0.56, p<0.1, Fig. 9b, Table 5). As for the seasonal scale, the 

slightly lower correlation coefficient for the vapor than for the precipitation can be explained 

by the different sources of IASI errors (Appendix 1). In contrast, LMDZ fails to capture the 

variability at the synoptic scale (r = 0.15).  

LMDZ overestimate the 𝛼 ∙ 𝑅𝑣𝐿𝑆  contribution compared observations (Table 6 

compared to Table 2): 39 % compared to -21 % at the intra-seasonal scale, and 69 % compared 

to a non-significant contribution at the synoptic scale. Considering IASI errors does not affect 

this conclusion (Table S7 compared to Table 6). Conversely, LMDZ underestimates the local 

processes that are encapsulated in 𝛼 ∙ (𝑅𝑣𝑒𝑞 − 𝑅𝑣𝐿𝑆): 62 % compared to 115 % at the intra-

seasonal scale and 32 % compared to 68 % at the synoptic scale (Table 6 compared to Table 

2). Again, considering IASI errors would not change this conclusion (Table S7 compared to 

Table 8). The difficulty to represent this local contribution may explain the difficulty of LMDZ 

to capture the intra-seasonal and synoptic δ2Hp variability. It is possible that the coarse 

resolution for LMDZ is not sufficient to represent the local processes transforming the δ2HvLS 

variability into δ2Hp variability, for example local circulations or spatial heterogeneities in 

δ2HvLS at the small scale. 

4 Discussion 

4.1 Comparison with factors controlling precipitation δ2H in previous studies 

Both sets of processes (processes along trajectories and local processes) had already 

been independently highlighted in previous studies. The importance of deep convection 

upstream trajectories in controlling the δ2H variations had already been reported in previous 

studies, both in the southern -TP (e.g. Gao et al., 2013; He et al., 2015) and in other monsoon 

regions such as South America (Vimeux et al., 2005) and Western Africa (Risi et al., 2008a, 

2010c). The importance of rain evaporation had also been pointed in the Southern TP (Ren et 

al., 2017) and in Western Africa (Risi et al., 2010b). These two processes are known to 

contribute to the amount effect (Risi et al., 2008b).  

In this work, our study proposes a way to quantify the relative importance of these two 

sets of processes based on observations. At the intra-seasonal and synoptic scales, the 

dominance of local processes is in contrast with most previous studies that highlighted the 

effect of deep convection along trajectories at other sites in the Southern TP (e.g. Lhasa: Gao 

et al., 2013; He et al., 2015) and in other monsoon regions such as South America (Vimeux et 

al., 2011) or Western Africa (Risi et al., 2008, 2010a; Tremoy et al., 2012). This may be 

because of the complex terrain and diversity of trajectories in our region of interest. For 

example, in the Sahel, the terrain is essentially flat, and in South America, the air mass 

trajectories are less diverse (Vimeux et al., 2005). Our study also highlights the key role of 
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local circulations, in addition to the role of the large-scale circulation that had been highlighted 

in previous studies (Tian et al., 2007, 2008; Yu et al., 2008, 2014; Kong et al., 2019b). 

4.2. Implications for the use of isotope-enabled models to study isotopic variability in 

the TP 

All GCMs overestimate the effect of processes along trajectories affecting the water 

vapor composition at the large scale, whereas they underestimate the effect of local processes 

transforming this large-scale water vapor composition into local precipitation composition. 

Since local processes are increasingly important at shorter time scales, this may explain the 

difficulty of GCMs to simulate the δ2Hp variability at shorter time scales. Insufficient horizontal 

resolution is a possible candidate for this shortcoming. Thus, to investigate what controls the 

isotopic variability at the synoptic time scales, an isotope-enabled model with much higher 

horizontal resolution would probably be needed (e.g. Moore et al., 2014, 2016; Dutsch et al., 

2016, 2018).  

4.3 Dependence on the time scale and implications for the interpretation of paleoclimate 

records  

At the seasonal scale, the isotopic variation in precipitation and vapor is affected by the 

integrative effect of convective activity over several days preceding precipitation events, 

combined with a possible effect of air mass origin, but this is not the case at shorter time scales. 

This highlights the importance of separating the time scales when investigating the role of deep 

convection. If analyzing the correlations with the raw time series, we would have been misled 

to believe that the daily variability in δ2Hp
 

is not associated with upstream deep convection, 

whereas in reality the daily variability in δ2
 

Hp

 

at the seasonal scale is also affected by the 

upstream deep convection. 

Our study shows that the factors controlling δ2H variability strongly depend on the time 

scale. Therefore, applying our results to interpret paleoclimate records is not obvious. A strong 

dependence on the time scale was also highlighted by Hu et al., (2019) between the inter-annual 

to the precessional time scales. Together with our results, this calls for caution when using 

relationships observed at short time scales to interpret paleoclimate records. 

We show that local processes dominate at synoptic to intra-seasonal time scales. At the 

seasonal time scale, both local processes and processes along trajectories, including upstream 

deep convection, are important. We can thus hypothesize that processes along trajectories 

would dominate more and more at longer time scales. Our record is too short to show any 

results at the longer time scale, but previous studies confirm this hypothesis and have 

highlighted the dominance of processes along trajectories, especially the origin of air masses 

at the inter-annual time scale (Hu et al., 2019) and at the precessional and millennial time scales 

(Tabor et al., 2018) or upstream deep convection associated with ENSO at the inter-annual time 

scale (Ishizaki et al., 2012; Tan, 2014; Cai et al., 2016, 2017; Shao et al., 2017; Gao et al., 

2018) and at the precessional and millennial time scales (Pausata et al., 2011; Lee et al., 2012; 

Battisti et al., 2014).  

We show that the longer the time scale from synoptic to seasonal, the larger the spatial 

scale of variations recorded in precipitation δ2H (section 3.4). We may expect this to remain 
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true at scales even longer. The enhanced spatial coherence of precipitation δ2H at the inter-

annual time scale, and even more at the precessional time scale, was already highlighted in Hu 

et al. (2019). At the glacial-interglacial time scale, the homogeneity of δ2H variations recorded 

in ice cores over tropical mountain regions around the globe is even more remarkable 

(Thompson et al., 2000b), which suggests that precipitation δ2H at such long paleo-climatic 

time scale may record a very large-scale variability, maybe at the tropical scale. 

5 Conclusion 

We have collected the daily precipitation samples at Lijiang in Mount Yulong region 

and at 3 sites in the Mount Meili region, and investigated what controls the isotopic variability 

at the seasonal, intra-seasonal and synoptic time scales based on a decomposition method using 

water vapor isotopic measurements by satellite.  

At the seasonal scale, two kinds of processes control the variability in precipitation δ2H. 

First, processes along trajectories, particularly deep convection and the origin of air masses, 

affect the water vapor composition at the large scale. Second, local processes transform the 

isotopic variability in the large-scale water vapor into the local variability in the precipitation. 

These local processes may include small-scale spatial heterogeneities, variations in the vertical 

isotopic gradient, local circulation, condensation or post-condensation processes. Particularly, 

rain evaporation and local circulation emerge as important factors. At the seasonal scale, both 

kinds of processes have a large-scale spatial imprint.  

At the intra-seasonal and synoptic scales, local processes dominate. The shorter the time 

scale of isotopic variations, the smaller the spatial imprint of these variations. We thus highlight 

the dependence of the isotopic drivers to the time scale of variability. Consequently, we 

emphasize the need to filter the time series to separate the different time scales. If we had 

analyzed the raw daily scale only, we would have been misled to over-estimate the importance 

of deep convection upstream trajectories at short time scales, and to underestimate its 

importance at the seasonal scale. 

Isotope-enabled general circulation models can qualitatively capture the seasonal 

variations in δ2H, but they underestimate the contribution of local processes and overestimate 

the contribution of processes along trajectories. Local processes that impact the isotopic 

variability are underestimated at the intra-seasonal and synoptic scale by LMDZ with a coarse 

resolution, explaining its difficulty to reproduce the observed variations at these time scales.  

Appendix 1: Sources of errors in δ2H retrieved by IASI 

The goal is to assess the impact on the results of different sources of errors affecting 

the IASI observations. We quantify different sources of errors, and the impact of these sources 

of errors on our results. We cannot compare the results we would get with and without errors 

in IASI, since the real δ2H is not known. Therefore, we compare what we would get with and 

without IASI errors in LMDZ. We note δ2Hv_LMDZ the δ2Hv simulated by LMDZ, and δ2Hv_IASI 

the δ2Hv observed by IASI. 
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1.1 Effect of instrument sensitivity 

Due to limited instrument sensitivity, the retrieved profiles are smoothed versions of 

the true profiles. The averaging kernels describe the vertical sensitivity of the retrieval at each 

level to the true state at each level (Worden et al 2006; Risi et al., 2012). These depend on the 

atmospheric state. Therefore, part of the δ2H variability measured by satellites can be attributed 

to the variability in instrument sensitivity. To quantify this effect, we calculate the water vapor 

δ2H that IASI would retrieve if it was flying over the atmosphere of LMDZ. We co-locate 

LMDZ outputs with IASI retrievals and we convolve these outputs by averaging kernels. We 

note the resulting time series δ2Hv_LMDZ_convol. 

As expected, δ2Hv_LMDZ_convol is smoothed compared to δ2Hv_LMDZ, with the amplitude 

of variations in δ2Hv_LMDZ_convol being 89 %, 95 % and 86 % with those in δ2Hv_LMDZ at the 

seasonal, intra-seasonal and synoptic scales (Table S4). 

At all the time scales, the correlation coefficients between δ2Hv_LMDZ_convol and δ2Hv _IASI 

are better than between δ2Hv_LMDZ and δ2Hv_IASI (Table S4). This is consistent with the fact that 

IASI observations are affected by instrument sensitivity compared to true profiles, and that we 

correctly account for this effect when calculating δ2Hv_LMDZ_convol. 

1.2 Effect of random errors 

IASI δ2H measurements are affected by random errors (Lacour et al., 2012). The typical 

standard deviation for these errors is 40‰ in the TP. Therefore, at longer time scales, more 

samples are considered in the average, and thus the impact of random errors on average values 

is lower. Specifically, when averaging n samples, we expect the error on the average to be 

divided by √n. The fact that IASI is noisier and less correlated with LMDZ at short time scale 

may be an artifact of those random errors.  

To estimate the impact of these errors on the observed variability, we use a Monte-

Carlo approach in which we add random errors to LMDZ outputs. For each retrieved profile i, 

we draw a random number ε(i) from a Gaussian distribution with a null mean and a standard 

deviation of 40‰. We add this number to the δ2H value that is simulated by LMDZ for this 

day t, 𝛿2𝐻𝐿𝑀𝐷𝑍(𝑡)̂ : 

δ2Herr(i) = δ2HLMDZ(t)
̂

+ ε(i)         (A1) 

where the δ2Herr(i) is the 𝛿2𝐻 value that is distorted by the random error. Throughout 

this appendix, the hat sign represents the daily average and the overbar sign represents the 

annual average. 

We calculate a daily δ2H time series 𝛿2𝐻𝑒𝑟𝑟(𝑡) ̂ by averaging all the δ2Herr (i) values 

that belong to each given day. Finally, we estimate the correlation between the 

𝛿2𝐻𝐿𝑀𝐷𝑍(𝑡) ̂ and 𝛿2𝐻𝑒𝑟𝑟(𝑡) ̂  time series. On average, 26.5 retrieved profiles in the Lijiang 

grid box are included in daily averages. This limits the effect of random errors. On average 
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over 10 Monte-Carlo simulations, the correlation coefficients between the 𝛿2𝐻𝐿𝑀𝐷𝑍(𝑡) ̂  and 

𝛿2𝐻𝑒𝑟𝑟(𝑡) ̂  are 0.998, 0.974, 0.868 at the seasonal, intra and synoptic scales. Therefore, 

random errors may slightly distort δ2Hv_IASI time series at the synoptic scale, but not at longer 

time scales. 

1.3 Effect of diurnal cycle 

IASI observations with a global coverage are generally retrieved twice a day (orbits 

crossing the Equator at 9:30 and 21:30 LT). To estimate the impact of the diurnal cycle of water 

vapor isotopic composition, the time series of water vapor δ2H are calculated based on morning 

and afternoon profiles separately. We decompose the daily-mean, grid-mean 

δ2H, 𝛿2𝐻(𝑡) ̂ time series into : 

  𝛿2𝐻(𝑡)̂ =  𝑃𝑚(𝑡) ∙  𝛿2𝐻𝑚(𝑡)̂ + (1 − 𝑃𝑚(𝑡)) ∙ 𝛿2𝐻𝑎(𝑡)̂  (A2) 

where 𝛿2𝐻𝑚(𝑡)̂  and 𝛿2𝐻𝑎(𝑡)̂  are the daily-mean δ2H retrieved in the morning and in 

the afternoon and Pm(t) is the proportion of observations of water vapor in the morning on day 

t. We further decompose Pm(t), 𝛿2𝐻𝑚(𝑡)̂  and 𝛿2𝐻𝑎(𝑡)̂  into the annual-mean 𝑃𝑚
̅̅̅̅  ,  𝛿2𝐻𝑚

̅̅ ̅̅ ̅̅ ̅ 

and 𝛿2𝐻𝑎
̅̅ ̅̅ ̅̅ ̅ plus their daily anomalies 𝑃𝑚(𝑡)′, 𝛿2𝐻m(t)' and 𝛿2𝐻a(t)'. 

     𝑃𝑚(𝑡) =  𝑃𝑚
̅̅̅̅ + 𝑃𝑚(𝑡)′              (A3) 

𝛿2𝐻𝑚(𝑡)̂ =  𝛿2𝐻𝑚
̅̅ ̅̅ ̅̅ ̅ +  𝛿2𝐻𝑚(𝑡)′          (A4) 

      𝛿2𝐻𝑎(𝑡)̂ =  𝛿2𝐻𝑎
̅̅ ̅̅ ̅̅ ̅ +  𝛿2𝐻𝑎(𝑡)′           (A5) 

We get the following decomposition: 

  𝛿2𝐻(𝑡)̂ =  𝑃𝑚
̅̅̅̅  ∙  𝛿2𝐻𝑚

̅̅ ̅̅ ̅̅ ̅ + (1 − 𝑃𝑚
̅̅̅̅ ) ∙ 𝛿2𝐻𝑎

̅̅ ̅̅ ̅̅ ̅  +  𝑃𝑚(𝑡)′ ∙ (𝛿2𝐻𝑚
̅̅ ̅̅ ̅̅ ̅ − 𝛿2𝐻𝑎

̅̅ ̅̅ ̅̅ ̅)  + 𝑃𝑚
̅̅̅̅ ∙

𝛿2𝐻𝑚(𝑡)′ + (1 − 𝑃𝑚
̅̅̅̅ ) ∙  𝛿2𝐻𝑎(𝑡)′ +  𝑃𝑚(𝑡)′ ∙ (𝛿2𝐻𝑚(𝑡)′ − 𝛿2𝐻𝑎(𝑡)′ )   (A6) 

The first and second terms on the right-hand sides stand for the annual-mean δ2H in the 

morning and in the afternoon. The third term represents the effect of daily variations in the 

proportion of morning retrievals, named contrib_sampling. This represents the diurnal 

sampling bias. The fourth and fifth terms represent the effect of daily variations in the morning 

and in the afternoon δ2H, named contrib_signal. This is the physical variability in which we 

are interested. The last term represents the effect of co-variability between the daily proportion 

anomalies and the δ2H anomalies in the morning and in the afternoon, named contrib_cross. 

δ2H in the morning is correlated with δ2H in the afternoon, but it is systematically more 

depleted than in the afternoon by -32.40‰ on average. The contribution of the sampling bias 
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to the daily-mean δ2H variability is lower than 9% at all the time scales (Table S5, slopes of 

δ2Ĥ vs contrib_sampling). The daily mean δ2H is very well correlated with contrib_signal at 

the seasonal and synoptic scales, but it is lower, though significant, at the intra-seasonal scale 

(Table S5). This means that the distortion of the daily-mean δ2H variability by the diurnal 

sampling bias is slight.  

1.4 Effect of inhomogeneous spatial sampling 

In the daily δ2H time series, every day represents an average of profiles that are located 

in a 3.6°x2.5° grid box. Inhomogeneous sampling in space can distort the daily-mean δ2H time 

series if for some days, more profiles are located where the water vapor is more depleted or 

more enriched. At the scale of the grid box in such a mountainous region, we assume that the 

ground altitude z is the main controlling factor that leads to spatial variation of δ2H within the 

grid box (Bowen et al., 2010). How variable are the altitudes at which the IASI profiles are 

located? What is the impact of this variability on the daily δ2H time series? This is what we 

aim at quantifying here.  

We thus decompose the altitude range into nz small intervals, each representing 

altitudes z to z+dz (nz = 40, dz = 0.2 km, first interval starting at altitude z = 0 km). For each 

day t, the daily-mean, grid-mean 𝛿2𝐻, δ2H(t) ̂ is given by: 

                        𝛿2𝐻(𝑡)̂ = ∑ 𝑝(𝑡, 𝑧) ∙ 𝛿2𝐻(𝑡, 𝑧)𝑛𝑧
𝑧=1                 (A7) 

where p(t, z) is the probability density function for a given day t and altitude interval z 

and δ2H (t, z) is the daily mean δ2H for a given day t and altitude interval z. 

We further decompose p(t, z) and δ2H (t, z) into their annual averages and their 

anomalies : 

                              𝑝(𝑡, 𝑧) = 𝑝(𝑧)̅̅ ̅̅ ̅̅ + 𝑝(𝑡, 𝑧)′                 (A8) 

                        𝛿2𝐻(𝑡, 𝑧) = 𝛿2𝐻(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛿2𝐻(𝑡, 𝑧)′           (A9) 

where 𝛿2𝐻(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅ and  p(z) represent the annual-mean 𝛿2𝐻  and probability density 

functions when binned as function of z. 

                𝛿2𝐻(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑝(𝑡,𝑧)∙𝑛𝑡

𝑡=1 𝛿2𝐻(𝑡,𝑧)

∑ 𝑝(𝑡,𝑧)𝑛𝑡
𝑡=1

               (A10) 

                    𝑝(𝑧)̅̅ ̅̅ ̅̅ = ∑ 𝑝(𝑡, 𝑧)𝑛𝑡
𝑡=1                   (A11) 

and 𝑝(𝑡, 𝑧)′ and 𝛿2𝐻(𝑡, 𝑧)′ represent the daily anomalies of p(t,z) and 𝛿2𝐻 (t, z): 

               𝛿2𝐻(𝑡, 𝑧)′ = 𝛿2𝐻(𝑡, 𝑧) −  𝛿2𝐻(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅           (A12) 

                  𝑝(𝑡, 𝑧)′ =
𝑝(𝑡,𝑧)

∑ 𝑝(𝑡,𝑧)𝑛𝑧
𝑧=1

−  𝑝(𝑧)̅̅ ̅̅ ̅̅              (A13) 
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We get the following decomposition: 

𝛿2𝐻(𝑡)̂ = ∑ 𝑝(𝑧)̅̅ ̅̅ ̅̅
𝑛𝑧

𝑧=1

∙ 𝛿2𝐻(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅ + ∑ 𝑝(𝑧)̅̅ ̅̅ ̅̅
𝑛𝑧

𝑧=1

∙ 𝛿2𝐻(𝑡, 𝑧)′ + 

       ∑ 𝑝(𝑡, 𝑧)′𝑛𝑧
𝑧=1 ∙ 𝛿2𝐻(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅  + ∑ 𝑝(𝑡, 𝑧)′𝑛𝑧

𝑧=1 ∙ 𝛿2𝐻(𝑡, 𝑧)′            (A14) 

      The first term on the right-hand side is constant and corresponds to the annual-mean δ2H. 

The second term is the effect of temporal variations in δ2H at different altitudes, named 

contrib_signal. This is the variability unbiased by sampling inhomogeneities. The third term is 

the effect of temporal variations in the altitude probability density function, named 

contrib_sampling. It represents the effect of inhomogeneous spatial sampling. The fourth term 

represents the effect of co-variability between vertical profiles of probability density function 

and δ2H, named contrib_cross. 

The contribution of contrib_sampling to the daily-mean δ2H variability is lower than 

2% (Table S6, slopes of 𝛿2𝐻̂  vs contrib_sampling). 𝛿2𝐻̂  is well correlated with 

contrib_signal with the correlation coefficients from 0.99 at the seasonal scale to 0.88 at the 

synoptic scale (Table S6). This means that the effect of sampling heterogeneities is small. The 

𝛿2𝐻̂ is well correlated with contrib_cross at all time scales. The contrib_cross term contributes 

from 17% at seasonal scale to 34% at synoptic time scale. This may contribute to the relatively 

lower correlation between δ2H simulated by LMDZ and observed by IASI at shorter time scales 

compared to the seasonal scale (Table 5). 

1.5 Synthesis: effect of IASI errors on the decomposition of daily δ2H  

In section 2.2.2, we introduce a decomposition method to better interpret the daily δ2Hp 

variability. How do the errors examined above affect the results of this decomposition? With 

this aim, we calculate the daily water vapor δ2H that IASI would observe if it was flying over 

the atmosphere of LMDZ. First, we co-locate the simulated δ2Hv with IASI retrievals and we 

convolve these outputs by averaging kernels, to account for instrument sensitivity (Appendix 

1.1); Second, random errors are added to the convolved δ2Hv time series (Appendix 1.2); Third, 

the contrib_sampling time series calculated in Appendix 1.3 (diurnal sampling) and the 

contrib_sampling time series calculated in Appendix 1.4 (spatial sampling) are added to the 

convolved and randomly-distorted δ2Hv time series. We get δ2Hv_lmdz_errors. 

Table 6 and Table S6 show the correlation coefficients and slopes of the three different 

contributions as a function of the δ2Hp simulated by LMDZ. It is the same as Table 2 but for 

LMDZ instead of IASI. Table 6 uses δ2Hv simulated directly by LMDZ, whereas Table S7 uses 

δ2Hv_lmdz_errors, i.e. after accounting for errors as in IASI. 

At the seasonal scale, IASI errors tend to strengthen the contribution of large-scale 

processes, and to reduce the contribution of local processes (and even make them look 

negative). Therefore, the fact that in IASI the contribution of local processes dominates (Table 
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2) is probably very robust, and without errors the importance of local processes would probably 

be even greater.   

At the intra-seasonal and synoptic scales, IASI errors tend to decrease the correlations 

between δ2Hp and its contributions. Errors slightly reduce the contribution of local processes 

at the intra-seasonal scale and enhance them at the synoptic scale, but without dramatically 

modifying the results. We can thus expect the decomposition in Table 4 to be robust with 

respect to IASI errors at these time scales, results would be probably qualitatively similar 

without IASI errors. 
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Table 1 Correlation coefficients between δ2Hp and local temperature (T), precipitation (P), relative humidity (RH), Indian summer index (ISM), 

wind direction (WD) and trajectory direction (TD) at different time scales (raw, seasonal, intra-seasonal and synoptic scale)  

 

Time scale  δ2H vs P δ2H vs T δ2H vs RH  δ2H vs WD δ2H vs TD δ2H vs ISM 

Raw data 
Slope - -3.92 -1.51 0.02 - -2.5 

r -0.22 -0.28* -0.32** 0.18 0.15 -0.38** 

Seasonal 

time scale 

Slope -4.57 -8.74 -5.41 0.03 0.005 -3.85 

r -0.26*  -0.75** -0.80** 0.94** 0.70** -0.75** 

Intra-seasonal 

time scale 

Slope - -4.66 - 0.03 0.01 -5.18 

r -0.09 -0.24* 0.15 0.60** 0.53** -0.41** 

Synoptic 

time scale 

Slope -0.64 4.29 -0.92 - - - 

r -0.27*  0.33** -0.24* -0.02 -0.04 0.13 

Notes: *, ** indicates that the correlations are significant within a 0.05 or 0.01 confidence limit. Only the slopes with significant correlations at 

the 0.05 and 0.01 level are shown. 

 

 

 

 

 

 



 

©2020 American Geophysical Union. All rights reserved. 

Table 2 Correlation coefficients and slopes of the 3 different contributions based on the δ2HvLS observed by IASI as a function of δ2Hp observed at 

Lijiang at different time scales. Correlations between some contributions and relative humidity (RH) and wind direction (WD) are also given. 

Time scale  α' ·Rveq 𝛼 · RvLS 𝛼·(Rveq-RvLS) 

RH vs 

α̅ · (Rveq − RvLS) 
WD vs 𝛼·RvLS 

WD vs 

 𝛼·(Rveq-RvLS) 

Raw data 
Slope -  - 0.82 - - - 

r -0.21  0.17 0.65** -0.34 -0.09 0.18 

Seasonal 

time scale 

Slope   -0.007       0.27 0.69 -5.82 6.61 22.15 

r -0.92**    0.81**   0.97**       -0.91** 0.62** 0.97** 

Intra-seasonal  

time scale 

Slope 
       -

0.007 
-0.21 1.15 -1.87 -10.15 20.42 

r    -0.49** -0.32** 0.90**  -0.33** -0.76** 0.79** 

Synoptic 

time scale 

Slope - - 0.68 - - - 

r 0.20 0.24 0.46** -0.20 -0.04 0.02 

Notes: *, ** indicates that the correlations are significant within a 0.05 or 0.01 confidence limit. 
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Table 3 Correlation coefficient between δ2H in precipitation at Lijiang and in Mount Meili 

region (MY, TZ, LH) 

Seasonal time scale Lijiang  MY TZ LH 

Lijiang  1  0.91** (23) 0.94** (23) 0.88** (30) 

MY  1 0.97** (34) 0.97** (34) 

TZ   1 0.98** (46) 

LH    1 

 

Intra-seasonal time  

scale 
Lijiang  MY TZ LH 

Lijiang  1 -0.04 (23) 0.44* (23) 0.36 (30) 

MY  1 0.77** (34) 0.93** (34) 

TZ   1 0.71** (46) 

LH    1 

     

Synoptic time scale Lijiang site MY TZ LH 

Lijiang 1 0.05 (23) -0.009 (23) 0.29 (30) 

MY  1 0.73** (34) 0.64** (34) 

TZ   1 0.71** (46) 

LH    1 

Notes：*, ** indicates that the correlations are significant within a 0.05 or 0.01 confidence 

limit. Number in the parentheses represents the number of precipitation samples in 2017-2018. 

MY, TZ, LH represent the Mingyong, Taizimiao and Lianhuasi, respectively, which is 

distributed in the Mt. Meili region. 
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Table 4 First column: Correlation coefficients and slopes of the δ2Hp  simulated by SWING2 

(δ2Hp_SWING2) models as a function of  δ2Hp  observed at Lijiang (δ2HP_OBS). Next 3 columns: 

Correlation coefficients and slopes of the 3 different contributions based on the δ2Hv simulated 

by SWING2 models as a function of δ2Hp simulated by SWING2 models at Lijiang at the 

seasonal scale. 

Models  
δ2Hp_

OBS
 vs 

δ2Hp_SWING2 
α' ·Rveq 𝛼 · Rv 𝛼· (Rveq-Rv) 

GISSE_free 
Slope 0.53 - 0.75 0.15 

r 0.72* -0.57 0.99** 0.65* 

GISSE_nudged 
Slope 0.86 - 0.82 - 

r 0.78* -0.29 0.88** 0.29 

LMDZ4_free 
Slope 0.49 -0.02 0.80 - 

r 0.65 -0.81** 0.96** 0.29 

LMDZ4_nudged 
Slope 0.62 -0.02 0.91 - 

r 0.87** -0.63* 0.93** -0.16 

MIROC_free 
Slope 0.58 -0.01 0.81 - 

r 0.70 -0.64* 0.96** 0.27 

isoGSM_free 
Slope 0.92 - 0.79 - 

r 0.91** -0.40 0.93** 0.41 

isoGSM_nudged 
Slope 0.82 - 0.80 - 

r 0.85** -0.51 0.90** 0.28 

CAM2_free 
Slope 0.42 - 0.91 - 

r 0.75* -0.55 0.94** -0.11 

HadAM3_free 
Slope 0.22 -0.03 0.28 0.55 

r 0.49 -0.78** 0.60* 0.84** 

Notes: *, ** indicates that the correlations are significant within a 0.05 or 0.01 confidence limit. 

The number of samples is 12 months. Only the averaged δ2Hp/ δ
2Hv simulated HadAM3_free 

and CAM_free models are from 1999 to 2001, 2001-2003, respectively. The averaged δ2Hp 

simulated by other models are from 2002 to 2004. 
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Table 5 Correlation coefficients and slopes of δ2H observed at Lijiang (δ2Hp_OBS) and simulated 

by LMDZ (δ2Hp_LMDZ) in precipitation and δ2H in water vapor retrieved by IASI and simulated 

by LMDZ at different time scales. 

Time scale   Raw data 
Seasonal 

time scale 

Intra-seasonal  

time scale 

Synoptic 

time scale 

δ2H
p_OBS

 vs 

δ2H
p_LMDZ

 

Slope 0.41 0.80 0.56  0.12 

r 0.52** 0.99** 0.67** 0.15 

δ2H
v_IASI

 vs 

δ2H
v_LMDZ_convol

 

Slope 0.34 0.60 0.79 0.03 

r 0.43** 0.74** 0.56** 0.045 

Note : ** indicates that the correlations are significant within a 0.01 confidence limit. 

δ2Hv_LMDZ_convol is convolved δ2H by averaging kernels with IASI in the LMDZ model. The 

second term is the function of the first term in the first colum, and the correlations are based 

on 365 days except for the first line (76 days). 
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Table 6 Correlation coefficients and slopes of the 3 different contributions based on the δ2Hv 

simulated by LMDZ as a function of δ2Hp simulated by LMDZ at Lijiang at different time 

scales 

Time scale  α' ·Rveq α̅ ·RvLS α̅ · (Rveq − RvLS) 

RH vs 

α̅ · (Rveq − Rv) 

Raw data 
Slope - 0.67 0.31 0.50 

r -0.21  0.82**    0.57** 0.24 

Seasonal 

time scale 

Slope  - 0.79 0.16 -0.88 

r  -0.89**   0.99**    0.78**    -0.59** 

Intra-seasonal 

time scale 

Slope - 0.39 0.62 0.92 

r -0.003   0.69**    0.87**     0.35** 

Synoptic 

time scale 

Slope - 0.69 0.32 0.58 

r 0.09 0.77**    0.50** 0.30 

Notes: *, ** indicates that the correlations are significant within a 0.05 or 0.01 confidence limit. 

δ2Hv_lmdz_convol is convolved δ2H by averaging kernels with IASI in the LMDZ model. RH 

represents the relative humidity at Lijiang
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Figure 1. a) Map showing the location of the sampling stations at the scale of the TP.  The 

pentagram stands for Mount Yulong (Mt. Yulong) and the triangle stands for Mount Meili (Mt. 

Meili). Arrows show the two main air mass trajectories bringing water vapor to the South-

Eastern TP: monsoon winds from the Bay of Bengal (blue arrow) and from the South China 

Sea (green arrow), and Westerly winds (yellow arrows). b) The location of Lijiang station (LJ). 

c) The location of Meili stations (The numbers with black solid triangle refer to stations where 

the isotopic data of precipitation are obtained. 1, MY; 2, TZ; 3, LH). 
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Figure 2. Daily changes in precipitation δ2H in Mount Yulong region at Lijang (LJ) (a) and 

Mount Meili region at Mingyong (MY) (b), Taizimiao (TZ) (c), Lianhuasi (LH) (d) from the 

2017-2018 period. 
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Figure 3. Time series of raw daily δ2H in precipitation at Lijiang (a, black) and the filtered 

time series at the seasonal (a, red), intra-seasonal (a, magenta) and synoptic (a, blue), 

temperature (b), relative humidity (c), precipitation amount (d), wind direction (e) and Indian 

Summer Monsoon Index(f). All time series are for the year 2017 only. 
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Figure 4. A schematic to illustrate how the δ2H in precipitation is decomposed into three 

different contributions. Each colored box represents an ensemble of physical processes. The 

blue dashed box represents the variations in water vapor δ2H, which reflects the effects of many 

processes along air mass trajectories including deep convection; the black dashed circle 

represents the effect of variations in the precipitation - vapor equilibrium fractionation factor; 

the magenta dashed box represents a combination of precipitation-vapor disequilibrium effects, 

including fractionation during rain evaporation, variations in the vertical gradients between the 

surface and 5 km (where the water vapor δ2H is observed by IASI) and small-scale variations 

in water vapor δ2H (leading to differences between the water vapor δ2H observed by IASI and 

that with which the precipitation locally equilibrates). 
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Figure 5. Raw time series of δ2Hp (magenta) and its different contributions : α'· Rveq (solid 

black), which represents the effect of temperature variations on precipitation-vapor equilibrium 

fractionation coefficient, 𝛼 · 𝑅𝑣𝐿𝑆 (red), which represents the ensemble of processes along air 

mass trajectories that affect the water vapor at the large scale (δ2HvLS), and 𝛼 · (𝑅𝑣𝑒𝑞 − 𝑅𝑣𝐿𝑆) 

(blue), which represents the ensemble of processes that transform the δ2HvLS variability into the 

δ2Hp variability (see text and Fig. 4). The sum of the 3 contributions (dashed line) yields the 

initial raw precipitation time series, confirming that our decomposition is correct. 
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Figure 6. Correlation coefficients between δ2H and cumulated precipitation along the mass air 

trajectory as a function of lag at the different time scales for observed δ2H in precipitation at 

Lijiang (a) and for δ2H in vapor retrieved by IASI (b). For example, for a lag of 3, the 

correlation coefficient is calculated between δ2Hp and the precipitation cumulated during the 3 

previous days along the trajectory. 
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Figure 7. Map of JA-MA (July-August minus March-April) difference in water vapor δ2H 

retrieved by TES and GOSAT. 
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Figure 8. Seasonal cycle of δ2H in precipitation simulated by the SWING2 models. 
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Figure 9. Daily time series of δ2H in precipitation observed at Lijiang and simulated by LMDZ 

(a) and δ2H in the water vapor retrieved by IASI and simulated by LMDZ (b). δ2Hp _LMDZ and 

δ2Hp_OBS represent the precipitation δ2H simulated by LMDZ and observed at Lijiang, 

respectively; δ2Hv_convol_LMDZ and δ2Hv_IASI represent the δ2H in vapor simulated by LMDZ 

accounting for the effect of instrument sensitivity and retrieved by IASI at 5 Km, respectively.  

 


