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Abstract:  

This study uses experimental data of pore-scale foam flow inside a high-complexity network to fit a graph-

based model describing preferential flow paths based on characteristics of the porous medium. Two 

experiments, with equal gas fractions but varying injection rates, are modelled in parallel. Proposed paths 

are solution paths to the k-Shortest Paths with Limited Overlap (k-SPwLO) problem, applied to a graph 

representation of the porous medium with edge weights representing throat properties. A 1-parameter 

model, based on throat radius only is tested before integrating a second parameter, describing the 

alignment of the pores surrounding the throat with respect to injection pressure gradient. The preferential 

paths in both experiments vary in quantity and in the specific zones described. As such, fitted models 

characterizing preferential paths for either experiment show separate dependencies to structural 

parameters. Overall, the graph-based framework was able to capture many high-flow zones in various 

model parameter combinations, perhaps as consequence of the relatively spiked throat size distribution 

of the model. The optimized model for the high injection rate experiment markedly shows a non-zero 

dependence to the pore alignment to pressure gradient as well as throat size, whereas the lower injection 

rate experiment was best fitted to a model that made sole use of the throat radius. 

 

1. Introduction 

Foams constitute an attractive method to enhance oil recovery due to their high viscosity, high potential 

for conformance control, low cost and low environmental impact. 

To implement a large-scale foam operation, prior validation and injection optimization must be performed 

using a reservoir modelling software. While some attempts have been made to integrate microstructural 

parameters such as average pore size into upscaled foam models (Ettinger and Radke 1992; Gassara et al. 

2017) a great deal of foam behavior laws are derived from Darcy-scale laboratory experiments, and 

require significant a posteriori parameter fitting to match observations. The numerical load would be 

greatly alleviated by the use, or at least constraint of, fitting parameters with a value obtained through a 

purely structural characterization of the porous medium.  

Recent works on 2D micromodels (Géraud et al. 2016; Yeates et al. 2019) have shown that a range of foam 

behaviors exist that are highly likely to contribute to Darcy-scale flow properties. Indeed, trapped foams 



and high-velocity preferential paths have been repeatedly observed, displaying ranges of velocity much 

lower and higher, respectively, than those seen in Newtonian flow Furthermore, it has been shown that 

high-velocity zones are accessed primarily by larger bubbles in a heterogeneous bubble distribution flow, 

containing the majority of flow in the model. The interest of characterizing the specific paths that these 

bubbles will take, as well as the number and rank of equivalent or alternative paths, becomes obvious.  

A purely local description of flow has shown to be insufficient to difficultly access larger scale phenomena 

such as preferential paths and trapped zones For this reason, here we attempt a novel characterization 

approach, by integrating the notion of overall path (spanning inlet to outlet of the model) and ranking 

paths according to a numerical value derived from the components that make up it.  

Modelling porous media with graph models has been recently given new life. Graph-based models have 

been used to find least resistance paths and predict breakthrough points successfully in heterogeneous 

porous media (Rizzo and Barros 2017).Graph models have also found use in discrete fracture modelling 

to rapidly characterize, query, and interrogate fracture network connectivity (Viswanathan et al. 2018) 

The path-proposing is done via an algorithm that makes use of a graph representation of the porous 

network. Nodes of the graph represent the pores, while the graph edge weights represent throats. This 

gives a labelled graph of connected objects, with edge weights given by a throat property of our choosing. 

The sum of edge weights of a given path between the source node and the target node p(s → t), 

otherwise known as the path length, is then given by ∑ w(i, j)i,j∈p(s→t) . The shortest path is then path that 

minimizes this sum. Many algorithmic solutions exist for this problem including Dijkstra’s shortest path 

algorithm (Dijkstra 1959)An extension of this problem is interested with the first K paths, ranked by 

increasing value of path length (K-shortest paths), and can be solved with Yen’s algorithm for example 

(Yen 1970).When applied to our porous network graph, solutions to the K-shortest paths problem often 

are small variants of the best path, with one or two elements of the paths changed, even for large values 

of K (>5000). When combined with our observations of preferential path flow in the micromodels, in which 

a multitude of somewhat distinct paths serve as preferential paths at the same time, we are motivated to 

assimilate our problem to an extension of the K-shortest paths problem, finding the K-Shortest Paths with 

Limited Overlap (k-SPwLO). The path solutions to this problem are the K-shortest paths respecting a 

condition of maximal path overlap between one another. We make use of the recently published OnePass 

algorithm, a solution algorithm that efficiently proposes candidate paths with user-chosen maximal path 

overlap (Chondrogiannis et al. 2017)Experimentally observed flow maps serve as the basis for comparison of 

proposed paths. Experimental images showing long preferential paths of flow in a fully characterized 

micromodel are analyzed according to a well-defined statistical workflow to quantify active and dead 

zones in the network. Paths are then proposed using a graph representation of the porous model. The 

path fit to experimental data is evaluated by counting the proportion of elements in the proposed paths 

that are active in experimental flow map, corresponding to a match value. 

2. Materials and methods 

 

2.1. Foam data acquisition procedure and injection 
conditions 



Our experimental data acquisition setup and procedure is described in detail in Yeates et al. (2019). We 

create velocity heatmaps by averaging local tracked bubble velocities over multiple sets of 200 high-

frequency images. Fixed injection rates and gas fraction are injected into a foaming device upstream of 

the micromodel, then connected in series to the model. Pressure gradient is measured, and images are 

acquired at steady state (constant pressure gradient over the model). The image processing procedure 

leading to bubble segmentation as well as the tracking procedure is also described in Yeates et al. 

(2019). 

Injections were done with purified N2 gas. The surfactant solution was composed of purified water with 

30 g/l of salt and an AOS surfactant at 10 times the CMC, supplemented with betaine-based foam 

booster.  

Two experiments are described in this study. We compare injections of same gas fraction but different 

injection rates. The two injections were performed in succession. Experiment 1 was at a gas fraction of 

79% at an injection rate of 2.53 × 10-2 cm3/min. For Experiment 2, as lower injection rates were not 

obtainable with the gas flow controller, a biphasic reservoir, essentially a long coiled up tube, was used 

to enclose the gas and surfactant solution at the chosen gas fraction. The mixture was then pushed 

using the liquid pump, reaching much lower injection rates, into the foaming device. The injection rate 

for Experiment 2 was 8.9 × 10-3 cm3/min. Despite a reduction in injection rate of 65%, the measured 

pressure drop over the model decreased from 275 ± 4 mBar for the high rate experiment to 189 ± 2 

mBar for the low rate experiment, corresponding to a 32% decrease in pressure gradient, showing a 

highly shear-thinning apparent viscosity profile coherent with other foam studies (Alvarez et al. 2001).  

As previously shown (Géraud et al. 2016; Yeates et al. 2019), the majority of flow in a polydisperse foam 

injection into a heterogeneous medium is carried by the largest bubbles, in a series of preferential paths. 

Furthermore these paths show higher relative flow intensity than for Newtonian fluids (Yeates et al. 2019). 

Correct characterization and modelling of the flow within these preferential paths will constitute a 

significant part of macroscopic foam flow modelling due to the large contribution of flow solely in these 

paths. For the experimental comparison, we therefore only use the flow maps of only the right-hand side 

of the bubble size distributions. 

We show in Figure 1 the bubble size spatial probability distributions for each experiment, and highlight 

the bubbles used contributing to the flow maps used in this study. The spatial probabaility distributions 

are weighted histograms of bubble frequency histograms, with each histogram frequency peak weighted 

by the average bin bubble size (taken as bin center value). Such distributions give a more accurate 

depiction of the bubble size distribution inside the medium. The bubble size distributions are 

established by counting bubbles measured in the entire model. The bubble sizes contributing to the flow 

maps in this study are highlighted in red.  



 

Figure 1: Bubble frequency histograms and bubble sizes contributing to flowmaps in each case highlighted in red. We observe 
that the lower minimum of bubble sizes is approximately equivalent in each experiment, but the experiment 2 distribution shows 

a larger right-hand tail. It is to be noted that although the higher bound shown here was cut for visibility, larger bubbles were 
observed (especially in experiment 2) and took up non-negligible areas of the porous volume. 

2.2. Micromodel structure and decomposition 

The 2D micromodel used has previously been studied elsewhere (Yeates et al. 2019). It is a 69.7% porosity 

glass micromodel with an wet-etched depth of 40 µm. The permeability of the total model with the flow 

spreading system before and after the model is 4.7 Darcy. A binarized version of the model was 

decomposed into pores and throats using an adjustable watershed algorithm (Soille and Vincent 1990) 

with the tunable sensitivity parameter set to 2. The model decomposition gives a total of 3700 pores and 

6284 throats. The throat radii show a unimodal distribution with sharp peak at 51 µm. A network 

extraction algorithm was developed and applied to the 2D decomposed porous medium to find 

neighborhood properties of each pore and a graph was created.  We show the different steps of the graph 

extraction process in Figure 2: 

 

Figure 2: Image and network analysis process. Porous area is shown in black. Throats are shown in light 
green. Extracted graph nodes are shown as red circles with edges represented as grey rectangles joining 

them. The displayed graph is superimposed on the initial network for clarity. 

Note here that this graph simply displays graph topology by positioning nodes on the centers of mass of 

the pores and edge lengths or widths are not representative of edge weights. 



Due to the quantized pixel nature of the model image, and the design of the watershed algorithm, some 

of the throats were found to not be perfectly straight and resemble S-shapes. As we make substantial 

use of the throat size in our study, use of the throat length as given by the watershed was inadequate. 

Instead, we use the maximal Feret diameter of the watersheds, as measured with ImageJ analyze 

particles tool, to access the exact size of the throats. Half of the measured Feret diameter was then 

approximated to represent the throat radius, referred to in the rest of the article simply as throat size. 

We show the model and associated graph in their entirety in Appendix A, with the added artificial inlet 

and outlet pores (described below) visible at each extremity. 

2.3. Path-proposing algorithm 

We make us of the recently published One-Pass graph algorithm (Chondrogiannis et al. 2017), solution to 

the K-shortest paths with limited overlap problem (K-sPwLO), to provide a series of paths that resemble 

the preferential paths visible in our experiments.  

In our context, to capture the specificity of the flow in the porous network, edge weights are represented 

by a function of the throat properties, initially the throat radii, located at the distance map minima, that 

will contribute the most to variations in hydraulic conductivity. In this sense, we try to minimize overall 

sum of contributions of throat radii, rather than distance. Note, that this problem is distinct from the 

shortest bottleneck, or widest path problem, which yields the shortest source-to-target path with the 

largest minimum throat size possible. 

Naturally, as we desire to find a path that spans the entirety of the model, we construct an artificial source 

node and target node representing the model inlet and outlet, sharing connections with all the nodes at 

each extremity of the model, as to not restrict the path-proposing procedure to a specific point in either 

side of the model.  

As we want the largest throats to contribute the less to the overall sum, and hence be chosen in the paths, 

we use functions of the inverse of the throat size for edge weights. However, it is unclear which (positive) 

exponent α should be used to integrate this throat size as an edge weight.  The shortest path will then 

minimize the function ∑ (
1

r(i,j)
)

α

i,j∈p(s→t)  in which r(i, j) is the radius of the throat connecting pores i to j, 

and s and t represent the source or target nodes, or vice-versa, as the graph is undirected. 

While individual throats radii will preserve their rank if they are raised to a power α = 1 or α = 2, the 

rank of a sum of throat radii forming a path will not be conserved for each exponent. The larger the value 

of α, the more a small, difficult to pass throat will contribute towards the sum. The proposed paths will 

then avoid smaller throats, at the price of increasing the overall path length and tortuosity. Inversely, a 

lower value of α will render the algorithm less sensitive to the actual value of throat size, as the virtual 

length of the path (or number of throats that compose it) becomes more significant. At the extreme of 

α = 0 , all weights are the same and we retrieve the shortest path based on number of elements alone.  

We give an example of different proposed paths for different values of α  in Figure 3. We see that different 

throat radii exponents produce different shortest paths when integrated as edge weights.   



 

Figure 3: Motivational example. Optimal paths for different values of 𝛼 in a schematic example. Porous 
space is shown in white between gray solid obstacles. Throats are shown in blue. Multiple paths link the 
sources and destination pores, shown in red. Throat size values are given in white, next to the relevant 
throats. For 𝛼 = 0 the path shown by full black line is optimal, for 𝛼 = 1 the path shown by the thinly 

dashed path is optimal, for 𝛼 = 2 the path shown by thickly dashed line is optimal. 

The shortest paths connecting the two nodes marked by red dots are shown for values of α = 0,1,2. For 

α = 0, all the weights are equal to 1 and the optimal path is simply the one with the less throats, shown 

as a full black line passing a throat of size 2. For α = 1 the thinly dashed path is chosen with two throats 

of size value 5. Indeed, the sum edge of weights given by ∑ (
1

r(i,j)
)i,j∈p(s→t)  is the smallest for the thinly 

dashed path, such as 
1
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  or 0.2 < 0.428 < 0.5. For α = 2, the thickly dashed path is 

chosen, composed of three throats of size 7. Indeed, the sum edge of weights given by ∑ (
1

r(i,j)
)

2

i,j∈p(s→t)  

is smallest for the thickly dashed path, such as  
3

7²
<

2

5²
<

1

2²
  or 0.061 < 0.08 < 0.25, despite being the 

path with the most throats. 

2.4. Experimental path match 

To evaluate a candidate path, we make use of a system of classification of active/inactive pores of the 

experimental data, as previously described in Yeates et al. (2019), Appendix B. Average pore velocity 

intensity values are compared to values for pores of similar sizes (split between 20 equidistant intervals 

of area). If a threshold is passed, then the pore is considered active. The threshold values are chosen as 

fractions of the average pore intensities for each of the pore sizes categories. In this way we extract 

ourselves from making any hypotheses on the way velocity intensity is spread out over the different pore 

sizes and simply recalculate a threshold value for each size category. We chose 19 size categories. We 

define two classification thresholds: half of average (low threshold) and the average intensity (high 

threshold). The pores contained the proposed paths can then be tallied up and the proportion of active 

pores within the proposed path (situated between 0-1, i.e. the fraction of active pores within the 

candidate path) assesses quantitatively the match of the candidate path to the preferential path in the 

experimental image. This binary classification (i.e. active or inactive) method is preferred over a more 

direct method of taking average pixel intensity values of the whole path for two reasons. Firstly, a direct 

comparison of average intensity values for pores of different sizes seems prejudicial to larger pores, in 

which flow is more spread out, creating lower average intensity values. Secondly, due to the high spread 

of average pore intensities, taking the average pixel value over the path may create the illusion of a 

satisfactory fit when only a restricted number of high-intensity pores are contributing, and the rest of the 

candidate path is incorrect. 



In Figure 4 we show the active/inactive pores for two different threshold values overlaid on the velocity 

map for both experiments studied.  The active pores are shown in green and the inactive pores in red. We 

notice the path-like nature of the active pores and the low-flow inactive pores, in red, situated in between 

these paths. In these experimental conditions, we observe an important number of active paths and flow 

distributed equally throughout all sections of the model.  

 

Figure 4: Velocity maps with overlaid active/inactive pore classification. Measured velocity in the pores 
is shown as dark shade in the model. Each pore is colored and overlaid according to its activity. Active 
pores are shown in green while inactive pores are red. White areas of the image correspond to solid 

grains. Flow is from left to right. 

In Table 1 we display the proportion of active pores for each experiment and threshold value, that serve 

as baseline values for assessment of the match of proposed paths to the experimental data. We note that 

the ratio of low to high threshold pores is equal for both experiments, demonstrating the equivalence 

between the two thresholds for both experiments. 

Table 1: Proportion of active pores for each experiment and threshold value 

 Exp. 1 Exp. 2 

Low threshold 65.6% 50.5% 

High threshold 41.1% 31.8% 

 

3. Results 



In the results section we proceed by first describing the model used, and give associated statistics of the 

proposed paths in terms of geometrical and network properties only. Secondly we show the match with 

experimental data of the proposed paths. This sequence is repeated twice: for the 1-parameter model, 

and for the 2-parameter model. 

1-parameter model – description and path properties 

To propose a series of realistic paths, the parameters we can input into the proposing algorithm are: the 

graph, that includes a function of throat sizes as edge weights; the number of desired paths, K; and finally 

the maximal allowed overlap value θ, given between 0, for no overlap, and 1, if one path is fully contained 

in the other. We share here some statistics for different functions of throat sizes, with varying maximal 

path overlap value. The number of output paths, K, is maintained at a fixed value of 7. The throat size 

exponent spans 31 values, varying from 0 to a large value of 6, even if physically unrealistic, for the sake 

of assessing limiting behavior. The maximal overlap is restricted to 3 values for comparison: 0, 0.1, 0.5. 

The θ = 0 case describes a situation in which no pore can be shared between any of the proposed paths, 

effectively slicing the model in two separate parts for each new path found. The θ = 0.1 case allows 

limited overlap, in which some short passages that could be structurally attractive for flow, can be 

proposed in all the paths output by the algorithm. The θ = 0.5 case represents a higher boundary, in 

which the number of shared pores between proposed paths can be up to half of the pores in either of the 

paths. See Chondrogiannis et al. (2017) for a detailed description of θ calculation. 

Note that for some cases, for θ = 0.1 notably, when calculation time was too long for 7 paths, the 

algorithm was restarted, aiming for 6 paths, and so on, until it reached a solution in a practical amount of 

time (here 2 000 seconds). Figure 5 shows some characteristics of the proposed paths for each overlap 

value and throat size exponent. Statistics for each point are calculated over the average for all the 7 paths 

output by the algorithm for each throat size exponent α and overlap value θ.   

 

Figure 5: Characteristics of proposed paths for different throat size exponent values.  

We observe that as the throat size exponent increases, the output path lengths increase, as described 

previously. We observe that for α = 0, the average throat size for the paths is close to the average model, 



throat size, providing confirmation that these paths are independent of throat size. However, the average 

throat size seems to reach a plateau around a value of approximately α = 2.5. This is understood as 

follows: for higher exponent values, the algorithm outputs paths that will avoid smaller and smaller 

throats at the expense of creating longer paths. However there exists a point in which the smaller, avoided 

throat contributes a negligible amount to the average, as the number of throats contributing to the 

average is ever increasing.  

Another observation is the difference between the characteristics of the θ = 0 paths on one side, and the 

θ = 0.1 and θ = 0.5 paths on the other side. The number of throats for the θ = 0 paths at the lowest 

throat size exponent value is smaller and the value of the plateau of the throat size average is smaller. 

This translates the fact that each proposed path for the θ = 0 output effectively separates the model into 

two parts and makes it harder to find short paths with small throat sizes in the created sections of the 

model. 

Experimental match: 1-parameter model 

We now perform a scan over the proposed paths for each setting and attempt to retrieve the highest fit 

to the experimental data. We display in Figure 6 the active pore match values for both threshold values, 

for different values of θ and the 31 throat size exponents for both experiments. Each exponent and θ pair 

form a algorithm input setting, from which all the pores in all the proposed paths are noted and compared 

against a dictionary of active pores for both thresholds and both experiments. One input setting is then 

evaluated in four different ways, as shown by the four distinct plots in Figure 6. The match value is the 

ratio of active pores to all pores in the proposed paths for the given threshold value, and is referenced 

interchangeably as a match percentage. 

 

 

Figure 6: Path matches for high and low threshold values of both experiments for different overlap and throat size 
exponent settings, 

The observed match is globally very high. For Exp. 1, most input settings propose paths in which 90% of 

pores are active as defined by the low threshold and 65% as defined by the high threshold. In either 



threshold such ratios are more than 25% above the model average (see Table 1). For Exp. 2, in most input 

settings 80% of the proposed pores are active as defined by the low threshold and 60% as defined by the 

high threshold. The best fits occur for throat size exponents between 1-3 for the low threshold pores and 

1-2 for the high threshold pores. This still gives a large degree of uncertainty as to how to best describe 

foam preferential paths in a characterized porous medium. The match values for θ = 0.1, 0.5 are not 

significantly larger than the values obtained for θ = 0. The match values for the high threshold for θ =

0.5 however are significantly lower than the other values. For this reason, and for the reasons we 

previously mentioned issues occurring with the θ = 0 value, we shall use the value of θ = 0.1 for the rest 

of the analysis. 

We first give some examples of relatively satisfying results. In Figure 7 we give three images of an overlay 

of the proposed paths calculated using α = 2, θ = 0.1 and displayed on the flow data of Experiment 2. 

The active pores represented are from the high threshold activity classification. This is the image with the 

lowest number of active pores, so statistically hardest to match.  

 

Figure 7: Examples of successful matches between model and experiment, flow is from left to right. 
Experimental velocity fields are shown in greyscale inside the pores (darker is higher velocity). The grains 

are in solid gray. The color code is the following: green pores are active in both experimental and 
proposed cases, red pores are proposed active but experimentally are inactive, purple pores are not 

proposed active but are experimentally active. 

We observe long sections high intensity flow are identified by the proposed paths (green overlay). The 

top image of Figure 7 shows a chain of 30 pores in which 28 are correctly identified by a proposed path. 

The bottom right image of Figure 7 shows a chain of pores in which 20 out of 21 are colored in green.  

While these results are very encouraging, we still note some parts of the proposed paths that don’t adhere 

well to the flow reality. One telling example is shown in the bottom right image of Figure 7 in which the 

proposed path takes makes a sharp curve around an obstacle while the flow takes a straighter alternative 

path. Here we can start to see the limitations of using a simplified model of the network that only takes 

the throat size into account and disregards any notion of path distance or tortuosity. In Figure 8 we give 

three more examples of proposed path failures occurring for the paths calculated using a throat size 

exponent of 2, θ = 0.1 and displayed on the flow data of Experiment 1. The active pores represented are 



from the low threshold activity classification. This is the image showing the largest number of active pores, 

in which a failed path match should statistically happen the less often.  

 

Figure 8: Examples of path match failure. Flow is from left to right. See Figure 7 for color code. 

It’s worth noting that although many purple pores are visible, these do not describe a model failure as 

only a limited number of paths were calculated, and it is possible that a larger number of output paths 

could have included these. In the three cases shown here we identify a common error: proposed paths go 

off the experimental track by moving into pores that are perpendicular to the flow direction and aren’t 

visited by the foam, despite not showing significantly small throat entrances.  

2-parameter model - description and path properties 

We make an addition to the 1-parameter model to offset the proposed path failures occurring for pores 

branching outwards to the flow direction. We introduce a second local parameter in the description of 

the flow, the angle of the pore centers surrounding a throat in relation to the flow direction: noted γ. The 

angle is formed by the vector the connecting the two pores (oriented in the flow direction) and direction 

of pressure gradient. An example of the angle definition is shown in Figure 9. We refer the reader to the 

Appendix B for some statistics relating to this parameter and the independence of the 2 parameters. 

 

Figure 9: Simple example of γ. Two pores in black are connected by their centers (red dots) and 
projected onto the axis of flow, here shown as left to right. 

The value of γ has therefore a maximal value of 90° when two neighboring pores are perpendicular with 

respect to flow direction, and a minimal value of 0° for pores aligned in parallel to flow.  Inclusion of the 

γ parameter in the edge weight of the throat connecting pores i to j in the graph, as noted by w(i, j), is 

done by taking a function the cosine of γ and multiplying it by the throat size term. A similar function to 



the throat size term is used, with a simple exponent β that is left free to vary. We then write the edge 

weight function, with both throat size and γ angle terms as: 

w(i, j) = (
1

r(i, j)
)

α

(
1

cos(γ(i, j))
)

β

 

For simplicity, the allowed values of the  β parameter vary in the same way as the α parameter, in 31 

equally spaced values from 0 to 6. We show statistics associated to the proposed paths in the 2D 

parameter space in Figure 10. 

 

Figure 10: Statistics of paths proposed in a 2D parameter space  

Interesting 2-dimensional patterns appear. We note that the path lengths (Figure 10, left) are of the same 

order as for the 1-parameter model. While the path lengths heatmap seems to have a global minimum in 

the bottom left corner for (α, β) = (0,0) it has two local maxima in the bottom right and top right corners 

for values of (α, β) = (6,0) and (α, β) = (6,6) respectively. In accordance with the explanation of the 1-

parameter model results, path length increases as the algorithm is fed more and more widely spread edge 

weight values in the graph (i.e. some throat weights become so large that it chooses to take a series of 

smaller values with a lesser contribution to the overall path sum). The (α, β) = (6,0) path length 

maximum is then understood as occurring because of a widely spread throat size term only, with no 

contribution from the angle term, explaining the average throat size rise in this zone. The (α, β) = (0,6) 

path length maximum is then understood as the equivalent phenomenon, in which a longer path is chosen 

purely on the basis on avoiding unfavorable pore-to-pore angles. The average throat sizes in (α, β) =

(0,6) (Figure 10b) and angle cosine in (α, β) = (6,0) (Figure 10c) confirm this observation. For these 

parameter values, they respectively take the model average throat size and the model average cosine 

value (for the full model: r̅ = 51 µm; cos(γ)̅̅ ̅̅ ̅̅ ̅̅ = 0.63). What is not easily understood is the decrease in 

path length across the α = 6 parameter series, before the rise to the (α, β) = (6,6) maximum. 

Increasing β with a fixed α should create a larger weight spread and lead to longer paths. We refer the 

reader to Appendix C for this analysis. 

Experimental match: 2-parameter model 

We show in Figure 11 colormaps of experiment match values for each edge weight parameter 

combination for both experiments and both thresholds. 



 

Figure 11: Path matches for 2-parameter model combinations for both experiments and thresholds. 

We observe that many parameter combinations match well  the experimental paths. Low values of β give 

the best matches. 

In fact, for experiment 2, the best matches are observed for β = 0, i.e. the one-parameter model. For 

experiment 1, while a large zone of good experimental matches is observed for the low intensity threshold 

for values of α < 3 and values of β < 1.6, the best values for the high intensity threshold are observed 

for (α, β) = (1.8 − 2.4 , 0.3 − 0.9), i.e. for a non-zero β, with the angle parameter adding capacity to 

match the data more closely. The best fit for experiment 1, high threshold (bottom left of Figure 11) using 

a 1-parameter model is obtained at (α, β) = (1 , 0) obtaining a match score of 0.749, while the best fit 

using a 2-parameter model : (α, β) = (2.2 , 0.6), achieves 0.7573, a small but non-negligible 1.1% 

increase. 

To interpret this result, we consider the varying flow rates in both experiments. The lower flow rate of 

experiment 1 could shows no angle dependence. Indeed, at lower flow rates, we observe that preferential 

paths are less chosen on the basis of immediate path straightness or pore-to-pore alignment with flow, 

as described by the angle parameter, and instead are mainly chosen as tradeoffs between path shortness 

and throat size, as described by the one-parameter model.  With faster flow rates, while the paths seen 

in the lower velocity experiment are also accessed, we observe more paths are accessed, which in turn 

creates a more parallel flow. In this way we observe less paths don’t branch off perpendicularly to the 

flow direction. 



The colored imaged showing the results from the combination displaying the experiment 1, high threshold 

best fit, (α, β) = (2.2 , 0.6), shown by a small marker in Figure 11, is shown in its entirety in Appendix D. 

We observe large sections of the flow-carrying paths are correctly matched by the algorithm. While a large 

number of incorrectly proposed pores, colored in red, do appear, upon inspection they seem to still carry 

flow and aren’t entirely incorrect such as in the examples given in Figure 8. Furthermore, as active/inactive 

pores are determined on a local basis and not included in a path, it is not even guaranteed that a model-

spanning path of active pores will truly exist. Rather, the path should be evaluated in its capacity to 

capture the largest number of active pores in the model.   

 

4. Discussion 
 

Path-based flow characterization viability 

Here we stress the effectiveness of the path-based formalism by showing the results for the best model 

fit for experiment 1, (α, β) = (2.2 , 0.6). In Figure 12 we display how different models successfully capture 

high-flow pores, even with the simplest model explored (α, β) = (0 , 0), in which no structural 

parameters are included into the edge weights, and the paths are simply the shortest (in graph 

representation). However, the (α, β) = (0 , 0) model does implicitly take the porous structure into 

account as the decomposition into pores and throats itself was performed using a distance-map based 

watershed. A comparison is also made to a model proposing paths that minimize physical path distance. 

The paths minimizing the physical distance were obtained by taking throat weight the sum of the distance 

between the pore center and throat center for both pores associated with the throat. This distance is 

named ∆𝑃𝑡𝑃. The sum of the weights for all throats in the path then was used as physical path distance. 

In Figure 12, left we show for varying values of N, the percentage of N-highest average velocity pores in 

the entire model that are captured in the paths. For emphasis, the model-proposed paths are also 

compared to a random choice of pores (right). The success probability for the random choice of pores was 

simply the number of chosen pores (same number as in the proposed paths) over the total number of 

pores.  

 

 

 

We observe that the path-based models perform better than a random choice of pores (Figure 12, right). 

Even the simplest model, based purely on minimizing the number of pores, successfully predicts a large 

Figure 12: Comparison of path prediction performance for experiment 1 for the best fit model, 
the shortest number of pores model, and the shortest distance model. 



degree of high flow pores, achieving similar results to the physically shortest paths. The similarity between 

the results of the shortest distance model and the smallest number of pores model seems to indicate that 

both descriptions are similar and could originate from a spiked distribution of distances between first 

neighbors. However, upon inspection of the proposed paths, this appears to be untrue and the proposed 

paths are quite distinct. The paths are shown in the Appendix E. Finally, the best model fully predicts the 

3 highest flow-carrying pores and almost 50% of the top 20. This demonstrates the viability of a path-

based graph model for characterizing high flow zones for foam injections in a heterogeneous porous 

medium.  

Difference between experiments 

We note that the best models for each experiment take different parameter values. The active pores in 

Experiment 1, the high rate experiment, are best predicted by the 2-parameter model with (α, β) =

(2.2 , 0.6). However, Experiment 2, the low rate experiment, is best predicted by the 1-parameter model 

with (α, β) = (1.2, 0). The problem this study attempts to solve, i.e. predicting preferential paths of a 

polydisperse foam in a heterogeneous porous medium, is akin to finding the paths of least resistance in a 

medium, evaluated for combinations of local structural parameters taken as hydraulic resistance. The 

path of least resistance then minimizes the sum of resistances between both ends of the model. For a 

rectangular channel, of width W and of height H, length L and of fluid viscosity μ, the hydraulic resistance 

Rh can be approximated as (Tanyeri et al. 2011), for H W⁄ < 1: 

Rh =
12μL

WH3(1 − 0.63 H W⁄ )
 

The path of least resistance then minimizes the sum Rtot = ∑ Rh for all the channels in the model. The 

validity of this equation depends on the exact ratio H W⁄ . For values of H/W close to 0.5, the error is 

approximately 0.15% and for H/W = 0.1 the error drops to 0.003%. We show a histogram of H/W values 

in Figure 13 showing that most of the throats in our model respect this condition.  

 

Figure 13: Aspect ratio H/W distribution (left) and distribution of hydraulic resistance (right).  

The calculated hydraulic resistance from the equation above is also shown in a Log-Log plot making the 

throat width dependencies apparent (right). For simplicity, the throat length is taken a constant value 



here, given by half the mean ∆𝑃𝑡𝑃 value for all first neighbors, and water viscosity is used. The Rh values 

are shown as red dots. To guide the reader, we give two lines displaying on one side the asymptotic 

dependency of Rh as W-1 at large throat widths and provide a W-2 line tangent to Rh values at lower 

widths. We supplement the plot with a histogram showing the distribution of widths in logarithmic space 

on top of the Figure 13. This plot shows that most throats are situated in an intermediate zone of mixed 

dependence between W-1 and W-2, demonstrating that a series of models with values of α between 1 and 

2 may in fact be physically appropriate. For this reason, and with the understanding that the average 

throat size in both models does not change significantly, (see Figure 10, center), we will not justify the 

higher α exponent in the best fit for experiment 1 as its physical justification is not obvious. 

The best model fit for Experiment 1 however, includes a non-zero contribution from the angle parameter, 

with (α, β) = (2.2 , 0.6). This is a demonstration of difference in behavior for higher velocity foams, in 

which, while showing a strong dependence to throat size, preferential paths are also chosen based on 

pore-to-pore alignment with pressure gradient, despite their capillary ease of entry.  

In supplement, Figure 14 displays the average velocity in the pores, rather than the number of active 

pores, to reinforce the validity of the model as best fit in both experimental matching frameworks. We 

observe a maximum located in the same parameter pair as found using the active/inactive pore 

classification. 

 

Figure 14: Average velocity intensity for all paths in each setting. The best model is the same as shown in 
the active/inactive high threshold pore framework.  

The presence of a non-zero β parameter in the best fit is conformed microscopically by looking at the 

bubble displacement distributions. Access to individual bubble tracks can provide a displacement term in 

the Y-direction (perpendicular to pressure gradient) compared to total displacement in all directions. Y-

displacement and total displacement were taken simply as Euclidean distances between start and end 

point of the bubble tracks. Taking the inverse sine of the ratio of Y to total displacement yields the angle 

of deviation of the bubble from the pressure gradient direction, named 𝜙. We take care here to distinguish 

the displacement of flowing bubbles from the quasi-zero displacement of static bubbles, which adds noise 

to the final probability distribution by filling it with the displacement ratios of static bubbles. We show in 

Figure 15 the different bubble displacement distributions that are bimodal in log-space, allowing us to 

segment the flowing bubbles with ease as the right side of the bimodal local minimum for each 

distribution. 



 

Figure 15. Bubble displacement distribution (top) and bubble track deviation angle from pressure 
gradient (bottom) for both experiments. 

The deviation angle distribution confirms microscopically the different model fits for each experiment. 

While both angle probability distributions are symmetric and centered on zero, the faster flowing foam 

(experiment 2) is more spiked in zero, showing a larger tendency for the bubbles to remain in parallel 

tracks to flow. 

We offer the explanation that the higher flow rate and pressure gradient enable a larger number of paths 

to be accessed by the foam and remain aligned with pressure gradient to minimize the number of flow 

path intersections in which a large amount of energy is dissipated through viscous shearing. Inactive paths 

are observed more frequently in the lower velocity case. They can originate from either capillary difficulty 

of entry or insufficient pressure gradient required to dislodge trapped foams. The larger pressure gradient 

of experiment 2 facilitates foam mobilization creating a larger number of active paths. In turn, a flow path 

to crossing the medium in the Y-direction would imply numerous intersections with other active flow 

paths in which crossroads situations arise. Flow paths then can’t freely traverse the medium in the Y-

direction due to pre-existing flow paths, staying aligned with pressure gradient. In this sense, the initial 

motivation of overlapping preferential flow paths requires some refining. While we observe that some 

flow paths join and create higher velocity sections for a given distance, or otherwise split into two 

branching downstream paths, we rarely observe point-like intersections between two continuously 

flowing paths from different directions. More exactly, these kinds of intersections create either flow paths 

that deflect off each other, if the geometry permits, or otherwise creates intermittent traffic-like flow. We 

give two examples of flow paths that show large vertical displacement in lower velocity experiment, while 

being contained by surrounding active paths in the high-velocity experiment.  



 

Figure 16: Comparison of flow maps for two areas of interest for each experiment. We observe flow path deviation 
perpendicular to pressure gradient in experiment 2, while access to these zones is denied by the presence of other 

flow paths in Experiment 1. We circle in green the exact access links that are crucial in keeping the flow in the 
straighter paths for the high-velocity experiment. Flow is from left to right in both examples. Note: colormap 

contrast has been forced in each example for clarity. 

In Figure 16 we can observe two distinct cases in which pre-existing flow paths in the higher velocity 

experiment inhibits the foam access to these zones. Following the flow from left to right, we see high 

intensity paths describing significant movement in in the Y-direction only in experiment 2 in two key 

areas circled in green. 

As well as the different injection rates, the experiments also show variable bubble size distributions within 

the model. Larger bubbles contribute to the flow map in Experiment 2 as shown in Figure 1. This could 

also be a source of dissimilarity in the fitted models. Indeed, while the lower bound of bubble sizes is 

roughly equivalent, larger bubbles could in fact guide the flow within the experiment 2. For a lower 

injection rate and lower induced pressure gradient, the necessary Laplace pressure gradient needed to 

enter certain smaller throats may not be achieved, and large bubbles will in fact test multiple downstream 

throats before entering the widest. The smaller bubbles shown in Experiment 1 will mostly be of the order 

of the throat size, therefore not probing multiple throats for the widest possible entrance. Instead, in this 

situation, straighter paths therefore used. 

The presence of the higher throat size exponent α = 2.2  in the Experiment 1 best fit is more intriguing. 

This exponent could either reflect a physical phenomenon for faster flowing foams, or could be a 

consequence of the intermediate dependence (between  α = 1 and α =2) of the hydraulic resistance for 

our model throats, as shown in Figure 13b. Finally, this effect could more probably be a product of the 

interaction between the two parameters within the model. Indeed, we can remark that the good model 

fit zone, shown in bright colors in Figure 11, has a shape that evolves diagonally in the positive direction 

of both α and β. This behavior could show that the two components of the graph weight function interact 

non-trivially, and is confirmed by the lower skew in edge weight distribution in this area, as shown in 

Appendix C. In this sense, the higher exponent of the best fit for Exp. 1 could simply be a consequence of 

the best model necessitating a non-zero value of  β. 

 

5. Conclusion 



In this study we show how a simple graph-based model can successfully capture zones of high-flow in 

experimental foam data in a porous medium. From experimentally established flow maps for different 

experiments, we attempt to characterize the paths chosen by the largest bubbles, that have previously 

been shown to contain a significant portion of the flow in a series of distinct paths. The two experiments 

investigated here are performed with varying injection rates and display slightly different bubble size 

distributions.  A graph representation of the porous network is used in which edge weights are chosen as 

functions of two separate throat properties.  A model parameter optimization is done to establish the 

best model fits for each experiment individually. We show how a simple 1-parameter model based on 

throat size retrieves a large amount of the high flow areas in a complex medium. Furthermore, we include 

a 2nd local structural parameter that describes the alignment of pores with respect to pressure gradient. 

We observe that a larger sensitivity to the pore alignment parameter exists for the experiment with a 

higher injection rate, with smaller sized bubble sizes, whereas the 1-parameter model best describes 

slower injections with the presence of large bubbles. While this path-based approach shows promise by 

identifying high-flow zones in a complex medium using a simple model, further investigation into the 

effect of varying model structure and injection conditions in necessary to generalize the behavior seen 

here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A: Porous network and extracted graph 

 

Figure A1: Top: Micromodel structure with porous area seen in black and obstacles in white. Fluid injection can be 
performed on the full width of the model. Bottom: Extracted complete graph with added inlet and outlet node that 

share edges with all the adjacent nodes to the inlet or outlet of the model. 

Regarding the structural parameters used for the weights of the edges connecting the inlet/outlet nodes 

to the rest of the network; the throat size for each edge was trivially the throat that connected the 

network to the inlet/outlet zone. However, the angle γ that shows the pore-to-pore alignment with 

pressure gradient was set equal to 0 (perfect alignment with gradient) for all nodes connected to either 

to inlet or outlet nodes. Indeed, as the center of mass of the inlet and outlet nodes are positioned in the 

central axis, taking the alignment angle with this position would create erroneous bias against pores 

outwards from the central axis. 

 

 

 

 



Appendix B: 𝐜𝐨𝐬(𝛄) properties and parameter independence 

As the parameters are more and more spread out with the increasing exponents α or β, the path lengths 

along the α = 6 parameter series should therefore monotonically rise to the (α, β) = (6,6) maximum. 

This discrepancy reveals either a hidden relationship between the two supposed independent 

parameters r and cos(γ), or otherwise an oversight on the authors behalf in the way the weight spread 

is interpreted to contribute to path length.  

We first explore the parameter independence. We display in Figure B1 a histogram showing the 

distribution of values of cos(γ), and a boxplot displaying the spread of values of size for each cosine 

category, dividing the values into 10 quantiles with an equal number of points from 0 to 1. 

 

Figure B1: Histogram of 𝑐𝑜𝑠(𝛾) and boxplot of parameter independence in the 2-parameter model 

The histogram shows one-sided distribution for the cos(γ) values. This is a natural consequence of the 

cosine function, and a similar distribution occurs when plotting the cosine of a random sequence of 

angles from 0-90°. However, a noticeable spike occurs around the 0.7 value. The boxplot shows a 

median throat value that raises slightly in the central quartile and shows a smaller data spread towards 

the central values of cos(γ).  We believe this behavior, as well the spike occurring around 0.7 for the 

cosine histogram are consequences of the way in which the watershed algorithm establishes throats and 

pores from the binarized model but does not represent a significant dependence between the two 

structural parameters used.  

 

Appendix C:  Edge weight characterization with respect to parameter combinations in the 2-parameter 

model 

Different combinations of parameters produce different edge weight distributions for the graph input to 

the path-proposing algorithm. Properties of this distribution are believed to be linked to the path length, 

we explore here the edge weight distributions and how they affect the proposed paths.  Values of the 

throat size term, r take values all above 1, displaying a roughly gaussian distribution (Yeates 2019). The 

values of  (
1

r
)

α
, therefore lie between 0-1. Similarly, values of the throat size term, cos(γ), are between 

0-1, while (
1

cos(γ)
)

β
 is bounded as [1-∞[. We show in Figure C1 different edge weight histograms for 

different parameter combinations. 

 



 

Figure C1: Edge weight distributions in terms of different parameter combinations. 

We observe in Figure C1a that increasing the β parameter spreads the distribution in the positive 

direction, while maintaining many values at w = 1. Raising the α parameter as shown in Figure C1b 

spreads the distribution in both direction and shifts it towards smaller values of w. As the parameters are 

independent, increasing both in combination therefore combines both effects without any further 

interaction; it spreads the distribution both ways and shifts it to the left, but creates a more significant 

spread on the right-hand tail due to the raised β parameter. As we can see, both the variance σ² and mean 

μ of edge weight distributions change with each parameter combination. We show the parameter 

distribution skew in Figure C2. We suspect that the non-monotony of the path lengths function visible on 

the α = 6 parameter series is related to the skewness of the distribution. Indeed, a decrease in the 

calculated skew of the edge weight distribution occurs where the path lengths dips along the α = 6 series. 

This indicates an interaction between the parameters in the model that explains why the proposed paths 

match experimental data relatively well in a large zone diagonally situated in the positive α and β 

directions. The edge weight distribution is significantly less skewed in this region, which leads the path 

proposing algorithm to output shorter paths that closer matches to the preferential paths observed in the 

foam experiments.   

 

Figure C2: Edge weight distribution skew for all model weights. 

 

 

 



Appendix D:  Full model experimental match for the best model for experiment 1: (𝛂, 𝛃) = (𝟐. 𝟐 , 𝟎. 𝟔) 

with a high intensity threshold on the pore activity classification. Flow intensity is shown in greyscale 

within the porous network. The color code is given in Figure 7. Flow is from top to bottom. 

 



Appendix E:  Full model experimental match for the best model for experiment 1: (𝛂, 𝛃) = (𝟏. 𝟐 , 𝟎) 

with a high intensity threshold on the pore activity classification. The color code is given in Figure 7. 

Flow is from top to bottom. 

 

 

 



 

Appendix F: First 5 proposed paths for comparison models used in Figure 12: The paths in light green 

are proposed by the model minimizing physical distance, whereas the paths in light blue are proposed 

by the model minimizing the number of pores. The areas in dark blue are common to both sets of 

paths. The velocity intensity of Exp 1 is shown in grayscale. 

 



We note that for the shortest distance paths (green), the mean path distance is 19826 µm, composed of 

a mean 91.8 pores per path. The paths minimizing the number of pores have a path distance of 21582 

µm and are composed of 79.2 pores per path. 
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