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Controlling a Mobile Robot with Natural Commands based on Voice
and Gesture

A.R. Fardana1, S. Jain1, I. Jovancevic1, Y. Suri1, C. Morand1 and N.M. Robertson1

Abstract— This paper presents a real-time system for the con-
trol of a small mobile robot using combined audio (speech) and
video (gesture) commands. Commercial hardware is used based
on open-source code. Gesture is recognised using a dynamic
time warp (DTW) algorithm using skeleton points derived
from the RGB-D camera of the Kinect sensor. We present the
integration of a faster parallel version of the DTW algorithm.
Speech is recognised using a reduced-vocabulary HMM toolkit.
Audio beam forming is exploited for localisation of the person
relative to the robot. Separate commands are passed to a
fusion centre which resolves conflicting and complementary
instructions. This means complex commands such as “go there”
and “come here” may be recognised without a complex scene
model. We provide comprehensive analysis of the performance
in an indoor, reverberant environment.

I. INTRODUCTION

The development of robots has been significant in pro-
duction, including factories [16]. The expectation is high
for the development of intelligent robot systems that work
cooperatively with human beings in daily life and in medical
treatment and welfare. Smooth interfacing of human beings
with robots is essential for the operation of robots by people
in daily life. Anyone should be able to operate robots
easily by giving instructions to the robot using gestures
and voice instructions, just as people naturally communicate
with each other. This interaction has been the subject of
extensive research in recent years. As a result, an intelligent
manipulator system using tracking vision has been developed
[10]. The control algorithm for a service robot through the
hand over task was proposed [1]. Human actions are utilized
in human-robot interaction [13], [4]. The intelligent house for
physically impaired people using hand pointing gestures has
been developed [13]. The voice controller that can operate a
robot by a voice instruction using a fuzzy control method was
presented by Yoshidome [17]. This project presents an easy-
to-build robot system using gesture and voice instructions.
The goals of this work are to (a) build a robust, real-time and
open system for controlling the motion of a robot by human
speech and gesture commands. (The Robot we are using
is the Turtlebot Roomba equipped with a Microsoft Kinect
for both speech and gesture input); (b) integrate audio and
gesture commands intelligently to achieve better recognition
or enhanced functionality.
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Fig. 1. The successful recognition of “Go there” requires complementary
audio and video inputs to be recognised by the system. Our setup is a
Turtlebot with on-board computer and Kinect sensor.

Fig. 2. System architecture

A. Contributions

In summary this paper makes the following research
contributions. We develop a complete system for controlling
the motion of a robot by human speech and by human gesture
commands with low-cost off-the-shelf products. We present
an improved version of DTW for faster gesture recognition
based on parallelisation of the original DTW algorithm based
on [5]. The robot can move to speaker source direction
and perform the required action by exploiting the pointing
angle from skeleton points alone i.e. no world model is
required. We have integrated speech and gesture commands
and successfully tested on the Turtlebot.

II. SYSTEM DESIGN FRAMEWORK

We introduce briefly the system design, which is illustrated
in Figure 2. The user initiates a speech or/and gesture
command according to a pre-defined ontology. The Kinect
senses the audio signal (4 microphone beam forming array)
or/and skeleton joint angles (RGB-D camera plus SDK
algorithm [14]) and commands are sent to their respective
modules. Speech and gesture recognition modules are run



on separate threads. Each module sends its command to the
Integrator (Primary/Complementary Integrator). If the speech
command is “Go”, then the Complementary Integrator (CI)
is called otherwise the Primary Integrator (PI) is used to
combine the audio and video confidences. The Primary Inte-
grator waits for the other command (from different modality,
speech/gesture) for 3 seconds. If it receives the other com-
mand then it decides which command to execute depending
on the confidence levels and whether or not commands from
both modalities are recognized as same commands. If the
other command does not arrive, it decides the action with
one command only. Speech and Gesture run in Windows
under Visual C++ environment. The Robot Operating System
(ROS) runs on Linux on the robots. The Integrator sends
a command (linear and angular velocity) over a wireless
network. The client is the integrator module and HTTP server
(also running Linux). The server receives the command and
sends it to ROS and ROS executes command on the robots.
The two machines are connected via wireless router and
communicate via server-client scripts.

III. AUTOMATIC SPEECH RECOGNITION (ASR)

The common way to recognize speech is the following:
take waveform, split it into utterances vs. silences then try
to recognize what is being said in each utterance. To do
so, we want to take all possible combinations of words in
the training corpus and try to match them with the sampled
audio, choosing the best matching combination. We briefly
re-state the main components of the speech recognition
algorithm.

A. Feature extraction

The first step in attaching semantic meaning to the se-
quence of acoustic observations O is to convert an ana-
log audio signal into a digital representation. During this
analog-to-digital conversion, the amplitude of the signal is
measured at fixed time intervals and translated to a floating
point number. Because the information in this sequence of
numbers is highly redundant, it is transformed into a reduced
representation so that the relevant information is maintained
but the data is less redundant. This step is called feature ex-
traction [9]. The statistical model most often used to calculate
the likelihood, is the Hidden Markov Model (HMM) [8].
(Although Neural Networks have also been popular [15].)
An HMM consists of a finite number of states that are
connected in a fixed topology. The input of the HMM, the
feature vectors, are called observations. Each HMM state can
’emit’ an observation from the observation sequence O with
a certain probability defined by its Probability Distribution
Function (PDF). The first observation must be emitted by
a state that is defined to be one of the initial states. After
this observation has been processed, one of the states that
is connected to the initial state is chosen to emit the next
observation. The probability that a particular transition from
one state to another is picked, is modelled with the transition
probability. Eventually all observations are emitted by a
state that is connected to the state that emitted the previous

Fig. 3. We use the MSR speech recognition software on the detected audio
stream.

observation and finally, final observation should be emitted
by one of the final states. Since the actual path taken to
create a specific state sequence is unknown to a theoretical
observer therefore this type of Markov Model is called a
Hidden Markov Model. Typically a three-state, left-to-right
HMM topology is used to model phonemes.

In ASR, the probability distribution functions of the
HMMs are often Gaussian Mixture Models (GMM). A GMM
is a continuous function modelled out of a mixture of
Gaussian functions where the output of each Gaussian is
multiplied by a certain weight w. The Gaussian weights sum
up to 1 and the Gaussian functions themselves are defined
by their mean vector and covariance matrix. The Gaussian
mixture model converts the feature vector into observation
PDF model. The a priori probability P(W) where W is a
sequence of words is calculated using a n-gram language
model [7]. In n-gram models, for each possible sequence of
n-1 words, the probability of the next word is stored. Because
obtaining these statistics is only possible when a vocabulary
is defined before creating n-gram model. In a typical system
like LVCSR, HMM Lexicon (vocabularies) are defined that
consist of more than 50,000 words. Some systems even use
vocabularies with more than 300,000 words. With these large
vocabularies the risk is minimized of not recognizing a word.
The Viterbi algorithm decodes the observation using HMM
lexicon and recognize individual words [12]. Finally these
words are combined using N-gram grammar to comprehend
running speech sentence. A more extensive discussion on
Viterbi Decoder can be found [9].

B. Implementation and evaluation

Microsoft Speech Recognition (MSR) is freely-available.
This has many advantages: it supports many language packs
both for speech recognition and speech synthesis; its gram-
mar and vocabulary are much more advanced; it requires
no training for the models and its performance is much
better than existing available open source software. Figure 3
shows how Speech Recognition is performed in our system.
The Kinect handle is requested from the main application.
Using Kinect handle we initialize the audio stream and start
capturing audio. Once it is successful, we start the speech
recognition engine. Once the engine is started, we load the
grammar. Once we are ready to listen to the user, we wait
for the commands to arrive. Once we receive commands, the
MSR gives us the recognized word with its confidence. If the



Fig. 4. The confusion matrix for speech command recognition. 4 users of
different, non-UK nationality were used in the evaluation.

Fig. 5. Inter-person accuracy for speech recognition. Each bar for each
command represents an individual’s average accuracy.

confidence greater than a predefined threshold (0.5), we send
the command, its confidence and source angle of user to the
Integrator. Otherwise if confidence less than threshold, then
we first stop the audio capture and the robot says “Again
Please” (synthesised) and then the user should repeat the
command.

In reverberant environments sound source localisation and
recognition is problematic [11]. However this merely justi-
fies the use of gesture in combination. In a normal office
environment (T60 < 0.2s) we record 4 people saying each
command 10 times. The confusion among speech commands
for 4 users is shown in Figure 4. The inter-person variability
is shown in Figure 5. Overall recognition rate is 85%.

IV. GESTURE RECOGNITION

We propose that our gesture commands can be distin-
guished by the specific position of the hand with respect
to the head. The input for gesture recognition is the hand
trajectory and the hand can be tracked in various ways. A
common way to do it is by using joints: hands, shoulders,
elbows, head, etc. In order to do that, we need estimation of
joints positions in image. Shotton et al. propose estimation
of joints based on single depth image [14]. Their method
uses decision trees for per-pixel classification to body parts
and then Mean-Shift [6] for estimation of joints. In this
work, we are using 2D joint information shown in Figure
6. In each frame, we extract 2D position of: left hand joint,
right hand joint, left shoulder joint, right shoulder joint and
head. Gesture is represented by temporal vector A of (x, y)
positions with respect to coordinate frame shown below. In
each frame, hand (x, y) position is recorded.

Video segmentation is the process of determining frame
sequence in which one full gesture is contained. (Segmen-

Fig. 6. Extracted joints for use in gesture recognition (left) and the direction
vector via projection of arm vector onto the ground plane (right)

tation of the gesture in video should not be confused with
image processing segmentation where we segment image re-
gions.) Gesture segmentation is done by imposing constraint:
starting and ending position of the hand should be resting
position: both arms lying along the body. It is position shown
in Figure 6, (left).

Once a gesture is segmented the next task is to compute
distance between new gesture trajectory and each of the
learned gestures we have in our database and match the new
gesture with closest one. Any distance (Euclidean, Manhattan
etc.) which aligns the ith point on one time series with the
ith point on the other will produce a poor similarity score.
A non-linear (elastic) alignment produces a more intuitive
similarity measure, allowing similar shapes to match even
if they are out of phase in the time axis and have different
number of elements [2]. To do this we use Dynamic Time
Warping (described below). This is needed because gesture
will be done with different speed every time, even if done by
the same person, and especially if done by different person.
We compute confidence of this winning gesture and send this
information to the Integrator module, if confidence is above
the predefined threshold, which is empirically set. (Note that
we are not using mirroring mentioned in the original work
[2], i.e. if gesture is learned by using certain hand, it has to
be done with same hand in order to be recognized. Our robot
must recognize “Left” and “Right” as separate commands.)

A. DTW and speed-up via parallel processing

The computation cost of DTW is in quadratic time. On
top of this is the time complexity of searching all possible
matched sequences in database under DTW distance. There-
fore to reduce computation time we implement a new parallel
approach [5] which is novel in this context. To demonstrate
the superiority of the proposed DTW parallelization, we
conducted extensive experiments using synthetic data sets.
For comparisons, we also implemented the sequential version
of the DTW code. We measure the run time of both methods.
Our results confirm (below) that the parallel code gives
significant (factor 8 at least) performance improvement over
sequential code on 8 cores Intel Core i7 microprocessor, at
3.1 GHz with 8 GB RAM.



Fig. 7. Stopping the robot via gesture commands (left to right).

Dynamic time warping (DTW) is a time series alignment
algorithm developed originally for speech recognition. It is
also called non-linear, elastic alignment. It produces a more
intuitive similarity measure, allowing similar shapes to match
even if they are of different lengths. See Figure 8.

Fig. 8. DTW concept

It aims to align two sequences of typically different lengths
by iteratively warping time axis. Warping is repeated until
optimal match is found. The optimal match is the one that
makes sum of differences between matched features minimal.
We can interpret this algorithm as filling the table (matrix)
and then finding the optimal path in matrix (optimal match).
The matrix has dimensions n×m where n and m are lengths
of two sequences. Sequences are arranged along bottom and
left edge of the matrix. See figure 9.

Fig. 9. Finding optimal path

The number of possible paths is exponentially grow-
ing with number of elements of sequences and dynamic
programming is used to solve this search problem. The
algorithm starts with filling the element (1, 1) with distance
between first elements of two sequences X(x1, ..., xn) and
Y (y1, ..., ym):

g(1, 1) = d(y1, x1)

where d(xi, yj) is difference between two elements. It is
absolute difference in case when elements are scalars and

for example Euclidean distance in case where elements are
vectors. After filling the first element, rest of the elements
are filled by using recursive formula:

g(i, j) = d(i, j)+min { g (i, j− 1)g(i− 1, j− 1)g(i− 1, j)

Finally, DTW distance between sequences X and Y is
given by

D(X,Y ) =
g(n,m)

n+m

Optimal path is found by tracing back from element (n,m)
to element (1, 1). We move from element (i, j) to one of its
three neighbors:(i, j − 1), (i − 1, j − 1) or (i − 1, j) which
has lowest value g. Eventually we will reach element (1, 1).
The original algorithm is filling one row at a time. It can
be seen that filling table is computationally most demanding
task in DTW algorithm. Hence it is useful to make parallel
version of this phase. Since it is recursive algorithm and
there is data dependency, it is not possible to make filling
rows parallel. One row can be filled only after previous one
is filled. Also, one element in a row can be filled only after
previous one is filled.

However, by changing order of filling table elements,
parallelization is possible. In figure 10(a) data dependency of
table filling is shown. Since (i, j) depends only on elements
(i−1, j), (i, j−1) and (i−1, j−1), it is possible to compute
simultaneously elements (i+ 1, j) and (i, j + 1) once (i, j)
is known. So, if computation flow is proceeding in diagonal
direction, parallel DTW can be achieved. In each iteration,
we can fill one whole diagonal of a matrix. Flow is depicted
in figures 10 (b, c, d, e, and f). In first iteration, algorithm
only calculates element (1, 1) which enables computing
elements (1, 2) and (2, 1) in next iteration. So, one thread
is active in first iteration, two threads are active in second
iteration, etc. This is first phase of the algorithm where
number of calculated elements in each iteration is equal to
number of step. Maximum level of parallelization is achieved
in step m when m threads are active. m threads stay active
as long as number of elements in diagonal is m (see figure
10(e)). That is second phase where number of elements is
m. In third phase from step n+1 to step n+m−1, number
of threads is again changing through steps. In each step,
number of elements is m+ n− step.

As can be concluded from Figures 11 and 12 the speed
up increases linearly with increasing number of cores.

B. Computing direction from gesture
We now compute vector determined by shoulder and hand

joint. The 3D vector in the Kinect frame-of-reference is



Fig. 10. Filling table for the DTW algorithm used in gesture matching.

Fig. 11. The effect of increasing number of cores on runtime.

obtained, which for this purpose we can consider as the robot
frame since it is mounted on the robot. Then we project
this vector to the XZ plane, which is approximately parallel
with the ground plane. The angle between positive part of
the Z-axis and this new vector is computed, as shown in
Figure 6, (right/ ). This is then the angle for which robot
must rotate to be oriented in the direction the user wishes
it. (For a negative angle, robot will rotate to the left and for
positive angle it will rotate to the right.) We then rotate the
robot for the required amount of time (angular velocity and
angle are known). Another variation is to use elbow and hand
joints, but hand-shoulder vector has shown better results in
our experiments.

C. Evaluation of gesture recognition

Once more we ask 4 volunteers to repeat each gesture
command 10 times, after a series of training exercises. The
confusion matrix among gesture commands alone is shown
in Figure 13 and the inter-person variation in Figure 14. In
our experiments, overall accuracy was 89%. An illustrative
example of the “Stop” command being successfully executed
is given in Figure 7.

V. JOINT USE OF GESTURE AND SPEECH COMMANDS

The software implemented so far does not return a distri-
bution over all possible commands for speech and gesture.
For a larger vocabulary this would be impractical on a real-
time setup. We thus propose two ways to fuse commands
coming from speech and gesture, using what probability in-
formation that is available, while retaining performance. The
two fusion strategies are as follows: (a) Primary Integrator
: this integrator makes command recognition more robust

Fig. 12. Linear speed-up with varying numbers of cores.

Fig. 13. The confusion matrix for gesture command recognition.

when command overlap i.e. the same command is given
both in gesture and speech. It cross verify the commands
from both modules; (b) Complementary Integrator : here
one module acts as a complementary action to the other, as
shown in Figure 1. Direct pairing between speech and gesture
commands: is achieved for Forward, Backward, Left, Right,
Slower, Faster and Stop commands. In Primary integration
we compare information coming from two modules. Gesture
module gives distribution: confidences for all commands
present in database. However, the speech module returns
only the maximum likelihood (ML) result (command with
highest confidence) and its confidence. So we take the ML,
or winning, command from both modules and compare them.
We may also integrate speech and gesture commands in a
complementary fashion e.g. “Go there”: saying “Go” and
pointing in a specific direction (“There”). We assume here
that speech command is given before gesture command. This
prerequisite was necessary to avoid synchronization conflict

Fig. 14. Inter-person accuracy for gesture recognition. Each bar for each
command represents an individual’s average accuracy over 10 trials.



Test case Expected outcome

1. User says, “Go”, then gestures in direction Moves to the specified direction

2. User gestures in direction, then says “Go” Robot executes command according to the gesture

3. User gestures and speaks same command Robot fuses the commands and executes

4. User gestures and speaks different command Winner-takes-all and execute

5. User gives single command Robot executes the command

TABLE I
THE TEST CASES FOR COMBINED GESTURE AND SPEECH RECOGNITION

ON THE PLATFORM. IN OUR EXPERIMENTS WITH 4 PARTICIPANTS WE

ACHIEVE 82% SUCCESS IN RECOGNITION OF JOINT COMMANDS.

between speech and gesture commands.

VI. EXPERIMENTATION, RESULTS AND EVALUATION

The average execution time - using the trained algorithms
with no optimisation - for a speech command is 2.2s and
for gesture 3.3s. When gesture computation is parallelized,
execution time is reduced dramatically to an average of 0.25s.
Successful operation of the robot requires the user to be
with ±60o of the centre of the microphone array and with
4m of the camera. We now wish to consider accuracy and
in particular whether speech and gesture facilitate improved
recognition or increased capability over a single modality.
As shown in Figures 4 and 13, recognition accuracy is good.
Inter-person variability is high for speech (shown in Figure
5) and less so for gesture (Figure 14). The test cases are
shown in Table I. Accuracy is 82% over all of these cases.
We show in Figure 15 that conflicting commands may be
resolved correctly in the majority of cases by the combination
of audio and video.

Fig. 15. Percentage accuracy of the correct command recognition in the
presence of conflicting speech and gesture commands.

VII. FUTURE WORK

There are many avenues for future development, including
developing a probabilistic inference model which uses an
instruction “grammar”, e.g. the Start command must appear
before the Stop command etc. Noise reduction for audio
module and making it more robust to high reverberation of
the type found in e.g. factory environments is necessary but
this may require de-coupling audio and video from the Kinect
sensor. Directional instructions are currently associated to the
“Forward” and “Go there” command only, and there is scope
for widening the use of this function.
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