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Abstract
We formulate a new problem at the intersection
of semi-supervised learning and contextual bandits,
motivated by several applications including clini-
cal trials and ad recommendations. We demonstrate
how Graph Convolutional Network (GCN), a semi-
supervised learning approach, can be adjusted to
the new problem formulation. We also propose a
variant of the linear contextual bandit with semi-
supervised missing rewards imputation. We then
take the best of both approaches to develop multi-
GCN embedded contextual bandit. Our algorithms
are verified on several real world datasets.

1 Introduction
We formulate the problem of Online Partially Rewarded
(OPR) learning. Our problem is a synthesis of the challenges
often considered in the semi-supervised and contextual bandit
literature. Despite a broad range of practical cases, we are not
aware of any prior work addressing each of the corresponding
components. Next we justify each of the keywords and give
motivating examples.

• Online: data is often naturally collected over time and
systems are required to make predictions (take an action)
before they are allowed to observe any response from the
environment.

• Partially: oftentimes there is no response available, e.g.
a missing label or environment not responding to sys-
tem’s action.

• Rewarded: in the context of online (multiclass) super-
vised learning we assume that the environment will pro-
vide the true label - however in many practical sys-
tems we can only hope to observe feedback indicating
whether our prediction is good or bad (1 or 0 reward),
the latter case obscuring the true label for learning.

Practical scenarios that fall under the umbrella of OPR range
from clinical trials to dialog orchestration. In clinical trials,
reward is partial, as patients may not return for followup eval-
uation. When patients do return, if feedback on their treat-
ment is negative, the best treatment, or true label, remains
unknown and the only available information is a reward of

0 for the treatment administered. In dialog systems, a user’s
query is often directed to a number of domain specific agents
and the best response is returned. If the user provides negative
feedback to the returned response, the best available response
is uncertain and moreover, users can choose to not provide
feedback at all.

In many applications, obtaining labeled data requires a hu-
man expert or expensive experimentation, while unlabeled
data may be cheaply collected in abundance. Learning from
unlabeled observations to improve prediction performance is
the key challenge of semi-supervised learning [Chapelle et
al., 2009]. One of the possible approaches is the continu-
ity assumption, i.e. points closer to each other in the fea-
ture space are more likely to share a label [Seeger, 2000].
When the data has a graph structure, another approach is
to perform node classification using graph Laplacian regu-
larization, i.e. penalizing difference in outputs of the con-
nected nodes [Zhu et al., 2003]. The latter approach can also
be applied without the graph under the continuity assump-
tion by building similarity based graph. We note that the
problem of online semi-supervised leaning is rarely consid-
ered, with few exceptions [Yver, 2009; Valko et al., 2012;
Bouneffouf et al., 2020b]. In our setting, the problem is fur-
ther complicated by the bandit-like feedback in place of la-
bels, rendering the existing semi-supervised approaches inap-
plicable. We will however demonstrate how one of the recent
approaches, Graph Convolutional Networks (GCN) [Kipf and
Welling, 2016], can be extended to our setting.

The multi-armed bandit problem provides a solution to
the exploration versus exploitation trade-off, informing a
player how to pick within a finite set of decisions while
maximizing cumulative reward in an online learning set-
ting. Optimal solutions have been developed for a vari-
ety of problem formulations [Auer et al., 2002a; Auer et
al., 2002b; Allesiardo et al., 2014; Bouneffouf and Féraud,
2016; Balakrishnan et al., 2018; Bouneffouf et al., 2019;
Lin et al., 2018; Bouneffouf et al., 2017a; Lin et al., 2020;
Bouneffouf et al., 2017b]. These approaches do not take
into account the relationship between context and reward,
potentially inhibiting overall performance. In Linear Upper
Confidence Bound (LINUCB) [Li et al., 2010; Chu et al.,
2011; Bouneffouf and Rish, 2019; Bouneffouf et al., 2020a;
Bouneffouf, 2020] and in Contextual Thompson Sampling
(CTS) [Agrawal and Goyal, 2013], the authors assume a lin-



ear dependency between the expected reward of an action
and its context; the representation space is modeled using a
set of linear predictors. These algorithms assume that the
bandit can observe the reward at each iteration, which is
not the case in our setting. Several authors have considered
variations of partial/corrupted rewards [Bartók et al., 2014;
Gajane et al., 2016], however the case of entirely missing re-
wards has not been studied to the best of our knowledge.

In this paper we focus on handling the problem of online
semi-supervised learning with bandit feedback. We first re-
view some existing methods in the respective domains and
propose extensions to each of them to accommodate our prob-
lem setup. Then we proceed to combine the strengths of both
approaches to arrive at an algorithm well suited for the On-
line Partially Rewarded learning as demonstrated with exper-
iments on several real datasets.

2 Preliminaries
In this section we review two approaches coming from the
respective domains of semi-supervised learning and contex-
tual bandits, emphasizing their relevance and shortcomings in
solving the OPR problem.

2.1 Graph Convolutional Networks
Neural networks have proven to be powerful feature learners
when classical linear approaches fail. Classical neural net-
work, Multi Layer Perceptron (MLP), is dramatically over-
parametrized and requires copious amounts of labeled data to
learn. On the other hand, Convolutional Neural Networks are
more effective in the image domain [Krizhevsky et al., 2012],
partially due to parameter sharing exploiting relationships be-
tween pixels. Image structure can be viewed as a grid graph
where neighboring pixels are connected nodes. This perspec-
tive and the success of CNNs inspired the development of
convolution on graphs neural networks [Henaff et al., 2015;
Defferrard et al., 2016; Bronstein et al., 2017] based on the
concept of graph convolutions known in the signal processing
communities [Shuman et al., 2013]. Though all these works
are in the realm of classical supervised learning, the idea of
convolving signal over graph nodes is also widely applied in
semi-supervised (node classification) learning [Belkin et al.,
2006], where the graph describes relationships among obser-
vations (cf. grid graph of features (pixels) in CNNs). [Kipf
and Welling, 2016] proposed Graph Convolutional Network
(GCN), an elegant synthesis of convolution on graphs ideas
and neural network feature learning capability, which sig-
nificantly outperformed prior semi-supervised learning ap-
proaches on several citation networks and knowledge graph
datasets.

To understand the GCN method, let X ∈ RT×D denote
a data matrix with T observations and D features and let A
denote a positive, sparse, and symmetric adjacency matrix A
of size T × T . The GCN embedding of the data with one
hidden layer of size L is g(X) = Â ReLU(ÂXW ) ∈ RT×L,
where Â is degree normalized adjacency with self connec-
tions: Â = (D + IT )−1/2(A + IT )(D + IT )−1/2 and
Dii =

∑T
j=1Aij is the diagonal matrix of node degrees.

W ∈ RD×L is a trainable weight vector. Resulting embedded

data goes into the softmax layer and the loss for backpropaga-
tion is computed only on the labeled observations. The prod-
uct ÂX gives the one-hop convolution — signal from a node
is summed with signals from all of its neighbours achiev-
ing smooth transitions of the embeddings g(X) over the data
graph. Although a powerful semi-supervised approach, GCN
is not suitable for the Online and Rewarded components of
OPR. It additionally requires a graph as an input, which may
not be available in some cases.

2.2 Contextual Bandit
Following [Langford and Zhang, 2008], the contextual bandit
problem is defined as follows. At each time t ∈ {1, ..., T}, a
player is presented with a context vector xt ∈ RD, ‖xt‖ ≤ 1
and must choose an arm k ∈ {1, ...,K}. rt,k ∈ [0, 1] is the
reward of the action k at time t, and rt ∈ [0, 1]K denotes a
vector of rewards for all arms at time t. We operate under
the linear realizability assumption, i.e., there exist unknown
weight vectors θ∗k ∈ RD with ‖θ∗k‖2 ≤ 1 for k = 1, . . . ,K
so that

∀k, t : E[rt,k|xt] = θ∗>k xt

Hence, the rt,k are independent random variables with expec-
tation x>t θ

∗
k.

One solution to the contextual bandit problem is the LIN-
UCB algorithm [Li et al., 2010] where the key idea is to ap-
ply online ridge regression to incoming data to obtain an es-
timate of the coefficients θk for k = 1, . . . ,K. At each step
t, the LINUCB policy selects the arm with the highest upper
confidence bound of the reward k(t) = argmaxk(µk + σk),
where µk = θ>k xt is the expected reward for arm k, σk =

α
√
x>t A−1k xt is the standard deviation of the corresponding

reward scaled by exploration-exploitation trade-of parame-
ter α (chosen a priori) and Ak is the covariance of the k-th
arm context. LINUCB requires a reward for the chosen arm,
rt,k(t), to be observed to perform its updates. In our setting
reward may not be available at every step t, hence we need to
adjust the LINUCB algorithm to learn from data with missing
rewards.

3 Proposed algorithms
In this section we formally define Online Partially Rewarded
(OPR) problem and present a series of algorithms, starting
with natural modifications of GCN and LINUCB to suit the
OPR problem setting and conclude with an algorithm build-
ing on strengths of both GCN and LINUCB.

3.1 Problem setting
We now formally define each of the OPR keywords:

• Online: at each step t = 1, . . . , T we observe obser-
vation xt and seek to predict its label ŷt using xt and
possibly any information we had obtained prior to step
t.

• Partially: after we made the prediction ŷt, environment
may not provide any feedback (we will use -1 to encode
absence of feedback) and we have to proceed to step t+1
without knowledge of the true yt.



• Rewarded: suppose there are K possible labels yt ∈
{1, . . . ,K}. The environment at step t, if it responds
to our prediction ŷt, will not provide true yt, but instead
a response ht ∈ {−1, 0, 1}, where ht = 0 indicates
ŷt 6= yt and ht = 1 indicates ŷt = yt (-1 indicates miss-
ing response).

Note on absence of environment response. We assume
that there is no dependence on xt in whether environment will
respond or not. This is a common setting in semi-supervised
learning [Chapelle et al., 2009] — we have access to limited
samples from the joint distribution of data and labels P(x, y)
and larger amount of samples from the data marginal P(x)
with the goal to infer P(y|x) using both. This assumptions
is justified in some applications of interest, e.g. whether user
will provide feedback to the dialog agent is independent of
what the user asked.

3.2 Rewarded Online GCN
There are three challenges to be addressed to formulate Re-
warded Online GCN (ROGCN): (i) online learning; (ii) the
environment only responds with 0 or 1 to our predictions
and (iii) the potential absence of graph information. As we
shall see, there is a natural path from GCN to ROGCN. Sup-
pose there is a small portion of data and labels available
from the start, X0 ∈ RT0×D and y0 ∈ {−1, 1, . . . ,K}T0 ,
where D is the number of features, K is the number of
classes and T0 is the size of initially available data. When
there is no graph available we can construct a k-NN graph
(k is a parameter chosen a priori) based on similarities be-
tween observations - this approach is common in convolu-
tional neural networks on feature graphs [Henaff et al., 2015;
Defferrard et al., 2016] and we adopt it here for graph con-
struction between observations X0 to obtain graph adjacency
A0. We provide details in Section 4. Now that we have
X0, y0, A0, we can train GCN with L hidden units (a param-
eter chosen a priori) to obtain initial estimates of hidden layer
weights W1 ∈ RD×L and softmax weights W2 ∈ RL×K .
Next we start to observe the stream of data — as new ob-
servation xt arrives, we add it to the graph and data matrix,
and append -1 (missing label) to y. Then we run additional
training steps of GCN and output a prediction to obtain envi-
ronment response ht ∈ {−1, 0, 1}. Here 1 indicates correct
prediction, hence we include it to the set of available labels
for future predictions; 0 indicates wrong prediction and -1 an
absence of a response, in the later two cases we continue to
treat the label of xt as missing. This procedure is summarized
in Algorithm 1.

3.3 Bounded Imputation LINUCB
Contextual multi-armed bandits offer a powerful approach to
online learning when true labels are not available and the en-
vironment’s response to a prediction is observed at every ob-
servation instead. However, in our OPR problem setting, the
environment may not respond to the agent for every obser-
vation. Classic bandit approach such as Linear Upper Con-
fidence Bound (LINUCB) [Li et al., 2010] may be directly
applied to OPR, however it would not be able to learn from
observations without environment response. We propose to

Algorithm 1 ROGCN

1: Input: W1,W2, X0, y0, Â0

2: Set X = X0, y = y0, Â = Â0

3: for t = T0 + 1 to T do
4: Append xt to X , -1 to y
5: Update Â with new edges if graph information is available or

build k-NN similarity graph from X to obtain Â
6: Update W1 and W2 through GCN backpropagation with in-

puts X, Â, y
7: Retrieve GCN prediction ŷt and observe environment re-

sponse ht ∈ {−1, 0, 1} for ŷt
8: if ht = 1 then
9: Replace last entry of y with ŷt

10: end if
11: end for

combine LINUCB with a user defined imputation mecha-
nism for the reward when environment response is missing.
In order to be robust to variations in the imputation qual-
ity, we only allow imputed reward to vary within agent’s
beliefs. To make use of the context in the absence of the
reward, we consider a user defined imputation mechanism
I(·) : RD → ∆K−1, which is expected to produce class
probabilities for an input context xt to impute the missing
reward. Typically any imputation mechanism will have an er-
ror of its own, hence we constrain the imputed reward to be
within one standard deviation of the expected reward for the
chosen arm:

rt(k, xt) = max(µk − σk,min(I(xt)k, µk + σk)). (1)

As in ROGCN, we can take advantage of small portion of
data to initialize bandit parameters bk =

∑T0

t:yt=k xt and

Ak =
∑T0

t:yt 6=−1 xtx
>
t for k = 1, . . . ,K. Bounded Impu-

tation LINUCB (BILINUCB) is summarized in Algorithm 2.

Algorithm 2 BILINUCB
1: Input: α, b, A, I(·)
2: for t = T0 + 1 to T do
3: Update I(·) with xt and retrieve I(xt) ∈ ∆K−1

4: for all k ∈ K do
5: θk ← A−1

k ∗ bk θk ← θk/‖θk‖2
6: σk ← α

√
x>t A−1

k xt µk ← θ>k xt

7: end for
8: Predict ŷt = argmaxk(µk + σk), and observe environment

response ht ∈ {−1, 0, 1}
9: if ht = 1 then

10: Ak ← Ak + xtx
>
t for k = 1, . . . ,K

11: bŷt ← bŷt + xt
12: Update I(·) with label yt = ŷt
13: else if ht = 0 then
14: Aŷt ← Aŷt + xtx

>
t

15: else if ht = −1 then
16: Aŷt ← Aŷt + xtx

>
t

17: bŷt ← bŷt + rt(ŷt, xt)xt (see Eq. (1))
18: end if
19: end for



3.4 Multi-GCN embedded UCB
We have presented two algorithms for OPR learning, how-
ever both approaches pose some limitations: ROGCN is un-
able to learn from missclassified observations and has to treat
them as missing labels, while BILINUCB assumes linear re-
lationship between data features and labels and even with per-
fect imputation is limited by the performance of the best lin-
ear classifier. Note that the bandit perspective allows one to
learn from missclassfied observations, i.e. when the environ-
ment response ht = 0, and the neural network perspective
facilitates learning better features such that linear classifier is
sufficient. This observation motivates us to develop a more
sophisticated synthesis of GCN and LINUCB approaches,
where we can combine advantages of both perspectives.

To begin, we note that if K = 2, a ht = 0 environment re-
sponse identifies the correct class, hence the OPR reduces to
online semi-supervised learning for which GCN can be triv-
ially adjusted using ideas from ROGCN. To take advantage
of this for K > 2 we can consider a suite of GCNs for each
of the classes, which then necessitates a procedure to decide
which of the GCNs to use for prediction at each step. We pro-
pose to use a suite of class specific GCNs, where prediction is
made using contextual bandit with context of k-th arm com-
ing from the hidden layer representation of k-th class GCN
and, when missing, reward is imputed from the correspond-
ing GCN.

We now describe the multi-GCN embedded Upper Con-
fidence Bound (GCNUCB) bandit in more details. Let
g(X)(k) = Â ReLU(ÂXW

(k)
1 ) denote the k-th GCN data

embedding and let g(X)
(k)
t denote the embedding of obser-

vation xt. We will use this embedding (additionally normal-
ized to unit l2 norm) as context for the corresponding arm of
the contextual bandit. The advantage of this embedding is
its graph convolutional nature coupled with expressive power
of neural networks. We note that as we add new observa-
tion xt+1 to the graph and update weights of the GCNs, the
embedding of the previously observed x1, . . . , xt evolves.
Therefore instead of dynamically updating bandit parameters
bk and Ak as it was done in BILINUCB, we maintain set of
indices for each of the arms Ck = {t : ŷt = k or ht = 1}.
At any step we can compute corresponding bandit context co-
variance and weight estimate using current embedding:

Ak =
∑

t∈Ck g(X)
(k)
t g(X)

(k)
t

>
(2)

θk = A−1k

∑
t∈Ck rt,kg(X)

(k)
t , θk = θk/‖θk‖2 (3)

where rt,k is the reward that was observed or imputed at
step t for arm k (recall that we are imputing using prediction
of the binary GCN corresponding to the arm chosen by the
bandit). Now we can compute expected value and standard
deviation for the reward on each arm. The prediction is made
based on the upper confidence bounds for the rewards of the
arms:

µk = θ>k g(X)
(k)
t

σk = α

√
g(X)

(k)
t

>
A−1k g(X)

(k)
t

ŷt = argmaxk(µk + σk).

(4)

Then we observe the environment response ht ∈ {−1, 0, 1}.
Unlike ROGCN, GCNUCB is able to learn from mistakes,
i.e. when ht = 0 — although as before we don’t know
the true class, we can be sure that it was not ŷt, hence
we can use this information to improve GCN correspond-
ing to the class ŷt. We summarize GCNUCB in Algorithm
3. Similarly to ROGCN and BILINUCB we can use a small
amount of data X0 and labels y0 converted to binary la-
bels y(k)0 ∈ {−1, 0, 1}T0 (as before -1 encodes missing la-
bel) for each class k to initialize GCNs weights W (k)

1 ,W
(k)
2

for k = 1, . . . ,K and index sets Ck for each of the arms
k = 1, . . . ,K. Adjacency matrix if not given is obtained as
in ROGCN.

Algorithm 3 GCNUCB

1: Input: W (k)
1 ,W

(k)
2 , Ck, r·,k, y(k)0 ∀k, X0, Â0, α

2: Set y(k) = y
(k)
0 k = 1, . . . ,K, X = X0, Â = Â0

3: for t = T0 + 1 to T do
4: Append xt to X , -1 to each of y(1), . . . , y(K)

5: Update Â with new edges if graph information is available or
build k-NN similarity graph from X to obtain Â

6: Update W (k)
1 and W (k)

2 through GCN backpropagation with
inputs X, Â, y(k) for k = 1, . . . ,K

7: Retrieve embeddings g(X)
(k)
t ∀k

8: Compute Ak (Eq. (2)) and θk (Eq. (3)) ∀k
9: Make prediction ŷt using Eq. (4) and observe environment

response ht

10: if ht = 1 then
11: For each k replace last entry of y(k) with 1 if ŷt = k and

0 otherwise
12: Append t to each Ck and 1 to r·,k if ŷt = k and 0 other-

wise
13: else if ht = 0 (learning from mistakes) then
14: Replace last entry of y(ŷt) with 0
15: Append t to Cŷt and 0 to r·,ŷt
16: else if ht = −1 (imputing) then
17: Append t to Cŷt , output of ŷt-th GCN to r·,ŷt
18: end if
19: end for

4 Experiments
In this section we compare baseline method LINUCB which
ignores the data with missing rewards to ROGCN, BILIN-
UCB and GCNUCB — algorithm proposed in this paper. We
consider four different datasets: CNAE-9 and Internet Ad-
vertisements from the the UCI Machine Learning Reposi-
tory1, Cora 2, and Warfarin [Sharabiani et al., 2015]. Cora
is naturally a graph structured data which can be utilized
by ROGCN, BILINUCB with ROGCN based imputation and
GCNUCB. For other datasets we use a 5-NN graph built on-
line from the available data as follows.

Suppose at step t we have observed data points xi ∈ RD

for i = 1, . . . , t. Weights of the similarity graph computed as

1https://archive.ics.uci.edu/ml/datasets.html
2https://people.cs.umass.edu/ mccallum/data.html



follows:

Aij = exp

(
‖xi − xj‖22

σ2

)
. (5)

As it was done by [Defferrard et al., 2016] we set σ =
1
t

∑t
i=1 d(i, ik), where d(i, ik) denotes L2 distance between

observation i and its k-th nearest neighbour indexed ik. The
k-NN adjacency A is obtained by setting all but k (excluding
itself) corresponding closest entries of Aij , i, j = 1, . . . , t
to 0 and symmetrizing. Then, as in [Kipf and Welling,
2016], we add self connections and row normalize Â =
(D+IT )−1/2(A+IT )(D+IT )−1/2, whereDii =

∑T
j=1Aij

is the diagonal matrix of node degrees.
For pre-processing we discarded features with large mag-

nitudes (3 features in Internet Advertisements and 2 features
in Warfarin) and row normalized all observations to have unit
l1 norm.

For all of our algorithms that use GCN we use default pa-
rameters of the GCN and Adam optimizer [Kingma and Ba,
2014]. Default parameters are as follows: 16 hidden units,
learning rate of 0.01, 0.0005 weight decay, and dropout of
0.5.

To emulate the OPR setting we randomly permute the or-
der of the observations in a dataset and remove labels for
some portion (we experiment with three settings: 25%, 50%
and 75% missing labels) of the observations chosen at ran-
dom. For all methods we consider initial data X0 and y0
to represent a single observation per class chosen randomly
(T0 = K). At a step t = T0 + 1, . . . , T each algorithm is
given a feature vector xt and is ought to make a prediction ŷt.
The environment response ht ∈ {−1, 0, 1} is then observed
and algorithms moves onto step t + 1. To compare perfor-
mance of different algorithms at each step t we compare ŷt
to true label yt available from the dataset (but concealed from
the algorithms themselves) to evaluate running accuracy. De-
fined as such, accuracy is inversely proportional to regret.

Imputation Methods. We test two different imputation
functions I(·) for BILINUCB - a ROGCN and simple k-
means clustering with 10 clusters. Henceforth, we denote
these two approaches as BILINUCB-GCN and BILINUCB-
KMeans. In BILINUCB-GCN we update ROGCN with in-
coming observations and use the softmax class prediction
to impute missing reward when needed. In BILINUCB-
KMeans, we use the mini-batch k-means algorithm to clus-
ter incoming observations online and impute missing reward
with the average non-missing reward of all observations in
the corresponding cluster.

Running accuracy results. We noticed that BILINUCB
with both imputation approaches and GCNUCB are more
robust to data ordering when we use baseline LINUCB for
first 300 steps and then proceed with the corresponding al-
gorithm (see Figure 1a where aforementioned algorithms and
LINUCB perform the same until step 300 and then have in-
dividual running accuracies). For all LINUCB based ap-
proaches we used exploration-exploitation trade-off param-
eter α = 0.25. Results are summarized in Table 1. Since
ordering of the data can affect the problem difficulty, we per-
formed 10 data resampling for each setting to obtain error

bars.
GCNUCB outperforms the LINUCB baseline and our

other proposed methods in all of the experiments, validating
our intuition that a method synthesizing the exploration ca-
pabilities of bandits coupled with the effective feature repre-
sentation power of neural networks is the best solution to the
OPR problem. We see the greatest increase in accuracy be-
tween GCNUCB and the alternative approaches on the Cora
dataset which has a natural adjacency matrix. This suggests
that GCNUCB has a particular edge in OPR applications with
graph structure. Such problems are ubiquitous. Consider
our motivating example of dialog systems - for dialog sys-
tems deployed in social network or workplace environments,
there exists graph structure between users, and user informa-
tion can be considered alongside queries for personalization
of responses.

Role of bounding the imputed reward. Notice that on
average, a BILINUCB method outperforms LINUCB and
ROGCN. To understand the role of these imputation bounds,
we analyze the effects of random imputation. We de-
note this use of random imputation as BILINUCB-Random
and ILINUCB-Random as the same without bounding the
imputed reward. We define BILINUCB-KMeans and
ILINUCB-KMeans similarly. We summarize the overall ac-
curacy of each method on CNAE-9 in Table 2.

As the purpose of these bounds is to correct for errors in
the imputation method, we expect to see its impact the most
when imputation is inaccurate. This is exactly what we see in
Table 2 and Figure 1a. When we use a reasonable imputation
method, k-means, the imputation bounds do not improve, or
only make slight improvements to the results. The improve-
ment gain is much more evident with random imputation, and
across both imputation methods, the bounds have a larger im-
pact when there is more reward missing.

Visualizing GCNUCB context space. Recall that the con-
text for each arm of GCNUCB is provided by the correspond-
ing binary GCN hidden layer. The motivation for using bi-
nary GCNs to provide the context to LINUCB is the abil-
ity of GCN to construct more powerful features using graph
convolution and neural networks expressiveness. To see how
this procedure improves upon the baseline LINUCB utiliz-
ing input features as context, we project the context and the
corresponding bandit weight vectors, θ1, . . . , θK , for both
LINUCB and GCNUCB to a 2-dimensional space using t-
SNE [Maaten and Hinton, 2008]. In this experiment we
analyzed CNAE-9 dataset with 25% missing labels. Recall
that the bandit makes prediction based on the upper confi-
dence bound of the regret: argmaxk(θ>k xk,t + σk) and that
xk,t = xt ∀k = 1, . . . ,K for LINUCB and xk,t = g(X)

(k)
t

for GCNUCB. To better visualize the quality of the learned
weight vectors, for this experiment we set α = 0 and hence
σk = 0 resulting in a greedy bandit, always selecting an arm
maximizing expected reward θ>k xt,k. In this case, a good
combination of contexts and weight vectors is the one where
observations belonging to the same class are well clustered
and corresponding bandit weight vector is directed at this
cluster. For LINUCB (Figure 1b, 68% accuracy) the ban-
dit weight vectors mostly point in the direction of their re-



Table 1: Total average accuracy

25% Missing labels
CNAE-9 Internet Ads Warfarin Cora

LINUCB 67.57 ± 2.90 90.08 ± 0.64 53.70 ± 0.77 38.06 ± 3.45
ROGCN 64.73 ± 2.67 88.22 ± 1.73 47.72 ± 9.40 48.57 ± 7.75
BILINUCB-GCN 67.27 ± 2.79 89.91 ± 0.73 53.70 ± 0.77 37.66 ± 3.92
BILINUCB-KMeans 67.69 ± 4.30 90.37 ± 0.63 52.53 ± 4.83 39.11 ± 2.68
GCNUCB 77.10 ± 1.89 93.14 ± 0.39 55.19 ± 3.40 66.01 ± 1.35

50% Missing labels
CNAE-9 Internet Ads Warfarin Cora

LINUCB 64.25 ± 3.55 88.62 ± 0.67 51.87 ± 5.12 38.85 ± 2.74
ROGCN 65.96 ± 3.69 88.38 ± 1.93 49.37 ± 8.29 47.71 ± 9.25
BILINUCB-GCN 63.52 ± 3.31 88.40 ± 0.73 51.75 ± 5.32 38.08 ± 2.97
BILINUCB-KMeans 67.37 ± 5.18 89.95 ± 0.66 54.20 ± 0.30 39.20 ± 1.76
GCNUCB 74.55 ± 1.82 92.62 ± 0.37 56.51 ± 3.43 63.47 ± 2.26

75% Missing labels
CNAE-9 Internet Ads Warfarin Cora

LINUCB 61.67 ± 3.16 86.66 ± 0.99 52.99 ± 2.61 33.92 ± 0.04
ROGCN 65.67 ± 5.28 88.31 ± 1.81 47.48 ± 5.41 49.63 ± 5.06
BILINUCB-GCN 61.36 ± 3.79 86.68 ± 1.04 50.04 ± 11.44 32.21 ± 5.99
BILINUCB-KMeans 57.16 ± 3.57 88.21 ± 0.99 51.21 ± 7.12 32.51 ± 4.98
GCNUCB 70.82 ± 2.33 91.45 ± 0.89 53.31 ± 2.98 58.29 ± 2.80

spective context clusters, however the clusters themselves are
scattered, thereby inhibiting the capability of LINUCB to ef-
fectively distinguish between different arms given the con-
text. In the case of GCNUCB (Figure 1c, 77% accuracy)
the context learned by each GCN is tightly clustered into two
distinguished regions - one with context for corresponding la-
bel and binary GCN when it is the correct label (points with
bolded colors), and the other region with context for the la-
bel and GCN when a different label is correct (points with
faded colors). The tighter clustered contexts allow GCNUCB
to effectively distinguish between different arms by assigning
higher expected reward to contexts from the correct binary
GCN than others, thereby resulting in better performance of
GCNUCB than other methods.

Table 2: CNAE-9 total average accuracy

% Reward Missing ILINUCB-Random BILINUCB-Random

25 67.29 ± 4.15 67.65 ± 4.30
50 65.67 ± 5.20 67.19 ± 5.37
75 49.77 ± 4.68 56.36 ± 3.71
% Reward Missing ILINUCB-KMeans BILINUCB-KMeans

25 67.92 ± 3.98 67.69 ± 4.30
50 67.14 ± 4.84 67.37 ± 5.18
75 56.62 ± 4.40 57.16 ± 3.57

5 Conclusion and Discussion
We have defined and studied the problem of Online Partially
Rewarded (OPR) learning, which combines challenges from
semi-supervised learning and multi-armed contextual ban-
dits. We have developed ROGCN and BILINUCB - exten-

sions of popular algorithms in the corresponding domains to
solve the OPR problem. Our main contribution, GCNUCB
algorithm, is the efficient synthesis of the strengths of the two
approaches. Our experiments show that GCNUCB, which
combines feature extraction capability of the graph convolu-
tion neural networks and natural ability of contextual bandits
to handle online learning with reward (instead of labels), is
the best approach for OPR across a LINUCB baseline and
other algorithms that we proposed.
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