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1 Introduction

In his seminal work on rational approximation of the exponential function [16], Her-
mite proved the following identity, usually referred to as the Hermite identity:

Any univariate complex polynomial P satisfies

GP(x)ex−GP(0) = x
∫ 1

0
P(tx)etxdt, x ∈ C,

(1.1)

where the polynomial GP is defined by

GP(x) =
+∞

∑
k=0

(−1)kP(k)(x). (1.2)

From (1.1), Hermite derived simultaneous rational approximants (type II Hermite-
Padé approximants) to a sequence of exponential functions, which enabled him to
achieve the first proof of the transcendence of the number e. Hermite-Padé approx-
imation of the exponential has many important applications in applied analysis, in
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particular concerning the stability of numerical methods and the efficient computa-
tion of matrix exponentials.

As a special case, take P(x) = (u−x)N

N! for some u ∈ C and some integer N. Then,
clearly

GP(x) = FN(u− x), x ∈ C,

where FN is the degree N truncation of the exponential function, i.e.,

FN(x) =
N

∑
k=0

xk

k!
, x ∈ C. (1.3)

Out of linearity, the Hermite identity (1.1) can equivalently be stated as follows:

For any non-negative integer Nand any u,x ∈ C,

FN(u− x) ex−FN(u) =
(−1)Nx

N!

∫ 1

0
(xt−u)Nextdt.

(1.4)

Of course it even suffices to write (1.4) for any one given u. Now, apart from the
trivial case x = 0, for a given N, (1.4) can be considered as the equality between two
polynomials of exact degree N in the variable u, depending on the parameter x. It
is well known that this equality is equivalent to the equality of their blossoms in N
variables. Accordingly, we can eventually replace (1.1) by the equivalent statement:

For any non-negative integer Nand any u1, . . . ,un,x ∈ C,

fN(u1− x, . . . ,uN− x) ex− fN(u1, . . . ,uN) =
(−1)Nx

N!

∫ 1

0
ext

N

∏
i=1

(xt−ui)dt.
(1.5)

where fN is the blossom in N variables of the degree N truncation (1.3). For the
precise meaning of blossoms, readers are referred to Subsection 2.1. At this stage,
we only need to indicate that blossoms are crucial tools of computer aided geometric
design which permit efficient and very elegant handling of parametric polynomial
(and polynomial spline) curves [27,20,21].

The two identities (1.4) and (1.5) can thus be considered as alternatives to the ini-
tial Hermite identity (1.1). Our attention is more specifically turned to the blossomed
one (1.5), that we now consider as the “true” Hermite identity for the exponential
function. It was introduced in [1], where the first author showed that blossoms can
also be elegant and efficient tools for calculating some Hermite-Padé approximants.
Indeed, it suffices to apply the Hermite identity (1.5) to appropriate N-tuples to obtain
all Padé approximants to the exponential, as well as all type II Hermite-Padé approx-
imants to a family of exponentials. These approximants are therefore expressed in
terms of blossomed truncations of the Maclaurin expansion of the exponential.

In quantum calculus, the analogues of the exponential are the q-exponentials,
simply obtained by replacing ordinary factorials by q-factorials, where q is any real
number. In [1], the Hermite identity (1.5) was extended to the q-exponential func-
tion, involving q-blossoms instead of ordinary ones (see Subsection 4.2 and [29]).
They were then used to provide explicit expressions in terms of q-blossoms for all
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its Padé approximants [6] and all type II Hermite-Padé approximants to a family of
q-exponentials.

As long as someone deals with polynomials, they are implicitly dealing with
(polynomial) blossoms. Our main motivation in the present work is to confirm the
remarkable ability of blossoms to build interesting bridges between geometric de-
sign and apparently totally separate mathematical domains: here, Padé approxima-
tion. This is why, in keeping with the methodology initiated in [1], in Section 3 we
establish Hermite identities similar to (1.4) for binomial functions, and their blos-
somed versions. Applied to appropriate N-tuples, these identities will produce [m/n]-
Padé approximants, as well as two kinds of type II Hermite-Padé approximants to
sequences of binomial functions ( f1, . . . , fm): firstly, any (n0,n, . . . ,n)-approximants
when the functions are defined by means of pairwise distinct non-zero numbers
λ1, . . . ,λm as

fi(x) := (1−λix)α , i = 1, . . . ,m; (1.6)

secondly, any (n0,n1, . . . ,nm)-approximants when the functions depend on the previ-
ous sequence of integers as follows:

fi(x) := (1−λix)α−ni , i = 1, . . . ,m, (1.7)

In all cases, the approximants are therefore obtained in terms of blossomed trunca-
tions of binomial Maclaurin expansions.

Following again the same methodology as in [1], in Section 5 we extend the
previous results to the quantum counterparts of binomial functions, namely all q-
hypergeometric functions 1φ0(α;−;q, .). The key-point consists again in finding Her-
mite identities associated with any such q-hypergeometric functions, in this case
stated in terms of q-blossoms. As previously, applied to appropriate tuples, they pro-
duce [m/n]-Padé approximants, and type II Hermite-Padé approximants similar to the
binomial case, namely, either (n0,n, . . . ,n)-approximants with

fi(x) := 1φ0(α;−;q,λix), i = 1, . . . ,m; (1.8)

or (n0,n1, . . . ,nm)-approximants with

fi(x) := 1φ0(qniα;−;q,λix), i = 1, . . . ,m. (1.9)

Padé approximation for binomial functions has a long history with fundamental
applications in number theory. The first to obtain explicit expressions was Thue in
[31,32]. Later, in [28] Seigel identified these approximants (denominators and nu-
merators) as hypergeometric polynomials of the form 2F1. They were then used by
Baker to provide the first spectacular effective irrationality measures for some alge-
braic numbers such as 3√2 [4]. Quite a number of articles have addressed the question
of type II Hermite-Padé approximation for various classes of hypergeometric and q-
hypergeometric functions, e.g., [10,30,8,9,15]. A common strategy to obtain type
II Hermite-Padé approximants for either hypergeometric or q-hypergeometric series
defined in a more general way than usual, was presented in [19], see also [23]. It ap-
plies in particular to (1.6) and (1.8), with however a slight limitation on the integers
n0,n.
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Though not developed here in its full generality, our blossoming approach gives
further insight in the subject. Its forcefulness lies in the fact that it naturally enables
us to achieve not only new explicit interpretations of existing Hermite-Padé approxi-
mants, new approximants (situations (1.7) and (1.9) depicted above), but also, simul-
taneously, explicit integral representations of the corresponding remainders, which
is especially crucial for arithmetic applications [4,11,23]. Moreover, the fact that all
the approximants are obtained as specific values of some blossoms explains Seigel’s
result in [28] as a straightforward consequence of the definition of blossoms. For sim-
ilar reasons, we can extend it to the quantum context: the Padé approximants to any
q-hypergeometric functions 1φ0 (denominators and numerators) are q-hypergeometric
polynomials of the form 2φ1.

2 Preliminaries

As indicated in its title, this article establishes a link between blossoms and Padé
approximants. We therefore have to start by introducing these tools, and this is the
object of the present section.

2.1 Blossoms: brief overview and preliminary results

In this section we present a condensed overview on the definition of blossoms and
classical associated tools [27,20,21]. We also state a number of preliminary proper-
ties which can be straightforwardly derived from their definitions. This is why the
elementary proofs are left to the readers. Our purpose in gathering them separately is
to avoid distracting readers from the guiding line of the proofs in the next section.

Blossoming is a fundamental concept in computer-aided geometric design, first
introduced in [27] by L. Ramshaw within the polynomial framework, and then ex-
tended to the more general Chebyshevian framework in [26,22,3]. From now on, to
emphasise the geometric design nature of blossoms, variables and parameters will be
real numbers, though the results can be adapted to complex numbers. From now on
too, x[k] will stand for x repeated k times, and, for a,b ∈ R, the notation (a,b) will
always be used with the meaning of the element (a,b) ∈ R2.

Definition 2.1 Let P be a real polynomial of degree at most N. There exists a unique
muti-affine symmetric function p defined on RN such that p(x[N]) = P(x) for any real
number x. The function p is termed the blossom (in N variables) of the polynomial P.

When the polynomial P is expressed in the monomial basis as P(x) = ∑
N
k=0 akxk,

its blossom is explicitly given by

p(x1, . . . ,xN) =
N

∑
k=0

ak(N
k

) σk(x1, . . . ,xN), (2.1)

where σk refers to the kth elementary symmetric function

σk(x1, . . . ,xk) = ∑
1≤i1<i2<...<ik≤N

xi1xi2 . . .xik .
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Any two points
(
a[N]
)
,
(
b[N]
)
, a 6= b, on the diagonal of RN , can be joined by a

sequence of points in RN obtained by repeatedly replacing one copy of a by b, thus
providing the intermediate N-tuples (a[N−i],b[i]), i = 1, . . . ,N− 1. For each P ∈ PN ,
with blossom p, the real numbers

pi := p(a[N−i],b[i]), i = 0, . . . ,N,

are called the Bézier coefficients of P. The multi-affinity and the symmetry of p en-
able us to compute each value p(u1, . . . ,uN) of the blossom p as an affine combination
of the Bézier coefficients p0, . . . , pN , with coefficients independent of P, through an
N-step triangular algorithm (de Casteljau algorithm). The classical design algorithms
are all contained in this fact, and this explains the importance of blossoms in CAGD.
In particular on the diagonal, we obtain

P(x) = p(x[N]) =
N

∑
k=0

pkBN
k (x,(a,b)),

N

∑
k=0

BN
k (x,(a,b)) = 1, x ∈ R, (2.2)

where the coefficients BN
k (x,(a,b)), k = 0, . . . ,N, are independent of P. This shows

that the (N + 1) functions BN
k ( . ,(a,b)), k = 0, . . . ,N, form a basis of the degree N

polynomial space, called the Bernstein basis relative to (a,b). Examining the coef-
ficients involved in the triangular scheme leading to (2.2), it is easy to obtain the
well-known expressions

BN
k (x,(a,b)) =

(
N
k

)(
x−a
b−a

)k(b− x
b−a

)N−k

, k = 0,1, . . . ,N.

Remark 2.1 It is worthwhile mentioning that, in case P is expanded as P(x)=∑
N
k=0 ak

xk

k! ,
then the expression (2.1) becomes

p(x1, . . . ,xN) =
N

∑
k=0

ak

N(N−1) . . . (N− k+1)
σk(x1, . . . ,xN),

=
N

∑
k=0

(−1)kak

(−N)k
σk(x1, . . . ,xN),

(2.3)

where, for each non-negative integer n, the notation (a)n stands for the Pochhammer
symbol

(a)n := a(a+1)(a+2) . . .(a+n−1), with in particular (a)0 := 1. (2.4)

Example 2.1 It is not always necessary to derive blossoms from the expansions in
the monomial basis. Indeed, an obvious useful observation is that any symmetric
multi-affine function f in N variables is the blossom of the polynomial F obtained by
restriction of f to the diagonal of RN . As a trivial example, the symmetric multi-affine
function f (x1, . . . ,xN) := ∏

N
k=1(xk + a) is the blossom of the polynomial F(x) :=

(x+a)N since f (x[N]) = F(x) for all x.
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Let us now consider the one-to-one linear map Θ : PN −→ PN defined by

Θ(P)(x) := (1− x)N P
(

x
1− x

)
, x ∈ R, x 6= 1,

for each P ∈ PN . If Q =Θ(P), we similarly have

P(u) = (1+u)NQ
(

u
1+u

)
, u ∈ R, u 6=−1.

Proceeding as indicated in Example 2.1 we can state

Proposition 2.1 Given P ∈ PN , consider the bivariate polynomial H( . , .) such that,
for all x,u ∈ R, with x 6= 1,

H(x,u) := (1− x)N P
(

x+u
1− x

)
. (2.5)

Then, for each x,u ∈ R, the blossoms h(x; .) and h( . ;u) (in N variables) of the poly-
nomials H(x; .) and H( . ;u), respectively, are the continuous functions defined in
terms of the blossom p of P by the expressions

h(x;u1, . . . ,uN) = (1− x)N p
(

x+u1

1− x
, . . . ,

x+uN

1− x

)
,

h(x1, . . . ,xN ;u) =
N

∏
j=1

(1− x j) p
(

x1 +u
1− x1

, . . . ,
xN +u
1− xN

)
,

(2.6)

wherever they are meaningful.

Note that the bivariate polynomial H defined in (2.5) interpolates between the
polynomials P and Q :=Θ(P) in the sense that

H(0,u) = P(u) and H(x,0) = Q(x) for all x,u ∈ R. (2.7)

Moreover, we can symmetrically derive H from Q as follows:

H(x,u) := (1+u)N Q
(

x+u
1+u

)
, x,u ∈ R,u 6=−1.

Finally, the second formula in (2.6) shows that the blossom q of the polynomial Q =
Θ(P) can be calculated from the blossom p of P and conversely, from

q(x1, . . . ,xN) = p
(

x1

1− x1
, . . . ,

xN

1− xN

) N

∏
j=1

(1− x j),

p(u1, . . . ,uN) = q
(

u1

1+u1
, . . . ,

uN

1+uN

) N

∏
j=1

(1+u j) .

(2.8)

We conclude this section with a useful reminder on how to decrease the degree of
polynomials in the blossoming approach. The most natural way to linearly map PN
onto PN−1 is the subblossoming principle obtained by fixing one variable inside the
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blossoms. More precisely, with each P∈ PN , one can associate the function P̃∈ PN−1
defined by P̃(x) := p(a,x[N−1]), where p is the blossom of P, and a is a given real
number. The blossom p̃ of P̃ is then defined by p̃(x1, . . . ,xN−1) := p(a,x1, . . . ,xN−1).
The process can of course be repeated: in particular, when inserting i times 0 inside
the blossoms, the following result readily follows from (2.1).

Proposition 2.2 Let p be the blossom in N variables of a given polynomial P ∈ PN ,
expanded in the monomial basis as PN(x) = ∑

N
k=0 akxk. Then, the polynomial function

P̃ of degree at most (N− i) defined by

P̃(x) := p(0[i],x[N−i]), x ∈ R.

is expanded as

P̃(x) =
N−i

∑
k=0

ãk xk, with ãk = ak
(−N + i)k
(−N)k

for k = 0, . . . ,N− i. (2.9)

2.2 Padé approximants

The definition of Hermite-Padé approximants slightly differs from one author to an-
other [5,7,33,34]. We therefore have to specify the one we will use in this work,
especially well-suited for functions which do not vanish at the origin.

Definition 2.2 Let f be a real function in one variable which is analytic close to the
origin and which satisfies f (0) = 1. Given two non-negative integers m,n, and any
real polynomials Pm,Qn, we say that the couple (Pm,Qn) is an [m/n]-Padé approxi-
mant to f if the following properties are satisfied:

a) Qn if of degree at most n and Qn(0) = 1;
b) Pm if of degree at most m;
c) the remainder Rm,n :=Qn f −Pm vanishes at least (N+1) times at the origin, where

N := m+n.

The definition and the assumption f (0) = 1 make it obvious that (Pm,Qn) is an [m/n]-
Padé approximant to f if and only (Qn,Pm) is an [n/m]-Padé approximant to the
inverse of f . On the other hand it is well-known that the existence of such an [m/n]-
Padé approximant is not guaranteed. The existence means that we can determine a
polynomial Qn(x) = 1+∑

n
i=1 Xixi so that

(Qn f )( j) (0) = 0 for m+1≤ j ≤ m+n, (2.10)

and when this is possible, the rational function Pm/Qn is unique. Recall that, using
Leibniz formulæ, the relations (2.10) can be expressed as the following linear system
of n equations in the n unknowns X1, . . . ,Xn:

n

∑
i=1

C j−i Xi =−C j, j = m+1, . . . ,m+n,
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where, near 0, f is expanded as f (x) = ∑
+∞

i=0 Ci xi, with C0 = 1, and with the conven-
tion that Ci = 0 for i < 0. Both existence and uniqueness of the [m/n]-Padé approxi-
mant to f are thus ensured if and on if

∆m,n( f ) :=

∣∣∣∣∣∣∣∣∣
Cm Cm−1 . . . Cm−n+1
Cm+1 Cm . . . Cm−n+2

. . .
Cm+n−1 Cm+n−2 . . . Cm

∣∣∣∣∣∣∣∣∣ 6= 0. (2.11)

Definition 2.2 extends in a natural way to simultaneous rational approximation of
a family of functions as follows:

Definition 2.3 Given m ≥ 1, let f1, . . . , fm be real analytic functions of one variable
near the origin with , satisfying fk(0) = 1 for k = 1, . . . ,m. Given non-negative inte-
gers n0,n1, . . . ,nm, set N = n0+n1+ . . .+nm. We say that a sequence (P0,P1, . . . , ,Pm)
of real polynomials is a type II Hermite-Padé approximant to the sequence ( f1, . . .,
fm), attached to the integer sequence (n0,n1, . . . ,nm) (for short, an (n0,n1, . . . ,nm)-
type II Hermite-Padé approximant) when the following properties are satisfied:

a) P0(0) = 1;
b) for k = 0, . . . ,m, Pk is of degree at most (N−nk);
c) for k = 1, . . . ,m, the remainder Rk := P0 fk−Pk vanishes at least (N +1) times at

the origin.

Here again, due to our requirement that P0(0) = 1, the existence is not guaranteed,
and the search for such a simultaneous approximant consists in determining the n =

∑
m
i=1 ni unknowns X1, . . . ,Xn such that P0(x) = 1+∑

n
i=1 Xixi so that the n conditions

(P0 fk)
( j) (0) = 0 for N−nk +1≤ j ≤ N and for k = 1, . . . ,m, (2.12)

are satisfied. As previously, existence and uniqueness are obtained when a certain
determinant similar to (2.11) is not zero. This, in general, is far from being an easy
problem to solve.

Nevertheless, we are not that much interested in uniqueness, but rather in exhibit-
ing one type II Hermite-Padé system through blossoms. In particular we have seen
how to reduce the degree from N to (N−nk) by inserting nk copies of 0 inside blos-
soms in N variables. When the system f1, . . . , fm, are variations on a fixed function f
( e.g., when fk(x) = f (λkx) for k = 1, . . . ,m, the λk being non-zero pairwise distinct
numbers) it is thus natural to apply this idea to some blossomed Hermite-identity gen-
eralising (1.5) related to this function, as was done in [1] for the exponential function.
This is what will be done in next section for binomial functions.

3 Hermite identity and Padé approximants to binomial functions

Inspired by the exponential, in this section we construct Hermite identities for bino-
mial functions of the variable x. With this in view, we introduce an extra variable u
with respect to which these identities will be polynomial, the construction involving
the correspondence Θ mentioned in the previous section. The blossomed versions of
these identities will then naturally generate Hermite-Padé approximants.
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3.1 Hermite identities for binomial functions

As is well know, the Pochhammer symbols (2.4) permit condensed expressions for
the Maclaurin series of a number of classical functions. The basic example is the
binomial function

(1− x)−α =
+∞

∑
k=0

(α)k
xk

k!
, |x|< 1,

where α is a given real number. Subsequently, let N be a given non-negative integer.
Then, denoting by Qα

N the degree N truncation of this series, the previous identity
yields

(1− x)−α = Qα
N(x)+O(xN+1) as x→ 0.

Replacing x by u/(1+u) and multiplying both sides by (1+u)N , this yields

(1+u)N+α = (1+u)NQα
N

(
u

1+u

)
+O(uN+1) as u→ 0.

Accordingly, the polynomial Pα
N ∈ PN which satisfies

Qα
N =Θ(Pα

N ),

is the degree N truncation of the Maclaurin series of (1+ .)N+α . Now, for |u|< 1,

(1+u)N+α =
+∞

∑
k=0

Ak
uk

k!
, with Ak := (−1)k(−N−α)k for all k ≥ 0. (3.1)

The left identity in (3.1) can be written as

(1+u)N+α = Pα
N (u)+Rα

N(u), |u|< 1, (3.2)

with

Pα
N (u) =

N

∑
k=0

Ak
uk

k!
for any u ∈ R, Rα

N(u) =
+∞

∑
k=N+1

Ak
uk

k!
for |u|< 1. (3.3)

Observe that

Qα
N(0) = Pα

N (0) = 1.

With the notations introduced above, we first prove the following useful lemma.

Lemma 3.1 For any real number α , and any x,u ∈]−1,1[ such that 2x+u < 1, the
function Rα

N defined in (3.3) satisfies

∂

∂x

[
(1− x)N+α Rα

N

(
x+u
1− x

)]
=

AN+1

N!
(x+u)N (1− x)α−1. (3.4)
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Proof The requirements on x,u ensure that
∣∣∣∣x+u
1− x

∣∣∣∣ < 1. For the sake of simplicity,

let us set

ϑ(x) :=
x+u
1− x

, so that ϑ
′(x) :=

1+ϑ(x)
1− x

.

With this notation, we thus have

∂

∂x

[
(1− x)N+α Rα

N
(
ϑ(x)

)]
= (1− x)N+α−1[−(N +α)Rα

N
(
ϑ(x)

)
+
(
1+ϑ(x)

)
Rα

N
′(ϑ(x))

]
.

Now, for any |y|< 1,

−(N +α)Rα
N(y)+(1+ y)Rα

N
′(y) = AN+1

yN

N!
+

+∞

∑
k=N+1

[
Ak+1 +(k−N−α)Ak

]yk

k!
,

= AN+1
yN

N!
,

on account of (3.1). The claim (3.4) readily follows. ut

The previous lemma will serve in Theorem 3.1 below to provide a Hermite iden-
tity associated with any given binomial function (1− x)α . This identity involves the
bivariate polynomial Hα

N associated with Pα
N as in the previous subsection, from the

expression

Hα
N (x,u) = (1− x)NPα

N

(
x+u
1− x

)
, for x,u ∈ R, x 6= 1. (3.5)

Theorem 3.1 Given any real number α , we have, for any x ∈]−1,1[ and any u ∈R,

Hα
N (x,u)(1− x)α −Pα

N (u) = Eα
N (x;u), (3.6)

where

Eα
N (x;u) = x

(−1)N(−N−α)N+1

N!

∫ 1

0
(tx+u)N(1− tx)α−1dt, (3.7)

Proof Subsequently, we work under the requirements x,u ∈]−1,1[, and 2x+u < 1,
as in Lemma 3.1. We can then successively replace u by x+u

1−x in the identity (3.2) and
then multiply by (1− x)N+α . This yields

(1+u)N+α = Hα
N (x,u)(1− x)α +(1− x)N+α Rα

N

(
x+u
1− x

)
.

The left-hand side of the previous identity does not depend on x. Therefore, taking
acccount of (3.4) we obtain

∂

∂x

[
Hα

N (x,u)(1− x)α
]
=−AN+1

N!
(x+u)N (1− x)α−1.



11

Let us introduce an additional variable t ∈ [0,1]. Then, the previous relation leads to:

∂

∂ t

[
Hα

N (tx,u)(1− tx)α
]
=−x

AN+1

N!
(tx+u)N (1− tx)α−1, t ∈ [0,1].

Let us now integrate in the variable t between 0 and 1. Taking account of the interpo-
lating property (2.7) of Hα

N , this yields

Hα
N (x,u)(1− x)α −Pα

N (u) =−x
AN+1

N!

∫ 1

0
(tx+u)N (1− tx)α−1dt.

Given that AN+1 is defined according to (3.1), this identity is exactly (3.6). However,
a priori we have proved its validity only under the initial requirements x,u ∈]−1,1[,
2x+ u < 1. Nonetheless, for any given x ∈]− 1,1[, the expressions involved in both
sides of (3.6) are polynomials of degree at most N in the variable u, therefore defined
for any u ∈R. Since they coincide for −1 < u < min(1,1−2x), they coincide on the
whole of R. This concludes the proof of Theorem 3.1. ut

Below we state the blossomed version of Theorem 3.1. This blossomed Hermite
identity will be the one of interest for Padé approximation.

Theorem 3.2 Given any real number α , any x ∈]−1,1[, and any u1, . . . ,uN ∈R, we
have

hα
N (x;u1,u2, . . . ,uN)(1− x)α − pα

N(u1,u2, . . . ,uN) = eα
N(x;u1, . . . ,uN), (3.8)

where

eα
N(x;u1, . . . ,uN) := x

(−1)N(−N−α)N+1

N!

∫ 1

0

N

∏
i=1

(tx+ui)(1− xt)α−1dt, (3.9)

and where the functions hα
N(x; .) and pα

N , defined on RN , denote the blossoms of the
polynomials Hα

N (x, .) and Pα
N , respectively.

Proof Observe that, for a given x ∈]− 1,1[, the function eα
N(x; .) defined on RN by

(3.9) is simply obtained by blossoming the polynomial ( . + tx)N inside the integral,
according to the expression mentioned in Example 2.1. It is clearly symmetric and
multi-affine in u1, . . . ,uN and it coincides with Eα

N (x,u) when u1 = · · ·= uN = u. So
it is the blossom of the polynomial Eα

N (x, .). That the left-hand side of (3.8) is the
blossomed version of the left-hand side of (3.6) is due to the interpolating property
(2.7) of Hα

N . ut

3.2 Padé Approximation for Binomial Functions

According to Proposition 2.2, the evaluation of blossoms on N-tuples of the from
(0[i],x[N−i]) maps PN onto PN−i. With a view to build Padé approximant, it is thus
natural to apply the Hermite identity (3.8) with such N-tuples.
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Theorem 3.3 Given any positive integers m,n, set N := m+ n. Then, for any real
number α , an [m/n]-Padé approximant to the binomial function (1− x)α is given by
the pair (Pm,Qn) defined by

Pm(x) = pα−m
N (0[n],(−x)[m]), Qn(x) = qα−m

N (0[m],x[n]), x ∈ R, (3.10)

where qα−m
N and pα−m

N are the blossoms of the polynomials Qα−m
N and Pα−m

N respec-
tively. Moreover, for |x|< 1, the quantity

Rm,n(x) := Qn(x)(1− x)α −Pm(x),

is given by

Rm,n(x) = xN+1 (−1)n(−α−n)N+1

N!

∫ 1

0
tn(1− t)m(1− xt)α−m−1dt. (3.11)

Proof Let β be a real number. Apply the Hermite identity (3.8) with u1 = u2 = . . .=
un = 0 and un+1 = un+2 . . .= uN =−x, where x ∈]−1,1[. This gives:

hβ

N

(
x;0[n],(−x)[m]

)
(1− x)β − pβ

N

(
0[n],(−x)[m]

)
= eβ

N

(
x;0[n],(−x)[m]

)
. (3.12)

From (2.6) and (2.8), we can deduce that

hβ

N

(
x;0[n],(−x)[m]

)
= (1− x)mqβ

N

(
0[m],x[n]

)
.

Thus, from (3.12), we have

qβ

N

(
0[m],x[n]

)
(1− x)β+m− pβ

N

(
0[n],(−x)[m]

)
= eβ

N

(
x;0[n],(−x)[m]

)
. (3.13)

Take β := α−m. Then, eβ

N

(
x;0[n],(−x)[m]

)
is the quantity Rm,n(x) defined in (3.11).

The previous identity can thus be written as follows:

qα−m
N (0[m],x[n])(1− x)α − pα−m

N (0[n],(−x)[m]) = Rm,n(x). (3.14)

Since Qn(0) = Qα
N(0) = 1, the proof is complete. ut

We know that the polynomials Qα−m
N and Pα−m

N are expanded as:

Qα−m
N (x) =

N

∑
k=0

(α−m)k
xk

k!
, Pα−m

N (x) =
N

∑
k=0

(−1)k(−n−α)k
xk

k!
.

Accordingly, by straightforward application of (2.9), we can state:

Corollary 3.1 Given any non-negative integers m,n and any α ∈ R, the [m/n]-Padé
approximant (Pm,Qn) to the binomial function (1−x)α defined in (3.14) can be writ-
ten as follows:

Pm(x) =
m

∑
k=0

(−n−α)k (−m)k

(−n−m)k

xk

k!
, Qn(x) =

n

∑
k=0

(α−m)k (−n)k

(−n−m)k

xk

k!
. (3.15)

Remark 3.1 It is interesting to point out a geometric design interpretation of (3.14).
Indeed, for each non-zero value of x, the [m/n]-Padé approximant (Pm,Qn) is the
Bézier point g(0[m],x[n]) of the degree N polynomial planar parametric curve G(u) :=(
Pα−m

N (u− x),Qα−m
N (u)

)
, u∈R, relative to (0,x). We can say as well that the rational

approximant Pm/Qn is the corresponding rational Bézier point of the rational function
Pα−m

N (u− x)/Qα−m
N (u).
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3.3 A glance at hypergeometric series

Recall that, with any two sequences (a1, . . . ,ar), (b1, . . . ,bs), one can associate a so-
called hypergeometric series [12]

rFs(a1, . . . ,ar;b1, . . . ,bs;x) :=
+∞

∑
k=0

(a1)k . . . ,(ar)k

(b1)k . . . ,(bs)k

xk

k!
.

If no bi is a negative integer, all coefficients involved in this expansion are well-
defined. Supposing that, for some j ∈ {1, . . . ,s}, b j = −K where K is a positive
integer, the previous series is still meaningful provided that one of the ak’s, say ar,
is of the form ar = −L, where L ≤ K is a positive integer, under the convention that
0/0 = 0.

The expressions (3.15) make it obvious that the [m/n]-Padé approximant to the
binomial function (1− x)α obtained in Corollary 3.1 can be described by the usual
expression

[Pm,Qn] = [ 2F1(−α−n,−m;−N; .), 2F1(α−m,−n;−N; .)] , (3.16)

with N := m+n. Moreover, using the integral representation of the Gauss hypergeo-
metric function

2F1(a,b;c;x)=
Γ (c)

Γ (b)Γ (c−b)

∫ 1

0
tb−1(1−t)c−b−1(1−zt)−adt, Re(c)>Re(b)> 0,

the relation (3.14) is transformed into the classical [4]

2F1(α−m,−n;−N;x)(1− x)α − 2F1(−α−n,−m;−N;x)

= xN+1 (−1)N(−α−n)N+1

(N +1)!
(N

n

) 2F1(−α +m+1,n+1;N +2;x).

As a matter of fact, the expressions (3.15) – or (3.16) as well – are special cases of
a more general result concerning hypergeometric series stated below as an immediate
consequence of Proposition 2.2.

Corollary 3.2 Given any integers r,s, let PN be the degree N truncation of the hyper-
geometric series rFs (a1, . . . ,ar;b1, . . . ,bs; .), and let pN be its blossom. Then, for each
i = 0, . . . ,N,

pN
(
0[i],x[N−i])= r+1Fs+1 (a1, . . . ,ar,−N + i;b1, . . . ,bs,−N;x) , x ∈ R.

Observing that, when x 6= 0, pN
(
0[i],x[N−i]

)
is the ith Bézier coefficient of PN relative

to (x,0), the interesting following expansion readily follows.

Corollary 3.3 With the same notations as in Corollary 3.2, let β be any non-zero
real number. Then, the truncated function PN can be expanded in the Bernstein basis
relative to (β ,0) as follows:

PN =
N

∑
i=0

r+1Fs+1 (a1, . . . ,ar,−N + i;b1, . . . ,bs,−N;β )BN
i ( . ,(β ,0)) (3.17)
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Remark 3.2 The expansion (3.17) can also be written as follows

r+1Fs+1 (a1, . . . ,ar,−N;b1, . . . ,bs,−N; .)

=
N

∑
i=0

r+1Fs+1 (a1, . . . ,ar,−N + i;b1, . . . ,bs,−N;β )BN
i ( . ,(β ,0)),

(3.18)

the left hand-side of (3.18) being another possible expression of the truncation PN .

3.4 Type II Hermite-Padé approximation to binomial functions

Based on the generalised Hermite identity (3.8), we shall provide explicit expressions
of some type II Hermite-Padé approximants to the system

(1−λ1x)α , . . . , (1−λmx)α , (3.19)

where λ1, . . . ,λm are given pairwise distinct non-zero real numbers, as well as of the
corresponding remainders.

Theorem 3.4 Given any two non-negative integers n0,n, an (n0,n, . . . ,n)-Hermite-
Padé approximant (P0,P1, . . . ,Pm) to the system (3.19) is given by

P0(x) = p−α−n
N

(
0[n0],(−λ1x)[n], . . . ,(−λmx)[n]

)
and

Pj(x)= (1−λ jx)N−n p−α−n
N

((
λ jx

1−λ jx

)[n0]

,

(
(λ j−λ1)x

1−λ jx

)[n]

, . . . ,

(
(λ j−λm)x

1−λ jx

)[n]
)
,

with N = n0+nm. Moreover, for k = 1,2, . . . ,m, and for any x such that |λ jx|< 1, we
have

P0(x)(1−λ jx)α −Pj(x) = (−x)N+1 (−N +α +n)N+1

N!
λ j

n0+1(1−λ jx)α

×
∫ 1

0
(1−λ jxt)−α−n−1tn0

m

∏
k=1

(tλ j−λk)
ndt.

Proof Given a real number β , consider the associated generalised Hermite identity
(3.8) with N = n0+mn. Given any real number x such that |λkx|< 1 for k = 1, . . . ,m,
throughout the proof, the N-tuple (u1, . . . ,uN) will be defined by:

(u1, . . . ,uN) :=
(
0[n0],(−λ1x)[n], . . . ,(−λmx)[n]

)
.

Select an integer j ∈ {0,1, . . . ,m}. Then, we have

hβ

N(λ jx;u1, . . . ,uN)(1−λ jx)β − pβ

N(u1, . . . ,uN) = eβ

N(λ jx;u1, . . . ,uN), (3.20)

where, according to (3.9), here the quantity eβ

N(λ jx,u1, . . . ,uN) is equal to

xN+1 (−1)N(−N−β )N+1

N!
λ j

n0+1
∫ 1

0
(1−λ jxt)β−1tn0

m

∏
k=1

(tλ j−λk)
ndt, (3.21)
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From (2.6) we know that

hβ

N(λ jx;u1, . . . ,uN) = (1−λ jx)N

× pβ

N

((
λ jx

1−λ jx

)[n0]

,

(
(λ j−λ1)x

1−λ jx

)[n]

, . . . ,

(
(λ j−λm)x

1−λ jx

)[n]
)
,

= (1−λ jx)β+nPj(x), |λ jx|< 1,
(3.22)

where the quantity Pj(x) is defined by

Pj(x) := (1−λ jx)N−n pβ

N

((
λ jx

1−λ jx

)[n0]

,

(
(λ j−λ1)x

1−λ jx

)[n]

, . . . ,

(
(λ j−λm)x

1−λ jx

)[n]
)
.

Now, the N-tuple at which pβ

N is evaluated in (3.22) contains n copies of 0. Observe
that the polynomial P̃β

N (z) := pβ

N(0
[n],z[N−n]) is of degree at most (N − n) and its

blossom in (N− n) variables is given by p̃β

N(zn+1, . . . ,zN) := pβ

N(0
[n],zn+1, . . . ,zN).

Applying (2.1) to the polynomial P̃β

N , it is easily seen that the polynomial Pj itself
belongs to PN−n. See Remark 3.3 below for its exact expression. Let us write the
left-hand side of (3.20) as:

(1−λ jx)β+nPj(x)−P0(x), with P0(x) := pβ

N(u1, . . . ,uN).

Since u1 = · · · = un0 = 0, P0 is a polynomial of degree at most (N− n0) in x. and
P0(0) = Pβ

N (0) = 1. Taking β := −α − n and multiplying both sides in (3.20) by
−(1−λ jx)α concludes the proof. ut

Remark 3.3 Using (3.3), (2.3) and (2.9), the explicit expression of the polynomial P0
is given by

P0(x) =
N−n0

∑
k=0

(−N +n+α)k(−1)k

(−N)k
σk(λ

[n]
1 , . . . ,λ

[n]
m )xk,

while the polynomials Pj, for j = 1, . . . ,m, are given by

Pj(x)=
N−n

∑
k=0

(−N +n+α)k

(−N)k
σk

(
(λ j)

[n0],(λ j−λ1)
[n], . . . ,(λ j−λm)

[n]
)

xk(1−λ jx)N−n−k.

Pairwise distinct non-zero λ1, . . . ,λm being given again, we obtain the following
result with hardly any change in the arguments.

Theorem 3.5 Given any pairwise distinct non-negative integers n0,n1, . . . ,nm, and
any real number α , an (n0,n1, . . . ,nm)-Hermite-Padé approximant (P0,P1, . . . ,Pm) to
the system

(1−λ1x)α−n1 , . . . ,(1−λmx)α−nm ,
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is given by

P0(x) = p−α

N

(
0[n0],(−λ1x)[n1], . . . ,(−λmx)[nm]

)
and

Pj(x)= (1−λ jx)N−n j p−α

N

((
λ jx

1−λ jx

)[n0]

,

(
(λ j−λ1)x

1−λ jx

)[n1]

, . . . ,

(
(λ j−λm)x

1−λ jx

)[nm]
)
,

with N = ∑
m
i=0 ni. Moreover, for k = 1, . . . ,m, and for any x such that |λ jx| < 1, we

have

P0(x)(1−λ jx)α−n j −Pj(x) = (−x)N+1 (−N−α−n)N+1

N!
λ j

n0+1(1−λ jx)α−n j

×
∫ 1

0
(1−λ jxt)−α−1tn0

m

∏
k=1

(tλ j−λk)
n j dt.

Proof For any j ∈ {1, . . . ,m}, let us start again from (3.20), but now with

(u1, . . . ,uN) :=
(
0[n0],(−λ1x)[n1], . . . ,(−λmx)[nm]

)
.

Following the same arguments as in the proof of Theorem the claimed properties are
obtained by choosing β :=−α . ut

Remark 3.4 The explicit expressions of the Hermite-Padé approximant obtained in
the previous theorem are given below:

P0(x) =
N−n0

∑
k=0

(−N +α)k(−1)k

(−N)k
σk(λ

[n1]
1 , . . . ,λ

[nm]
m )xk,

and for j = 1, . . . ,m,

Pj(x) =
N−n

∑
k=0

(−N +α)k

(−N)k
σk

(
(λ j)

[n0],(λ j−λ1)
[n1], . . . ,(λ j−λm)

[nm]
)

xk(1−λ jx)N−n j−k.

4 The q-world

In the next section we will extend the results of Section 3 to the q-world, where from
now on, q < 1 is a given real number. It is therefore necessary to briefly review the
main tools attached to it.
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4.1 q-calculus and q-hypergeometric series

We start with a brief survey on the main tools involved in the q-calculus. More details
can be found in [18]. In the q-framework, the usual factorials are replaced by q-
factorials defined by

[0]q! = 1, [k]q! = [1]q[2]q . . . [k]q, k ≥ 1,

where the symbols [k]q, called q-integers, represent the quantities

[k]q := 1+q+ · · ·+qk−1 =
1−qk

1−q
, k ≥ 0.

Such q-factorials are involved in the expression of the q-binomial coefficients below:[n
k

]
q
=

[n]q!
[k]q![n− k]q!

, 0≤ k ≤ n.

For any real numbers a and b, and any non-negative integer n, we use the notations
(a+b)n

q and (a -b)n
q with the following meanings

(a+b)n
q := (a+b)(a+qb) . . .(a+qn−1b), (a -b)n

q := (a+(−b))n
q

As special cases, the q-Pochhammer symbols are defined by

(b;q)n := (1 -b)n
q =

n−1

∏
k=0

(1−qkb), b ∈ R, n≥ 0,

with therefore (b;q)0 = 1. These symbols can even be extended to infinite products

(b;q)∞ :=
+∞

∏
k=0

(1−qkb).

Note that the q-Pochhammer symbols permit another expression of the q-binomial
coefficients: [n

k

]
q
=

(q;q)n

(q;q)k (q;q)n−k
, 0≤ k ≤ n. (4.1)

The q-derivative Dq of a function f is defined by

Dq f (t) =
f (qt)− f (t)
(q−1)t

for all appropriate values of t. The q-derivative is a linear operator which satisfies the
following product rule

Dq( f g)(t) = Dq f (t)g(t)+ f (qt)Dqg(t). (4.2)

The definite q-integral of a function f is defined by∫ b

0
f (t)dq(t) = (1−q)b

+∞

∑
i=0

qi f (qib) = b
∫ 1

0
f (bt)dq(t),
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provided that the infinite sum converges. In case the function f is continuous at 0,
then we automatically have

f (b)− f (0) =
∫ b

0
Dq f (t)dq(t) = b

∫ 1

0
Dq f (bt)dq(t). (4.3)

With any given real numbers a1, . . . ,ar,b1, . . . ,bs, we can associate a q-hypergeometric
function rφs(a1, . . . ,ar;b1, . . . ,bs;q, .) defined by [13,14]

rφs(a1, . . . ,ar;b1, . . . ,bs;q,x) :=
+∞

∑
k=0

(a1;q)k (a2;q)k . . . (ar;q)k

(b1;q)k (b2;q)k . . . (bs;q)k

xk

(q;q)k
.

These series can be considered as q-generalisations of the ordinary hypergeometric
function in so far as, when q→ 1−, they give appropriate hypergeometric series. In
case b j = q−K for some j ∈ {1, . . . ,s}, where K is a positive integer, the series is well
defined only if one of the ai’s is equal to q−L for some positive integer L ≤ K, again
under the convention 0/0 = 0. In next section, we will more specifically focus on the
q-hypergeometric functions

1φ0(α;−;q,x) =
+∞

∑
k=0

(α;q)k

(q;q)k
xk, |x|< 1, (4.4)

where α is any non-zero real number. They are natural q-extensions of binomial func-
tions since, for |x| < 1, (1− x)−α = limq→1− 1φ0(α;−;q,x), see [14]. We conclude
this section by recalling the crucial binomial theorem which states that they can also
be written as follows, [14]

1φ0(α;−;q,x) =
(αx;q)∞

(x;q)∞

, |x|< 1. (4.5)

In particular it makes it makes it obvious that

1φ0(α;−;q,x) 1φ0(α
−1;−;q,αx) = 1, |x|, |αx|< 1. (4.6)

4.2 q-Blossoms: a brief survey and preliminary results

The notion of q-blossoming was introduced in [29] as a generalisation of the classical
notion of blossoming to the q-calculus framework. This generalisation is achieved by
maintaining the symmetry and the multi-affinity of the classical notion while modi-
fying the diagonal property. The precise definition is recalled below.

Definition 4.1 Let P be a real polynomial of degree at most N. There exists a unique
muti-affine symmetric function (u1, . . . ,uN) 7→ p(u1, . . . ,uN) which coincides with P
on the q-diagonal of RN , defined as the set of all N-tuples (x,qx, . . . ,qN−1x), x ∈ R.
The function p is called the q-blossom (in N variables) of the polynomial P.

Remark 4.1 When q-blossoms were introduced in the initial paper [29], the notation
used for them was p(u1, . . . ,uN ;q). Since here, there will be no interference with
ordinary blossoms, and since the number q < 1 is fixed, we drop the q for the sake of
simplicity.
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When the polynomial P is expressed in the monomial basis as P(x) = ∑
N
k=0 akxk,

its q-blossom is explicitly given by

p(u1,u2, . . . ,uN) =
N

∑
k=0

ak
σk(u1,u2, . . . ,uN)

σk(1,q, . . . ,qN−1)
, (4.7)

given that [29]

σk(1,q,q2, . . . ,qN−1) = qk(k−1)/2
[

N
k

]
q
. (4.8)

Example 4.1 As in the case of ordinary blossoms, it is not always necessary to use
the expansion of a polynomial in the monomial basis to obtain its blossom. As an
instance, given a ∈ R, consider the degree N polynomial FN(x) := (x+a)N

q . The q-
blossom fN of FN , in N variables, can be expressed as follows:

fN(u1,u2, . . . ,uN) = qN(N−1)/2
N

∏
k=1

(
ukq−N+1 +a

)
, u1, . . . ,uN ∈ R. (4.9)

Indeed, the function fN defined by (4.9) is clearly multi-affine and symmetric on RN .
Moreover, on the q-diagonal, we have

fN(x,qx, . . . ,qN−1x) = qN(N−1)/2
N

∏
k=1

(
xq−N+k +a

)
,

=
N

∏
k=1

[
qN−k

(
xqk−N +a

)]
= (x+a)N

q , x ∈ R.

We now consider any two real numbers a,b, with a 6= b. In the q-world, we can
go from the point (a,qa, . . . ,qN−1a) on the q-diagonal of RN to the point (b,qb, . . .,
qN−1b) by successively replacing a by b, then qa by qb, and so forth, up to qN−1a by
qN−1b. With any given polynomial P of degree at most N, with q-blossom p, we thus
associate the (N +1) coefficients

pk = p
(

b,bq, . . . ,bqk−1,aqk,aqk+1, . . . ,aqN−1
)
, k = 0, . . . ,N,

called the q-Bézier coefficients of P, relative to (a,b). The multi-affinity and the
symmetry of q-blossoms enable us to compute each value p(u1, . . . ,uN) as an affine
combination of the q-Bézier points p0, . . . , pN , with coefficients independent of P,
through a triangular N-step algorithm (q-de Casteljau algorithm). This holds true in
particular on the q-diagonal. We thus have, for all x ∈ R,

P(x) = p(x,qx, . . . ,qN−1x) =
N

∑
k=0

pk BN
k (x,(a,b);q),

N

∑
k=0

BN
k (x,(a,b);q) = 1,

where the coefficients BN
k (x,(a,b);q), k = 0, . . . ,N, are independent of P. The (N+1)

functions BN
k ( . ,(a,b);q), k = 0, . . . ,N, thus form a basis of the degree N polynomial
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space, called the q-Bernstein basis relative to (a,b) [25,29,2]. A more detailed look
at the N-step algorithm shows that, for k = 0, . . . ,N,

BN
k (x,(a,b);q) =

[
N
k

]
q

(x -a)k
q (b -x)N−k

q

(b -a)N
q

, x ∈ R.

We will need the following result.

Proposition 4.1 Let n,N be two non-negative integers such that n≤ N, and let a be
a real number. Then, given a polynomial P of degree at most N, with q-blossom p in
N variables, the following properties are equivalent:

(i) the polynomial ( . -a)n+1
q divides P;

(ii) p
(
u1, . . . ,un,aqn,aqn+1, . . . ,aqN−1

)
= 0 for all u1, . . . ,un.

Proof Let linear space E of all Q ∈ PN which are divisible by ( . -a)n+1
q is (N −

n)-dimensional. Clearly, given any real number b 6= a, the q-Bernstein functions
BN

j (.,(a,b);q), j = n+1, . . . ,N, form a basis of E .
In other words, denoting by p0, . . . , pN the q-Bézier coefficients of P relative

to (a,b), we can say that P satisfies (i) if and only if p0 = p1 = · · · = pn = 0.
On the one hand, each among the q-Bézier coefficients p0, . . . , pn is of the form
p
(
u1, . . . ,un,aqn,aqn+1, . . . ,aqN−1

)
for some appropriate u1, . . . ,un. On the other

hand, for any u1, . . . ,un ∈ R, the symmetry and multi-affinity of q-blossoms enable
us to obtain each p

(
u1, . . . ,un,aqn,aqn+1, . . . ,aqN−1

)
= 0 as an affine combination

of p0, . . . , pn. These observations prove the equivalence between (i) and (ii). ut
Below we state the q-version of Proposition 2.2.

Proposition 4.2 Given P∈PN , with q-blossom p, expanded in the canonical basis as
P(x) = ∑

N
k=0 akxk. Then, the polynomial function P̃ of degree at most (N− i) defined

by
P̃(x) := p(0[i],qix, . . . ,qN−1x), x ∈ R,

is expanded as

P̃(x) =
N−i

∑
k=0

ãk xk, with ãk = ak

(
q−N+i;q

)
k

(q−N ;q)k
for k = 0, . . . ,N− i. (4.10)

Proof The integer i ≤ N being given, apply successively (4.7) and (4.8) to compute
the quantity P̃(x). This gives

P̃(x) =
N−i

∑
k=0

ak
σk(qix, . . . ,qN−1x)

σk(1, . . . ,qN−1)
=

N−i

∑
k=0

ak bk xk,

with, due to (4.8) and to (4.1),

bk : =
qki qk(k−1)/2

[
N−i

k

]
q

qk(k−1)/2
[

N
k

]
q

=
(qi−qN−k+1)(qi−qN−k+2) . . .(qi−qN)

(1−qN−k+1)(1−qN−k+2) . . .(1−qN)
,

=
(q−N+i+k−1−1)(q−N+i+k−2−1) . . .(q−N+i−1)

(q−N+k−1−1)(q−N+k−2−1) . . .(q−N−1)
=

(
q−N+i;q

)
k

(q−N ;q)k
,

(4.11)

which proves the claim. ut
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Applied to q-hypergeometric series, this yields:

Corollary 4.1 Given any integers r,s, let PN be the degree N truncation of the hy-
pergeometric series rφs (a1, . . . ,ar;b1, . . . ,bs;q; .), and let pN be its q-blossom (in N
variables). Then, for each i = 0, . . . ,N,

pN
(
0[i],qix, . . . ,qN−1x

)
= r+1φs+1

(
a1, . . . ,ar,q−N+i;b1, . . . ,bs,q−N ;q;x

)
, x ∈ R.

Observing that, when x 6= 0, pN
(
0[i],qix, . . . ,qN−1x

)
is the ith q-Bézier coefficient of

PN relative to (x,0), the interesting following expansion readily follows.

Corollary 4.2 With the same notations as in Corollary 4.1, let β be any non-zero
real number. Then, the truncated function PN — which can also be described as PN =

r+1φs+1
(
a1, . . . ,ar,q−N ;b1, . . . ,bs,q−N ;q; .

)
— can be expanded in the q-Bernstein

basis relative to (β ,0) as follows:

PN =
N

∑
i=0

r+1φs+1 (a1, . . . ,ar,−N + i;b1, . . . ,bs,−N;q;β )BN
i ( . ,(β ,0);q).

We conclude this section with the following result which will be useful in Sub-
section 3.4.

Corollary 4.3 Given any a ∈ R, and any integer ` ≤ N, let f` denote the q-blossom
in N variables of the function F̀ (x) := (x+a)`q. Then, there exist real numbers A`,i(q),
independent of a, such that

f`
(

0[i],qia, . . . ,qN−1a
)
= A`,i(q)a`, i = 0, . . . ,N.

Proof Since F̀ (x) = (x+a)(x+qa) . . .(x+q`−1a), we have

F̀ (x) =
`

∑
r=0

σ`−r

(
1,q, . . . ,q`−1

)
a`−r xr,

Accordingly, formula (4.10) yields the claimed result, with

A`,i(q) =
min(`,N−i)

∑
r=0

σ`−r

(
1,q, . . . ,q`−1

) (q−N+i;q
)

r
(q−N ;q)r

. ut (4.12)

5 Hermite identities and Padé approximants to q-hypergeometric functions

In Section 3 we could observe that blossoms were elegant and efficient tools to ob-
tain Padé approximants to some hypergeometric series. We now switch to the q-
framework, where, as stated in the previous section, q < 1 is a fixed real number. In
this framework, q-blossoms will similarly provide us with Padé approximants to some
q-hypergeometric series, through associated generalised Hermite identities. Though
the general guiding line is the same as in Section 3, the proofs are sometimes signifi-
cantly different. In addition to the specific difficulties of the q-calculus, this is due to
the absence of something similar to the correspondence Θ introduced in Subsection
2.1.
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5.1 Hermite identities for q-hypergeometric functions 1φ0(α;−;q; .)

In this subsection we adapt the ideas developed in Subsection 3.1 to find a Hermite
identity for the q-hypergeometric function 1φ0(α;−;q,x), where α is a given real
number. With this in view, we first introduce the degree N truncation of the expansion
of 1φ0(q−Nα;−;q;− .), that is, the polynomial

Pα
N (x) :=

N

∑
k=0

(q−Nα;q)k

(q;q)k
(−x)k, x ∈ R.

One major issue in this adaptation to the q-world was to find an appropriate bivariate
polynomial Hα

N to work with. It turned out that we can use the following one:

Hα
N (x,u) =

N

∑
k=0

(−1)k (q
−Nα;q)k

(q;q)k
(u+x)k

q (1 -αq−1x)N−k
q−1 , x ∈ R.

However, here, we do not have at our disposal a polynomial Qα
N naturally connected

with Pα
N via the bivariate polynomial Hα

N which, now, only interpolates Pα
N in the

sense that
Hα

N (0,u) = Pα
N (u) , u ∈ R. (5.1)

The generalised Hermite identity for the q-hypergeometric function 1φ0(α;−;q,x)
can be stated as follows.

Theorem 5.1 For any real numbers α , any u ∈ R, and any x ∈]−1,1[, we have

Hα
N (x,u)1φ0(α;−;q,x)−Pα

N (u) = Eα
N (x;u), (5.2)

where Eα
N is given by

Eα
N (x,u) = (−1)Nx

(1−α)(q−Nα;q)N

(1−q)(q;q)N

∫ 1

0
1φ0(αq;−;q, tx)(u+qtx)N

q dqt. (5.3)

To prove this, we will first establish the following lemma.

Lemma 5.1 For any real number α , and any u ∈ R and any x such that |x| < 1, we
have

(1−αx)DqHα
N ( . ,u)(x)+

1−α

1−q
Hα

N (qx,u) = (−1)N (1−α)(q−Nα;q)N

(1−q)(q;q)N
(u+qx)N

q .

(5.4)

Proof The real number u being given, for the sake of simplicity let us write the poly-
nomial Hα

N (. ,u) as

Hα
N ( . ,u) =

N

∑
k=0

Ak fk gN−k(αq−1.), with, for all k ≥ 0, Ak := (−1)k (q
−Nα;q)k

(q;q)k
(5.5)
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and where the functions fk,gk are defined by

fk(x) := (u+x)k
q, gk(x) := (1 -x)k

q−1 .

It is easily checked that, for k ≥ 0,

Dq fk(x) = [k]q fk−1(qx), Dqgk(x) =−[k]q−1gk−1(x),

in which the functions f−1,g−1 are identically zero. Using the differentiation formula
(4.2) we thus obtain,

Dq
[

fk gN−k(αq−1.)
]
(x) = Dq fk(x)gN−k(αq−1x)+ fk(qx)αq−1DqgN−k(αq−1x),

= [k]q fk−1(qx)gN−k(αq−1x)−αq−1 fk(qx)[N− k]q−1gN−k−1(αq−1x).

Accordingly,

DqHα
N ( . ,u)(x) =

N−1

∑
k=0

[
Ak+1[k+1]q−αq−1Ak[N− k]q−1

]
gN−k−1(αq−1x) fk(qx).

(5.6)

Given that

(1−αx)gN−k−1(αq−1x) = gN−k(αx), Ak+1 =−Ak
1−αq−N+k

1−qk+1 ,

after multiplication by (1−αx), the identity (5.6) eventually reduces to

(1−αx)DqHα
N ( . ,u)(x) =

α−1
1−q

N−1

∑
k=0

Ak fk(qx)gN−k(αx),

=
α−1
1−q

[
Hα

N (qx,u)−AN fN(qx)
]
.

This is exactly the claim (5.4). ut

Proof of Theorem 5.1. For any given u ∈ R, we can apply the integration formula
(4.3) to the function Hα

N ( . ,u)1φ0(α;−;q, .) which is continuous at the origin. Ac-
cordingly, taking account of (5.1), to obtain the claimed relations (5.2) and (5.3) it is
sufficient to prove that

Dq
[
Hα

N ( . ,u)1φ0(α;−;q, .)
]
(x) =

(−1)N (1−α)(q−Nα;q)N

(1−q)(q;q)N
1φ0(αq;−;q,x) (u+qx)N

q , x ∈]−1,1[.
(5.7)

Let us thus compute the q-derivative of the product
[
Hα

N (. ,u)1φ0(α;−,q, .)
]
. On

account of the differentiation formula (4.2), we have, for |x|< 1,

Dq
[
Hα

N ( . ,u)1φ0(α;−;q, .)
]
(x) =1φ0(α;−;q,x)DqHα

N ( . ,u)(x)
+Hα

N (qx,u)Dq
(

1φ0(α;−;q, .)
)
(x).

(5.8)
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Using the q-binomial relation (4.4), it is easily checked that

Dq
(

1φ0(α;−;q, .)
)
(x) =

1−α

1−q
1φ0(α;−;q,x)

(1−αx)
=

1−α

1−q 1φ0(αq;−;q,x).

Substituting this relation in (5.8) leads to

Dq
[
Hα

N ( . ,u)1φ0(α;−;q, .)
]
(x)

= 1φ0(αq;−;q,x)
[
(1−αx) DqHα

N ( . ,u)(x)+
1−α

1−q
Hα

N (qx,u)
]
.

Due to Lemma 5.1, the proof of (5.7) is complete. ut

Subsequently we denote by pα
N , and for any given x∈R by hα

N(x; .) the q-blossoms
of Pα

N and Hα
N (x; .), respectively, both defined on RN . The true q-Hermite identity on

which the construction of Padé approximants will rely is the q-blossomed version of
Theorem 5.1, that is:

Theorem 5.2 For any real numbers α,u1,u2, . . . ,uN , and any x ∈]−1,1[, we have

hα
N(x;u1,u2, . . . ,uN)1φ0(α;−,q,x)− pα

N(u1,u2, . . . ,uN) = eα
N(x;u1,u2, . . . ,uN),

(5.9)
where eα

N is given by

eα
N(x;u1,u2, . . . ,uN) = (−1)Nx

(1−α)(q−Nα;q)N

(1−q)(q;q)N
qN(N−1)/2

×
∫ 1

0
1φ0(αq;−;q, tx)

N

∏
i=1

(q−N+1ui +qtx)dqt.
(5.10)

Proof For each x∈]−1,1[, both sides of (5.2) are polynomials of degree at most N in
the variable u. Since they coincide on R, so do their q-blossoms on RN , which yields
(5.9). Indeed, taking account of formula (4.9) in Example 4.1, one can see that the
function eα

N(x; .) defined in (5.10) is the q-blossom of the function Eα
N (x; .) defined

in (5.3).

5.2 Padé approximants to the hypergeometric function 1φ0 (α;−,q, .)

The purpose of this subsection is to produce Padé approximants to a given hypergeo-
metric function 1φ0 (α;−;q, .). We will more precisely establish the following result.

Theorem 5.3 Given any non-negative integers m,n and any α ∈ R, an [m/n]-Padé
approximant (Pm,Qn) to the q-hypergeometric function 1φ0 (α;−,q, .) is given by

(Pm,Qn) = [2φ1(q−n
α,q−m;q−N ;q,− .), 2φ1(q−m

α
−1,q−n;q−N ;q,−α .)], (5.11)

with N := m+n. Moreover, for |x|< 1, the remainder

Rm,n(x) := Qn(x)1φ0 (α;−,q,x)−Pm(x)
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is given by

Rm,n(x) = (−1)NxN+1 (1−αqm)(q−nα;q)N

(1−q)(q;q)N
qN(N+1)/2

×
∫ 1

0
1φ0
(
qm+1

α;−;q,xt
)

tn(t -q−m)m
q dqt.

(5.12)

Proof Let β be a real number. For |x|< 1, apply the associated generalised Hermite
identity (5.9) to the N-tuple

(u1, . . . ,uN) :=
(
0[n],Xq(x)

)
, with Xq(x) :=

(
−qnx,−qn+1x, . . . ,−qN−1x

)
.

hβ

N

(
x;0[n],Xq(x)

)
1φ0
(
β ;−;q,x

)
− pβ

N

(
0[n],Xq(x)

)
= RN(x) (5.13)

where, according to (5.10)

RN(x) = (−1)NxN+1 (1−β )(q−Nβ ;q)N

(1−q)(q;q)N
qN(N+1)/2

×
∫ 1

0
1φ0
(
qβ ;−;q,xt

)
tn(t -q−m)m

q dqt.

According to Proposition 4.1, on any N-tuple of the form
(
v1, . . . ,vn,Xq(x)

)
, the q-

blossom hβ

N(x; .) of the polynomial Hβ

N (x, .) coincides with the q-blossom (in N vari-
ables) of its degree n truncation Hβ

N,n(x, .), that is

Hβ

N,n(x,u) =
n

∑
k=0

(−1)k (q
−Nβ ;q)k

(q;q)k
(u+x)k

q (1 -βq−1x)N−k
q−1

= (1 -βq−1x)m
q−1 Gβ

N,n(x,u),

where the bivariate polynomial Gβ

N,n is defined by

Gβ

N,n(x,u) =
n

∑
k=0

(−1)k (q
−Nβ ;q)k

(q;q)k
(u+x)k

q (1 -q−m−1
βx)n−k

q−1 .

In other words, if gβ

N,n(x; .) is the blossom in N variables of the polynomial Gβ

N,n(x, .),
we have, for all v1, . . . ,vn,

hβ

N

(
x;v1, . . . ,vn,Xq(x)

)
= (1 -βq−1x)m

q−1 gβ

N,n

(
x;v1, . . . ,vn,Xq(x)

)
.

Thus, in particular, (5.13) can be written as follows:

(1 -βq−1x)m
q−1 gβ

N,n

(
x;0[n],Xq(x)

)
1φ0 (β ;−;q,x)− pβ

N

(
0[n],Xq(x)

)
= RN(x).

The q-binomial theorem (4.4) ensures that

(1 -βq−1x)m
q−1 1φ0(β ;−;q,x) = 1φ0(q−m

β ;−;q,x).
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Therefore, (5.13) is eventually transformed into:

gβ

N,n

(
x;0[n],Xq(x)

)
1φ0
(
q−m

β ;−;q,x
)
− pβ

N

(
0[n],Xq(x)

)
= RN(x). (5.14)

The function x ∈ R 7→ pβ

N

(
0[n],Xq(x)

)
is clearly a polynomial of degree at most m

in x. As for the function x ∈ R 7→ gβ

N,n

(
x;0[n],Xq(x)

)
, we are actually interested in

proving that it is of degree at most n. Now, applying Corollary 4.3 to each ( . +x)k
q,

k = 0, . . . ,n, we can state that

gβ

N,n

(
x;0[n],Xq(x)

)
=

n

∑
k=0

Ak,n(q)xk (1 -q−m−1
βx)n−k

q−1 .

the real numbers Ak,n(q) being those defined in (4.12). This is indeed a polynomial
of degree at most n in x.

Take β = αqm. Then, (5.14) yields

gαqm

N,n

(
x;0[n],Xq(x)

)
1φ0
(
α;−;q,x

)
− pαqm

N (0[n],Xq(x)) = Rm,n(x),

where the quantity Rm,n(x) is given in (5.12). Therefore, at this stage, we can state
the intermediate result:

Proposition 5.1 For any α ∈ R, an [m/n]-Padé approximant (Pm,Qn) to the hyper-
geometric function 1φ0(α;−;q, .) is given by

Pm(x) = pαqm

N

(
0[n],−qnx, . . . ,−qN−1x

)
,

Qn(x) = gαqm

N,n

(
x;0[n],−qnx, . . . ,−qN−1x

)
, x ∈ R.

(5.15)

End of the proof of Theorem 5.3: Formulæ (5.15) already provide us with an explicit
expression of the [m/n]-Padé approximant (Pm,Qn) to the function 1φ0 (α;−,q, .). It
remains to show that this coincides with the announced relation (5.11). That

Pm(x) = 2φ1(q−n
α,q−m;q−N ;q,−x), x ∈ R, (5.16)

readily follows by applying Corollary 4.1 to 1φ0(q−Nα;−;q; .). To complete the
proof of (5.11), observe that (Qn,Pm) is an [n/m]-Padé approximant to the inverse
of 1φ0 (α;−,q, .) (see Subsection 2.2). From the q-binomial theorem (4.4), we know
that

1φ0(α;−;q,y) 1φ0(α
−1;−;q,αy) = 1, |y|, |αy|< 1.

Accordingly, we can say that
(
Qn( ./α),Pm( ./α)

)
is an [n/m]-Padé approximant to

the q-hypergeometric function 1φ0
(
α−1;−;q, .

)
.

Suppose for a while that (Pm,Qn) is the only [m/n]-Padé approximant to the
q-hypergeometric function 1φ0 (α;−,q, .). Then,

(
Qn( ./α),Pm( ./α)

)
is the only

[n/m]-Padé approximant to 1φ0
(
α−1;−;q, .

)
. From (5.16) we can conclude that

Qn(x/α) = 2φ1(q−m
α
−1,q−n;q−N ;q,−x), x ∈ R,
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which is precisely the right part of (5.11). Now, the function 1φ0 (α;−,q, .) possesses
a unique [m/n]-Padé approximant if and only if the determinant ∆m,n

(
1φ0 (α;−,q, .)

)
,

defined according to (2.11), is not zero. This determinant being a polynomial in
the variable α , so far we can state that the right part of (5.11) is proved for all
α ∈ R, save for a finite number of values. For any x ∈ R, both α 7→ Qn(x) and
α 7→ 2φ1(q−mα−1,q−n;q−N ;q,−αx) being continuous functions, we can conclude
that (5.11) is valid for any value of α . ut

5.3 Type II Hermite-Padé Approximation

Based on the Hermite identity (5.9), we shall now provide explicit expressions of the
(n0,n, . . . ,n)-Hermite-Padé approximation to the system

1φ0(α;−;q,λ1x), . . . , 1φ0(α;−;q,λmx), (5.17)

where λ1, . . . ,λm are given pairwise distinct non-zero real numbers, and n0,n are any
non-negative integers.

Let us set N := n0 +mn. Take any arbitrary pairwise distinct non-zero real num-
bers µ1, . . . ,µm, and consider the N-tuple

(u1, . . . ,uN) =
(
U0(x), . . . ,Um(x)

)
,

with U0(x) = (0[n0]) and

U j(x) = (−qN−n
µ jx,−qN−n+1

µ jx, . . . ,−qN−1
µ jx) for j = 1, . . . ,m. (5.18)

Given any real number β , and given an integer k ∈ {1, . . . ,n}, the Hermite identity
(5.9) shows that, for |µkx|< 1, the quantity

hβ

N

(
µkx;U0(x), . . . ,Um(x)

)
1φ0(β ;−;q,µkx)− pβ

N

(
U0(x), . . . ,Um(x)

)
(5.19)

is equal to Rk
N(x), where

Rk
N(x) = (−1)NxN+1

µk
n0+1 (1−β )(q−Nβ ;q)N

(1−q)(q;q)N
qN(N+1)/2

×
∫ 1

0
1φ0(qβ ;−;q,µkxt) tn0

m

∏
j=1

(tµk -q−n
µ j)

n
q dqt.

Since U0(x) = (0[n0]), the function x 7→ pβ

N

(
U0(x),U1(x), . . . ,Um(x)

)
is clearly a poly-

nomial of degree at most N − n0. Due to Proposition 4.1, the presence of Uk(x)
in the N-tuple

(
U0(x), . . . ,Um(x)

)
guarantees that we can skip all terms ( . + µkx)k

q

with k > N− n when calculating hβ

N

(
µkx;U0(x),U1(x), . . . ,Um(x)

)
. Following argu-

ments similar to those used in the proof of Theorem 5.3, let Gβ

N,N−n(µkx; .) denote
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the polynomial obtained by dividing the degree (N−n) truncation of the polynomial
Hβ

N (µkx; .) by (1 -β µkq−1x)n
q−1 . We similarly obtain, for |µkx|< 1,

gβ

N,N−n

(
µkx;U0(x), . . . ,Um(x)

)
1φ0(q−n

β ;−;q,µkx)

− pβ

N

(
U0(x), . . . ,Um(x)

)
= Rk

N(x),

where gβ

N,N−n(µkx; .) is the q-blossom in N variables of Gβ

N,N−n(µkx; .). Moreover,
as in the proof of Theorem 5.3, from Corollary 4.3 we can derive that the function
x 7→ gβ

N−n

(
µkx;U0(x), . . . ,Um(x)

)
is a polynomial of degree at most N−n.

Additionally assuming that |q−nβ µkx| < 1, multiply both hand-sides of the pre-
vious equality by −1φ0(qnβ−1;−;q,q−nβ µkx). This yields:

pβ

N

(
U0(x), . . . ,Um(x)

)
1φ0
(
qn

β
−1;−;q,q−n

β µkx
)
−

gβ

N,N−n

(
µkx;U0(x), . . . ,Um(x)

)
=−Rk

N(x)1φ0
(
qn

β
−1;−;q,q−n

β µkx
)
.

Applying these relations with β = α−1qn and µ j = αλ j, j = 1, . . . ,m, this eventually
provides us with the result below.

Theorem 5.4 Given non-negative integers n0,n, an (n0,n, . . . ,n)-Hermite-Padé ap-
proximant (P0,P1, . . . ,Pm) to the system (5.17) is given by

P0(x) = pα−1qn

N

(
0[n0],V1(x), . . . ,Vm(x)

)
Pk(x) = gα−1qn

N−n

(
αλkx;0[n0],V1(x) . . . ,Vm(x)

)
, k = 1, . . . ,m,

(5.20)

where

Vj(x) = (−qN−n
αλ jx,−qN−n+1

αλ jx, . . . ,−qN−1
αλ jx), j = 1, . . . ,m. (5.21)

Moreover, for k = 1,2, . . . ,m and for |λkx|< min
(
1, 1

α

)
, the remainder

Rk
N(x) := P0(x)1φ0(α;−;q,λkx)−Pk(x)

can be expressed as

Rk
N(x) =(−αx)N+1

λk
n0+1 (1−qnα−1)(q−N+nα−1;q)N

(1−q)(q;q)N
1φ0(α;−;q,λkx)

×qN(N+1)/2
∫ 1

0
1φ0(qn+1

α
−1;−;q,αλkxt) tn0

m

∏
j=1

(tλk -q−n
λ j)

n
q dqt.

Remark 5.1 The polynomials Gβ

N,N−n(x, .), pβ

N are linear combinations of functions
of the form F̀ (u) = (u+λx)`q, for some ` ≤ N− n and some real number λ . More
explicit expressions for the polynomials Pk, k = 0,1, . . . ,m, are thus obtained by q-
blossoming in N variables the expansion in the monomial basis of the function F̀ as
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was already done in the proof of Corollary 4.3, but with now a = λx. Denoting by f`
this q-blossom, it is easily checked that

f`(0[n0],V1(x), . . . ,Vm(x)) = x`
min(`,N−n)

∑
r=0

[
`
r

]
q[

N
r

]
q

q`
2−(2r+1)`/2

λ
`−r

σr
(
Ṽ1, . . . ,Ṽm

)
,

where Ṽj := (qN−nαλ j,qN−n+1αλ j, . . . ,qN−1αλ j) for j = 1, . . . ,m.

We conclude this section with q-version of Theorem 3.5.

Theorem 5.5 Given any sequence (n0, . . . ,nm) of non-negative integers, and any real
number α , the (n0, . . . ,nm)-Hermite-Padé approximant (P0,P1, . . . ,Pm) to the system

1φ0(qn1α;−;q,λ1x), . . . , 1φ0(qnmα;−;q,λmx),

is given by

P0(x) = pα−1

N
(
0[n0],V1(x), . . . ,Vm(x)

)
,

Pk(x) = gα−1

N−nk

(
αλkx;0[n0],V1(x), . . . ,Vm(x)

)
, k = 1, . . . ,m,

(5.22)

where N = ∑
n
i=0 ni and, for j = 1, . . . ,m,

Vj(x) = (−qN−n j αλ jx,−qN−n j+1
αλ jx, . . . ,−qN−1

αλ jx) (5.23)

Moreover, for k = 1,2, . . . ,m and for |λkx|< min
(
1, 1

α

)
, the remainder

Rk
N(x) := P0(x)1φ0(qnk α;−;q,λkx)−Pk(x)

can be expressed as

Rk
N(x) =(−αx)N+1

λk
n0+1 1−α−1

1−q
(q−Nα−1;q)N

(q;q)N
1φ0(qnk α;−;q,λkx)

×qN(N+1)/2
∫ 1

0
1φ0(α

−1q;−;q,αλkxt) tn0
m

∏
j=1

(tλk -q−n j λ j)
n j
q dqt.

Proof Apply the same technique as in the proof of Theorem 5.4 to calculate (5.19)
and the corresponding remainders, with now

U j(x) = (−qN−n j µ jx,−qN−n j+1
µ jx, . . . ,−qN−1

µ jx), j = 1, . . . ,m. (5.24)

In the end we have to choose β := α−1 and µk := αλk. ut
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6 Conclusion

This work has demonstrated the efficiency of blossoms to produce Padé approximants
to certain functions ψ . The initial key idea of the corresponding strategy consists, if
it is possible, in associating with ψ a Hermite identity of the form

H(x,u)ψ(x)−H(0,u) = R(x,u), (6.1)

where for each convenient x, H(x,u) and R(x,u) are appropriate polynomial expres-
sions in the variable u. The second one consists in applying the blossomed version
of this identity to relevant tuples so as to simultaneously generate Hermite-Padé ap-
proximants and their remainders.

The underlying reason why we were able to find Hermite identities of the form
(6.1) for the functions ψ we considered, is the fact that these functions satisfy a
first order linear differential equation (q-difference equation in the quantum context)
with polynomial coefficients of appropriate degrees. Beyond this simple case, if the
differential equation is of higher order, we will have to determine a more complicated
Hermite identity, involving not only the function but also its derivatives, [17]. In that
case, our future strategy will consist in inserting specific arguments in the blossoms
to eliminate the derivatives, so as to then be able to produce Padé and type II Hermite-
Padé approximants.
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