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Efficient uncertain keff computations with the Monte Carlo resolution
of generalised Polynomial Chaos Based reduced models

Gaël Poëttea, Emeric Brunb

aCEA DAM CESTA, F-33114 Le Barp, France
bCEA DEN SERMA, ???, France

Abstract

In this paper, we are interested in taking into account uncertainties for keff computations in neu-
tronics. More generally, the material of this paper can be applied to propagate uncertainties in
eigenvalue/eigenvector computations for the linear Boltzmann equation. In [1, 2], an intrusive MC
solver for the gPC based reduced model of the instationary linear Boltzmann equation has been
put forward. The MC-gPC solver presents interesting characteristics (mainly a better efficiency
than non-intrusive strategies and spectral convergence): our aim is to recover these characteristics
in an eigenvalue/eigenvector estimation context. This is done in practice at the price of few well
identified modifications of an existing Monte Carlo implementation.

Keywords: Transport, Monte Carlo, Numerical scheme, Neutronics, MC-gPC, gPC, Uncertainty
Quantification, intrusive, keff

1. Introduction

In this article, we are interested in the Monte Carlo (MC) resolution of the uncertain eigenvalue
problem for the transport equation. In particular, we are interested in neutronics but many other
physical applications could benefit the results of this paper (biology [3], socio-economics [4, 5, 6],
epidemiology [7] etc.). Solving an eigenvalue problem for the transport equation consists in looking
for the couple (keff, u), see [8, 9], satisfying the following partial differential equation (PDE):

v · ∇xu(x,v) + vσt(x,v)u(x,v) =vσs(x,v)

∫
Ps(x,v · v′)u(x,v′) dv′,

+
vνf (x,v)σf (x,v)

keff

∫
Pf (x,v · v′)u(x,v′) dv′.

(1)

In the above expression, keff is the first eigenvalue, and u, its corresponding eigenvector. Variables
x ∈ D ⊂ R3 and v ∈ V ⊂ R3 are respectively the space and velocity variables. The last one
may be decomposed into v = vω where v = |v| ∈ R+ and ω = v

v ∈ S2. The cross-sections
σt = σa + σs + σf = σt(x,v), σs = σs(x,v) and σf = σf (x,v) are given functions of (x,v). They
stand for the total, absorption, scattering and fission cross-sections. Coefficient νf = νf (x,v) is the
multiplicity of the fission reaction. The quantities Ps, Pf define how the velocities and angles are
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scattered depending on the type of reaction encountered: they (at least) satisfy
∫
Pα(x,v ·v′) dv′ =

1,∀α ∈ {s, f},x ∈ D,v ∈ V ∈ R3. Of course, the above notations are for macroscopic cross-sections,
in the sense that many physical reactions are summed-up in the above notations, see [10, 11, 12].
Boundary conditions must be supplemented to system (1):

u(x,v) = ub(v), x ∈ ∂D, ω · ns < 0, (2)

where ns is the outward normal to Ω at x. System (1) together with boundary conditions (2) define
the well-posed [9, 8] mathematical problem we want to solve. To be more precise, in this paper, we
are even interested in being able to accurately take uncertainties, in a broad sense1, into account.

When dealing with an uncertainty quantification problem, it is common to explicit, in a general
manner, the dependence of the solution with respect to the uncertain vector of parameters denoted
here by X. Note that without loss of generality in the following sections, we consider that X is
a vector X = (X1, ..., XQ)t of Q independent random variables of probability measure dPX =∏Q
i=1 dPXi

. It is always possible to come back to such framework2.
As a result, solving the uncertain counterpart of (1) consequently resumes to solving the Stochas-

tic PDE (SPDE) given by

v · ∇xu(x,v,X) + vσt(x,v,X)u(x,v,X) = vσs(x,v,X)

∫
P (x,v · v′,X)u(x,v′,X) dv′,

+
vνf (x,v,X)σf (x,v,X)

keff(X)

∫
Pf (x,v · v′,X)u(x,v′,X) dv′,

(3)

together with
u(x,v,X) = ub(v,X), x ∈ ∂D(X), ω · ns(X) < 0. (4)

In the above problem, we are mainly interested in the statistics of X→ keff(X) and X→ u(x,v,X)
(i.e. mean, variance, histogram, sensitivity indices [18] etc.) at specified locations x ∈ D and
velocities v ∈ V.

Of course, different values of X correspond to different fully decoupled deterministic equations:
in principle, there is no difficulty in solving such uncertain problems. The main issue comes from
the fact that exact propagation of uncertainties is very expensive from the computational point of
view: equation (1) is often solved thanks to a Monte Carlo scheme [19, 20, 8, 21, 22, 23]. This
resolution method is known to be efficient for high (3(x)+1(t)+3(v) = 7) dimensional problems but
costly. Running several deterministic MC computations for several values of X can consequently
be prohibitive.

In [1, 2], a P -truncated generalised Polynomial Chaos (gPC) based reduced model of the insta-
tionary uncertain linear Boltzmann equation has been introduced. It is solved thanks to an astute
Monte Carlo (MC) scheme [1]: the idea is to make the MC particles solve not only the physical
fields (x,v) but also the uncertain one X, on-the-fly during the MC resolution. Similar approaches
have been developed for the Fokker-Planck equation [6] and for the quadratic Boltzmann equation
[4, 24] and give promising results on other (usually MC solved) physical models. The spectral
(i.e. fast) convergence of the built hierachical models has been numerically [1] and theoretically

1geometrical, in the cross-sections, in the multiplicity, in the boundary conditions etc.
2At the cost of more or less tedious pretreatments leading to a controled approximation [13, 14, 15] and decorre-

lation [16, 17].
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[2] demonstrated. To sum-up, important gains have been observed in low to moderate stochastic
dimensions3 Q ∼ 1− 10 with simple code modifications of an existing MC code and without chang-
ing the HPC strategy4 of the code. see [1, 2]. Now, the question is: is it possible to generalise
the methodology used in these papers to be able to compute uncertain eigenvalues/eigenvectors?
This paper presents our efforts in order to answer the latter question. We here design an uncertain
eigenvalue solver. It relies on the material of [1] and some additional key ingredients described in
this paper (mainly, a stochastic power iteration method). The approach in [1], denoted by MC-
gPC in the following, enters the class of intrusive5 generalised Polynomial Chaos (gPC) methods. It
consequently demands some code modifications: in the following sections, care is taken to highlight
the modifications needed with respect to an already existing MC eigenvalue/eigenvector solver to
be able to reproduce the results of this paper.

The paper is organized as follows: in section 2, we recall one specific deterministic keff MC
algorithm allowing to solve (1) (power iteration). Several algorithms exist, see [25], but we can
not go through every of them. Following the descriptions of the next sections should allow the
interested reader to perform the relevant modifications to its own eigenvalue solver. In section 3,
the gPC based reduced model of (3) is built. Its MC resolution is tackled in section 4. Care is
taken to put forward where, with respect to the algorithm described in section 2, modifications of
a deterministic MC eigenvalue solver must be made to take into account uncertainties on-the-fly
during the MC resolution. Section 5 is devoted to benchmarks and numerical test-cases, section 6,
to concluding remarks.

2. The Monte Carlo resolution of a deterministic eigenvalue problem

In this section, we recall the main steps of the resolution of the deterministic eigenvalue problem
(1). The aim here is to briefly recall them in order to ease the comparisons with the new stochastic
solver described in section 4 and especially to identify clearly where a deterministic MC solver could
be modified in order to take into account, on-the-fly during the MC resolution, the uncertainties.

The deterministic criticity problem can be stated as follows: find keff ∈ R+, u 6= 0 such that
v · ∇xu(x,v) + vσt(x,v)u(x,v) = vσs(x,v)

∫
Ps(x,v · v′)u(x,v′) dv′,

+
vνf (x,v)σf (x,v)

keff

∫
Pf (x,v · v′)u(x,v′) dv′,

u(x,v) = ub(v), x ∈ ∂D, v
v · ns < 0, with |v| = v.

(5)

In the above equation, we assume that D is smooth and bounded and that we have σa(x,v) =
σt(x,v) − σs(x,v) ≥ 0, with also σs(x,v) ≥ 0, σf (x,v) > 0 holding ∀x ∈ D,v ∈ V. Then
Krein-Rutman’s theorem [9, 26, 27] ensures that (keff, u) satisfying (5) exists. Besides, keff is the

3MC-gPC being based on gPC which is sensitive to the curse of dimension, the P−truncated reduced models
remains exponentially sensitive to P and Q, see [1, 2].

4The HPC strategy we have in mind is commonly called replication domain, see [23]. It consists in replicating
the geometry on several processors and tracking several MC particles populations with different initial seeds in every
replicated domains. At the end of the time steps, the contribution of every processors are averaged. This parallel
strategy is particularly well suited to MC codes, taking advantage of the independence of the MC particles.

5It demands some code modifications of the MC solver, see [1], and does not propagate the uncertainties by relying
on several runs of a black-box code.
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highest eigenvalue, it is simple and its associated eigenvector u is the only positive eigenvector for
x ∈ D,v ∈ V. As a consequence, problem (5) is well-posed and we can try to solve it numerically.

In order to solve the previously described eigenvalue/eigenvector problem, the power iteration
method [9, 25] is usually applied. Its convergence is ensured in the previous aformentionned con-
ditions. Several ’versions’ of the power iteration method exist for keff computations, see [25]. We
suggest recalling one of these versions (which can be found in [25]) in the following lines. This
version has been chosen because it strongly relates a power iteration to a time step: this helps
reusing the results of [1] for the unstationary linear Boltzmann equation, see section 4.

Data: ∆t, NMC

Result: The eigenvalue keff and eigenvector which can be built from list of particles
begin

#initialisation of a population of particles, see algo. 2
list of particles=sampleParticles(NMC)
#old number of physical particles on the whole geometry
set Uold = 1
#new number of physical particles on the whole geometry
set Unew = 1
#estimated eigenvalue
set keff = 1
while iter < iter max do

#tracking of the population of particles, see algo. 8
Unew=trackParticles(list of particles, ∆t, keff)
#update eigenvalue

keff ← keff × Unew
Uold

#update the old number of physical particles
Uold ← Unew

#apply a population control algorithm, see algo. 3
populationControl(list of particles, NMC)
iter++

end

end
Algorithm 1: General canvas of a deterministic keff calculation Monte Carlo code

Algorithm 1 is a coarse grain description of the power iteration method. It first needs the
initialisation of a population of MC particles. An MC particle p is defined as a particular solution
of (5) of the form

up(x,v, t) = wp(t)δx(xp(t))δv(vp(t)). (6)

For up to be solution of (5), its fields wp(t),xp(t),vp(t) must respect some compatibility conditions
[1, 28, 19] as time evolves (function trackParticles, described later on, makes sure those conditions
are fulfilled). Once those conditions satisfied, each up solves (5) and, formally, by linearity,

NMC∑
p=1

up(x, t,v)
NMC→∞≈
t→∞

u(x,v),
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solves (5). The sampling phase, via sampleParticles in algorithm 1 and detailed in algorithm 2
builds a population of particles and sets their initial fields (wp(0),xp(0), sp(0),vp(0))p∈{1,...,NMC}.

sampleParticles(NMC)
Data: NMC

Result: list of particles (a normalised population of NMC MC particles)
begin

list of particles=[ ]
for p ∈ {1, ..., NMC} do

#build particle p
set sp = ∆t #remaining life time of particle p (must go down to zero)
set xp = U(D) #spatially uniformly distributed MC particles in D
set vp = L(V) #velocities sampled from a chosen spectrum V
set wp = 1

NMC
#normalised population:

∑
p wp = 1

list of particles.append({wp,xp,vp, sp})
end

end
Algorithm 2: description of sampleParticles: to initialise a population of MC particles for
a deterministic keff computation

At the end of the sampling phase, a list of particles is built. Some quantities are initialised,
cf. the lines before the while loop in algorithm 1: they will allow updating the eigenvalue through
the iteration. Note that choosing keff = 1 in algorithm 1 together with uniformly distributed MC
particles in algorithm 2 is arbitrary: those represent guess eigenvalue and guess eigenvector of the
iterative process and some other choices may be better suited (but this is case dependent).

Then, in algorithm 1 comes the while loop: the maximum number of iteration is supposed to be
a parameter. Of course, more elaborate MC codes often have more efficient and relevant stopping
criterion but going through them is beyond the scope of this paper. The first call in the while loop
is trackParticles: this function typically makes sure every up are MC solutions of (5). Function
trackParticles is described in algorithm 8, in the appendix6. At the end of trackParticles, the total
number of physical particles is updated (in Unew) and allows updating the keff value. A population
control algorithm is often called: it allows having about the same number of MC particles through
the iterations (as some may be lost7 going ouside the domain D).

6It is described only in the appendix because it does not bear any novelty with respect to the content of [1].
7In this paper, we rely on a semi-analog MC scheme, see [28] also called implicit capture [11, 8], so that MC

particles are not created during the tracking. For supercritical situations, the weights of the MC particles grow.
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populationControl(list of particles, NMC)
Data: list of particles, NMC

Result: list of particles (with NMC MC particles)
begin

Nnew
MC = 0

for p ∈list of particles do
set sp = ∆t #reset the life time of particle p (must go down to zero)
Nnew
MC + +

end
while Nnew

MC < NMC do
#Choose randomly a particle p in list of particles
p = sampleMCParticleFromList(list of particle)
#splitMCParticle’s output is a number of particles
#splitMCParticle’s output may depend on wp,xp,vp
#in practice, we choose to split a particle in two if sampled
split p = splitMCParticle({wp,xp,vp})
wp ← wp × 1

split p
for p′ ∈ {1, ..., split p− 1} do

set sp′ = sp
set xp′ = xp
set vp′ = vp
set wp′ = wp
list of particles.append({wp′ ,xp′ ,vp′ , sp′})

end
Nnew
MC+ = split p

end

end
Algorithm 3: description of populationControl: to make sure we always have about NMC

particles within domain D

One population control algorithm (many exists, we can not go through every of them in this
paper) is presented in algorithm 3. Suppose that after the tracking step, the number of MC
particles is below NMC : the question is how can we add particles without introducing any bias/error?
Algorithm 3 is one way to answer that question: assume that at the end of the power iteration, the
number of remaining MC particles isNnew

MC < NMC . We want to add, in an unbiased manner, NMC−
Nnew
MC particles to our list of particles. First, a particle p is randomly chosen in list of particles.

Based on some criterion on (wp,xp,vp), the algorithm chooses to split an MC particle or not into
split p ones. By splitting, we mean that from one MC particle p, we can choose to build split p> 0
MC particles p′ ∈ {1, ..., split p − 1}⋃{p} having the same fields as p except for their weights
wp′ =

wp

split p , ∀p′ ∈ {1, ..., split p − 1}⋃{p}, so that
∑
p′ wp′ = wp. Note that in this paper, we

focus on unbiased population control technics (not only unbiased on the first moment of u, the
reason will be clarified later on). In practice, in this paper, split p is chosen to be 2, i.e. particle p
can only be split in 2, independently of its fields wp,xp,vp. Better splitting strategies may be at
hand but they are beyond the scope of this paper.
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With this brief description, we highlighted the main steps of an eigenvalue/eigenvector resolu-
tion for the transport equation. In the following section 3, we build gPC based hierachical reduced
models. They allow efficiently taking uncertainties into account (i.e. accurate results can be re-
covered with low truncation orders, see [2]). In section 4, we explain how we can even solve those
reduced models thanks to an MC solver. In particular, we explain how the (deterministic) material
of this section 2 can be modified to solve, on-the-fly during the MC resolution, the gPC based
reduced model of section 3.

3. The gPC based hierachical reduced models

We now would like to take uncertainties into account for the problem described in the previous
section 2. Let us introduce X ∼ dPX, a vector of independent random variables of probability
measure dPX modeling the uncertainties. Then, by expliciting the dependence of u, keff with
respect to X, the uncertain version of (5) is given by

v · ∇xu(x,v,X) + vσt(x,v,X)u(x,v,X) = vσs(x,v,X)

∫
Ps(x,v · v′,X)u(x,v′,X) dv′,

+
vνf (x,v,X)σf (x,v,X)

keff(X)

∫
Pf (x,v · v′,X)u(x,v′,X) dv′,

u(x,v,X) = ub(v,X), x ∈ ∂D(X), v
v · ns(X) < 0, with |v| = v and X ∼ dPX.

(7)
Of course, we assume that the probable values of X never question the existence and unicity
conditions for (keff(X), u(x,v,X)), put forward in section 2 (in other words, ∀X, (7) is well-posed).
In principle, there is no difficulty solving the above problem as several values of X corresponds to
several fully decoupled problems. The whole problem comes from the fact that exact propagation
of uncertainties is very expensive from the computational point of view: MC codes, to solve (7)
(i.e. several times (5) for several X), are efficient but costly. In this section, in order to avoid the
multiplication of runs of a costly code, we suggest building and solving a reduced model of (7)
allowing to accurately capture the uncertainties.

In this paper, we are interested in the construction of gPC based reduced models in order to
take into account uncertainties. Let us introduce the polynomials basis (φXk )k∈N orthonormal with
respect to the scalar product defined by dPX, i.e such that∫

φXk (X)φXl (X) dPX = δk,l,∀(k, l) ∈ N2.

In practice, this basis is built once and for all once dPX known. In the above expression, the
basis must be truncated up to certain orders (pi)i∈{1,...,Q} which may depend on the directions
(Xi)i∈{1,...,Q}. Assume that ∀i ∈ {1, .., Q}, pi = p1D, then the total number of polynomial co-
efficients, abusively called the polynomial order later on, is8 P = P (p1D, Q) = (p1D + 1)Q. It
exhibits an exponential growth with both p1D and Q. This is commonly called the curse of di-
mensionality [30, 31]. As a consequence, the reduced models described in this paper, in practice,
can only be applied to a moderate number of uncertain parameters (Q ∼ 10). The multivariate
polynomial basis is built by tensorization of one-dimensional polynomial basis in every stochastic

8Of course, simplexes such as the ones presented in [29] may be used and have less coefficients but studying their
effects is beyond the scope of this paper.
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direction (Xi)i∈{1,...,Q}. In the following sections, for conciseness in the notations, we map9 the set
of polynomial indices Ap1D,Q = {(k1, ...kQ)|∀i ∈ {1, ..., Q}, ki ≤ p1D} into {0, ..., P} to build the

tensorized basis (φXk (X) =
∏Q
i=1 φ

Xi

ki
(Xi))k∈{0,...,P}. In the previous expression, ∀i ∈ {1, ..., Q}, the

basis (φXi

k )k∈{0,...,p1D} is a one-dimensional polynomial basis orthonormal with respect to dPXi
.

When P grows, we assume it grows because the one-dimensional polynomial orders p1D grow.
Let us assume we want to approximate a function X → F (X) such that

∫
F 2(X) dPX < ∞.

Then the P-truncated gPC expansion defined by the polynomial approximation

FP (X) =

P∑
k=0

Fkφ
X
k (X)

L2

−→
P→∞

F (X), (8)

bears some interesting convergence properties [32, 33, 34]. Spectral convergence for F solution of
the unstationary linear Boltzmann equation has even been proved in [2].

Independently of the dimension or of the polynomial basis, the gPC coefficients (Fk)k∈{0,..,P}
are defined by integration: they correspond to the projection of F on the components of the gPC
basis with respect to the scalar product defined by dPX:

Fk =

∫
F (X)φXk (X) dPX,∀k ∈ N. (9)

We naturally want to apply the above material to X→ u(x,v,X) ∀x ∈ D,v ∈ V and X→ keff(X)
instead of F . As a consequence, our aim is to compute the gPC coefficients of the couple (keff, u)
by numerical integration. We would like to integrate those coefficients during the MC resolution of
the transport equation. In the next section, we explain how we can estimate them on-the-fly during
the MC resolution thanks to simple modifications of an already existing MC solver.

4. The Monte Carlo resolution of an uncertain eigenvalue problem

In this section, we describe how a classical eigenvalue/eigenvector MC solver can be easily
modified in order to take uncertainties into account, relying on a gPC based reduced model. As
explained in the previous section 3, the main idea consists in being able to compute, during the
MC resolution, the gPC coefficients of the eigenvalue/eigenvector couple (keff, u).

First, the deterministic MC eigenvalue/eigenvector algorithm 1 must be compared to algorithm
4: the algorithm needs one additional numerical input parameter P with respect to algorithm 1.
Second, the population of MC particles is replaced by a population of uncertain MC particles,
exactly as described in [1]. In a nutshell, it implies sampling the uncertain dimensions X together
with the physical variables (x,v), see algorithm 5. This point is important in practice for efficiency
because it avoids the tensorisation of the physical variables with the uncertain ones: any non-
intrusive method implying the independent N runs of an MC code needs to track N × NMC

particles whereas the solver described in algorithm 4 only tracks a population of NMC particles
having fields in the whole space (x,v,X) ∈ D × V × dPX. In algorithm 5, each uncertain MC
particle has an additional field Xp = (X1

p , ..., X
Q
p )t sampled according to dPX. In other words, we

are looking for particular solutions

up(x, t,v,X) = wp(t)δx(xp(t))δv(vp(t))δX(Xp(t)).

9It is only a renumerotation.
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Now, the consistent operations for the above uncertain MC particle up to be solution of the uncertain
transport equations have been put forward in [1] and are recalled briefly10 in Appendix A.

The next step in algorithm 4 consists in initialisations of (Uknew, U
k
old, k

k
eff)k∈{0,...,P}. In the

deterministic algorithm 1, those quantities were scalar. In the stochastic counterpart, those are
vectors of size P + 1.

Then comes the while loop and a stopping criterion for the iterative algorithm (which is here
relatively simple with iter max). The first function of this loop is trackUncertainParticles, described
in Appendix A.2. Its main output is a vector of updated gPC coefficients of the total number of
physical particles of the geometry (Uknew)k∈{0,...,P} at current time/iteration n, defined by

Uknew(tn) =

∫
D

∫ ∫
u(x,v,X)φXk (X) dPX dx dv,∀k ∈ {0, ..., P},

≈
NMC∑
p=1

wp(t
n)φXk (Xp),∀k ∈ {0, ..., P}.

Once this vector updated, the gPC coefficients of keff(X) must be updated. This part of the algo-
rithm is typical of eigenvalue/eigenvector computation and is original with respect to the material
of [1]. The equivalent of operation keff ← keff

Unew

Uold
for the deterministic algorithm 1 must be per-

formed: this corresponds to the blue/cyan lines of algorithm 4. A change of color has been used with
the cyan line because this operation needs a discretisation hypothesis. The cyan line in algorithm
4 is a particular discretisation of operation

kk,new
eff =

∫
kPeff(X)× UPnew(X)

UPold(X)
φXk (X) dPX,∀k ∈ {0, .., P}. (10)

The above update (10) of the gPC coefficients of keff can not, in general, be analytical. It must
be discretised. Several algorithms are available in the literature, see [35, 36] for example, to take
into account nonlinearities in gPC computations. In the numerical section 5 of this paper, we
rely on numerical integration of (10) thanks to Gauss quadrature rules [37]. Basically, they allow
approximating (X, dPX) by NG points/weights (Xg, wg)g∈{1,...NG} and are very efficient in low to
moderate stochastic dimensions (from Q = 1 to Q = 10, see [37, 38, 39, 40]). Hence, (10) is in
practice replaced by

kk,new
eff =

∫
kPeff(X)× UPnew(X)

UPold(X)
φXk (X) dPX,

≈
NG∑
g=1

kPeff(Xg)×
UPnew(Xg)

UPold(Xg)
φXk (Xg)wg,

(11)

where kPeff(X), UPold(X) and UPnew(X) are (nonlinear11 functions of) polynomials of order P : those
are built in function buildPunctualValues, see the blue lines in algorithm 4 and algorithm 6.

10In particular, we must have Xp(t) = Xp, this fields must not change during the tracking.
11See the description of buildPunctualValues below.
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Data: ∆t, NMC , P
Result: The gPC coefficients (kkeff)k∈{0,...,P} of keff and eigenvector which can be built

from list of particles
begin

#initialisation of a population of particles, see algo. 5
list of particles=sampleUncertainParticles(NMC)
#old gPC coefficients of the number of physical particles on the whole geometry
set U0

old = 1
#new gPC coefficients of the number of physical particles on the whole geometry
set U0

new = 1
#gPC coefficients of the estimated eigenvalue
set k0

eff = 1
for k ∈ {1, ..., P} do

Ukold = 0
Uknew = 0
kkeff = 1

end
while iter < iter max do

#tracking of the population of uncertain particles, see algo. 10
(Uknew)k∈{0,..,P}=trackUncertainParticles(list of particles, ∆t, k0

eff, ..., k
P
eff)

#build punctual uncertain values
(UPnew(Xg))g∈{1,..,NG} = buildPunctualV alues((Xg)g∈{1,..,NG}, (U

k
new)k∈{0,...P})

(UPold(Xg))g∈{1,..,NG} = buildPunctualV alues((Xg)g∈{1,..,NG}, (U
k
old)k∈{0,...P})

(kPeff(Xg))g∈{1,..,NG} = buildPunctualV alues((Xg)g∈{1,..,NG}, (k
k
eff)k∈{0,...P})

#update the gPC coefficients of the eigenvalue
for k ∈ {1, ..., P} do

kkeff ←
NG∑
g=1

kPeff(Xg)×
UPnew(Xg)

UPold(Xg)
φXk (Xg)wg

end
#update the old number of physical particles
for k ∈ {1, ..., P} do

Ukold ← Uknew

end
#apply a population control algorithm, see algo. 7
uncertainPopulationControl(list of particles, NMC)
iter++

end

end
Algorithm 4: General canvas of a stochastic/uncertain keff calculation Monte Carlo code

Function buildPunctualValues builds punctual approximations of UPnew(X), UPold(X), kPeff(X) at
the quadrature points (Xg)g∈{1,..,NG} based on their respective gPC coefficients (Uknew)k∈{0,...,P},

(Ukold)k∈{0,...,P}, (kkeff)k∈{0,...,P}. In its simplest form, buildPunctualValues resumes to building the
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following polynomial approximations

kPeff(X) =

P∑
k=0

kkeffφ
X
k (X),

UPold(X) =

P∑
k=0

Ukoldφ
X
k (X),

UPnew(X) =

P∑
k=0

Uknewφ
X
k (X),

(12)

at the quadrature points (Xg)g∈{1,...,NG}. Of course, function buildPunctualValues may encapsulate
more elaborated gPC based approximations. Having resort to more elaborated approximations may
be motivated by a will to preserve positivity, to respect a maximum principle or avoid oscillating
reconstructions, see [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. After all, for the polynomial approxima-
tions (12), we have no guaranty of positivity12. Ensuring the positiveness of those quantities can be
important in practice as negative values may trigger numerical instabilities of the stochastic power
iteration algorithm13. To anticipate on this potential problem, we embed in buildPunctualValues
the possibility to use, for example, a positivity preserving procedure based on the material of the
furnished literature [41, 42, 28, 43, 44, 45, 47, 48, 46, 49]. Of course, we will not use it if not
necessary. But care will be taken to monitor and analyse any loss of positiveness in the numerical
examples of section 5.

sampleParticles(NMC)
Data: NMC

Result: list of particles (a normalised population of NMC uncertain MC particles)
begin

list of particles=[ ]
for p ∈ {1, ..., NMC} do

#build particle p
set sp = ∆t #remaining life time of particle p (must go down to zero)
set xp ∼ U(D) #spatially uniformly distributed MC particles in D
set vp ∼ L(V) #velocities sampled from a chosen spectrum V
set wp = 1

NMC
#normalised population:

∑
p wp = 1

set Xp ∼ dPX #uncertain MC particles take into account the uncertainty
list of particles.append({wp,xp,vp, sp,Xp})

end

end
Algorithm 5: description of sampleUncertainParticles: to initialise a population of uncer-
tain MC particles for a stochastic/uncertain keff computation

12The polynomial approximation does lose positiveness in certain situations, see [2].
13Remember for example that kPeff(Xp) is used within trackUncertainParticles for MC particle p. If negative, MC

particle p sees a negative fission cross-section which is non physical and may be numerically problematic.
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buildPunctualValues((Xg)g∈{1,..,NG},(U
k)k∈{0,..,P})

Data: (Xg)g∈{1,..,NG},(U
k)k∈{0,..,P}

Result: (UP (Xg))g∈{1,..,NG}
begin

#Polynomial reconstruction (i.e. s(u) = u2

2 )
positive reconstrunction needed=false
for g ∈ {1, ..., NG} do

UP (Xg) =

P∑
k=0

UkφXk (Xg)

if UP (Xg) < 0 then
positive reconstrunction needed=true
break

end
if positive reconstrunction needed then

#Apply your favorite positivity preserving reconstruction
UP (Xg)=compute positive preserving reconstruction((Uk)k∈{0,...,P})

end

end

end
Algorithm 6: description of buildPunctualValues to build punctual values at the quadra-
ture points (Xg)g∈{1,..,NG} from the gPC coefficients (Uk)k∈{0,..,P}.

The loop finally ends with a population control algorithm, in case the number of MC particles
has diminished due to leaks from the boundary conditions. Algorithm 7 presents one possibility for
the uncertain population control. The algorithm is simple and is only based on the possibility to
split an MC particle. Splittings are unbiased for every moments of u. This ensures consistency: this
may not be the case for combing [51] for example (which is only unbiased for the first moment, i.e.
the mean). For more elaborated population control algorithm (such as combing, russian roulette
etc.), the algorithm must probably be adapted to this uncertain framework and should be studied
case-by-case. Algorithms for an efficient uncertain population control shall probably be designed
(merging algorithms for example could be unbiased for the gPC coefficients estimation). We consider
this is beyond the scope of this paper.
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uncertainPopulationControl(list of particles, NMC)
Data: list of particles, NMC

Result: list of particles (with NMC MC particles)
begin

Nnew
MC = 0

for p ∈list of particles do
set sp = ∆t #reset the life time of particle p (must go down to zero)
Nnew
MC + +

end
while Nnew

MC < NMC do
#Choose randomly a particle p in list of particles
p = sampleMCParticleFromList(list of particle)
#splitMCParticle’s output is a strictly positivea number of particles
#splitMCParticle’s output may depend on wp,xp,vp,Xp

#in practice, we choose to split a particle in two if sampled
split p = splitMCParticle({wp,xp,vp,Xp})
wp ← wp × 1

split p
for p′ ∈ {1, ..., split p− 1} do

set sp′ = sp
set xp′ = xp
set vp′ = vp
set wp′ = wp
set Xp′ = Xp

list of particles.append({wp′ ,xp′ ,vp′ , sp′ ,Xp})
end
Nnew
MC+ = split p

end

end
Algorithm 7: description of uncertainPopulationControl: to make sure we always have
about NMC uncertain MC particles within domain D
aCombing [51], leading to split p= 0, are only unbiased for the first moment (i.e. the mean u0, k0

eff): here,
we need to be unbiased for every orders {0, ..., P}, i.e. every gPC coefficients.

With the previous lines, we described the uncertain eigenvalue/eigenvector MC solver we apply
in the next section.

5. Numerical results

In this last section, we present some numerical results obtained from the MC resolution of
P−truncated gPC reduced models (i.e. MC-gPCP ) described through sections 3–4. We first begin,
in section 5.1, with simple numerical test-cases for which uncertain analytical solutions can be built
(in infinite medium). This section has several aims:

– first, it allows giving a hint at what kind of studies (uncertainty propagation, sensitivity
analysis etc.) can be efficiently tackled for keff computations.
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– Second, it allows building few uncertain analytical solutions based on already intensively used
deterministic ones [52]: this can considerably ease the verification step (cf. V&V, see [53]) for
anyone willing to develop the material of this paper in its own MC implementation.

– Third, it allows recovering the spectral convergence of gPC14, which has already been numer-
ically [1] and theoretically [2] recovered for instationary problems, but in an eigenvalue/eigen-
vector computation context.

– Finally, it allows showing that perturbation methods, intensively applied in MC computations,
are implicitly taken into account by our uncertain framework. In other words, the MC-gPC
solver is more general than a perturbation one:

– it ensures recovering the results of a perturbation analysis if the input random variables
present small fluctuations,

– it allows capturing solutions outside the perturbative regime15 by numerical integra-
tion16.

In sections 5.3–5.2, we consider test-cases for which, to our knowledge, no analytical solutions are
available. The results obtained from MC-gPC are compared to the ones obtained with non-intrusive
uncertainty propagation methods (reference). Non-intrusive methods use a simulation code as a
black-box and perform the uncertainty analysis of interest by running N times the MC code at
some prescribed points17 (Xi, wi)i∈{1,...,N}. MC-gPC presents equivalent accuracies as the most
efficient non-intrusive methods, obtained in competitive restitution times. Section 5.2 focuses on a
sensitivity analysis study and section 5.3 takes into account geometrical uncertainties. In particular,
the test-cases of these sections are not anymore in an infinite medium and they allow checking the
population control strategy is efficient in an uncertain context.

Before tackling the numerical results, we would like to make two remarks which the reader must
keep in mind while reading the next section, in order to ease the descriptions and interpretations
of the test-cases.

Remark 5.1. From [1], we already have some hints at what can be expected in term of efficiency
for the MC-gPC solver, mainly on function trackUncertainParticles. Let us recall few points here:

– first, due to the fact that the tallies must be performed on a vector of polynomial coefficients
which can be of important size, especially in high stochastic dimensions, the cost of an uncer-
tain MC particle is superior to the cost of a classical MC particle.

– As a consequence, the less frequent the tallies, the more efficient the method.

Now, for an eigenvalue/eigenvector computation, the material of this paper needs at least one ad-
ditional step with respect to the material of [1] (the keff update at the end of one iteration). In the

14This is possible because we have access to uncertain analytical solutions.
15i.e. when the fluctuations of the inputs are not small.
16In opposition to numerical differentiation for perturbative methods.
17The points (Xi, wi)i∈{1,...,N} allow a consistent discretisation of (X, dPX). Several choices are possible for the

points/weights: MC [19], LHS [54, 55], sparse-grids [31], adaptive grids [29], Gauss points [38] etc. The choice of the
points is crucial in practice as the efficiency of the non-intrusive method strongly depends on the efficiency of the
integration. In the following, Gauss quadrature rules are used for their efficiency in the low to moderate stochastic
dimensions [38, 28] tackled in this paper.
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following sections, care will be taken to focus on points complementary to the ones already discussed
in [1].

Remark 5.2. The second remark concerns the potential loss of positiveness of the MC-gPC ap-
proximations of x,X→

∫
u(x,v,X) dv or of X→ U(X) =

∫∫
u(x,v,X) dv dx or of X→ keff(X).

As explained earlier, function buildPunctualValues can natively embed some positivity preserving
reconstruction. Of course, those may be more computationally intensive. For this reason, care is
taken in the next paragraph to monitor whether such more elaborated reconstructions are needed in
practice or not. In the next section, for the different test-cases, we document each time a positivity
preserving reconstructions is needed and whether not using it triggers or not important robustness
problems which may compromise or not the computations. A complementary discussion on the topic
is also provided after the numerical results in section 5.4.

5.1. Analytical solutions of uncertain keff in an infinite medium
In this section, we build analytical uncertain solutions of (3) in some particular configura-

tions. If we assume the particles we consider are monokinetic, i.e. σα(x,v,X) = σα(x,X), ∀α ∈
{s, t, f},∀X ∼ dPX,∀x ∈ D, with v = 1, and that the scattering and fission reactions are determin-
istic, homogeneous and isotropic, i.e. Pα(x,v,X)) dv = 1S2(ω) dω ∀x ∈ D, ∀v = vω = ω ∈ V = S2,
∀α ∈ {s, f}, equation (3) resumes to

ω · ∇xu(x, ω,X) + σt(x,X)u(x, ω,X) = σs(x,X)

∫
u(x, ω′,X) dω′,

+
νf (x,X)σf (x,X)

keff(X)

∫
u(x, ω′,X) dω′.

(13)

Let us integrate the above equation with respect to x ∈ D to get

ω ·
∫
∂D

u(x, ω,X) dx +

∫
D
σt(x,X)u(x, ω,X) dx =

∫
D
σs(x,X)

∫
u(x, ω′,X) dω′ dx,

+

∫
D

νf (x,X)σf (x,X)

keff(X)

∫
u(x, ω′,X) dω′ dx.

(14)

Assume periodic boundary conditions (i.e. such that
∫
∂D u(x,v,X) dx = 0) and homogeneous

cross-sections (i.e. σα(x,X) = σα(X)), we obtain

σt(X) = σs(X) +
νf (X)σf (X)

keff(X)
, (15)

hence,

keff(X) =
νf (X)σf (X)

σt(X)− σs(X)
=

νf (X)σf (X)

σa(X) + σf (X)
. (16)

Note that if the cross-sections and the multiplicity are deterministic, we recover the classical expres-
sion of a keff in an infinite medium. In the following, we intensively have resort to the conditions of
test-case UD2O-1-0-IN18 of [52]. MC-gPC results are obtained with NMC = 105 and this number
remains the same all along the iterations19. Depending on where the uncertainty comes from, the
probability measure of keff(X) may be different. Let us consider four different sources of uncertain-

18Infinite medium, νf = 1.7, σa = 0.027314, σs = 0.464338, σf = 0.054628 where the ν notation stands for
averaging.

19Due to the periodic boundary conditions, no particle is lost and the population control algorithm is not active.
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Figure 1: Evolution of (kneff)n∈{1,...,200} where n is the number of the (stochastic) power iteration for MC-gPCP=3

in the four situations depicted in section 5.1. Care has been taken to have kneff ≈ k∞eff for n close to 200 in the four
situations.

ties20:

– UD2O-1-0-IN-σs: if νf , σf , σa are deterministic and σs(X) = σs + σ̂sX, then, independently
of the distribution of X, keff is deterministic21 and is given by keff(X) = keff = 1.1333333 (as
in [52]). Figure 1 (top left) presents the results (kneff)n∈{1,...,200} obtained with MC-gPCP=3

with respect to the number of (stochastic) power iterations n. Each time, care has been taken
to make sure n is large enough to have kneff ≈ k∞eff as n ≈ 200. Figure 1 displays the reference
solution keff(X) = keff = 1.1333333 together with the mean solution and the 2.5% and 97.5%
quantiles22. Here, the solution being deterministic, the quantiles are close to the mean and
the confidence interval is only an error bound, not an uncertainty bound. In a sense, this
shows that MC-gPC accurately captures deterministic solutions. This is also emphasized in
figure 2 displaying the reference histogram obtained by sampling (106 samples) X through
(16) and the MC-gPCP=3 one obtained by sampling X through the gPC approximation

kPeff(X) =
∑P
k=0 k

k
effφ

X
k (X) for P = 3: we recover a Dirac at keff = 1.133333.

From an efficiency point of view, it is interesting noting that a non-intrusive method would
have needed at least23 N = 2 runs of an MC black box code to conclude that the solution
is not affected by the uncertainty on σs. For this test-problem, one run of an MC black-box

20In the next paragraph, if Q = 1, then we denote X = X to insist on the fact that X is scalar.
21Indeed, (16) is independent of σs.
22The quantiles have been evaluated with 106 samples of the MC-gPCP=3 approximation.
23But in practice, much more are needed.
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code has the same computational cost as one run of the MC-gPC one. As a consequence, we
can consider we, at least, gain a factor ×2 here.
No positivity preserving procedure (see remark 5.2) is needed all along the calculation.

– UD2O-1-0-IN-σa: if νf , σs, σf are deterministic and σa(X) = σa + σ̂aX is uncertain with
X ∼ U([−1, 1]) and σ̂a = 10−2, we recover the results of figures 1–2 (top right for both). On
figure 1 (top right), we first realise that the mean keff is slightly higher than 1.13333324: the
mean k0

eff =
∫
keff(X) dPX in this case is different from the keff at the design point X (mean

of X), i.e. k0
eff 6= keff(X) = 1.133333. This implies some nonlinearities are at play and must

be taken into account to accurately recover the behavior of the uncertain solution. We will
come back on this point few lines below, when comparing gPC methods to perturbative ones.
The area between the curves of the quantiles for 2.5% and 97.5% ensures a 95% probability
of having the keff between those bounds. Note that the quantile curves are not exactly
equidistant from the mean: this is because the keff distribution is slightly skewed as testifies
figure 2 (top right). As a consequence, keff closer to 1 are more probable than higher ones.
The quantiles have been estimated sampling 106 points (Xi)i∈{1,...,106} according to dPX and
estimating them classically through the MC-gPCP=3 approximation of (kPeff(Xi))i∈{1,...,106}.
From an efficiency point of view, the gain is not ×106 as there exists non-intrusive methods
relying on much less points: the most efficient non-intrusive method we found for this test-
case is non-intrusive gPC with P = 3 and N = 4 Gauss-Legendre points, see [38, 39]. As a
consequence, in this case, the gain is a factor ×4 between an efficient non-intrusive method
and MC-gPC.
No positivity preserving procedure (see remark 5.2) is needed all along the calculation.

– UD2O-1-0-IN-σf : if νf , σa, σs are deterministic and σf (X) = σf + σ̂fX is uncertain with
X ∼ U([−1, 1]) and σ̂f = 10−2, we obtain the figures 1–2 (bottom left for both). This time,
the mean keff is slightly lower than the deterministic one (i.e. once again, nonlinearities are
at play). The quantile curves show that 95% of the probable quantiles are between 1.06 and
1.19. This is emphasized by figure 2 (bottom left) where we can see that the keff distribution
is, in this case, skewed toward the important keff values.
On this problem, the gain is ×4 in restitution time with respect to the most efficient non-
intrusive method available (N = 4 Gauss-Legendre points of non-intrusive gPC with P = 3).
No positivity preserving procedure (see remark 5.2) is needed all along the calculation.

– UD2O-1-0-IN-νf : if σf , σa, σs are deterministic and νf (X) = νf + ν̂fX with X ∼ U([−1, 1])
and ν̂f = 10−2, then it is, in this case, easy prooving that the keff distribution is uniform in
interval [1.126666, 1.139999]. Indeed, see (16), in this case, the transformation X → keff(X) is
linear. In this case, the mean keff is equal to keff(X) = 1.133333 and is accurately recovered by
the MC-gPC numerical method (see figure 1 bottom right). Besides here, the 95% confidence
interval is narrower than in the previous cases, see figure 1 (bottom right). MC-gPC also
allows recovering the uniform distribution of keff as attests figure 2 (bottom right).
On this problem, the gain is ×4 in restitution time with respect to the most efficient non-
intrusive method available (N = 4 Gauss-Legendre points of non-intrusive gPC with P = 3).
No positivity preserving procedure (see remark 5.2) is needed all along the calculation.

24given by the deterministic solution.

17



uncertain σs uncertain σa
reference
MC-gPC

0

20000

40000

60000

80000

100000

1 1.05 1.1 1.15 1.2 1.25 1.3
keff

reference
MC-gPC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 1.05 1.1 1.15 1.2 1.25 1.3
keff

uncertain σf uncertain νf
reference
MC-gPC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 1.05 1.1 1.15 1.2 1.25 1.3
keff

reference
MC-gPC

0

1000

2000

3000

4000

5000

6000

7000

8000

1 1.05 1.1 1.15 1.2 1.25 1.3
keff

Figure 2: Comparisons of the histograms from the uncertain analytical solution (16) and the MC-gPC approximation
with P = 3 in the four situations depicted in section 5.1.

In the above lines, care has been taken to focus and comment on the uncertainty quantification
results rather than on reference/MC-gPC comparisons. In every cases, MC-gPC with only P = 3
allows recovering accurate results with only one run of a code25. The good agreement with small
polynomial order (P = 3) is in accordance with the fast (spectral) convergence numerically recov-
ered in [1] and theoretically recovered in [2] (but for the unstationary linear Boltzmann equation,
not for an eigenvalue problem). For the histograms of figure 2 for example, the differences be-
tween the reference and the MC-gPC histograms only come from the different initial samplings
(106 samples) of X. If we take exactly the same samples for X as input of (16) and as input of

kPeff(X) =
∑P
k=0 k

k
effφ

X
k (X) with P = 3, both histograms are not discernable.

We also here insist on the fact that every gPC results were obtained by only running once each
uncertain computations: this means that we only have to take care once that the (stochastic)
power iteration method is in a stationary regime, i.e. that kneff(X) ≈ k∞eff(X) where n is an iteration
of the while loop of algorithm 4. With a non-intrusive application, care must be taken to have
kneff(Xi) ≈ k∞eff(Xi) for every realisations (Xi)i∈{1,...,N} of the uncertain inputs. This can be tedious
to check in practice ∀i ∈ {1, ..., N}.

Let us now perform a convergence study on keff with respect to the polynomial order P . For

25With the non-intrusive gPC, comparable accuracies are obtained with P = 3 and N = 4 Gauss-Legendre points.
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this, let us consider the case UD2O-1-0-IN-σa, i.e. σa is uncertain26, i.e. we have

keff(X) =
νfσf

σa + σ̂aX + σf
.

This corresponds to the figures 1–2 (both top left). Figure 3 (left) presents the results of a con-
vergence study, the logarithm of the error with respect to P , performed with MC-gPCP . The
fluctuations of the absorption cross-section is σ̂a = 10−2. Very accurate results can be reached
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Figure 3: Convergence study on the uncertain σa case of section 5.1. The plot displays the logarithm of the L2-norm
of the error with respect to truncated order P .

with low polynomial orders P . The linear curve obtained on figure 3 (left) tends to show that
spectral convergence is reached for this test-problem. The theoretical spectral convergence on an
eigenvalue/eigenvector problem remains beyond the scope of this paper. Still, the numerical results
are promising.

Let us tackle a third point now: pertubative methods are commonly used in MC codes, see
[12, 21, 22]. The interested reader may wonder what are the differences between them and the gPC
developments we use in this paper27. Perturbative methods are based on a Taylor development
around the mean X of X: we can always rewrite X = X + ε (if X has finite variance) with ε a
centered fluctuation. Then we can perform the Taylor development of keff(X) when ε ∼ 0:

keff(X) ≈
ε∼0

keff(X) + ε∂Xkeff(X) +

P∑
k=2

εk∂kXkeff(X). (17)

The above polynomial approximation relies on hypothesis ε ∼ 0 and uses the derivatives of different
orders with respect to X. On another hand, we recall that for gPC, we have

keff(X)≈
P∑
k=0

kkeffφ
X
k (X) with ∀k ∈ {0, .., P}, kkeff =

∫
keff(X)φXk (X) dPX. (18)

26The same could be done for every other situations but the material would be redundant.
27After all, both are polynomial based approximations.
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Let us consider a simple test-case on which few differences/characteristics can be illustrated. We
consider a modification of UD2O-1-0-IN-σa for which28 σa = 0.27314, and two different values of
σ̂a = 0.2, and σ̂a = 0.02. We suggest comparing the asymptotical results (i.e. when the polynomial
coefficients of the Taylor and gPC expansions are analytically computed) obtained from perturbative
methods and gPC. Figure 4 presents the results obtained by perturbative/Taylor methods and

Perturbation vs. gPC P = 1
σ̂a = 0.2

Perturbation vs. gPC P = 4
σ̂a = 0.2

X
→
k

e
ff
(X

)

Perturbation vs. gPC P = 1
σ̂a = 0.02

Perturbation vs. gPC P = 2
σ̂a = 0.02

X
→
k

e
ff
(X

)

Figure 4: Comparisons of pertubative methods and gPC ones on the UD2O-1-0-IN-σa problem.

28The mean absorption cross-section has been multiplied by 10 with respect to configuration UD2O-1-0-IN-σa.
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gPC for several polynomial order P ∈ {1, 2, 4} in the same conditions. Figure 4 (top left) for
P = 1 presents the reference curve (red) X → keff(X) and the TaylorP=1 and gPCP=1 ones. The
TaylorP=1 curve is tangent to the point keff(X) = keff(0) whereas the gPCP=1 focuses on the trend of
X → keff(X). For this reason, perturbative methods are often called local approximation methods
whereas gPC ones are commonly called global ones. Of course, if P grows, both approximation
methods coincide, see figure 4 (top right) for P = 4, even if gPCP=4 gives slightly better results
than TaylorP=4. Now, evaluating fourth order derivatives, see (17), with an MC solver can be
quite cumbersome due to the numerical noise it often implies. On another hand, gPC only relies
on integral evaluations (see (18)), fitted to an MC solver framework.

The bottom pictures of figure 4 compares perturbative and gPC methods for P = 1, 2 for a
smaller variance of σa, i.e. a smaller perturbation: in the regime σ̂aX = ε� 1, both methods give
equivalent results. For P = 2, the Taylor and gPC curves are not discernable. In this sense, gPC
captures the perturbative regime: perturbative results can be recovered from gPC approximations
if the input variances are small (or the transformation close to linear).

Finally, we consider a 4D uncertain UD2O-1-0-IN with X = (X1, X2, X3, X4)t, with (Xi)i∈{1,...,4}
independent uniformly distributed in [−1, 1]. In this case, the analytical solution is given by

keff(X) = keff(X1, X2, X3, X4) =
(νf + ν̂fX4)(σf + σ̂fX3)

σa + σ̂aX1 + σf + σ̂fX3
, (19)

where the overlined quantities are the same as in UD2O-1-0-IN and σ̂α = ν̂f = 10−2, ∀α ∈ {a, s, t}.
Now, we would not only like to perform an uncertainty propagation but also a sensitivity analysis:

S1 (σa) S2 (σs) S3 (σf ) S4 (νf )
MC-gPCP=3 0.8025142731 2.32595730012×10−10 0.1945516072 0.001831871428
Analytical 0.8025421202 0.0000000000 0.1945282914 0.001832695030

Table 1: Results of the (Sobol) sensitivity analysis on the 4D uncertain version of UD2O-1-0-IN. Note that interactions
between the uncertain inputs are negligible for this test-case.

we aim at identifying which of the uncertain input parameters explain the most the variance of the
output (keff here). Many sensitivity indices are available in the literature, see [18] for an exhaustive
review, but not every of them are efficient. The most reliable ones, Sobol indices see [18] denoted by
(Si)i∈{1,...,Q} in this document, are usually very costly and sometimes computationally out of reach
(need for (Q+2)×N runs of a black box code with N ∼ 100−1000, see [56]). We can evaluate those
Sobol indices on the previously described test-case from the computed gPC coefficients, see [57, 58].
The analytical values of the Sobol indices are given in table 1 together with numerical results
obtained with MC-gPCP=3 ∀Xi, i ∈ {1, .., 4}. Figure 3 (right) presents a stacked histogram of the
same results. Qualitatively, with figure 3 (right), we can see that the MC-gPCP=3 approximation
gives satisfactory results. Parameter X1 related to the uncertainty of σa explains 80.25% of the keff

variance. Parameter X3, related to the uncertainty of σf , explains 19.45% of the same quantities.
The remaining (0.30%) percents are explained by the other variables and their interactions. With
table 1, we recover the fact that X2, controling the uncertainty on σs, is not influent: of course,
numerically with MC-gPC, we do not obtain exactly zero, there remains a numerical MC error.
Otherwise, MC-gPCP=3 (hence (P + 1)4 = (3 + 1)4 = 256 coefficients) accurately captures the
Sobol indices with only 1 run of the MC-gPC code.
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From an efficiency point of view, once again, the same study can be carried out non-intrusively.
The best results are obtained with non-intrusive gPC with P = (P1D + 1)4 = (3 + 1)4 = 256 and
N = N4

1D = 54 = 625. Table 2 presents the computational times obtained with MC-gPCP=3 and

NMC = 104 NMC = 105 NMC = 106

MC-gPCP=3 43.2 s. 412.1 s. 4021.1 s.
NMC = 104, N4 = 54 = 625 NMC = 105, N4 = 625 NMC = 105, N4 = 625

ni-gPCP=3 0.77 × 625= 481.2 s. 7.17 × 625= 4481.2 s. 73.1 × 625= 45687.5 s.
sequential gain ×11.13 ×10.87 ×11.36

Table 2: Results of the performance analysis on the 4D uncertain version of UD2O-1-0-IN. MC-gPC is compared to
non-intrusive gPC (ni-gPC) for equivalent accuracies.

non-intrusive gPCP=3 (ni-gPCP=3) leading to equivalent accuracies on the Sobol indices previously
commented on. In table 2, for MC-gPC, are displayed the computational times of one run with
different number of NMC of MC particles. For ni-gPC are displayed the average computational
time over the N4 = 625 runs times N4 = 625. The sequential gain with MC-gPC is displayed in
the last line of table 2: globally, a factor ×10 is gained if every non-intrusive runs are performed
sequentially. The gain here is not of a factor ×N = 625 mainly because when MC-gPC needs to
compute as many coefficients, its computational time is affected, see remark 5.1. No positivity
preserving procedure (see remark 5.2) is needed all along the calculation.

In the next sections, we consider test-cases for which, to our knowledge, no analytical solution
is available. The reference solutions are computed using non-intrusive gPC [38, 40, 58].

5.2. Sensitivity Analysis: an efficient computation of Sobol’s indices

In this section, we revisit test-case UD2O-1-0-SL29 of [52] by considering uncertain absorption
(σa(X) = σa(X1)), scattering (σs(X) = σs(X2)), fission (σf (X) = σf (X3)) cross-sections and
multiplicity (νf (X) = νf (X4)). For this test-case, we choose σ̂a = 10−2 = σ̂s = σ̂f = ν̂f just as in
the sensitivity analysis performed in the previous section 5.1. In other words, this test-case is in
exactly the same conditions as the 4D study of section 5.1 but with outward boundary conditions
on the right hand side of the spatial domain. The MC-gPCP=4 computations are performed with
NMC = 107 MC particles. Figure 5 presents the mean and the 2.5% and 97.5% quantile curves of
the uncertain eigenvalue keff (figure 5 right) and of the uncertain eigenvector x →

∫
u(x, ω,X) dω

(figure 5 left). On figure 5 right, we can see that in mean, the benchmark is critical. But the
keff have 95% probability of being between [0.94, 1.06]. On the left picture of figure 5, we can see,
via the 95% quantile curves, that the uncertainty is more pronounced in the left hand side of the
domain and less important in the vicinity of the right boundary. The computation has been carried
out with MC-gPCP=4 implying the estimation of (P +1)Q = (4+1)4 = 625 gPC coefficients during
the MC resolution.
Now, one may wonder which one(s) of the uncertain parameter(s) is the most influent in this
configuration. Figure 6 presents the results of a sensitivity analysis based on Sobol’s indices30

[59, 18] on the uncertain eigenvalue keff : figure 6 (left) presents the percentage of variance explained

29The conditions are the same as test-case UD2O-1-0-IN of section 5.1 but with outward boundary condition on
the right hand side of D = [0, 10.371065], i.e. at x = 10.371065.

30amongst the most reliable ones, see [18].
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Figure 5: UD2O-1-0-SL problem [52] with uncertain absorption X1, scattering X2, fission X3 cross-sections and mul-
tiplicity X4. Mean and 95% quantiles for the eigenvalue keff and its corresponding eigenvector x→

∫
u(x, ω,X) dω.
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Figure 6: UD2O-1-0-SL problem [52] with uncertain absorption X1, scattering X2, fission X3 cross-sections and
multiplicity X4. Sobol indices of the uncertain eigenvalue keff .

by each parameters independently (they are commonly called elementary effects) and the part
explained by interactions between those parameters. About 50% of the variance on keff is explained
by the uncertainty on σa(X1), 20% comes from the uncertainty on σf (X3) and the remaining 30%
comes from interactions between the different sources of uncertainties. It is interesting noticing
that once the boundary condition changed with respect to the 4D study of section 5.1, the results
of the sensitivity analysis are considerably different: in section 5.1-figure 3 (right), 80% of the
fluctuations were explained by the uncertainty on σa. None of the four random variables were
interacting. Figure 6 (right) compares the elementary and total effects for every of the four random
inputs: we recover the fact that all random variables strongly interact with each other (due to their
important total effects). Variables σs and νf only play a role in interaction with the other ones.
The comparison between the 4D test-cases of section 5.1 and of section 5.2 allows insisting on the
importance of being able to carry out systematic reliable sensitivity analysis in every configurations
of interest: a small change in the conditions of the test-problem can lead to completely different
results and interpretations.

Figure 7 presents a sensitivity analysis on the uncertain eigenvector, i.e. on the profile x →∫
u(x, ω,X) dω. Each picture compares the elementary and total effects of each input random
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Figure 7: UD2O-1-0-SL problem [52] with uncertain absorption X1, scattering X2, fission X3 cross-sections and
multiplicity X4. Elementary and Total Sobol spatial profiles of the uncertain eigenvector x→

∫
u(x, ω,X) dω.

variables on the eigenvector. From figure 7 top-right, we can see that the elementary effects of
σs(X2) and νf (X4) have an homogeneous role on the spatial profile. But their total effects are
stronger in the vicinity of the right hand side boundary. On another hand, the uncertainties from
σa(X1), σf (X3) (left column of figure 7) explain the increase of variance in the vicinity of x ∼ 0
as their elementary Sobol indices are slightly more important in this spatial region. Of course,
interactions remain the preponderant effect, even on the eigenvector, especially in the vicinity of
the right boundary.
Finally, no positivity preserving procedure (see remark 5.2) is needed all along the calculation.

5.3. Geometrical uncertainty: UD2O-H2O(1)-1-0-SL with uncertain interface position

In this section, we consider a configuration based on test-problem UD2O-H2O(1)-1-0-SL from
[52]: originally, the test-case is a critical benchmark with a slab of UD2O31 of dimension xc =
9.214139cm next to an H2O32 reflector of thickness 1.830563cm. The whole geometry consists of
interval D = [0, 11.044702]. Now, the test-case is made uncertain by considering that xc(X) =

31νf = 1.7, σa = 0.027314, σs = 0.464338, σf = 0.054628.
32νf = 0.0, σa = 0.054628, σs = 0.491652, σf = 0.0.
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Figure 8: UD2O-H2O(1)-1-0-SL problem [52] with uncertain interface between UD2O and H2O.

xc + x̂cX with X ∼ [−1, 1]. In practice, we keep xc = 9.214139 and set x̂c = 0.99. The MC-gPC
results are obtained with NMC = 3× 107 MC particles and P = 6.
Figure 8 presents the results (keff, u) obtained with MC-gPCP=6 for this test problem. Figure
8 (left) displays spatial profiles of the mean x → E[UP ](x) = U0(x) and of realisations x →
UP (x,X) =

∑P
k=0 Uk(x)φXk (X), with Uk(x) =

∫
uk(x, ω) dω,∀k ∈ {0, .., P} (left scale) and the

variance x → V[UP ](x) =
∑P
k=1 U

2
k (x) (right scale). Note that the (Uk)k∈{1,...,P} are taken at

the last iteration (no averaging through the iterations). The uncertainty is mainly localized in the
vicinity of xc ± 1. But it is also non negligible in the vicinity x ∼ 0. Figure 8 (right) displayes the
mean keff and the 95% confidence intervals through the iterations of the (stochastic) power iteration
method. The distribution is skewed toward sub-critical keff as testifies the non-symmetric 2.5% and
97.5% quantile curves. Still, the test-case remains, in mean, critical.
Finally, this test-case with geometrical uncertainties presents a particular advantage of using an
intrusive framework: the mesh is unique and simple. Let us describe the situation in a non-intrusive
framework. Taking into account geometrical uncertainties for the test-case of this section would
impose:

– either relying on as many meshes as points (Xi)i∈{1,..,N} at which we have to run the code,

– or relying on some averaging procedures within the cells affected by the uncertainties.

In both cases, the study is either tedious and cumbersome or needs some modeling hypothesis and
code modifications (intrusive) to define the uncertain average cross-sections seen by the determin-
istic MC particles within the cell concerned by the uncertainty. In the present test-case, having
resort to several meshes is not especially hard but more complex geometries can be extremely hard
to tesselate and each mesh may demand a considerable amount of work. Finally, even if the meshes
are easy to generate, it remains the question of the visualisation of the statistical quantities (mean,
variance, realisations etc.) with respect to x: on which mesh should we plot them? How do we
compute those quantities when cells are overlapping from one realisation to the other? In this
context, MC-gPC considerably eases the pre/post-treatments in addition to ensuring an important
gain.
From a computational point of view, the MC-gPCP=6 which produced the results of figure 8 takes
about 527.6 s. on one computational unit. The average computational cost of a deterministic
black-box MC criticality code in order to obtain the same accuracy take = 427.8s. and needs N = 8
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Gauss-Legendre points, hence a total sequential computational time of 427.8s.× 8 = 3422.4s.. On
this benchmark, MC-gPC ensures a gain of a factor × 3422.4

527.6 ≈ 6.48. Finally, a positivity preserving
procedure (see remark 5.2) is needed all along the calculation.

5.4. A final test-case challenging the positiveness of the gPC approximation

All along the paper, care as been taken to anticipate on one well-known flaw of the gPC approx-
imations, namely the potential loss of positiveness of the P−truncated quantities approximated by
a gPC expansions (here, eigenvalue keff and the eigenvector u). In all the previous test-cases, this
loss of positiveness was not encountered. In this section, we are going to show that this is because
all the previous benchmarks were converged (NMC are important enough). We here discuss on the
consequences of having to small polynomial orders P or number of MC particles NMC . We know
that

– theoretically, due to the different hypothesis made in section 2, ∀X ∼ dPX, u(x, ω,X) ≥ 0,

– numerically, we can encounter some situations for which ∃Ω− ⊂ dPX such that33 |Ω−| > 0
and ∀X ∈ Ω−, uP,NMC (x, ω,X) < 0.

The first situation occurs all along the previous benchmarks. The second one

– occurs, for example (see figure 9), when considering the benchmark of the previous section
5.3 with a coarser MC discretisation (1000× less MC particles),

– does not occur when considering the benchmark of the previous sections with coarser polyno-
mial approximations (not even for P = 1).

This tends to show that the MC error is likely to be responsible for the loss of positiveness34. Let us
investigate a little bit more on this behavior: figure 9 presents the same results as figure 8 (P = 6
and NMC = 3 × 107) but with P = 6 and only NMC = 3 × 103 MC particles, i.e. 1000× less MC
particles. With such low number of MC particles, the results are much noisier in figure 9 than in
figure 8, independently of the quantity of interest (mean, variance and realisations). But in the
vicinity of x = 10, some realisations of x,X →

∫
u(x, ω,X) dω are below zero.

Despite this local loss of positiveness of
∫
uP (x, ω,X) dω, quantity UPnew(X) =

∫∫
uP (x, ω,X) dω dx

remains positive (and so remains kPeff(X)) so that the code does not crash or encounter any insta-
bilities, any numerical difficulties. It did not trigger any robustness difficulties as testifies figure
9 (top-right) where the same number of iterations have been performed. Of course, we have no
guaranty that this behaviour (no robustness problems) will be maintained if more spatial locations
and realisations lose positiveness. But, once again, we do not encounter any problem in the sev-
eral benchmarks of this paper. Figure 9 (top-right) compares the mean and the variance of a fine
(NMC = 3× 107) and a coarse (NMC = 3× 103) keff approximation through 200 power iterations.
Figure 9 (top-right and bottom) also allows highlighting one important property of the MC-gPC
solver: a coarse MC approximation induces a higher variance in term of both keff and u. For the
coarse approximation, the numerical noise is more important than the fluctuations induced by the
uncertainties. This is only once the numerical resolution is fine enough that MC-gPC is able to

33The notation |Ω| denotes the volume of Ω.
34We insist we here have a discussion based on the benchmark of section 5.3 but the same kind of behavior can be

observed on all the other test-cases of this paper.
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Figure 9: UD2O-H2O(1)-1-0-SL problem [52] with uncertain interface between UD2O and H2O with a coarse MC
discretisation NMC = 3 × 103 (top-left). Figure (top-right and bottom) compares the fine resolution of figure 8 to
the coarse one of this section.

extract the ’physical’ variance from the one related to the numerical error. In a sense, this loss of
positiveness is a good indicator of a coarse approximation and, as tackled earlier, relevant popula-
tion control algorithm may be designed specifically for MC-gPC in order to improve the accuracy
of the gPC expansion of u (for example where it goes below zero).

6. Conclusion

In this paper, we generalise the MC-gPC solver (presented in [1] for the resolution of the un-
certain linear Boltzmann equation) to the resolution of uncertain eigenvalue/eigenvector problems
(keff computations). We build hierachical generalised Polynomial Chaos based reduced model for
eigenvalue/eigenvector problems, use the MC-gPC strategy described in [1] and complete the solver
by developping a gPC-adapted power iteration method. Care is taken to describe precisely how an
existing MC eigenvalue/eigenvector solver can be modified to apply MC-gPC. The modifications
are quite simple and do not induce any change in the HPC parallel strategy developed for the native
MC code.

Computational gains are put forward on well-known criticality benchmarks made uncertain in
low to moderate stochastic dimension (i.e. for a low to moderate number of uncertain parameters).
The new solver also presents some interesting properties with respect to the iterating process needed
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in order to compute the eigenvalue/eigenvector: in a non-intrusive context, using several runs of
an MC black box code, propagating uncertainties implies checking the convergence of the power
iteration for every runs. The strategy suggested in this paper implies only one run of an MC-gPC
eigenvalue/eigenvector solver and the user only has to check the convergence of one run. Further-
more, it presents some advantages when considering geometrical uncertainties: in a non-intrusive
context, as many meshes as runs must be made (which can be tedious in complex configurations).
With MC-gPC, only one mesh is needed. To sum-up, the MC-gPC eigenvalue/eigenvector solver
can efficiently tackle sensitivity analysis, uncertainty propagation in uncertain geometries and gen-
eralises perturbative methods. In such eigenvalue/eigenvector context, MC-gPC does present an
inconvenience: positivity of the gPC approximation of the keff eigenvalue or of the eigenvector can
be lost for coarse MC discretisations.

Amongst the perspectives of this work we can count on improvements of the positiveness-
preserving strategy hinted at beforehand: gPC is known to have this flaw and many other numerical
strategies are at hand in the furnished literature [50, 43, 42, 45, 48]. Furthermore, this paper mainly
focuses on the description of the gPC adapted power iteration method and on some benchmarks.
The fast (spectral) convergence with respect to P of the P−truncated gPC based reduced models
have been numerically recovered on the keff benchmarks of section 5. A theoretical proof such
as the one of [2] for the linear Boltzmann equation could be at hand and help understanding
and anticipating in which cases the reduced models are efficient or not for eigenvalue/eigenvector
computations. In this paper, we presented the MC-gPC modifications one has to perform for one
particular power iteration method: some others may be better suited. The same applies regarding
the population control algorithm or the choice of the time step or the stopping criterion of the
uncertain power iteration method. Simple strategies were considered in this paper in order to
focus on MC-gPC, the modifications needed for the power iteration method and for the sake of
reproducibility of the numerical results. More elaborate ones (MC-gPC combined to a better power
iteration strategy or a better population control algorithm adapted to the uncertain context) could
strongly benefit and improve the MC-gPC eigenvalue/eigenvector solver.
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[1] G. Poëtte, A gPC-intrusive Monte Carlo scheme for the resolution of the uncertain
linear Boltzmann equation, Journal of Computational Physics 385 (2019) 135 – 162.
doi:https://doi.org/10.1016/j.jcp.2019.01.052.
URL http://www.sciencedirect.com/science/article/pii/S002199911930110X
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Appendix A. Reminder of the material of [1]

The material of this paper strongly relies on some algorithmic results from [1]. In order to focus,
in the corpse of the paper, on the originality and the novelty, i.e. the uncertain eigenvalue/eigen-
vector computations, we recall briefly what is already detailed in [1] in this appendix.

Appendix A.1. Reminder for the deterministic particle tracking algorithm [1]

In this section, we recall how the tracking of the MC particles is made in practice, i.e. how we
make sure that an MC particle up is a particular solution of (5) (see section 2). This corresponds
to an algorithmic description of the semi-analog MC scheme also called implicit capture in the
literature, see [19, 28, 10, 11]. It is summed up in algorithm 8. The algorithm begins by initialising
variables Unew for the eigenvalue and (Ui)i∈{1,...,Nx} for the eigenvector with Nx the number of cells

tesselating
⋃Nx

i=1Di = D. Those variables will be used (cf. when τ > sp in algorithm 8) to tally the
MC particles contributions. Now, if the life time of a particle p is non-zero or if p did not go out
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of D, several random variables are sampled and are used to modify its fields (wp,xp,vp, sp). Those
samplings are quite classical and their relevance has been put forward in several books or papers
[19, 28]. In particular, at a collision (i.e. if τ < sp), the weight wp is multiplied by the ratio σS

σt
in

which σS uses the current keff value. The expression of σS is described in algorithm 9.

trackParticles(list of particles, ∆t, keff )
Data: list of particles, ∆t, keff

Result: an updated number of physical particles Unew and list of particles
begin

Unew ← 0
for i ∈ {1, ..., Nx} do

Ui ← 0
end
for p ∈ {1, ..., NMC} do

#MC particle p has fields sp,xp,vp
while sp > 0 and wp > 0 do

if xp /∈ D then
#application of arbitrary boundary conditions
apply boundary conditions(xp, sp,vp)

end

τ = − ln(U)
vσt(xp,sp,vp) where U ∼ U([0, 1]).

if τ > sp then
#move the particle p
xp − = vpsp,
#set the life time of particle p to zero:
sp = 0
#tally the contribution of particle p
Ui ← Ui + wp1Di(xp)
Unew ← Unew + wp

end
else

#move the particle p
xp − = vpτ ,
#set the life time of particle p to:
sp − = τ
#change its weight

wp × =
σS(xp, sp,vp, keff)
σt(xp, sp,vp)

Sample the velocity of particle p from P (xp, sp,vp,v
′) dv′

vp ∼ P (xp, sp,vp,v
′) dv′

end

end

end

end
Algorithm 8: The deterministic tracking of MC particles.
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σS(xp, sp,vp, keff)
Data: xp, sp,vp, keff

Result: σS
begin

σS = σs(xp,vp) + νf (xp,vp)
σf (xp,vp)

keff

end
Algorithm 9: Expression of σS for the deterministic eigenvalue/eigenvector computations

Appendix A.2. Reminder for the stochastic particle tracking algorithm [1]

In this section, we describe the stochastic counterpart of section Appendix A.1, i.e. the stochas-
tic counterpart of the semi-analog MC scheme (or implicit capture) of algorithm 8. The modifi-
cations of algorithm 8 are highlighted in blue in algorithm 10. Algorithm trackUncertainParticles
has a vector of gPC coefficients of keff as input, instead of only a scalar keff (as in trackParticles).
During the initialisation phase, vectors must be set to zero. The first important modification comes
from the fact that each uncertain MC particle p must compute its own kPeff(Xp) depending on its
own field Xp. In particular, kPeff(Xp) is used in the evaluation of σS , see algorithm 11, computed
when particle p encounters a collision. Note that each sampling (the interaction time τ , the outer
velocity at a collision) depends on the Xp field of particle p. This is already intensively explained
and justified in [1]. Finally, the uncertain MC particle contributions are tallied in the vectors
(Uknew, (U

k
i )i∈{1,...,Nx})k∈{0,...,P} conditionnally to having τ > sp.
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trackUncertainParticles(list of particles, ∆t, k0
eff, ..., k

P
eff)

Data: list of particles, ∆t, k0
eff, ..., k

P
eff

Result: an updated number of gPC coefficients (Uknew)k∈{0,...,P} and list of particles
begin

for k ∈ {0, ..., P} do
set Uknew = 0
for i ∈ {1, ..., Nx} do

Uki ← 0
end

end
for p ∈ {1, ..., NMC} do

#compute keff(Xp) seen by MC particle p having fields sp,xp,vp,Xp

kPeff(Xp) = buildPonctualUncertainV alue(Xp, k
0
eff, ..., k

P
eff)

while sp > 0 and wp > 0 do
if xp /∈ D then

apply boundary conditions(xp, sp,vp,Xp)
end

τ = − ln(U)
vσt(xp,sp,vp,Xp) where U ∼ U([0, 1]).

if τ > sp then
xp − = vpsp,
sp = 0
for k ∈ {0, ..., P} do

Uknew + = wp × φXk (Xp)
Uki ← Uki + wp1Di(xp)φ

X
k (Xp)

end

end
else

xp − = vpτ ,
sp − = τ

wp × =
σS(xp, sp,vp,Xp, k

P
eff(Xp))

σt(xp, sp,vp,Xp)
Sample the velocity of particle p from P (xp, sp,vp,v

′,Xp) dv′

vp ∼ P (xp, sp,vp,v
′,Xp) dv′

end

end

end

end
Algorithm 10: The stochastic/uncertain tracking of MC particles.
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σS(xp, sp,vp,Xp, keff)
Data: xp, sp,vp,Xp, keff

Result: σS
begin

σS = σs(xp,vp,Xp) + νf (xp,vp,Xp)
σf (xp,vp,Xp)

keff

end
Algorithm 11: Expression of σS for the stochastic eigenvalue/eigenvector computations
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