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SUBADDITIVE AND MULTIPLICATIVE ERGODIC THEOREMS

SÉBASTIEN GOUËZEL AND ANDERS KARLSSON

Abstract. A result for subadditive ergodic cocycles is proved that provides more delicate
information than Kingman’s subadditive ergodic theorem. As an application we deduce a
multiplicative ergodic theorem generalizing an earlier result of Karlsson-Ledrappier, show-
ing that the growth of a random product of semi-contractions is always directed by some
horofunction. We discuss applications of this result to ergodic cocycles of bounded linear
operators, holomorphic maps and topical operators, as well as a random mean ergodic
theorem.

1. Introduction

Products of random operations arise naturally in a variety of contexts from pure math-
ematics to more applied sciences. Typically the operations, or the maps, do not commute,
but one would nevertheless hope to have asymptotic regularity of various associated quanti-
ties. In the commutative case one has the standard ergodic theorem or what in probability
is called the law of large numbers. A very important and genuinely non-commutative case
is that of products of random matrices. These are governed by the multiplicative ergodic
theorem of Oseledets [O68], which in particular is a fundamental theorem in differentiable
dynamics. Another area of application is the subject of random walks on groups.

It is a remarkable fact that, in many such situations, one can introduce a metric which is
invariant or non-expanded by the transformations under consideration. This gives a way to
quantify the behaviour of random products of maps, such as linear operators, holomorphic
maps, symplectomorphisms, or homogeneous-monotone maps. Due to the non-expansion
of the metric and the triangle inequality, numerical quantities associated to the random
products then satisfy a form of subadditivity.

Kingman proved in [Ki68] the subadditive ergodic theorem, which is a generalization
of Birkhoff’s ergodic theorem to subadditive cocycles. This extension is very useful, with
many applications. In the particular case of random products of group elements, Kingman’s
theorem asserts that there is a well-defined growth rate, or in a different terminology, a
certain speed with which these products tend to infinity.

Our goal is to understand to what extent random products tend to infinity following a
specific direction, using the notion of horofunction. Horofunctions made one of their first
explicit appearances in the 1926 Wolff-Denjoy theorem which describes the dynamics of
holomorphic self-maps of the unit disk. As was noted already in their papers, and extended
and commented on by several people since then, the mechanism behind this result is the
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Schwarz lemma which implies that holomorphic maps do not increase the Poincaré distance
between points, and the fact that the Poincaré metric coincides with the hyperbolic metric,
see e.g. [K01, KeL07, AR14].

Our strategy is to show first a substantial refinement of Kingman’s theorem. Then, we
apply it to prove a very general multiplicative ergodic theorem, extending one aspect of
the Wolff-Denjoy theorem to a vastly more general setting: the asymptotic behaviour of
random products of 1-Lipschitz maps of any metric space in terms of horofunctions. This
generalizes and reproves the main theorem in [KL06], which in turn extends several known
results, such as the one of Oseledets mentioned above, and which has delivered unexpected
applications. Our theorem has a weak-type formulation involving linear or metric functionals
(a generalization of horofunctions to a non-proper setting). Hence, it can hold in a very
general setting, as opposed to results yielding a stronger convergence, that are known to
fail if the geometric properties of the space are not good enough, see [KN81]. Moreover,
under suitable assumptions on the space, our a priori weaker statement can automatically
be promoted to the stronger one.

As for further new applications, our theory leads to an ergodic theorem for cocycles of
bounded linear operators. Ruelle proved the first such theorem in infinitely many dimen-
sions assuming compactness of the operators [R82]. It was generalized by Mañé, Thieullen
and others, see the recent monograph [LL10] for more details. The interest in such state-
ments about semi-flows on Hilbert spaces can be seen in works of Ruelle and more recently
of Lian and Young in the study of certain stochastic differential equations, or partial dif-
ferential equations with application to hydrodynamic turbulence, such as the Navier-Stokes
equation [R82, R84, ER85, LY12]. There are also other potential contexts of application,
for example see a remark in [F02, p. 10], and in another direction Bolthausen pointed out
to us that it could be of use in the study of random walks in random environments in one
dimension with infinite support.

Our subadditive theorem is stated in Paragraph 1.1 and proved in Section 2. The ergodic
theorem for random products is then stated in Paragraph 1.2 and proved in Section 3.
Finally, Paragraph 1.3 and the remaining sections of this article are devoted to a brief
discussion of some applications.

1.1. Existence of good times for subadditive cocycles. Let (Ω, µ) be a measure space
with µ(Ω) = 1 and let T : Ω → Ω be an ergodic, measure preserving map. A measurable
function a : N× Ω → R which satisfies

a(n +m,ω) ≤ a(n, ω) + a(m,T nω)

for all integers n,m > 0 and a.e. ω ∈ Ω is called a subadditive cocycle. For convenience we
also set a(0, ω) ≡ 0. One says that a is integrable if a(1, ω) is integrable and one defines the
asymptotic average

A = inf
n

1

n

∫

Ω
a(n, ω) dµ(ω) ∈ [−∞,+∞).

Kingman’s theorem asserts that, almost surely,

a(n, ω)/n → A.

Moreover, if A > −∞, the convergence also holds in L1(µ).
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We prove in Section 2 the following subadditive ergodic statement (cf. Problem 3.3
in [K02]):

Theorem 1.1. Let a(n, ω) be an integrable and subadditive cocycle relative to the ergodic

system (Ω, µ, T ) as above, with finite asymptotic average A. Then for almost every ω there

are integers ni := ni(ω) → ∞ and positive real numbers δℓ := δℓ(ω) → 0 such that for every i
and every ℓ ≤ ni,

(1.1) − ℓδℓ(ω) ≤ a(ni, ω)− a(ni − ℓ, T ℓω)−Aℓ ≤ ℓδℓ(ω).

This statement significantly refines Proposition 4.2 in [KM99]. It is not a consequence of
Kingman’s theorem: by subadditivity, we have

a(ni, ω)− a(ni − ℓ, T ℓω) ≤ a(ℓ, ω) ∼ Aℓ,

so the upper bound in (1.1) readily follows from Kingman’s theorem. On the other hand,
the lower bound, which asserts that the cocycle is close to being additive at all times ℓ
between 0 and ni, is much more delicate.

This lower bound is reminiscent of Pliss’ lemma, a combinatorial lemma which proved
very useful in hyperbolic dynamics, see for instance [ABV00]. For any additive sequence
tending linearly to infinity, this lemma entails the existence of “good” times ni for which
the behavior of the sequence between ni − ℓ and ni is well controlled for all ℓ ≤ ni. Our
statement is both weaker (since there is an additional error ℓδℓ) and stronger since it applies
in random subadditive situations and gets the right asymptotics Aℓ.

We will apply Theorem 1.1 to the context of multiplicative ergodic theorems below, but
it could also be of interest for different questions, for example the recent paper [GG17]
used [KM99, Prop. 4.2] to reprove and extend Livsic’s theorem of [Ka11].

Remark 1.2. Define the upper asymptotic density of a subset U of the natural numbers as

Dens(U) = lim sup
N→∞

|U ∩ [0, N − 1]|/N.

The proof of Theorem 1.1 gives in fact more information. Namely, that on a set of large
measure one can take δℓ to be independent of ω and one can have many good times ni. More
precisely, fix ρ > 0, then there exist a sequence δℓ → 0 and a subset O ⊂ Ω of measure at
least 1 − ρ such that, for every ω ∈ O, the subset of good times A(ω) ⊂ N (made of those
n for which (1.1) holds for all ℓ ≤ n) has upper asymptotic density at least 1− ρ.

Remark 1.3. As a test case for the usability of proof assistants for current mathemati-
cal research, Theorem 1.1 and its proof given below have been completely formalized and
checked in the proof assistant Isabelle/HOL, see the file Gouezel_Karlsson.thy in [Go15].
In particular, the correctness of this theorem is certified.

1.2. Random products and metric functionals. Horocycles, horodisks etc are concepts
originally coming from two-dimensional hyperbolic geometry and complex analysis. A gen-
eral definition of the corresponding horofunctions (now also called Busemann functions) in
terms of geodesic rays γ(t) was noted by Busemann:

bγ(·) = lim
t→∞

d(·, γ(t)) − d(γ(0), γ(t)).
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As emphasized by Gromov [Gr81], this definition leads to a natural bordification of metric
spaces, by mapping the space into its set of continuous functions equipped with the topol-
ogy of uniform convergence on bounded sets. We consider instead pointwise convergence,
following for example [GV12]. Let (X, d) be a metric space, fix x0 ∈ X, and define the
continuous injection

Φ : X →֒ R
X

x 7→ hx(·) := d(·, x) − d(x0, x).

The functions hx are all 1-Lipschitz maps and vanish at x0. As indicated, we endow the
space R

X of real valued functions on X with the product topology, i.e., the topology of
pointwise convergence. The image Φ(X) can be identified with a subset of a product of
compact intervals, which is compact by Tychonoff’s theorem. The closure of the image
Φ(X) will therefore be compact. By definition we call the elements in this compact set
metric functionals. Thus, to every point x there is a unique associated metric functional hx,
and then there may be further functionals obtained as limit points:

X̂ := Φ(X) \ Φ(X).

We now try to fix the terminology and relate our notions to standard ones. We call limits,
as x → ∞, of hx in the topology of uniform convergence on bounded sets horofunctions.

If X is proper and geodesic, then X̂ is precisely the set of horofunctions. If the metric
space is particularly nice, for instance CAT(0), then horofunctions and Busemann functions
coincide, see [BH99]. For non-proper metric spaces a Busemann function might not be a
horofunction since the convergence might not be uniform on bounded sets, and conversely a
horofunction might not be a Busemann function since it might be obtained as a limit which
does not correspond to any geodesic ray. Our terminology is in part inspired by the simple

fact that for an infinite dimensional Hilbert space H, the set Ĥ contains the closed unit
ball of continuous linear functionals. The definition of metric functionals is also somewhat
parallel to the one of linear functionals: metric functionals are maps X → R that vanish at
the origin x0 and respect the metric structure of the spaces.

A map f : X → X is called non-expansive, or semi-contractive, if

d(f(x), f(y)) ≤ d(x, y)

for all x, y ∈ X. The set of all semi-contractive maps on X is denoted by SC(X).
As in the previous paragraph, let (Ω, µ) be a measure space with µ(Ω) = 1 and let

T : Ω → Ω be an ergodic measure preserving map. Given a map ϕ : Ω → SC(X), one forms
the associated ergodic cocycle given by the composition of maps

(1.2) u(n, ω) = ϕ(ω)ϕ(Tω) · · ·ϕ(T n−1ω).

Note the order in which the maps are composed. We require a weak measurability property:
for all x ∈ X and all n ∈ N, the map ω 7→ u(n, ω)x from Ω to X should be measurable. For
instance, this is the case if ϕ : Ω → SC(X) is measurable where SC(X) is endowed with
the compact-open topology (i.e., the topology of uniform convergence on compact subsets
of X) and X is locally compact (this last assumption ensures that the composition map
SC(X)× SC(X) → SC(X) is continuous, so that u(n, ·) : Ω → SC(X) is also measurable).
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This is also the case when X is a Banach space and ϕ is measurable from Ω to the space of
bounded linear operators on X with the topology of norm convergence.

We say that the above cocycle u(n, ω) is integrable if
∫

Ω
d(x, ϕ(ω)x) dµ < ∞,

a condition which is independent of x ∈ X. In this case, the subadditive cocycle a(n, ω) =
d(x, u(n, ω)x) is also integrable. Hence, by Kingman’s theorem, d(x, u(n, ω)x)/n converges
almost surely to a limit A ≥ 0 (which does not depend on the choice of the basepoint x).

In Section 3, the above subadditive ergodic statement is used to establish the following
multiplicative ergodic theorem:

Theorem 1.4. Let u(n, ω) be an integrable ergodic cocycle of semi-contractions of a metric

space (X, d). Then for a.e. ω there exists a metric functional hω of X such that for all x

lim
n→∞

−
1

n
hω(u(n, ω)x) = lim

n→∞

1

n
d(x, u(n, ω)x).

Moreover, if X is separable and Ω is a standard probability space, one can choose the map

ω 7→ hω to be Borel measurable.

The main theorem of [KL06] is the same statement, but with the additional assump-
tion that the cocycle u takes its values in the group of isometries of X, instead of semi-
contractions (moreover it was formulated only for proper spaces). This additional assump-
tion makes it possible to use the action of the cocycle on the space of metric functionals, and
use an additive cocycle there. This proof cannot work for semi-contractions. The present
proof will instead use Theorem 1.1 and is thus quite different.

Theorem 1.4 was conjectured in [K04] for proper metric spaces. With a use of the Hahn-
Banach theorem, see Section 3, this specializes to the following statement in the case of
Banach spaces.

Corollary 1.5. Let u(n, ω) be an integrable ergodic cocycle of semi-contractions of a subset

D of a Banach space X. Then for a.e. ω there is a linear functional fω of norm 1 such that

for any x ∈ D,

lim
n→∞

1

n
fω(u(n, ω)x) = lim

n→∞

1

n
‖u(n, ω)x‖.

This generalizes the main theorem in Kohlberg-Neyman [KN81], dealing with u(n, ω) =
An and D convex (the latter condition was removed in [PR83]). For the random setting
previous results can be found in [K04]. When X is strictly convex and reflexive, the conclu-
sion implies weak convergence of u(n, ω)x/n. When the norm of the dual of X is Fréchet
differentiable, the conclusion implies norm convergence of u(n, ω)x/n. In general however
the above statement is optimal in view of a counterexample in [KN81].

1.3. Applications. In this paragraph, we describe briefly different settings where our re-
sults apply. More involved applications are described in Sections 4, 5 and 6.

Applied mathematics provides a wealth of examples of non-expansive mappings of Banach
spaces, especially ℓ∞, for example in dynamical programming and topical matrix multipli-
cation (homogeneous, order-preserving), generalizing matrices in the max-plus or min-plus
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(tropical) semi-ring. In finitely many dimensions the existence of Lyapunov exponents has
been studied, in particular what could then be called a tropical Oseledets multiplicative er-
godic theorem has been established. We refer to [CT80, Co88, Ma97, Gu03] and references
therein. Our Corollary 1.5 implies some known and some not previously known statements
in this setting.

More precisely, let S be a set and consider the Banach space B(S) of bounded, real-valued
functions f : S → R with the sup-norm. Consider a map A : B(S) → B(S) (not necessarily
linear) with the properties:

• (monotonicity) If f(x) ≤ g(x) for all x, then (Af)(x) ≤ (Ag)(x) for all x,
• (semi-homogeneity) For any positive constant a, it holds that

A(f(·) + a)(x) ≤ Af(x) + a.

Blackwell observed in [Bl65] that such maps A are semi-contractive. He had a constant
0 < β < 1 in the second condition in front of a on the right hand side. This constant
corresponds to discounting in financial settings, mathematically giving a strict contraction,
or β-Lipschitz map. When S = {1, 2, . . . , d} these operators, which now can be viewed as
functions A : Rd → R

d, and with equality in the second condition, are sometimes called
topical functions (see [Gu03]).

A multiplicative variant of this type of maps are self-mappings of cones A : C → C with
A(ax) = aA(x) and x ≤ y implies Ax ≤ Ay with respect to the cone partial order. Such
maps are semi-contractive in Hilbert’s metric and its variants.

Our theorems apply to random products of such mappings, and information about metric
functionals can be found in [Wa08].

Consider now the random ergodic set-up, first considered in particular by von Neumann-
Ulam, see [Ka52]. Let Lω be a collection of measure-preserving transformations of a prob-
ability space (Y, ν), indexed by ω ∈ Ω. Let T : Ω → Ω be an ergodic measure-preserving
map. Given v : Y → R and y ∈ Y , ω ∈ Ω, we consider the average

1

n

n−1∑

k=0

v(LT k−1ωLT k−2ω · · ·Lωy).

Introduce an isometry ϕ(ω) of the space X = L2(Y, ν) by (ϕ(ω)w)(y) = v(y) + w(Lωy) =
v + Uωw, where Uωw := w(Lωy). Let u(n, ω) denote the corresponding multiplicative
cocycle. Then the above average equals (u(n, ω)0)(y)/n. Hence, the following corollary
(which follows readily from Corollary 1.5) is a generalization of the (random) mean ergodic
theorem. In this statement, a map is strongly measurable if it is the pointwise strong limit
of a sequence of finitely-valued maps, see [BS57].

Corollary 1.6. Let X be a Banach space and let U be a strongly measurable map from Ω
to linear operators on X. Suppose that ‖Uω‖ ≤ 1 for every ω ∈ Ω. Then for every v ∈ X
and a.e. ω there is a linear functional Fω of X with ‖Fω‖ = 1 such that

lim
n→∞

1

n
Fω

(
n−1∑

k=0

UωUTω · · ·UT k−1ωv

)
= lim

n→∞

1

n

∥∥∥∥∥

n−1∑

k=0

UωUTω · · ·UT k−1ωv

∥∥∥∥∥.
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Again we remark that when X is strictly convex and reflexive, the conclusion implies
weak convergence of the ergodic average in question and when the norm of the dual of X is
Fréchet differentiable, the conclusion implies norm convergence. It is however known, due to
Yosida [Ka52], that in this situation if there is a weakly convergent subsequence then strong
convergence of the whole sequence follows. So X being strictly convex and reflexive would
suffice. One of the most general results of this type, with norm convergence, was obtained
by Beck-Schwartz for reflexive spaces in [BS57]. (There are many papers considering norm
convergence of similar or more general averages.) Note here that it is well-known that the
Carleman-von Neumann mean ergodic theorem (i.e. with the norm convergence) does not
hold in general for Banach spaces. Our statement does hold, and implies as said norm
convergence under the conditions mentioned.

As another application we show in Section 4:

Theorem 1.7. Let v(n, ω) = A(T n−1ω)A(T n−2ω) · · ·A(ω) be an integrable ergodic cocycle

of bounded invertible linear operators of a Hilbert space. Denote the positive part [v(n, ω)] :=

(v(n, ω)∗v(n, ω))1/2. Then for a.e. ω there is a norm 1 linear functional Fω on the space of

bounded linear operators such that

lim
n→∞

1

n
Fω (log [v(n, ω)]) = lim

n→∞

1

n
‖log [v(n, ω)]‖.

(The logarithm is as usual the inverse of the exponential map and is well-defined on
positive elements.) This general statement can under further assumptions be promoted to
yield some known theorems. The same remarks as after Corollary 1.5 apply. For example
if the dimension of the Hilbert space is finite, then Sym, the vector spaces of bounded
operators B such that B∗ = B, can be given a Hilbert space structure and it follows that

1

n
log [v(n, ω)]

converges. This is known to be equivalent to Oseledets’ multiplicative ergodic theorem, as
for example explained in [R82]. In the infinite dimensional case and restricting to identity
plus Hilbert-Schmidt operators, one gets a uniform convergence, as observed in [KM99],
stronger than that in [R82] for compact operators. Note that in general the conclusion of
the standard multiplicative ergodic theorem is too strong: if A is a bounded linear operator
on a Hilbert space and v is a nonzero vector, it is not true in general that

1

n
log‖Anv‖,

converges as n → ∞. This is well-known and simple, see for example the introduction
to [Sc06] where an example appears. In this context we also refer to [LL10, GQ15].

In Section 5 we exemplify a consequence of Theorem 1.4 in the complex analytic setting,
and yet another application in Section 6. A further possibility would be to consider random
products of diffeomorphisms of a compact manifold, and exploit the induced isometric action
on the space of Riemannian metrics [Eb68]. This space has been studied somewhat, it is
known to be CAT(0) but not complete (compare this with the discussion on the Weil-
Petersson metric in [KL06]). For two or more generic diffeomorphisms there is no joint
invariant measure on the manifold, but our Theorem 1.4 applies, compare with [LQ95].
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2. Subadditive ergodic cocycles

In this section, we prove Theorem 1.1. First note that we can assume that the space
(Ω, µ) is a standard Lebesgue space. Indeed, since the statement of Theorem 1.1 only deals
with the distribution of the countable family of real-valued functions (a(n, T kω))n,k∈N2 , it

suffices to work on the space R
N2

with the Borel probability measure encoding the joint
distribution of all these functions and the shift map. This space is a standard Lebesgue
space. Then, passing to the natural extension if necessary, one can assume without loss of
generality that T is invertible. (Natural extensions exist in general only for transformations
of a standard Lebesgue space, which is why the first reduction was needed).

One of the inequalities in (1.1) is known. Indeed, by definition a(n, ω) ≤ a(n− ℓ, T ℓω) +
a(ℓ, ω) and by Kingman’s theorem a(ℓ, ω) = Aℓ+ o(ℓ). This means that

a(n, ω) ≤ a(n− ℓ, T ℓω) +Aℓ+ ℓδℓ

where δℓ → 0.
The other inequality is much more subtle. It says intuitively that at certain times the

cocycle is nearly additive. Note that Theorem 1.1 for additive cocycles is equivalent to
Birkhoff’s ergodic theorem.

We begin by defining

b(n, ω) = a(n, T−nω).

This is again a subadditive cocycle but for the transformation τ := T−1 and with the same
asymptotic average as a. The interest in b comes from the fact that

a(n, ω)− a(n− ℓ, T ℓω) = b(n, ω′)− b(n− ℓ, ω′),

where ω′ = T nω. Note that, on the right-hand side, the point ω′ is the same in both
terms. We start by showing that b(n, ω)− b(n− ℓ, ω) behaves well for the majority of times
n and for ℓ ≤ n large enough, by a combinatorial argument related to several proofs of
Kingman’s theorem (for example as in Steele [S89]). This is the key point of the proof,
given in Lemma 2.2. In contrast to [KM99], we will control the majority of times and not
just a small set of times. This is central to keep good control once one changes variables
back from b to a.

We begin by proving the following lemma as a warm-up. These arguments will be used
again in a more elaborate form in the proof of Lemma 2.2.

Lemma 2.1. Let b be an integrable ergodic subadditive cocycle with finite asymptotic average

A. Let δ > 0. Then there exists c > 0 such that for almost every ω

Dens {n ∈ N : ∃ℓ ∈ [1, n] , b(n, ω)− b(n− ℓ, ω) ≤ (A− c)ℓ} ≤ δ.

Proof. By replacing if necessary b(n, ω) by b(n, ω)−An, one may without loss of generality
assume that A = 0. We denote by τ : Ω → Ω the underlying ergodic transformation. We
fix ω ∈ Ω and let V = {n ∈ N : ∃ℓ ∈ [1, n], b(n, ω) − b(n − ℓ, ω) ≤ −cℓ}. When c is large
enough we would like to conclude that the density of V is small.

Fix N > 0. We will partition [0, N ] using the following algorithm. First let n0 = N .
Assuming ni is defined, we proceed as follows. If ni /∈ V , then take ni+1 = ni− 1. If ni ∈ V ,
then let ℓi ∈ [1, ni] be as in the definition of V , and let ni+1 = ni− ℓi. We stop when ni = 0.
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We have decomposed the interval [0, N) in a union of intervals [ni − 1, ni) (with ni /∈ V ),
and [ni − ℓi, ni) (with ni ∈ V ). Using the subadditivity along the intervals of the first type
one gets:

b(N,ω) =
∑

ni

(b(ni, ω)− b(ni+1, ω)) ≤
∑

ni /∈V

b(1, τni+1ω) +
∑

ni∈V

(b(ni, ω)− b(ni+1, ω)).

Almost surely, b(N, ·) = o(N) when N tends to infinity. In particular, from a certain
point onward, one has b(N,ω) ≥ −N assuming ω belongs to this set of full measure. In

the expression on the right, we majorize the sum over ni /∈ V by
∑N−1

j=0 b+(1, τ jω) (where

b+ = max(0, b) is the positive part of b), which in view of Birkhoff’s ergodic theorem itself
is bounded by MN if N is sufficiently large, where we have set M = 1 +

∫
b+(1, ω) dµ(ω).

Using the definition of V , we obtain:

−N ≤ MN − c
∑

ni∈V

(ni − ni+1).

Since V ∩ [0, N − 1] is included in the union of the intervals (ni+1, ni] for ni ∈ V , its
cardinality |V ∩ [0, N − 1]| is bounded by

∑
(ni − ni+1). Therefore, the previous inequality

gives
|V ∩ [0, N − 1]| ≤ (M + 1)N/c.

This finishes the proof, taking c sufficiently large so that (M + 1)/c ≤ δ. �

In the following lemma, we replace c (large) of Lemma 2.1 by a parameter ǫ which is
arbitrarily small. The price to pay in order to preserve a valid statement is to restrict it to
sufficiently large ℓ. This lemma plays a crucial role in the proof of Theorem 1.1.

Lemma 2.2. Let b be an integrable ergodic subadditive cocycle with finite asymptotic average

A. Let ǫ > 0 and δ > 0. Then there exists k ≥ 1 such that for almost every ω

Dens{n ∈ N : ∃ℓ ∈ [k, n], b(n, ω)− b(n− ℓ, ω) ≤ (A− ǫ)ℓ} ≤ δ.

Proof. Without loss of generality we may assume that A = 0. We denote by τ the underlying
ergodic transformation. Going to the natural extension if necessary, we can assume that τ
is invertible.

The idea of the proof is that the argument we used to prove Lemma 2.1 would work in
our situation if

∫
b+(1, ω) dµ(ω) were small enough. This is not the case in general, but this

is asymptotically true for the iterates of the cocycle, by Kingman’s theorem: if s is large
enough, then

∫
b+(s, ω) dµ(ω)/s is very small. We will fix such an s, discretize time to work

in sN, and follow the proof of Lemma 2.1 in this set. Additional errors show up in the
approximation process, but they are negligible if k in the statement of the lemma is large
enough. If one is to do this precisely, there is a problem that τ s is in general not necessarily
ergodic. This issue is resolved by working with times in the set sN+ t for fixed t ∈ [0, s− 1].

Let us start the rigorous argument. Fix ρ > 0, which corresponds to the precision we
want to achieve (this value will be chosen at the end of the proof). Since b(s, ω)/s tends to 0
almost everywhere and in L1 when s tends to infinity by Kingman’s theorem, the same holds
for b+. One can thus take s ∈ N such that

∫
b+(s, ω) dµ(ω) < ρs. We also fix t ∈ [0, s − 1].

Let K = sN + t be the set of reference times we will use in the following. Once all these
data are fixed, we take a large enough k.
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We fix ω ∈ Ω. The set of bad times, whose density we want to majorize, can be decom-
posed as U ∪ V , where

U = {n ∈ N ∩ (s,∞) : ∃ℓ ∈ (n− s, n], b(n, ω)− b(n− ℓ, ω) ≤ −ǫℓ},

V = {n ∈ N : ∃ℓ ∈ [k, n − s], b(n, ω)− b(n− ℓ, ω) ≤ −ǫℓ}.

If n ∈ U , then there exists i ∈ [0, s) such that b(n, ω) ≤ b(i, ω)− ǫ(n− i). We deduce that U
is almost surely finite, since whenever U is infinite, we have lim inf b(n, ω)/n ≤ −ǫ in view
of the previous inequality, but we know that b(n, ·)/n → 0 almost everywhere. It suffices
therefore to estimate the density of V .

Consider n ∈ V and ℓ ∈ [k, n−s] such that b(n, ω)−b(n−ℓ, ω) ≤ −ǫℓ. We will approximate
such an n by a time in K. Let ñ be the successor of n in K, that is the smallest time in K
with ñ ≥ n. We write ñ = n+ i with i < s. Thus,

b(ñ, ω) = b(n+ i, ω) ≤ b(n, ω) + b(i, τnω) ≤ b(n, ω) + F (τ ñω),

where we set F (η) =
∑s

j=−s b
+(1, τ jη), which is integrable and positive. Similarly, as

n− ℓ ≥ s by assumption, n− ℓ admits a predecessor ñ− ℓ̃ in K. One has n− ℓ = ñ− ℓ̃+ j
for some j < s, and

b(n− ℓ, ω) = b(ñ− ℓ̃+ j, ω) ≤ b(ñ− ℓ̃, ω) + b(j, τ ñ−ℓ̃ω) ≤ b(ñ− ℓ̃, ω) + F (τ ñ−ℓ̃ω).

We obtain finally that

b(ñ, ω)− b(ñ− ℓ̃, ω) ≤ b(n, ω) + F (τ ñω)− b(n− ℓ, ω) + F (τ ñ−ℓ̃ω)

≤ −ǫℓ+ F (τ ñω) + F (τ ñ−ℓ̃ω)

≤ −ǫℓ̃/2 + F (τ ñω) + F (τ ñ−ℓ̃ω),

where the last inequality comes from the fact that ℓ̃ ≤ ℓ+ 2s is bounded by 2ℓ whenever k
is sufficiently large. Note also that ℓ̃ ≥ ℓ ≥ k.

Denote by

W = {ñ ∈ K : ∃ℓ̃ ∈ sN ∩ [k, ñ], b(ñ, ω)− b(ñ− ℓ̃, ω) ≤ −ǫℓ̃/2 + F (τ ñω) + F (τ ñ−ℓ̃ω)}.

We have shown that

(2.1) V ⊂ W + [−s+ 1, 0].

Therefore, to estimate the density of V , it suffices to estimate the density of W . Let N
be an integer, let Ñ = ps + t be its successor in K (it satisfies Ñ ≤ 2N if N is sufficiently

large). We decompose K ∩ [0, Ñ ] as in Lemma 2.1. We start with ñ0 = Ñ . If we have
defined ñi, we define its predecessor as follows. If ñi /∈ W , we take ñi+1 = ñi− s. If ñi ∈ W ,
then let ℓ̃i ∈ sN ∩ [k, ñi] as in the definition of W , and set ñi+1 = ñi − ℓ̃i. We stop when
ñi = t.

We have thus decomposed [0, Ñ ) as a union of intervals of the form [ñi − s, ñi) (with

ñi /∈ W ), and [ñi − ℓ̃i, ñi) (with ñi ∈ W ) and [0, t). All the times ñi belong to K = sN + t
by construction.
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Using the subadditivity along the intervals of the first and the third types, one gets:

b(Ñ , ω) ≤ b(t, ω) +
∑

ñi /∈W

b(s, τ ñi+1ω) +
∑

ñi∈W

(b(ñi, ω)− b(ñi+1, ω)).

Almost surely, b(Ñ , ·) = o(Ñ) when Ñ tends to infinity. Hence, after a certain stage, we

have b(Ñ , ω) ≥ −ρÑ . In the terms on the right hand side above, we majorize the sum over

ñi /∈ W by
∑p−1

j=0 b
+(s, τ js+tω). The trivial term b(t, ω) is estimated by F (ω). Using the

definition of W , we obtain:

−ρÑ ≤ F (ω) +

p−1∑

j=0

b+(s, τ js+tω) +
∑

ñi∈W

(−ǫ(ñi − ñi+1)/2 + F (τ ñiω) + F (τ ñi+1ω)).

The set W is included in the union of the intervals (ñi+1, ñi] with ñi ∈ W , by construction.
We claim that the same holds for V . Indeed, in view of (2.1), an integer n ∈ V can be
written as ñ−j with j < s and ñ ∈ W . Consider the interval (ñi+1, ñi] containing ñ. As ñi+1

and ñ are both ≡ t[s], one has ñ ≥ ñi+1 + s, and therefore n > ñi+1 so that n ∈ (ñi+1, ñi],
proving the claim. We obtain |V ∩ [0, N −1]| ≤

∑
(ñi− ñi+1). Hence, the previous equation

gives that:

ǫ|V ∩ [0, N − 1]|/2 ≤ ρÑ + F (ω) +

p−1∑

j=0

b+(s, τ js+tω) +
∑

ñi∈W

(F (τ ñiω) + F (τ ñi+1ω)).

The function F is integrable, so there exists M ∈ R such that the function G = F · 1F≥M

satisfies
∫
G < sρ. We majorize F by M +G. In the preceding equation, the ñis in W are

separated by at least k because ℓ̃i ≥ k by definition. Therefore, the number of such ñi is at
most Ñ/k. We get

∑

ñi∈W

(F (τ ñiω) + F (τ ñi+1ω)) ≤ 2(Ñ/k)M +
∑

ñi∈W

(G(τ ñiω) +G(τ ñi+1ω))

≤ ρÑ + 2

p∑

j=0

G(τ js+tω),

whenever k is sufficiently big.
Finally, if k is sufficiently large, one has (using that Ñ ≤ 2N)

ǫ|V ∩ [0, N − 1]|/2 ≤ F (ω) + 4ρN +

p∑

j=0

H(τ js+tω),

where H(η) = b+(s, η) + 2G(η) has integral < 3sρ. Summing after that over t ∈ [0, s − 1],
we obtain:

sǫ|V ∩ [0, N − 1]|/2 ≤ sF (ω) + 4sρN +

N+s−1∑

i=0

H(τ iω).

For almost every ω, Birkhoff’s theorem applied to the function H gives
∑N+s−1

i=0 H(τ iω) ≤
3sρN for N sufficiently large. Thus

sǫ|V ∩ [0, N − 1]|/2 ≤ sF (ω) + 7sρN.
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This shows that the density of V is bounded by 14ρ/ǫ. This concludes the proof if we choose
ρ = ǫδ/14 at the beginning of the argument. �

We combine the two preceding lemmas in order to gain improved control over time, as
follows.

Lemma 2.3. Let b be an integrable ergodic subadditive cocycle with finite asymptotic average

A. Let ǫ > 0. There exist a sequence δℓ → 0, a subset O of measure at least 1 − ǫ and for

ω ∈ O, there is a sequence of bad times U(ω) with |U(ω) ∩ [0, n− 1]| ≤ ǫn for every n, with

the following property. For every ω ∈ O, for all n not in U(ω), and for every ℓ ∈ [1, n], it

holds that

(2.2) b(n, ω)− b(n− ℓ, ω) > (A− δℓ)ℓ.

Proof. For every i > 1, set ci = 2−i. In view of Lemma 2.2, there exists ki such that, for
almost every ω, the set

Ui(ω) = {n ∈ N : ∃ℓ ∈ [ki, n], b(n, ω)− b(n − ℓ, ω) ≤ (A− ci)ℓ}

satisfies Dens(Ui(ω)) < ǫ2−i. For n large, say n ≥ ni(ω), one obtains |Ui(ω) ∩ [0, n − 1]| ≤
ǫ2−in. Since the function ni(ω) is almost everywhere finite, we may find a subset Oi of
measure close to 1, say µ(Oi) > 1− ǫ2−i, on which ni(ω) ≤ ni, for some integer ni (which
one may choose to be > ni−1 (here n1 is to be defined below independently) and ≥ ki).

We treat the case i = 1 separately and in a more crude manner, applying Lemma 2.1:
there is a constant c1 such that, for almost every ω,

Dens{n ∈ N : ∃ℓ ∈ [1, n], b(n, ω)− b(n− ℓ, ω) ≤ (A− c1)ℓ} < ǫ/2.

We set k1 = 1. As above, we define hence U1(ω), n1(ω), and O1.
We set Ō =

⋂
i≥1 Oi, the good set on which things are well controlled. It satisfies

µ(Ō) > 1− ǫ. For ω ∈ Ō we define a set of bad times U(ω) by

U(ω) =
⋃

i≥1

Ui(ω) ∩ [ni,+∞).

We begin by showing that the bad set U(ω) satisfies |U(ω) ∩ [0, n − 1]| ≤ ǫn for every
n. Let n ∈ N. Let i be such that ni ≤ n < ni+1 (there is nothing to do if n < n1 since
U(ω) ⊂ [n1,+∞)). Hence

|U(ω) ∩ [0, n − 1]| =

∣∣∣∣∣∣

⋃

j≤i

Uj(ω) ∩ [nj,+∞) ∩ [0, n − 1]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

⋃

j≤i

Uj(ω) ∩ [0, n− 1]

∣∣∣∣∣∣

≤
∑

j≤i

|Uj(ω) ∩ [0, n − 1]|.

Since n ≥ nj for every j ≤ i, the cardinality of Uj(ω) ∩ [0, n − 1] is bounded by ǫ2−jn.
Therefore the sum is not greater than ǫn, as desired.

Set Ii = [ni, ni+1) for i > 1, and I1 = [1, n2). We define a sequence δ̄ℓ = ci for ℓ ∈ Ii.
This sequence tends to 0. We claim that it satisfies (2.2) for every n ≥ n1 which is not in
U(ω). Indeed, fix ℓ ∈ [1, n], it belongs to an interval Ii. We claim that n ≥ ni: This holds
by assumption if i = 1, and if i > 1 we have ni = inf Ii ≤ ℓ ≤ n. As n ≥ ni and n /∈ U(ω),
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we have n /∈ Ui(ω). Moreover, ℓ ≥ ki: Indeed, if i > 1, this follows from the inequalities
ℓ ≥ ni and ni ≥ ki, while if i = 1 this comes simply from the fact that k1 = 1. Thus, the
definition of Ui(ω) ensures that b(n, ω)− b(n− ℓ, ω) > (A− ci)ℓ, which gives the result since
δ̄ℓ = ci.

This almost finishes the proof, it just remains to treat the case n < n1 and ℓ ∈ [1, n]. This
is only a finite number of conditions. All the functions we have considered are measurable, so
they are almost everywhere finite. There is therefore a subset O of Ō, again with µ(O) > 1−ǫ,
and a constant d such that for every ω ∈ O, and every n < n1 and ℓ ∈ [1, n], we have
b(n, ω)− b(n− ℓ, ω) ≥ (A− d)ℓ. Set finally δℓ = δ̄ℓ for ℓ ≥ n1 and δℓ = max(d, δ̄ℓ) for ℓ < n1.
This function works. �

We now deduce the theorem from these lemmas.

Proof of Theorem 1.1. By subtracting Aℓ from a(ℓ, ω), we may assume that the asymptotic
average A vanishes. First, we prove the easy upper bound. By subadditivity,

a(n, ω)− a(n − ℓ, T ℓω) ≤ a(ℓ, ω),

which is almost surely o(ℓ) by Kingman’s theorem. This proves the upper bound in Theo-
rem 1.1. The stronger statement in Remark 1.2 follows from the fact that the almost sure
convergence a(ℓ, ω)/ℓ → 0 is uniform on sets of arbitrarily large measure.

We turn to the harder lower bound. Let b(n, ω) = a(n, T−nω). This is a subadditive
cocycle for the ergodic transformation T−1. We may therefore apply Lemma 2.3 to it. Let
ǫ > 0 and ρ > 0. The lemma gives us a set of good points O with measure at least 1− ǫ, a
sequence δℓ → 0 and, for ω ∈ O, a set U(ω) of bad times with |U(ω) ∩ [0, n − 1]| ≤ ǫn for
every n.

Let On = {ω ∈ O : n /∈ U(ω)} and Pn = T−nOn. For ω ∈ Pn and ℓ ∈ [1, n], one has

a(n, ω)− a(n− ℓ, T ℓω) = b(n, T nω)− b(n− ℓ, T nω) ≥ −δℓℓ.

Hence, if a point is contained in an infinite number of the sets Pn, it satisfies the conclusion
of the theorem. If the times where it belongs to Pn have an asymptotic density of at least
1 − ρ, it satisfies even the stronger conclusion in Remark 1.2. We have to show that this
condition has large measure.

For ω ∈ Ω, we define A(ω) = {n : ω ∈ Pn}, its set of good times. We would like to see that
A(ω) has an upper asymptotic density larger than 1− ρ, for ω in a subset of large measure.
Let fN(ω) = |A(ω) ∩ [0, N − 1]|. The bad points are those for which fN(ω) ≤ (1− ρ)N for
all N sufficiently large. Denote by Vi = {ω : ∀N ≥ i, fN (ω) ≤ (1 − ρ)N}, and V =

⋃
Vi

the set of bad points.
We have

∫
fN =

N−1∑

n=0

µ(Pn) =

N−1∑

n=0

µ(On) =

∫
1O(ω)|[0, N − 1] \ U(ω)|dµ(ω)

≥

∫
1O(ω)(1 − ǫ)N dµ(ω) ≥ (1− ǫ)2N.

Since fN ≤ N , we obtain for N > i

(1− ǫ)2N ≤

∫
fN ≤ (1− ρ)Nµ(Vi) +N(1− µ(Vi)) = N − ρNµ(Vi).
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Thus µ(Vi) ≤ (1−(1−ǫ)2)/ρ. We deduce that µ(V ) ≤ (1−(1−ǫ)2)/ρ < ρ, provided we have
chosen ǫ small enough with respect to ρ. This proves that the lower bound of Theorem 1.1
(and even the stronger conclusion in Remark 1.2) is satisfied on a set of measure greater
than 1− ρ. Since ρ is arbitrary the proof is complete. �

Here is a small example showing that, even in deterministic situations, one can not
improve the lower bound in Theorem 1.1 to a bound of the form an − an−ℓ ≥ Aℓ − δℓ
(where δℓ is any sequence tending to 0) while keeping a lot of good times. Indeed, consider
a sequence an which is either 1 or 2 for every n. This is always a subadditive sequence.
Assume also that the value 2 is taken infinitely many times. Then the times for which
an − an−ℓ ≥ −δℓ for all ℓ ≤ n are, up to finitely many exceptions, only the times when
an = 2. Hence, they can be arbitrarily sparse.

3. Application to multiplicative ergodic theorems

Proof of Theorem 1.4. Let

a(n, ω) = d(u(n, ω)x0, x0),

where x0 is the basepoint that is used in the definition of metric functionals. Since the maps
are semi-contractive and thanks to the triangle inequality one verifies easily that this is a
subadditive ergodic cocycle with asymptotic average A ≥ 0. In view of Theorem 1.1 we
have therefore for almost every ω a sequence ni → ∞ and a sequence δℓ → 0 such that for
every i and every ℓ ≤ ni,

d(u(ni, ω)x0, x0)− d(u(ni − ℓ, T ℓω)x0, x0) ≥ (A− δℓ)ℓ.

If we write xn = u(n, ω)x0 and hn the horofunction associated to xn, this means that

hni
(xℓ) = d(xni

, xℓ)− d(xni
, x0) = d(u(ni, ω)x0, u(ℓ, ω)x0)− d(u(ni, ω)x0, x0)

≤ d(u(ni − ℓ, T ℓω)x0, x0)− d(u(ni, ω)x0, x0)

≤ −(A− δℓ)ℓ.

This inequality passes to limits as ni → ∞.
If X is separable, one may extract a subsequence (n′

i) of (ni) such that hn′

i
(y) converges

for all y belonging to a countable dense set of X. Since all these functions are 1-Lipschitz,
convergence on every point of X follows. The limit h of hn′

i
satisfies for all ℓ the inequality

(3.1) h(xℓ) ≤ −(A− δℓ)ℓ.

In the general case, Φ(X) is still compact, but it does not have to be sequentially compact,
so we should argue differently. The sets

Yi = {h ∈ Φ(X) : ∀ℓ ≤ ni, h(xℓ) ≤ −(A− δℓ)ℓ}

are non-empty (they contain hni
) and form a decreasing sequence. By compactness,

⋂
i Yi

is also non-empty. Any element h of this intersection satisfies (3.1).
The bound |h(xℓ)| ≤ d(xℓ, x0) ≤ Aℓ+ o(ℓ) follows from the 1-Lipschitz property of h and

Kingman’s theorem. Therefore

lim
n→∞

−
1

n
h(u(n, ω)x0) = A



SUBADDITIVE AND MULTIPLICATIVE ERGODIC THEOREMS 15

as required. Again note that since the u(n, ω)s are semi-contractive, the orbit of x0 and
the orbit of any other point x stay within bounded distance, therefore the same statement
holds with x replacing x0.

Finally, let us show that ω 7→ hω can be chosen to be Borel measurable if Ω is standard
and X is separable. In this case, the topology on Φ(X) is generated by simple convergence

along a dense sequence in X. Hence, Φ(X) is metrizable, and it becomes a compact metric
space, see [GV12]. Since Ω is standard, we may identify it with [0, 1].

By Remark 1.2, there exists a decomposition of Ω as the union of a set Λ∞ of measure
0, and an increasing sequence of sets Ωi on which one can use the same sequence δi,ℓ. By
Lusin’s theorem, we may also ensure that all the maps ω 7→ u(n, ω)x0 are continuous on Ωi.
Let Λ1 = Ω1 and Λi = Ωi \Ωi−1, for 1 < i < ∞. It suffices to find a Borel map ω 7→ hω on
each Λi. Define

A(ω) := {h ∈ Φ(X) : ∀ℓ ∈ N, h(xℓ(ω)) ≤ −(A− δi,ℓ)ℓ}.

This is a nonempty compact subset of Φ(X), depending upper semi-continuously on ω ∈ Λi,
by the continuity of ω 7→ u(n, ω)x0 and every h. We are looking for a measurable map
ω ∈ Λi 7→ hω ∈ A(ω), the only difficulty being measurability. Its existence follows for
instance from [W77, Theorem 4.1]. �

One can deduce Corollary 1.5 as a consequence of Theorem 1.4 together with the following
lemma (where x0 = 0).

Lemma 3.1. In a Banach space, for every metric functional h there is a linear functional

f of norm at most 1 such that f ≤ h.

Proof. Let h be a metric functional on a Banach space X. We claim that, for any finite set
F in X and any ǫ > 0, there is a linear functional f on X with norm at most 1 such that
f(x) ≤ h(x) + ǫ for all x ∈ F . Then it follows by weak* compactness (the Banach-Alaoglu
theorem), that there exists a linear functional f with norm at most 1 such that f(x) ≤ h(x)
for all x ∈ X. Indeed, the intersection

⋂
F,ǫ{f, ‖f‖ ≤ 1 and f(x) ≤ h(x) + ǫ for all x ∈ F}

is nonempty as every finite intersection of such (compact) sets is nonempty.
Now we prove the claim. The open set

{h̃ ∈ Φ(X) : ∀x ∈ F, h̃(x) < h(x) + ǫ}

is nonempty (it contains h). Hence, as Φ(X) is the closure of X, this set contains a function
hy = Φ(y), y ∈ X. Since the basepoint x0 used to define metric functionals is 0 in this
vector space context, we have for all x ∈ F

‖y − x‖ − ‖y‖ = hy(x) < h(x) + ǫ.

By the Hahn-Banach theorem, there exists a linear functional f of norm 1 with f(y) = −‖y‖.
Then, for all x ∈ F ,

f(x) = f(x− y) + f(y) ≤ ‖x− y‖ − ‖y‖ ≤ h(x) + ǫ,

as desired. �
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Now, indeed, given hω from Theorem 1.4, take fω
− guaranteed by the lemma, and let

fω := −fω
− ≥ −hω. Clearly, we have on the one hand that

1

n
fω(u(n, ω)x) ≤

1

n
‖u(n, ω)x‖

and on the other hand

1

n
fω(u(n, ω)x) ≥ −

1

n
hω(u(n, ω)x) → lim

n→∞

1

n
d(x, u(n, ω)x).

Therefore, since

lim
n→∞

1

n
d(x, u(n, ω)x) = lim

n→∞

1

n
d(0, u(n, ω)x) = lim

n→∞

1

n
‖u(n, ω)x)‖,

Corollary 1.5 follows.
Alternatively, we give a direct proof of Corollary 1.5 within the vector space setting

without referring to metric functionals:

Proof of Corollary 1.5 directly from Theorem 1.1. Let

a(n, ω) = ‖u(n, ω)0‖,

which is a subadditive ergodic cocycle with asymptotic average A ≥ 0. If A = 0, then the
conclusion is trivial so we assume that A > 0. In view of Theorem 1.1 we have therefore for
almost every ω a sequence ni → ∞ and a sequence δℓ → 0 such that for every i and every
ℓ ≤ ni,

‖u(ni, ω)0‖ − ‖u(ni − ℓ, T ℓω)0‖ ≥ (A− δℓ)ℓ.

We denote by xn = u(n, ω)0. By the Hahn-Banach theorem we can find for any n a linear
functional fn of norm 1 such that fn(xn) = ‖xn‖. Now, for any ℓ ≤ ni,

fni
(xℓ) = fni

(xni
+ xℓ − xni

) = ‖u(ni, ω)0‖ − fni
(xni

− xℓ)

≥ ‖u(ni, ω)0‖ − ‖u(ni, ω)0− u(ℓ, ω)0‖ ≥ ‖u(ni, ω)0‖ − ‖u(ni − ℓ, T ℓω)0− 0‖

≥ (A− δℓ)ℓ.

By weak* compactness, there exists a linear functional f = fω of norm at most 1 satisfying

f(xℓ) ≥ (A− δℓ)ℓ

for all ℓ ≥ 0. It follows that

lim
ℓ→∞

1

ℓ
f(xℓ) = A

a.e. as required. In the case A > 0, the norm of f is clearly necessarily 1. �

This has in turn another consequence, Corollary 1.6, as is explained in the introduction.
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4. Cocycles of bounded linear operators

Invertible d × d real matrices act on the symmetric space Posd = GLd(R)/Od(R) by
isometries. How Theorem 1.4 in this special case implies Oseledets theorem is explained
for example in [KM99, K04]. Similarly, bounded linear invertible operators of a Hilbert
space H act by isometries on the space Pos(H) of the positive elements of the algebra B(H)
of all bounded linear operators H → H. The space Pos(H) is a cone in the vector space
Sym(H) = {a ∈ B(H) : a∗ = a}. The action is given by

g : p 7→ gpg∗.

The metric is given by a Finsler norm at each p ∈ Pos(H),

‖a‖p := ‖p−1/2ap−1/2‖

for a ∈ Sym(H), see [CPR94] for details.
Thus for integrable ergodic cocycles of bounded linear operators we may again apply

Theorem 1.4. In contrast to the finite dimensional case, the metric of Pos is less nice and
the space is not locally compact. Therefore the metric functionals are less studied at present
time. An alternative approach is provided thanks to Segal’s inequality

‖eu+v‖ ≤ ‖eu/2eveu/2‖.

This implies a weak notion of non-positive curvature, see [CPR94] and references therein:
the diffeomorphism exp : Sym → Pos semi-expands distances. This means that the inverse,
the logarithm, is semi-contractive.

So let v(n, ω) = ϕ(T n−1ω)ϕ(T n−2ω) · · ·ϕ(ω) be an integrable ergodic cocycle of bounded
invertible linear operators of H. Note that we here take the opposite order as compared
to (1.2). Hence if we denote pn the positive part of v(n, ω), that is

pn(ω) = (v(n, ω)∗v(n, ω))1/2 ,

then a(n, ω) := ‖log pn(ω)‖ is a subadditive cocycle, where the norm is the operator norm.
Indeed, notice that the pn is the orbit of the matrices v(n, ω)∗ acting by isometry on Pos,
now in the right order for the metric statements. The distance from the identity to the
nth point of the random orbit in Pos gives a subadditive cocycle. Since the logarithm
preserves distance from Id to p, and contracts distances between p and q not the identity,
the inequalities between distances go in the right direction so that the subadditivity of the
distances between points is preserved. This is explained in [K02]. Therefore the proof of
Corollary 1.5 as given in Section 3 goes through. We conclude that for a.e. ω there is a linear
functional Fω on Sym (or on the full space of bounded linear operators, by Hahn-Banach)
of norm 1 such that

lim
n→∞

1

n
Fω (log pn(ω)) = lim

n→∞

1

n
‖log pn(ω)‖,

which is Theorem 1.7.
For comparison, the classical formulation of the multiplicative ergodic theorem is equiv-

alent to the fact that pn(ω)
1/n, or 1

n log pn(ω), converges in norm as n → ∞. In general
Sym is not uniformly convex, so our weaker convergence seems near best possible (in view
of the counterexample in [KN81] mentioned above). Under stronger assumptions, one can
probably promote it to a stronger statement. When Sym is a Hilbert space, for example in
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the setting of Hilbert-Schmidt operators, the linear functionals are given by M 7→ Tr(AM).
This implies Oseledets theorem (it is actually stronger, a more uniform convergence) as
Ruelle explains for compact operators, see [KM99].

As was remarked in the introduction, it is well-known that in general, even for powers of
just one operator, one cannot hope for a Oseledets-type Lyapunov regularity.

5. Cocycles of holomorphic maps

Pseudo-metrics are frequently employed in the theory of several complex variables. (Pseudo

refers to the fact that for these distances the axiom about d(x, y) = 0 may fail.) This is
partly so because of the Schwarz lemma but also thanks to their connection to diophantine
problems (Lang’s Conjecture [La74]). Given a complex analytic space Z, we denote the
associated Kobayashi pseudo-distance dZ . Every holomorphic map between complex spaces
f : Z → W is 1-Lipschitz with respect to these pseudo-metrics:

dW (f(z1), f(z2)) ≤ dZ(z1, z2)

for all points z1, z2 ∈ Z. For instance we have that the pseudo-metric on C is identically
0 for all pairs of points. One says that a space Z is Kobayashi-hyperbolic if dZ is a true
metric. For example hyperbolic Riemann surfaces are always hyperbolic in this sense too,
in fact the metric dZ coincides with the hyperbolic metric coming from the Poincaré metric
on the universal covering space. (These facts already explain the theorems of Liouville and
Picard on entire functions.)

Many papers have been devoted to the topic of extending the Wolff-Denjoy theorem, and
there are also papers about composing random maps, in both orders, generalizing continued
fraction expansion, see [KeL07] and references therein.

Even for a pseudo-metric one defines metric functionals and horofunctions as before. So
our multiplicative ergodic theorem in principle applies, and gives an extension of the Wolff-
Denjoy theorem to a vastly more general situation:

Theorem 5.1. Let u(n, ω) be an integrable ergodic cocycle of holomorphic self-maps of a

complex space Z. Then for a.e. x there is a metric functional hω for the pseudo-metric space

(Z, dZ ) such that

lim
n→∞

−
1

n
hω(u(n, ω)z) = A := lim

n→∞

1

n
dZ(u(n, ω)z, z).

It remains to understand horofunctions. Under certain convexity and smoothness assump-
tions, these metrics are Gromov hyperbolic or something slightly weaker, and our result then
implies that the orbit converges to a boundary point, provided A > 0. For the state-of-the-
art of the metric geometry of the Kobayashi metric, we refer to [K05, AR14, Z17] and
references therein. Here is a corollary:

Corollary 5.2. Let u(n, ω) be an integrable ergodic cocycle of holomorphic maps of D,

where D is a bounded domain in C
d which is either strictly convex, strictly pseudo-convex

with C2-smooth boundary, or pseudo-convex with analytic boundary. Unless for a.e. ω

1

n
dD(u(n, ω)z, z) → 0
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as n → ∞, it holds that a.e. orbit u(n, ω)z converges to some boundary point ξω ∈ ∂D. The

boundary point may depend on ω but is independent of z ∈ D.

Proof. It is known that under these assumptions on D the metric space (D, d) is a proper
metric space, where d = dD the Kobayashi metric. Assuming A > 0, the orbit accumulates
on ∂D and our Theorem 1.4 provides for a.e. ω a horofunction h such that

h(u(n, ω)z) → −∞

when n → ∞ and any z ∈ D. We may assume that a sequence xn defining h (say with base
point x) converges to some point ξ in ∂D.

In the case D is strictly convex it is shown in [AR14] that Abate’s big horospheres

Fx(ξ,R) =

{
z ∈ D : lim inf

w→ξ
d(z, w) − d(x,w) <

1

2
logR

}

can only meet the boundary in one point. It is clear that {z : h(z) < 0} is contained in
Fx(ξ, 0). Thus we must have that u(n, ω)z → ξ as n → ∞.

In the two remaining cases it is known from [K05] and references therein that for any
sequence zn converging to a different boundary point, there is a constant R > 0 such that
for all n,m

R > (zm, xn) :=
1

2
(d(x, zm) + d(x, xn)− d(zm, xn)) .

Therefore it would be impossible that h(zm) < 0 since d(x, zm) → ∞. Hence again the
conclusion that u(n, ω)z → ξ. �

6. Behaviour of extremal length under holomorphic self-maps of

Teichmüller space

Thurston announced in his celebrated preprint from 1976 [T88, Theorem 5] that isotopy
classes of surface diffeomorphisms admit some kind of Lyapunov exponents. Let S be a
closed surface of genus g ≥ 2. For any isotopy class α of simple closed curves on S, and ρ a
Riemannian metric, the length Lρ(α) is the shortest length of a curve in the isotopy class
α for the metric ρ. Given a diffeomorphism f of S, there are a finite number of exponents
λi such that

Lρ(f
nα)1/n → λi

as n → ∞ for some i depending on α. In the generic case there is only one exponent. This is
proved passing to the Teichmüller space Tg whose points are equivalence classes of metrics,
and instead considering the action of f there. Indeed, one has

Lρ(f
nα) = Lf−nρ(α).

This was partly generalized to cocycles in [K14]. We also refer to [H16] for a refinement
in the i.i.d. case. In several instances, again mainly due to Thurston, certain holomorphic
self-maps of the Teichmüller space arise. Unless they are biholomorphic they do not give
rise to an isotopy class of diffeomorphisms of the underlying surface. It is therefore natural
to consider how lengths behave under the metric u(n, ω) with this order of composition. In
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the case of holomorphic maps it is more natural to consider length from complex analysis,
namely the extremal length of Beurling-Ahlfors:

Extx(α) = sup
ρ∈[x]

Lρ(α)
2

Area(ρ)
,

where the supremum is taken over all metrics in the conformal class of x.
The link between the Teichmüller metric dT and extremal length comes via Kerckhoff’s

formula:

dT (x, y) = sup
α

1

2
log

Extx(α)

Exty(α)
.

We get applying our main theorem to the Teichmüller distance, using the identification
of horofunctions in this metric due to Liu and Su, and following the arguments in [K14]:

Theorem 6.1. Let u(n, ω) be an integrable cocycle of holomorphic self-maps of the genus g
Teichmüller space Tg. Denote by dT the Teichmüller distance. Then for a.e. ω there is a

simple closed curve α = αω such that

lim
n→∞

1

n
log Extu(n,ω)ρ(α) = 2 lim

n→∞

1

n
dT (u(n, ω)ρ, ρ).
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