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 1 

Abstract 2 

 3 

Although a growing literature points to substantial variation in speech/language abilities related 4 

to individual differences in musical abilities, mainstream models of communication sciences and 5 

disorders have not yet incorporated these individual differences into childhood speech/language 6 

development. This paper reviews three sources of evidence in a comprehensive body of research 7 

aligning with three main themes: (a) associations between musical rhythm and speech/language 8 

processing, (b) musical rhythm in children with developmental speech/language disorders and 9 

common comorbid attentional and motor disorders, and (c) individual differences in mechanisms 10 

underlying rhythm processing in infants and their relationship with later speech/language 11 

development. In light of converging evidence on associations between musical rhythm and 12 

speech/language processing, we propose the Atypical Rhythm Risk Hypothesis, which posits that 13 

individuals with atypical rhythm are at higher risk for developmental speech/language disorders. 14 

The hypothesis is framed within the larger epidemiological literature in which recent 15 

methodological advances allow for large-scale testing of shared underlying biology across 16 

clinically distinct disorders. A series of predictions for future work testing the Atypical Rhythm 17 

Risk Hypothesis are outlined. We suggest that if a significant body of evidence is found to 18 

support this hypothesis, we can envision new risk factor models that incorporate atypical rhythm 19 

to predict the risk of developing speech/language disorders. Given the high prevalence of 20 

speech/language disorders in the population and the negative long-term social and economic 21 

consequences of gaps in identifying children at-risk, these new lines of research could potentially 22 

positively impact access to early identification and treatment.   23 
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1. Introduction 1 

Developmental speech/language disorders have a high prevalence (3-16%) in the 2 

population (Rosenbaum & Simon, 2016) but many of these cases are identified late or are not 3 

identified at all. For example, epidemiological approaches involving screening large numbers of 4 

children consistently show prevalence rates of 7-8% for Developmental Language Disorder 5 

(DLD; Tomblin et al., 1997), but only parents of a quarter of these children were aware their 6 

child had a speech or language problem. These low identification rates are relevant because 7 

speech/language disorders cause life-long difficulties in academic, social, and economic domains 8 

(Baker & Ireland, 2007; Beitchman et al., 1986; Cantwell & Baker, 1987; Catts, 1993; Conti-9 

Ramsden et al., 2018; Hall & Tomblin, 1978; Hubert-Dibon, Bru, Le Guen, Launay, & Roy, 10 

2016; Law, Rush, Schoon, & Parsons, 2009; Paul & Cohen, 1984; Rice, Sell, & Hadley, 1991). 11 

Children with dyslexia and DLD are also far more likely to enter into the juvenile justice system 12 

(Snow, 2019). Importantly, long-term consequences could be attenuated with more efficient and 13 

earlier identification of the disorders and earlier intervention (Bowyer-Crane et al., 2008; Roberts 14 

& Kaiser, 2015; Snowling, 2013).  15 

Recent work has highlighted the need to facilitate the identification of speech- and 16 

language-related developmental disorders and improve the design of early intervention by 17 

exploring risk factors in population-based samples (Raghavan et al., 2017).  Converging 18 

evidence supports comorbidities among different speech/language disorders (e.g., Dyslexia and 19 

DLD: Bishop & Snowling, 2004; Catts, Adlof, Hogan, & Weismer, 2005) and also between 20 

speech/language disorders and motor disorders (e.g., Developmental Coordination Disorder, 21 

DCD: Kaplan, Dewey, Crawford, & Wilson, 2001; Scabar, Devescovi, Blason, Bravar, & 22 

Carrozzi, 2006; Selassie, Jennische, Kyllerman, Viggedal, & Hartelius, 2005; Zwicker, Missiuna, 23 
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& Boyd, 2009) or attentional disorders (e.g., Attention Deficit Hyperactivity Disorder, ADHD: 1 

Donaher & Richels, 2012; Kaplan et al., 2001; Kovac, Garabedian, Du Souich, & Palmour, 2 

2001; Mueller & Tomblin, 2012; Redmond, 2016; Selassie et al., 2005; Westerlund, Bergkvist, 3 

Lagerberg, & Sundelin, 2002; Zwicker, Missiuna, & Boyd, 2009). This research suggests that it 4 

is unusual to have discrete, categorical developmental disorders, and that it may be more 5 

efficient to search for underlying deficits that can be identified across disorders in large samples 6 

of children. In accordance with these results, the possibility of the transdiagnostic approach has 7 

arisen in research, diagnosis and treatment of disorders (Mareva & Holmes, 2019). 8 

In the current paper, we propose that atypical rhythm might be one of the underlying risk 9 

factors that has common biological underpinnings with, and may lead to, co-morbid impairments 10 

in speech/language processing. This hypothesis will be referred to as the Atypical Rhythm Risk 11 

Hypothesis. For the purpose of the Atypical Rhythm Risk Hypothesis, we define atypical 12 

rhythm as a general construct capturing any/all of the following terms: impairments in 13 

rhythm/beat/meter sensitivity, significantly-weaker-than-normal rhythm ability/skill, poor 14 

dynamic attending, beat deafness (Sowiński & Dalla Bella, 2013) or time-based amusia (Peretz 15 

& Vuvan, 2017). Atypical rhythm can be classified by poor performance on any implicit or 16 

explicit perception or production task of rhythm or timing, such as rhythm discrimination, 17 

interval discrimination, rhythm, beat or meter processing and synchronization or entrainment. 18 

Atypical rhythm may also be described as a rhythm impairment or a rhythm disorder. While the 19 

underlying neural mechanisms giving rise to different manifestations of typical and atypical 20 

rhythm are of great interest (Fiveash, Bedoin, & Tillmann, submitted), in this paper, we will 21 

primarily focus on the clinical significance of common biological risk factors across different 22 

manifestations of atypical rhythm.  23 
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In light of recent genetic epidemiological approaches showing shared genetic architecture 1 

between related, but clinically distinct traits (e.g., common heritability across many different 2 

brain disorders: Anttila et al., 2018), new avenues for the exploration of common risk factors, 3 

such as atypical rhythm, can now be pursued and eventually expanded into the genetic domain. 4 

There are several genetic and environmental risk factors proposed for speech/language disorders, 5 

and presumably there are other risk factors still to be discovered (e.g., for a multifactorial view 6 

of language disorders focusing on dyslexia: Bishop, 2015; focusing on DLD: Bishop et al., 7 

2017). In line with this multifactorial view of language disorders, we propose that, within a pool 8 

of risk factors, a generalized rhythm/timing deficit may interact with other genetic or 9 

environmental risk factors. We here synthesize evidence linking rhythm to speech/language 10 

development and propose an overarching theoretical framework as groundwork for testing the 11 

Atypical Rhythm Risk Hypothesis. 12 

If future research supports the Atypical Rhythm Risk Hypothesis, new possibilities for 13 

incorporating rhythm tests into clinical practice may open up. For example, using atypical 14 

rhythm as a risk factor for the development of speech and language disorders could be beneficial 15 

for improving early identification of these disorders. Atypical timing skills can be measured with 16 

tasks targeting musical rhythm perception, which can be assessed earlier in development (around 17 

7-10 months, see Kalashnikova, Goswami, & Burham, 2019, or already in 2-3-day-old 18 

newborns, see Winkler et al., 2009) than primary symptoms of speech/language disorders (e.g., 19 

atypical reading in dyslexia and atypical expressive grammar in DLD that can be assessed at 20 

preschool age at the earliest, or atypical speech production in stuttering that can be assessed from 21 

age two at the earliest). In addition, rhythm tasks could be included in the language screening of 22 

preschool-age children. To develop the hypothesis of musical rhythm processing at infancy and 23 
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early childhood as a risk factor for speech/language disorders, we will synthesize different lines 1 

of research investigating whether (a) musical rhythm and speech/language skills are associated, 2 

(b) rhythm is impaired in speech/language disorders and common comorbid attentional and 3 

motor disorders, and (c) individual differences in mechanisms underlying rhythm processing 4 

skills at infancy are related to language development and the presence/absence of 5 

speech/language disorders in childhood. We will also frame this hypothesis within the larger 6 

epidemiological literature that has recently experienced a series of methodological advances 7 

allowing for large-scale testing of shared underlying biology across clinically distinct disorders. 8 

We then outline a series of predictions for future work testing the Atypical Rhythm Risk 9 

Hypothesis. 10 

 11 

 12 

2. Perceptual and neural mechanisms of human rhythm processing ability and their 13 

relation to higher-level language processes 14 

Temporal regularities are present at multiple hierarchical levels in both music and speech. 15 

In the domain of music, this regularity is more salient as temporal intervals of the underlying 16 

beat are isochronous, whereas in speech there is a higher variability in intervals (e.g., also 17 

referred to as quasi-periodic: Peelle & Davis, 2012). When listening to music, a basic frequency 18 

serves as a temporal organizer; it is referred to as the pulse or beat and typically falls between 1-19 

2 Hz (see London, 2004). Strong and weak beats are grouped into a hierarchical metrical 20 

structure, which is a cognitive construct of the listener (Lerdahl & Jackendoff, 1983). In spoken 21 

language, the rhythm of speech is carried by the so-called amplitude envelope, which captures 22 

information about duration, rhythm, tempo, and stress of speech (Goswami, 2019; Myers, Lense, 23 

& Gordon, 2019; Kotz, Ravignani, & Fitch, 2018). When the amplitude envelope is degraded, 24 
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speech can become unintelligible (Ghitza, 2012). Similarly to musical rhythm, groupings of 1 

strong and weak accented speech events (such as stressed and unstressed syllables) form metrical 2 

structures. These stress patterns play a role both in language acquisition (Bernard & Gervain, 3 

2012; de Carvalho, Dautriche, & Christophe, 2016; Dupoux, Pallier, Sebastian, & Mehler, 1997; 4 

Gervain & Werker, 2013; Jusczyk, Cutler, & Redanz, 1993) and speech processing (Bion, 5 

Benavides-Varela, & Nespor, 2011; Dilley & McAuley, 2008). At this point, we would like to 6 

emphasize that when we use the term rhythm processing in the paper both in relation to music 7 

and speech, we are also referring to the processing of beat and metrical structures of the stimuli 8 

as an aspect of rhythm processing. 9 

Based on accumulating evidence in recent research (summarized below), several theories 10 

have outlined shared underlying processes for musical rhythm and speech processing: the 11 

dynamic attending theory (DAT; Jones, 1976, 2016; Jones & Boltz, 1989; Large & Jones, 1999), 12 

which inspired many of the later theories; the temporal sampling framework (TSF; Goswami, 13 

2011, 2018); the sound envelope processing and synchronization and entrainment to pulse 14 

hypothesis (SEP; Fujii & Wan, 2014); the precise auditory timing hypothesis (PATH; Tierney & 15 

Kraus, 2014); and the OPERA hypothesis (Patel, 2011, 2012). Fiveash, Bedoin, and Tillmann 16 

(submitted) highlight three common elements in these theories and propose their combination as 17 

crucial for music rhythm and speech processing. (1) All theories emphasize the role of fine-18 

grained auditory processing (precise, low-level processing of the acoustic signal) in music and 19 

speech as a necessary element underlying perception and transfer effects between domains. (2) 20 

Neural oscillations and their entrainment to the auditory stimuli play a role in structural 21 

processing (including hierarchical processing), temporal integration, and prediction of music and 22 

speech signals. According to the DAT (Large & Jones, 1999; Jones, 2019), endogenous brain 23 
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oscillations synchronize with external regularities and predictable cues (e.g., beat or stress), help 1 

to structure the auditory input, and focus attention to important elements of the auditory stimulus 2 

and its presentation over time (see also Ghitza, 2011; Giraud & Poeppel, 2012; Peelle & Davis, 3 

2012). (3) The role of sensorimotor coupling both in music rhythm and speech/language 4 

processing is included in several of these theories. The involvement of motor functions is not 5 

surprising in the case of speaking or when moving to music, but interestingly, motor areas are 6 

consistently found to be activated during the perception of music (Chen, Penhune, & Zatorre, 7 

2008; Fujioka, Trainor, Large, & Ross, 2012; Gordon, Cobb, & Balasubramaniam, 2018; Grahn 8 

& Brett, 2007; Stephan, Lega, & Penhune, 2018) and speech (Glanz et al., 2018; Möttönen, 9 

Dutton, & Watkins, 2013; Wilson, Saygin, Sereno, & Iacoboni, 2004), even in the absence of 10 

overt movement. 11 

In line with the central role of these three processes, several studies have shown 12 

overlapping brain activations in auditory and motor cortices for both musical rhythm and 13 

speech/language processing (Chen, Zatorre, & Penhune, 2006, Grahn & Brett, 2007; Keitel, 14 

Benwell, Thut, & Gross, 2018; Kotz et al., 2018).  Kotz, Schwartze, and Schmidt-Kassow (2009) 15 

outlined a network involving frontal (dorsolateral prefrontal cortex), supplementary motor area 16 

(SMA) and basal ganglia regions (the pre-SMA-basal ganglia circuit). They suggest that this 17 

circuitry is involved in the processing of predictable sensory cues, such as beat in music or word 18 

stress/linguistic meter in speech. The authors also emphasize the role of neural oscillations and 19 

propose that the pre-SMA-basal ganglia circuit regulates the synchronization of neural 20 

oscillations with auditory stimuli and therefore plays a crucial role in predicting when the next 21 

event will occur in a sequence. Although cortical oscillations can be reliably measured in 22 

humans, oscillatory activity originating from subcortical structures, such as the basal ganglia, 23 
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cannot be easily isolated. However, primate research has provided evidence that oscillations in 1 

the beta frequency band (which have been shown to play a crucial role in rhythm processing: 2 

Zanto, Large, Fuchs, & Kelso, 2005) originate from the basal ganglia, suggesting a similar 3 

function in humans (Merchant & Bartalo, 2018). 4 

Another line of research emphasizes the shared nature of structural and hierarchical 5 

processing in language and music—including rhythm processing. According to Lashley (1951), 6 

language and music are both made up of sub-elements that need to be correctly ordered in the 7 

temporal domain. The organization of the sub-elements can be described by hierarchical, tree-8 

like structures, in which lower levels are incorporated by higher levels, and are ordered 9 

according to specific rules (Fitch, 2017). Fitch and Martins (2014) proposed that the emergence 10 

of tree-like syntax in the grammatical structure of language in early humans was an evolutionary 11 

turning point that might also have coincided with the emergence of the metrical structure of 12 

rhythm in human musicality. In line with this proposal, hierarchical structures in language and 13 

music seem to be processed using similar cognitive and neural mechanisms (Patel, 2003, 2008). 14 

Although most of the studies investigating shared structural processing between music and 15 

language have focused on harmonic syntax or on music processing in general (Fiveash & 16 

Pammer, 2014; Fiveash, McArthur, & Thompson, 2018; Herdener et al., 2014; Hoch, Poulin-17 

Charronnat, & Tillmann, 2011; Jentschke & Koelsch, 2009; Jentschke, Koelsch, Sallat, & 18 

Friederici, 2008; Koelsch, Gunter, Wittfoth, & Sammler, 2005; Kunert, Willems, & Hagoort, 19 

2016; Slevc, Rosenberg, & Patel, 2009; Steinbeis & Koelsch, 2008), recent evidence suggests 20 

some associations between linguistic and rhythmic syntax as well (Sun, Liu, Zhou, & Jiang, 21 

2018). 22 
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Hierarchically organized neural oscillations, emphasized by several theories of musical 1 

rhythm and speech processing, might play a crucial role in the processing of hierarchically 2 

organized syntactic structures as well. According to the Metric Binding Theory by Jones (2009), 3 

it is the internal entrainment of multiple nested neural oscillators and their binding that supports 4 

meter processing and enhances temporal predictions. It is possible that the same process might 5 

extend to language and allow for higher-level structure learning and processing. This hypothesis 6 

is supported by studies showing that neural oscillations entrain not only to physically marked 7 

beats and stressed syllables, but also to higher-level structures both in music (e.g., the metrical 8 

structure; Nozaradan, Peretz, Missal, & Mouraux, 2011) and language (e.g., syntactic structure; 9 

Ding, Melloni, Zhang, Tian, & Poeppel, 2015), which are not necessarily physically present in 10 

the signal (Fiveash et al., 2020; Tal et al., 2017). Efficient entrainment, defined here as the 11 

precise phase-locking of neural oscillations at the appropriate frequency, to higher-level 12 

structures in musical rhythm and language may also lead to improved prediction skills, possibly 13 

through attention allocation (e.g., Large & Jones, 1999; Schmidt-Kassow & Kotz, 2009). 14 

Entrainment and increased attention to important parts of the signal may not only facilitate 15 

temporal predictions (e.g., predicting when something will happen; predictive timing, Friston, 16 

2005), but also lead to better predictions of what will happen next (predictive coding, Friston, 17 

2005; Jones & Boltz, 1989; Koelsch, Vuust, & Friston, 2019). The predictions developed for the 18 

what and when of incoming input allow for faster and more efficient processing of these events 19 

and their underlying structures, whether musical or linguistic. The possibility of such a link 20 

between predictive skills in rhythm and language is supported by preliminary evidence showing 21 

that children who are impaired in tapping tasks are also worse at making structure-based 22 

morpho-syntactic predictions in language (Persici, Stucchi, & Arosio, 2019).  23 
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The research findings reviewed above suggest that a shared network underlies musical 1 

rhythm and speech/language processing that supports the processing of surface-level features of 2 

musical rhythm and speech as well as the processing of syntactic structures in musical rhythm 3 

and language (Figure 1). In the following sections, we summarize evidence for associations 4 

between musical rhythm and speech/language processing in typical and atypical populations. 5 

 6 

  7 

 8 
 9 

Figure 1. Shared underlying mechanisms for musical rhythm and speech/language 10 
processing. A) Models of underlying mechanisms for musical rhythm and speech/language 11 

processing emphasize the role of fine-grained auditory processing, oscillatory brain networks and 12 

sensorimotor coupling (Fiveash et al., submitted) B) Another line of literature emphasizes the 13 

shared role of processing of hierarchical structures in both musical rhythm and syntactic 14 

processing (e.g., Fitch & Martins, 2014; bottom figure is adapted from Heard & Lee, 2019). 15 

 16 

 17 

 18 

3. Individual differences: a synthesis of research investigating associations between rhythm 19 

and speech/language in typically developing individuals  20 
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Overlapping neural processes underlying musical rhythm and speech/language abilities 1 

are supported by a large body of literature showing associations between individual differences 2 

in language and rhythm skills (Anvari, Trainor, Woodside, & Levy, 2002; Degé, Kubicek, & 3 

Schwarzer, 2015; Douglas & Willatts, 1994; Gordon, Shivers et al., 2015; Grube, Kumar, 4 

Cooper, Turton, & Griffiths, 2012; Holliman, Wood, & Sheehy, 2010; Magne, Jordan, & 5 

Gordon, 2016; Moritz, Yampolsky, Papadelis, Thomson, & Wolf, 2013; Ozernov-Palchik, Wolf, 6 

& Patel, 2018; Strait, Hornickel, & Kraus, 2011). For instance, beat synchronization and early 7 

literacy as well as spoken language skills are strongly linked (see Figure 2 showing data from 8 

Woodruff Carr, White-Schwoch, Tierney, Strait, & Kraus, 2014). In addition, there is ample 9 

evidence of better performance on various language tasks after rhythm/music training in the 10 

typically developing population (Degé & Schwarzer, 2011; Linnavalli, Putkinen, Lipsanen, 11 

Huotilainen, & Tervaniemi, 2018; Patscheke, Degé, & Schwarzer, 2016; Rautenberg, 2015; Taub 12 

& Lazarus, 2012; Zhao & Kuhl, 2016). Moreover, several studies have found a short-term 13 

facilitating effect of regular rhythm on subsequent grammar task performance in typically 14 

developing children (Bedoin et al., 2016; Canette et al., 2020; Chern, Tillmann, Vaughan, & 15 

Gordon, 2018; Ladányi, Lukács, & Gervain, submitted; Przybylski et al., 2013). In addition, 16 

better speech/language skills, such as more efficient speech processing and word segmentation, 17 

have been reported for musicians compared to non-musicians (Brod & Opitz, 2012; François, 18 

Jaillet, Takerkart, & Schön, 2014; Marie, Magne, & Besson, 2011; Musacchia, Sams, Skoe, & 19 

Kraus, 2007; Sares, Foster, Allen, & Hyde, 2018; Zuk et al., 2013), although this advantage 20 

could originate from other differences between musicians and non-musicians beyond differences 21 

in rhythm skills. It is also important to note that individual differences in musical ability or 22 

aptitude in adults predict speech perception task performance beyond musical training (Mankel 23 
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& Bidelman, 2018). Interestingly, evidence extends beyond surface-level auditory characteristics 1 

of speech and to deeper, hierarchically structured syntactic processing of language (Gordon, 2 

Jacobs, Schuele, & McAuley, 2015; Politimou, Dalla Bella, Farrugia, & Franco, 2019; Woodruff 3 

Carr et al., 2014). A complete review of correlations between rhythm and speech/language skills 4 

in typical development is beyond the scope of the present paper (see Fiveash, Bedoin, & 5 

Tillmann, submitted). 6 

 7 

 8 

  9 
 10 

Figure 2. Rhythm production ability and early literacy skills. Convergent evidence across 11 

data acquired with various methods, in support of associations between rhythm skills and 12 

language in preschool-aged children (adapted from Woodruff Carr et al., 2014). Children that 13 

performed well on a musical beat synchronization task (here called synchronizers, in red, shown 14 

on the rose plots on left to have better drumming accuracy) encoded speech more efficiently (top 15 

right) and show significantly better phonological awareness than their non-synchronizer peers 16 

(bottom right). Synchronizers also performed better on a sentence repetition task (it is important 17 

to note that sentence repetition/imitation tasks not only require auditory perception and short-18 

term memory but also reflect deeper access to the grammatical structure of language: see Klem 19 

et al., 2015). 20 

 21 
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4. Atypical rhythm in children with atypical speech/language development 1 

Associations between rhythm and speech/language processing are strongly supported by 2 

recent research demonstrating that children with speech/language developmental disorders (e.g., 3 

dyslexia, DLD, stuttering), as well as children with speech/language impairments as co-morbid 4 

deficits in other developmental disorders (e.g., DCD, ADHD), often exhibit underlying timing 5 

deficits that could be contributing to the symptomatology within each pathology. In each of these 6 

disorders, research has revealed some evidence for associated timing impairments, even though 7 

specifics of these impairments differ (see a summary of this research in Table 1). Considering 8 

that there are high levels of comorbidity between disorders (Bishop & Snowling, 2004; Catts et 9 

al., 2005; Donaher & Richels, 2012; Kaplan et al., 2001; Kovac et al., 2001; Mueller & Tomblin, 10 

2012; Redmond, 2016; Scabar et al., 2006; Selassie et al., 2005; Westerlund et al., 2002; Zwicker 11 

et al., 2009), it is likely that there are shared impairments in underlying neural mechanisms 12 

across different pathologies. We will return to possible etiologies of co-morbidities across these 13 

disorders in Section 6; here we focus on atypical rhythm in several highly prevalent 14 

developmental speech/language disorders. Together with Fiveash, Bedoin, and Tillmann 15 

(submitted), we suggest that common deficits in timing may be largely related to impaired fine-16 

grained auditory processing, impaired tracking of rhythms via neural oscillations, and impaired 17 

sensorimotor coupling in the brain. We further propose that impaired hierarchical processing 18 

could result in both impaired processing of rhythmic structures and syntactic processing of 19 

language. Impairment in one or more of these underlying mechanisms appears to be associated 20 

with atypical speech/language processing, rhythm processing and/or motor impairments. In 21 

addition, we need to consider environmental factors and genetic family history, as further 22 

discussed below. 23 
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 1 

Atypical rhythm in dyslexia. Recent research has shown that children with dyslexia are 2 

impaired in comparison to typically developing children in rhythm perception and production 3 

tasks. According to the Temporal Sampling Framework (TSF; Goswami, 2011), many of the 4 

processing deficits observed in dyslexia may be accounted for by inefficient entrainment of brain 5 

oscillations to sensory input, which in turn is theorized to affect not only rhythm processing, but 6 

also phonological processing as well as other aspects of language processing. Studies 7 

investigating neural entrainment in individuals with dyslexia support this hypothesis by showing 8 

deficits in synchronization to the speech envelope (Leong & Goswami, 2014; Molinaro, 9 

Lizarazu, Lallier, Bourguignon, & Carreiras, 2016; Power, Colling, Mead, Barnes, & Goswami, 10 

2016) regardless of the language spoken (e.g., English: Goswami et al., 2010; English and 11 

Hungarian: Surányi et al., 2009; Chinese: Wang, Huss, Hämäläinen, & Goswami, 2012) and 12 

atypical neural entrainment to non-speech stimuli compared to controls (Cutini, Szűcs, Mead, 13 

Huss, & Goswami, 2016; Frey, François, Chobert, Besson, & Ziegler, 2019). Further studies 14 

have shown impaired beat synchronization in individuals with dyslexia (Colling, Noble, & 15 

Goswami, 2017; Overy, Nicolson, Fawcett, & Clarke, 2003; Thomson & Goswami, 2008). 16 

Relatedly, rhythm, language and reading skills are correlated: individuals with dyslexia who 17 

show weaker performance in rhythm perception and production tasks also show weaker 18 

phonological awareness (Flaugnacco et al., 2014; Forgeard, Winner, Norton, & Schlaug, 2008; 19 

Goswami, Gerson, & Astruc, 2010; Huss et al., 2011; Lee, Sie, Chen, & Cheng, 2015; Thomson 20 

& Goswami, 2008) and reading skills (Dellatolas, Watier, Le Normand, Lubart, & Chevrie-21 

Muller, 2009; Flaugnacco et al., 2014; Goswami, Huss, Mead, Fosker, & Verney, 2013; 22 

Goswami, Mead, Fosker, Huss, Barnes, & Leong, 2013; Goswami et al., 2002, 2010; Huss et al., 23 
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2011; Muneaux, Ziegler, Truc, Thomson, & Goswami, 2004; Thomson & Goswami, 2008). 1 

Individuals with dyslexia also show impaired processing of rise-time information, and this deficit 2 

has been linked to inefficient entrainment of neural oscillations to the speech stream (Goswami 3 

et al., 2016; Huss et al., 2011; Leong, Hämäläinen, Soltész, & Goswami, 2011; Thomson, Fryer, 4 

Maltby, & Goswami, 2006). Deficits in neural entrainment to higher-level structures throughout 5 

development may also result in impaired hierarchical processing skills. Interestingly, recent 6 

research suggests that children with dyslexia perform below age-matched peers in tasks that 7 

require the use of morphological information to predict incoming material (Persici et al., 2019). 8 

These phonological and rhythmic deficits do not appear to fully recover later in 9 

development, though some studies suggest that deficits in the adult population may be 10 

constrained to the type of measure used (Leong & Goswami, 2014). Adults with dyslexia show 11 

significantly weaker synchronization and beat perception skills as compared to adults with 12 

typical development (Pasquini, Corriveau, & Goswami, 2007; Thomson et al., 2006), and exhibit 13 

impaired low-frequency neural entrainment, regardless of whether speech (Molinaro et al., 2016) 14 

or non-speech (Hämäläinen, Rupp, Soltész, Szücs, & Goswami, 2012; Lizarazu et al., 2015) 15 

stimuli were used. As in children, this temporal processing deficit in keeping time with an 16 

external stimulus is particularly disrupted at 2 Hz (Soltész, Szűcs, Leong, White, & Goswami, 17 

2013), a frequency that is also important for speech perception, as it corresponds to the accented 18 

syllabic rate. Musical training may reduce these processing deficits in individuals with dyslexia, 19 

as it has been shown that musicians with dyslexia have better auditory temporal processing than 20 

non-dyslexics (Bishop-Liebler et al., 2014) and better amplitude information processing skills 21 

than non-musicians with dyslexia (Zuk et al., 2017). 22 
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Building on these observed connections, a few studies have aimed to apply rhythm 1 

training approaches in children with dyslexia and found improved language- and reading-related 2 

skills after training (Bonacina, Cancer, Lanzi, Lorusso, & Antonietti, 2015; Flaugnacco et al., 3 

2015; Habib et al., 2016; Overy, 2000; Thomson, Leong, & Goswami, 2013). Interestingly, even 4 

a short presentation of rhythmic musical primes improves grammatical processing of 5 

subsequently presented sentences in children (Przybylski et al., 2013) and adults (Canette et al., 6 

2019) with dyslexia. These results further support the hypothesis that rhythm and language 7 

processing are related, and show that music rhythm training in the long-term and rhythm 8 

stimulation in the short-term may be useful approaches to improve language skills in addition to 9 

more traditional language-centered therapeutic methods (Schön & Tillmann, 2015).  10 

 11 

Atypical rhythm in developmental language disorder. Children with DLD show 12 

difficulties in both speech and music rhythm processing (Bedoin et al., 2016; Cumming, Wilson, 13 

Leong, Colling, & Goswami, 2015; Sallat & Jentschke, 2015; Weinart, 1992). They have weaker 14 

synchronization skills than controls when asked to tap with the beat (Corriveau & Goswami, 15 

2009; Cumming et al., 2015), though synchronization deficits are not observed in all studies 16 

(Zelaznik & Goffman, 2010), or for all types of tapping tasks (Vuolo, Goffman, & Zelaznik, 17 

2017, in which differences in synchronization skills between typically-developing and children 18 

with DLD were only found when participants were asked to use both hands in a clapping task 19 

compared to just one hand). Recent studies have demonstrated the presence of deficits in 20 

amplitude envelope and rise-time information processing for children with DLD (Corriveau et 21 

al., 2007; Goswami et al., 2016; Richards & Goswami, 2015). Impaired sensitivity to amplitude 22 

rise-time has been associated with poor performance on language and literacy measures (such as 23 
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vocabulary attainment, phonological awareness, and reading; Corriveau et al., 2007) and speech 1 

stress processing (Cumming et al., 2015; Richards & Goswami, 2015). Similar patterns in 2 

children with DLD and dyslexia led Goswami to extend the TSF to DLD, suggesting shared 3 

underlying impairments across disorders (Goswami et al., 2016). 4 

Several studies also reported difficulties in prosody processing in children with DLD 5 

compared to TD children (Fisher, Plante, Vance, Gerken, & Glattke, 2007; Richards & 6 

Goswami, 2019; Sabisch, Hahne, Glass, von Suchodoletz, & Friederici, 2009; Wells & Peppé, 7 

2003), whereas others report intact prosody perception in DLD (Goffman, 2004). Weinert (1992) 8 

found that the ability to take advantage of prosodic information in children with DLD was 9 

associated with their performance on a rhythm discrimination task, suggesting that impaired 10 

processing of prosody and rhythm may be caused by an underlying impairment in the processing 11 

of temporal cues. 12 

Similarly to dyslexia, the presentation of a rhythmic prime enhances subsequent 13 

grammatical sentence judgments in children with DLD compared to both irregular primes 14 

(Ladányi, Lukács, & Gervain, submitted; Przybylski et al., 2013) and neutral non-musical 15 

auditory primes (Bedoin et al., 2016), supporting the hypothesis that rhythm and language 16 

processing are related and suggesting that using rhythm in the therapy of children with DLD 17 

might facilitate speech/language therapy. 18 

 19 

Atypical rhythm in stuttering. Recent research has suggested that speech dysfluency in 20 

stuttering is based on impaired sensorimotor coupling (Chang, Chow, Wieland, & McAuley, 21 

2016; Hickok, Houde, & Rong, 2011) and a disruption to the production of timing cues from the 22 

basal ganglia (Alm, 2004; Toyomura, Fujii, & Kuriki, 2011). Individuals who stutter tend to be 23 
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impaired in several types of rhythmic tasks, including unpaced tapping, which relies on internal 1 

time keeping (Olander, Smith, & Zelaznik, 2010). In addition, they show weaker synchronization 2 

to an external stimulus (Falk et al., 2015), and poorer rhythm discrimination (Wieland, McAuley, 3 

Dilley, & Chang, 2015; see Figure 3) than typically developing peers. Impaired predictive timing 4 

via sensorimotor coupling has been suggested as the underlying cause of the rhythm deficits 5 

reported for individuals who stutter (Hickok et al., 2011). Interestingly, it has been shown that 6 

the addition of external auditory stimulation can attenuate stuttering, potentially because it 7 

provides an external rhythmic cue to compensate for the impaired internal time keeping 8 

(Toyomura et al., 2011). Singing also enhances fluency in speech, likely by regulating the 9 

temporal structure of the words (Falk, Maslow, Thum, & Hoole, 2016; Glover, Kalinowski, 10 

Rastatter, & Stuart, 1996; Wan, Rüber, Hohmann, & Schlaug, 2010). 11 

 12 

 13 
 14 

 15 
 16 

 17 

Figure 3. Rhythm perception and production difficulties in children with stuttering.  18 
A) Children who stutter show impaired rhythm perception performance compared to TD children 19 

on a task requiring discrimination of simple and complex musical rhythmic sequences (Wieland 20 

et al., 2015). B) Children and adolescents who stutter are less accurate than TD peers on 21 

synchronization tests, both tapping to a metronome at certain rates and tapping to the beat in 22 

music (Falk et al., 2015). 23 

 24 

Atypical rhythm in other speech disorders. Although several speech disorders are 25 

differentiated in the literature beyond stuttering (speech-sound disorders including 26 

A. B. 
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articulation/phonological disorder, dysarthria, and childhood apraxia of speech, and voice 1 

disorders), most have a known physiological cause (e.g., cleft palate, impaired laryngeal 2 

structures or brain trauma). At the same time, the underlying cause of some forms of 3 

articulation/phonological disorder and childhood apraxia is unknown, and they may have partly 4 

shared etiology and comorbidities with the other speech/language disorders discussed here. 5 

Articulation and phonological sequencing, which requires timing and motor skills, are often 6 

impaired in these children. Given the timing demands of sequencing, we believe it would be of 7 

great interest to investigate atypical rhythm in these populations. We are aware of one study that 8 

explored rhythm processing in individuals with speech difficulties (Alcock et al., 2000). The 9 

authors investigated nine individuals (children and adults) belonging to the same family (KE 10 

family) showing both expressive and receptive speech and language impairments together with 11 

difficulties with nonverbal oral movements, linked to rare variants in the gene FOXP2. Affected 12 

family members performed worse both on rhythm perception and production tasks compared to 13 

control participants. Future work is needed to explore rhythm across different motor speech 14 

disorders. 15 

 16 

Atypical rhythm in developmental coordination disorder. In contrast to numerous 17 

studies investigating the motor circuitry involved in musical rhythm processing in typically 18 

developing individuals (Merchant, Grahn, Trainor, Rohrmeier, & Fitch, 2015), and atypical 19 

rhythm processing in individuals with Parkinson’s Disease (Grahn & Brett, 2009; Harrington, 20 

Haaland, & Hermanowitz, 1998; O’Boyle et al., 1996)
1
, only a few studies have examined 21 

                                                 

1
 Note that musical rhythm processing, speech/language functions and motor impairments were 

reported in non-developmental disorders such as Parkinson’s disease and in acquired brain 
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rhythm processing in children with DCD, a disorder characterized by impaired motor abilities, 1 

especially related to postural control, motor learning, and sensorimotor coordination that affect 2 

quality of life (Zwicker et al., 2009). Children with DCD show poorer synchronization to an 3 

external beat compared to typically developing children in synchronization tasks (Rosenblum & 4 

Regev, 2013), and children with both ADHD and DCD show even poorer synchronization 5 

compared to children with just ADHD or matched controls (Puyjarinet et al., 2017). However, all 6 

of these studies investigated performance in rhythm production tasks, which may be easily 7 

affected by inherent motor coordination deficits. Only Trainor, Chang, Cairney, and Li (2018) 8 

have investigated auditory timing with perceptual tasks in DCD; their first behavioral and 9 

neuroimaging evidence suggest that auditory perceptual timing (measured with duration and 10 

rhythmic discrimination tasks) may also be impaired in this population. Interestingly, motor 11 

impairments in children with DCD have also been associated with difficulties in language 12 

processing (Mirabella et al., 2017). Future research should now investigate more specifically the 13 

potential timing and/or perception deficits in DCD as well as whether and how the impairments 14 

in timing might be related to language processing skills in cases of DCD with atypical language 15 

development.  16 

 17 

Atypical rhythm in attention deficit hyperactivity disorder. Recent work suggests that 18 

both children and adults with ADHD show poorer performance in paced and unpaced tapping 19 

and in body movement synchronization tasks compared to controls (Amrani & Golumbic, 2019; 20 

                                                                                                                                                             

injuries (e.g., Ariatti, Benuzzi, & Nichelli, 2008; Grahn & Brett, 2009; Kotz & Gunter, 2015; 

Smith & Caplan, 2018). The investigation of the relationship between these impairments has a 

theoretical importance as well as clinical relevance. This paper and the Atypical Rhythm Risk 

Hypothesis, however, focus on developmental disorders, and the extension to non-developmental 

disorders is beyond the scope of the paper. 
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Carrer, 2015; Hove, Gravel, Spencer, & Valera, 2017; Noreika, Falter, & Rubia, 2013; Slater & 1 

Tate, 2018; Valera et al., 2010; Zelaznik et al., 2012), especially when synchronization requires 2 

beat extraction (Puyjarinet et al., 2017). Though it is difficult to disentangle the role of more 3 

generalized attentional deficits from deficits in temporal processing (and in particular, temporal 4 

attention and dynamic attending), this emerging literature points to difficulties with both 5 

synchronization and internal time-keeping in ADHD (see Falter & Noreika, 2014, for a review). 6 

Future work in larger ADHD samples with a variety of rhythm tasks is needed to tease apart 7 

various dimensions of rhythm processing, their potential deficits in ADHD, and how they relate 8 

to domain-general attentional deficits. 9 

 10 

  Age Task Evidence for atypical 

rhythm? 

Dyslexia Colling, Noble, & 

Goswami (2017) 

9-10 

years 

- Beat perception 

- Tapping task 

Yes 

Cutini, Szűcs, Mead, 

Huss, & Goswami 

(2016) 

12 years - Neural entrainment 

to amplitude-

modulated noise 

Yes (2 Hz) 

Frey, François, Chobert, 

Besson, & Ziegler 

(2018) 

10 years - Neural processing 

of speech sounds in 

silence, noise, and 

envelope conditions 

Yes 

Goswami et al. (2002) 11 years - Beat detection in 

amplitude-

modulated sounds 

Yes 

Goswami et al. (2010) 7-13 

years 
- Amplitude envelope 

onset (rise time) 

discrimination 

Yes 

Goswami, Huss, Mead, 

Fosker, & Verney (2013) 

8-14 

years 

- Beat perception Yes 

Goswami, Mead, Fosker, 

Huss, Barnes, & Leong 

(2013) 

9 years - Syllable stress 

discrimination  

Yes 

Goswami et al. (2016)  - Discrimination of 

amplitude rise time 

- Temporal 

modulations of 

nursery rhymes 

-Yes 

 

-No but impaired acoustic 

learning during the 

experiment from low-pass 

filtered targets 
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Hämäläinen, Rupp, 

Soltész, Szücs, & 

Goswami (2012) 

19-29 

years 
- Amplitude-

modulated white 

noise 

Yes at 2 Hz 

Huss, Verney, Fosker, 

Mead, & Goswami 

(2011) 

8-13 

years 
- Amplitude envelope 

rise time perception 

Yes 

Lee, Sie, Chen, & Cheng 

(2015) 

9-12 

years 
- Rhythmic imitation Yes 

Leong & Goswami 

(2014) 

< 40 

years, 

mean: 22 

years 

- Rhythmic detection 

to identify 

amplitude-

modulated nursery 

rhyme sentences 

Yes 

Leong, Hämäläinen, 

Soltész, & Goswami 

(2011) 

17-41 

years 
- Amplitude envelope 

onset (rise time) 

perception and 

syllable stress 

detection 

Yes 

Lizarazu et al. (2015) children: 

8 – 14 

years; 

adults: 

17-44 

years 

- Auditory neural 

synchronization 

Yes 

Molinaro, Lizarazu, 

Lallier, Bourguignon, & 

Carreiras (2016) 

children: 

8-14 

years; 

adults: 

22 – 37 

years 

- Neural 

synchronization to 

spoken sentences 

(MEG) 

Yes 

Muneaux, Ziegler, Truc, 

Thomson, & Goswami 

(2004) 

11 years - Beat perception 

(slope) 

Yes 

Overy (2000) 6-7 years - Rhythm 

discrimination 

- Tempo 

discrimination 

- Meter reproduction 

Yes, especially in meter 

reproduction 

Overy, Nicolson, 

Fawcett, & Clarke 

(2003) 

7-11 

years 
- Tests of timing 

skills (rhythm 

copying, rhythm 

discrimination, song 

rhythm, tempo 

copying, tempo 

discrimination, song 

beat) 

Yes 

Pasquini, Corriveau, & 

Goswami (2007) 

19-27 

years 
- Rise time perception 

and temporal order 

judgement 

Yes 

Persici, Stucchi, & 

Arosio (2019) 

9-11 

years 
- Tapping Yes 
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Power, Colling, Mead, 

Barnes, & Goswami 

(2016) 

12-14 

years 
- Neural entrainment 

to speech syllables 

Yes 

Soltész, Szücs, Leong, 

White, & Goswami 

(2013) 

mean: 

25.8 

years 

- Neural entrainment 

to tones presented at 

2 or 1.5 Hz 

Yes 

Surányi et al. (2009) 8-9 years - Amplitude envelope 

rise time 

discrimination 

Yes 

Thomson, Fryer, Maltby, 

& Goswami (2006) 

18-31 

years 
- Basic auditory 

processing tasks 

(rise time, duration, 

and intensity 

discrimination) 

- Tempo 

discrimination 

- Tapping (uni- and 

bimanual) 

- Yes 

 

 

 

 

- No 

 

- Yes but only in the inter-

tap-interval variability 

Thomson & Goswami 

(2008) 

10 years - Rhythmic 

discrimination 

- Paced and unpaced 

finger tapping 

- No 

 

 

- Yes 

Wang, Huss, 

Hämäläinen, & Goswami 

(2012) 

9-10 

years 
- Basic auditory 

processing tasks 

(rise time, duration, 

and intensity 

discrimination) 

Yes 

Zuk et al. (2017) 18-36 

years 
- Speech syllable 

discrimination 

Yes 

DLD Bedoin et al. (2016) 9-11 

years 
- Rhythm 

discrimination 

Yes 

Corriveau & Goswami 

(2009) 

7-11 

years 
- Paced and unpaced 

tapping 

Yes in the paced condition 

Corriveau, Pasquini, & 

Goswami (2007) 

7-11 

years 
- Amplitude envelope 

rise time and sound 

duration perception 

Yes 

Cumming, Wilson, 

Leong, Colling, & 

Goswami (2015) 

6-12 

years 
- Beat detection 

- Tapping 

- Speech/music task 

Yes, especially in tapping 

Goswami et al. (2016) 9 years - Discrimination of 

amplitude rise time 

- Temporal 

modulations of 

nursery rhymes 

Yes 

Richards & Goswami 

(2015) 

8-12 

years 
- Stress perception 

task 

Yes 

Richards & Goswami 

(2019) 

6-11 

years 
- stress pattern 

disruptions 

Yes 

Sabisch, Hahne, Glass, 

von Suchodoletz, & 

Friederici (2009) 

8-10 

years 
- Syntactic processing 

with prosody 

disruptions 

Yes 

Sallat & Jentschke 

(2015) 

4-5 years - Rhythmic-melodic 

perception task 

Yes 

Vuolo et al. (2017) 4-5 years - Tapping and Yes but only in the 
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bimanual clapping bimanual clapping task 

Weinert (1992) 5-8 years - Rhythmic 

discrimination 

Yes 

Wells & Peppé (2003) 8 years - Prosody perception Yes 

Zelaznik & Goffman 

(2010) 

6-8 years - Tapping and 

drawing to a 

metronome 

Yes (but no in the timing 

skill in the manual domain) 

Stuttering Chang, Chow, Wieland, 

& McAuley (2016) 

6-11 

years 
- Auditory rhythm 

discrimination task 

Yes 

Falk, Müller, & Dalla 

Bella (2015) 

8-16 

years 
- Finger tapping Yes 

Olander, Smith, & 

Zelaznik (2010) 

4-6 years - Metronome clapping Yes 

Toyomura, Fujii, & 

Kuriki (2011) 

18-55 

years 
- Metronome-timed 

speech 

No (yes in the normal 

speech condition) 

Wieland, McAuley, 

Dilley, & Chang (2015) 

6-11 

years 
- Simple and complex 

rhythms 

discrimination 

Yes 

DCD Puyjarinet et al. (2017) children: 

6-12 

years; 

adults: 

19-50 

years 

- Duration and beat 

perception 

- Tapping 

Yes 

Rosenblum & Regev 

(2013) 

7 – 12 

years 
- Metronome 

synchronization 

Yes 

Trainor, Chang, Cairney, 

& Li (2018) 

6-7 years - Auditory duration 

and rhythm 

discrimination 

- Oddball ERP 

paradigm 

Yes 

ADHD Carrer (2015) 6-14 

years 
- Rhythmic 

discrimination 

Yes 

Hove, Gravel, Spencer, 

& Valera (2017) 

20 years - Paced and unpaced 

finger tapping 

Yes (in the standard task, 

not in the one with time 

shifts) 

Puyjiarinet et al. (2017) children: 

6-12 

years; 

adults: 

19-50 

years 

- Duration and beat 

perception 

- Tapping 

Yes 

Valera et al. (2010) 10 years - Paced and unpaced 

tapping  

Yes - greater within-subject 

variability 

Zelaznik et al. (2012) 9 years - Spacebar press 

following a 

metronome 

Yes 

 1 

 2 

Table 1. Summary of current literature investigating rhythm in children with atypical 3 

speech language development.   4 
 5 
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5. Can atypical rhythm at infancy predict atypical speech/language development? 1 

The reported associations between rhythm and speech/language processing as well as 2 

atypical rhythm processing in speech/language disorders leads to the hypothesis that atypical 3 

musical rhythm processing skills at infancy could be used as a risk factor for speech/language 4 

disorders. This type of approach has been employed by Kalashnikova et al. (2019), who showed 5 

longitudinal evidence for a predictive relationship between temporal processing (measured with 6 

amplitude rise time) at infancy and oral language development. Infants’ performance on an 7 

amplitude envelope rise time discrimination task at 7-10 months of age predicted children’s 8 

performance on vocabulary tests at three years of age. To examine this potential predictive 9 

relationship between temporal processing and language development further, we first summarize 10 

research about rhythm processing in infants to explore whether infants reliably process rhythm 11 

and whether it can be measured experimentally. Then, we discuss work exploring individual 12 

differences in underlying rhythm processing mechanisms and their relationship with later 13 

language development. 14 

Experimental evidence suggests that rhythm processing starts to develop very early in 15 

life. A few infant studies showing behavioral (Hannon & Trehub, 2005; Phillips-Silver & 16 

Trainor, 2007; Zentner & Eerola, 2010) and electrophysiological (Cirelli, Spinelli, Nozaradan, & 17 

Trainor, 2016) evidence indicate that infants and newborns (Winkler, Háden, Ladinig, Sziller, & 18 

Honing, 2009) process rhythmic regularities (i.e., beat, meter) in musical stimuli. Infants are also 19 

sensitive to the rhythmic cues of speech. Newborns can discriminate between languages from 20 

different rhythmic categories (Mehler et al., 1988; Nazzi, Bertoncini, & Mehler, 1998; Ramus, 21 

2000) and discriminate words with different patterns of lexical stress (Sansavini, Bertoncini, & 22 

Giovanelli, 1997). Further, infants exploit lexical stress for word segmentation (Dupoux et al., 23 
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1997; Jusczyk, 1999) and phrasal level prosody for grammar acquisition (Bernard & Gervain, 1 

2012; de Carvalho, Dautriche, Lin, & Christophe, 2017; de Carvalho, Dautriche, & Christophe, 2 

2016; Gervain, 2018; Gervain & Werker, 2013; see electrophysiological data for infant’s 3 

sensitivity to speech rhythm in Kalashnikova, Peter, Di Liberto, Lalor, & Burnham, 2018), 4 

suggesting an important role of speech rhythm in language development. Based on the research 5 

reviewed thus far, we suggest that infants may use the same mechanisms for processing rhythm 6 

in the two domains. Future research is needed to compare the benefits of measuring the 7 

processing of music rhythm versus speech rhythm in infants in order to predict speech/language 8 

development, as each domain has a unique set of constraints and advantages. However, the 9 

temporal regularity of music rhythm makes it a useful tool to measure neural entrainment in 10 

infants, especially under noisy testing conditions. 11 

Taken together, these studies suggest that rhythm processing is functional from birth, and 12 

rhythm skills can be measured both behaviorally and physiologically. Aiming to use atypical 13 

rhythm as a risk factor for speech/language disorders also requires knowledge of whether infants 14 

show individual differences in rhythm processing and importantly, whether these differences 15 

might be related to later speech/language development as well as the presence/absence of 16 

speech/language disorders. Although we did not find any studies exploring these questions by 17 

measuring musical rhythm processing, numerous studies have investigated infants’ abilities 18 

related to fine-grained auditory processing—one of the shared fundamental aspects of rhythm 19 

sensitivity that we outlined in the Introduction based on Fiveash, Bedoin, and Tillmann 20 

(submitted). Neural entrainment of oscillations and sensorimotor coupling have been 21 

investigated by some studies, but to our knowledge, no studies have investigated the relationship 22 

between rhythm and hierarchical processing of syntactic structures in infants. We are only aware 23 



 

 

 

28 

28 

of studies exploring rhythm-related mechanisms at infancy in relation to dyslexia or DLD; 1 

therefore, we discuss these results below. While we do not cover stuttering, DCD, or ADHD in 2 

the remainder of this section, similar logic could be applied to testing the developmental 3 

precursors of rhythm processing and their predictive strength for language development in these 4 

populations. 5 

 6 

Fine-grained auditory processing. The majority of studies exploring fine-grained auditory 7 

processing and its relationship to later speech/language development have investigated infants 8 

with a family history of language disorders (i.e., dyslexia and/or DLD). Several studies have 9 

shown altered neural responses to auditory stimuli in infants with a family history of dyslexia 10 

both for verbal stimuli (Leppanen, Pihko, Eklund, & Lyytinen, 1999; Lohvansuu, Hämäläinen, 11 

Ervast, Lyytinen, & Leppänen, 2018; Richardson, Leppänen, Leiwo, & Lyytinen, 2003; Thiede 12 

et al., 2019; van Herten et al., 2008; van Leeuwen et al., 2006) and non-verbal stimuli (Leppanen 13 

et al., 2010; Plakas, van Zuijen, van Leeuwen, Thomson, & van der Leij, 2013; van Zuijen et al., 14 

2012), in comparison to infants without family history of dyslexia. Infants with a family history 15 

of language or reading difficulties showed less efficient rapid auditory processing according to 16 

both behavioral and electrophysiological measures compared to children without a family history 17 

of such difficulties (Benasich & Tallal, 2002; Benasich, Thomas, Choudhury, & Leppänen, 18 

2002; Cantiani et al., 2016; Choudhury & Benasich, 2011; Choudhury, Leppanen, Leevers, & 19 

Benasich, 2007; Raschle, Stering, Meissner, & Gaab; Cantiani et al., 2019). Multiple measures of 20 

fine-grained auditory processing at infancy were also associated with individual differences in 21 

later language and literacy development (Benasich et al., 2002; Cantiani et al., 2016, 2019; 22 

Choudhury & Benasich, 2011; Guttorm, Leppänen, Hämäläinen, Eklund, & Lyytinen 2010 23 
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Guttorm et al., 2005 Kalashnikova, Goswami, & Burnham, 2019 Leppanen et al., 2010; 1 

Lohvansuu, Hämäläinen, Ervast, Lyytinen, & Leppänen, 2018 van Zuijen et al., 2013). 2 

In light of the studies reported above, consistent differences in fine-grained auditory 3 

processing between infants with and without a family history of language disorders suggest a 4 

shared underlying biology for fine-grained auditory processing and a family history of language 5 

disorders. Phenotypic associations occur as a result of a combination of shared genetics and 6 

shared environment. Auditory processing shows a moderate to high heritability (32% – 74%), 7 

depending on the exact mechanism measured (Brewer et al., 2016), suggesting a strong genetic 8 

component in the phenotypic association between family history of speech/language disorders 9 

and fine-grained auditory processing. These results suggest that fine-grained auditory processing 10 

is one of the risk factors that may increase risk of language disorder depending on the interplay 11 

between this and other risk factors, such as maternal education level or perinatal circumstances 12 

(Leppanen et al., 2010; Leppanen et al., 2011). 13 

 14 

Oscillatory brain networks. We are aware of only one study investigating oscillatory 15 

brain activity in infants and its relationship to later speech/language development (Cantiani et al., 16 

2019). In this study, oscillatory activity was measured in 6-month-old infants with or without a 17 

family history of language or reading impairment in a rapid auditory processing paradigm. The 18 

authors found a reduction in gamma power in infants with versus without a family history of 19 

language or reading difficulties, and concluded that atypical oscillatory activity might explain 20 

inefficient rapid auditory processing in infants (Heim, Friedman, Keil, & Benasich, 2011, for 21 

gamma oscillations with reduced power and attenuated phase-locking in children with impaired 22 

language or reading impairment). In addition, oscillatory measures were associated with 23 
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expressive vocabulary at 20 months. These results suggest that (1) there is a phenotypic 1 

association between inefficient speech/language-related oscillatory activity and familial risk of 2 

language and reading disorders, and (2) the efficiency of oscillatory activity during auditory 3 

processing is associated with language development, although further research is needed to 4 

explore these associations. The relationship of oscillatory activity at infancy with language 5 

disorders later in school-aged children has not been investigated up to now. 6 

 7 

Sensorimotor coupling. The third shared element underlying rhythm and speech/language 8 

processing proposed by Fiveash, Bedoin, and Tillmann (submitted) is sensorimotor coupling. We 9 

are not aware of any studies measuring the relationship between sensorimotor coupling and 10 

language development in infants, but a few studies have explored associations between the role 11 

of motor functions in general in infants and their relationship with speech/language disorders. 12 

Atypical motor development could also serve as a risk factor for speech/language disorders, as 13 

studies show impaired fine motor skills (e.g., in a peg moving task where small pegs are placed 14 

as fast as possible from a matrix to a vertical line of target holes) in children with dyslexia 15 

(Capellini, Coppede, & Valle, 2010; Gooch, Hulme, Nash, & Snowling, 2014) and DLD 16 

(DiDonato, Brumbach, & Goffman, 2014; Finlay & McPhillips, 2013; Flapper & Schoemaker, 17 

2013; Hill, 2001; Jäncke, Siegenthaler, Preis, & Steinmetz, 2007). We are aware of two studies 18 

investigating the associations between motor skills at infancy and later speech/language 19 

disorders in the same group of children. Viholainen, Ahonen, Cantell, Lyytinen, and Lyytinen 20 

(2002) did not find a difference between motor development (measured by parent questionnaires 21 

about reaching developmental milestones) of infants with and without a family history of 22 

dyslexia. However, children with both a family history of dyslexia and slow motor development 23 
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at infancy showed weaker language skills at 18 months (Viholainen et al., 2002) as well as 1 

slower reading at seven years of age (Viholainen, Ahonen, Cantell, Lyytinen, & Lyytinen, 2006) 2 

than infants without a family history of dyslexia or with a family history of dyslexia but with fast 3 

motor development. Taken together, there is mixed evidence for motor impairments in 4 

individuals who develop speech/language disorders; further studies in larger samples are needed 5 

to disentangle these factors.  6 

The research on infants reviewed here also suggests that the three mechanisms outlined 7 

above (fine-grained auditory processing, neural entrainment, sensorimotor development) are 8 

related to speech/language development. Research still needs to determine whether hierarchical 9 

processing in infants is related to later speech/language disorders. Even though an impairment in 10 

a single domain does not seem to have a discrete one-to-one mapping to specific disorders, we 11 

believe that these findings are promising for the use of musical rhythm processing as a potential 12 

risk factor, in part because it involves each of the three mechanisms (and potentially other 13 

processes shared by musical rhythm and language processing, e.g., precision, emotion, repetition, 14 

attention, see Patel, 2011). Therefore, it is possible that musical rhythm has a stronger 15 

association with speech/language disorders than the three mechanisms independently.  16 

 17 

 18 

6. The Atypical Rhythm Risk Hypothesis  19 

In light of the evidence reviewed thus far, we propose the Atypical Rhythm Risk 20 

Hypothesis, which posits that individuals with atypical rhythm processing are at higher risk for 21 

developmental speech/language disorders. We would like to emphasize that we do not assume 22 

that infants with impaired musical rhythm processing will definitively develop a speech/language 23 
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disorder. Rather, we believe that impaired timing skills measured through music rhythm 1 

processing can serve as one risk factor in the prediction of speech/language disorders, in 2 

combination with other risk factors both known and still to be determined (Smoller et al., 2019). 3 

In practical clinical situations, early screening of rhythm processing with non-verbal, musical 4 

material might allow for referral to appropriate speech therapy services for additional testing if 5 

atypical rhythm is detected. Broad-based screening of rhythm as a risk factor could offer 6 

multiple advantages. First, rhythm skills are likely less affected by the language environment, 7 

thus eliminating false positives often occurring in the case of bilingual children when language 8 

screeners are used. Second, atypical rhythm may be an indicator of risk for several different 9 

speech and language disorders, whereas currently available speech/language screenings tend to 10 

be geared toward separate disorders (and thus a child screened for speech difficulties may have 11 

an undetected language problem). Third, simple computer-based rhythm assessments could be 12 

administered to preschoolers and school-aged children by various professionals (teachers, nurses, 13 

school counselors, pediatricians) who do not have specialized Speech-Language Pathology 14 

expertise, and then a much smaller number of the children showing atypical rhythm could be 15 

referred for SLP assessment, thus optimizing use of resources. Therefore, our Hypothesis could 16 

affect clinical practice first in the screening of pre-school-aged and school-aged children, and 17 

then could be extended to infant screening when more research and reliable rhythm tests will be 18 

available for infants. There are multiple existing behavioral paradigms for measuring rhythm 19 

abilities in older children and in adults that could potentially be used for screening. For instance, 20 

in rhythm discrimination paradigms (e.g., Law & Gordon, 1979; Zentner, 2012), participants are 21 

presented with rhythmic excerpts and asked to decide whether they are the same or different. 22 

Tasks from the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities 23 
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(BAASTA, Dalla Bella et al., 2017) such as tapping in synchrony with the beat of music or 1 

deciding whether a beat superimposed onto music is aligned with the beat of the music (see also 2 

the Beat Alignment Test, Patel & Iversen, 2008, and the child extension in Einarson & Trainor, 3 

2016) could also inspire screening tasks. Future research should aim to develop rhythm tests with 4 

high test-retest reliability for even younger children and for infants.  5 

 6 

Recent advances in population genetics analysis methods have highlighted the challenges 7 

and opportunities in identifying underlying causal biology that can account for clinically co-8 

morbid conditions of complex traits, such as ADHD, depression, and many other psychiatric 9 

disorders (Demontis et al., 2019; Smoller et al., 2019; Tylee et al., 2018). Language and music 10 

phenotypes are complex traits, meaning they do not follow a Mendelian pattern of inheritance 11 

(Ruiz-Narváez, 2011). The heritability of complex traits is polygenic, i.e., involving common 12 

genetic variants widely distributed across the genome (Wray et al., 2014), and very large sample 13 

sizes are needed to investigate the genetic basis of these traits (Deriziotis & Fisher, 2017; 14 

Niarchou et al., 2019). Cross-trait genetic correlation approaches in particular (see Bulik-15 

Sullivan, et al., 2015; Turley et al., 2019; and Yang, Lee, Goddard, & Visscher, 2011) have 16 

revealed a surprising amount of shared underlying genetic architecture (pleiotropy; Solovieff, 17 

Cotsapas, Lee, Purcell, & Smoller, 2013) across a spectrum of neurodevelopmental and other 18 

health disorders (Anttila et al., 2018; Okbay et al., 2016; Watanabe et al., 2019). Recent findings 19 

of pleiotropy between ADHD and literacy development (Verhoef et al., 2019; Gialluisi et al., 20 

2019) align with epidemiological evidence of comorbidity (Mueller & Tomblin, 2012), and pave 21 

the way for testing the presence and function of underlying shared deficits, such as atypical 22 

rhythm processing. The likelihood and feasibility of examining pleiotropy between rhythm and 23 
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speech/language traits is demonstrated by recent reports of genetic correlations between rhythm 1 

and other cognitive and motor traits (i.e., processing speed and grip strength; Niarchou et al., 2 

2019).  3 

Family-based studies have shown that musical rhythm skills are moderately heritable 4 

(50%; Ullén, Mosing, Holm, Eriksson, & Guy, 2014), and our ongoing work with genome-wide 5 

approaches in a large sample now point to highly polygenic genetic architecture of musical 6 

rhythm (Niarchou et al., 2019). While the heritability of musicality traits is a relatively recent 7 

area of inquiry (see Gingras, Honing, Peretz, Trainor, & Fisher, 2015, for a review), more is 8 

known about the heritability of speech and language abilities. Family history of speech/language 9 

disorders has been identified as one of the strongest risk factors for speech/language disorders in 10 

offspring. In particular, the literature converges to show moderate to high heritability of speech 11 

and language abilities and in particular, of speech and language disorders (dyslexia: Friend, 12 

DeFries, & Olson, 2008; Harlaar, Spinath, Dale, & Plomin, 2005; Kirkpatrick, Legrand, Iacono, 13 

& McGue, 2011; DLD: Bishop & Hayiou-Thomas, 2008; Conti-Ramsden et al., 2007; Hayiou-14 

Thomas, 2008; stuttering: Dworzynski, Remington, Rijsdijk, Howell, & Plomin, 2007; van 15 

Beijsterveldt, Felsenfeld, & Boomsma, 2010; see Deriziotis & Fisher, 2017, for a review). 16 

Importantly, different developmental speech/language disorders as well as speech/language 17 

disorders and ADHD tend to co-occur in families (e.g., Carroll & Myers, 2010; Flax et al., 2003; 18 

Kovac, Garabedian, Du Souich, & Palmour, 2001; Lahey & Edwards, 1995; Mueller & Tomblin, 19 

2012). 20 

As reviewed in earlier sections, there is also converging evidence across approaches and 21 

populations for phenotypic correlations between rhythm and speech/language development. 22 

Given that phenotypic correlations are generally shown to be driven by some underlying genetic 23 
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correlation or pleiotropy (Sodini et al., 2018), it is entirely possible that rhythm and 1 

speech/language development share some of their genetic architecture and are mediated through 2 

some degree of shared neural architecture. Genetically driven relationships between musical 3 

rhythm and speech/language phenotypes might be driven by pleiotropy, such that a common set 4 

of causal genes affects both phenotypes directly (Figure 4a), or mediated genetic pleiotropy 5 

(Figure 4b and 4c). In the case of biological pleiotropy, the same set of genes would affect the 6 

development of cortical and subcortical structures underlying musical rhythm processing and 7 

speech/language processing. Mediated genetic pleiotropy could occur in both directions: genes 8 

might directly affect rhythm phenotypes, and then those phenotypes affect individual differences 9 

in acquisition of speech/language during development (i.e., via enhanced rhythm skills) (Figure 10 

4b), or genes could affect speech and language development, which affects the development of 11 

musical rhythm skills (Figure 4c); however, we believe this latter case is unlikely given the 12 

evidence from training studies reviewed in this paper, and the more precise timing necessary for 13 

music rhythm processing (see Patel, 2011; Tierney & Kraus, 2014). Future research should 14 

investigate the genetic architecture of phenotypic associations between musical rhythm and 15 

speech/language processing. 16 

It will also be important to investigate neural endophenotypes (corresponding to 17 

overlapping brain networks/mechanisms recruited by both music and speech), that could mediate 18 

the relationship between genes, brain and behavior: a common set of genes may give rise to 19 

endophenotypic variation in the brain, that then in turn affects individual variation in both 20 

rhythm and language phenotypes (Figure 4d). It is also possible that individual variation in 21 

rhythm and language is driven by separate sets of genes, and that phenotypic correlations arise 22 

solely due to overlapping brain networks (separate genetic architecture, shown in Figure 4e). 23 
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Statistical testing of these models will be necessary to disentangle the direction of causation for 1 

reported links between atypical rhythm and disordered speech/language acquisition.  2 

The exact mechanisms by which phenotypic relationships are driven are also yet to be 3 

understood. If mediated pleiotropy underlies the phenotypic associations between musical 4 

rhythm and speech/language processing, it has to be determined what are the exact mechanisms 5 

driving the relationship and in what direction. For example, it has been suggested that sound 6 

envelope processing as well as synchronization and entrainment to the pulse are shared between 7 

music and speech rhythm (SEP hypothesis; Fuji & Wan, 2014), and that precise auditory timing 8 

via entrainment to music rhythm can have a positive influence on language processing (PATH 9 

hypothesis, Tierney & Kraus, 2014; see also Section 2). One possible scenario (see Figure 4b) 10 

explaining this relationship would be that allelic variation in genes associated with typical (vs. 11 

atypical) rhythm (see Niarchou et al., 2019) are involved in the development and maintenance of 12 

certain auditory-motor pathways in the brain, that are recruited during rhythmic synchronization 13 

and auditory timing, thus enhancing sensitivity to linguistic features of the speech signal and 14 

bolstering acquisition of grammar and phonology. In parallel, allelic variation associated with 15 

atypical rhythm could result in less-than-optimal development of auditory-motor pathways 16 

(measurable via poorer rhythm task performance), resulting in reduced sensitivity to 17 

phonological and grammatical information in the speech signal, and increasing the probability of 18 

dyslexia or developmental language disorder.  19 
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 1 
 2 

Figure 4. Pleiotropy scenarios for shared vs. separate genetic architecture of rhythm and 3 

speech-language. The Atypical Rhythm Risk hypothesis predicts that associations between 4 

rhythm and speech/language are (A) in part driven by genetic pleiotropy, such that a common set 5 

of causal genes affects both phenotypes directly, or  (B) mediated genetic pleiotropy, such that 6 

genes directly affect rhythm phenotypes, and those phenotypes in turn affect individual 7 

differences in acquisition of speech/language during development, or (C) genes directly affect 8 

speech/language phenotypes, and those phenotypes affect individual differences in rhythm 9 

development. These models should be tested against the null hypothesis of separate genetic 10 

architecture. Moreover, a key to understanding the dynamics between genes, brain and behavior 11 

will be to test mediating neural endophenotypes linked to (D) shared or (E) separate genetic 12 

architecture. 13 

 14 

When new studies are deployed to test the Atypical Rhythm Risk Hypothesis, it will also 15 

be important to incorporate other risk factors for speech/language disorders. Among the several 16 

other risk factors that have been investigated for speech/language disorders (see Mascheretti, 17 

Andreola, Scaini, & Sulpizio, 2018), maternal education (Ozernov-Palchik & Gaab, 2016; Sun et 18 

al., 2013; Zhao et al., 2016) and, even more so, home literacy environment, seem to be the most 19 

important for development dyslexia (Dilnot, Hamilton, Maughan, & Snowling, 2017; Sénéchal 20 

& LeFevre, 2002; Storch & Whitehurst, 2001; Sun et al., 2013; Torppa, Eklund, van Bergen, & 21 

Lyytinen, 2015; Torppa, Poikkeus, Laakso, Eklund, & Lyytinen, 2006; van Bergen, van der Leij, 22 

& de Jong, 2014; Zhao et al., 2016). Pre-term birth and birth weight are also found to be risk 23 

factors for later language development (Dilnot et al., 2017; Liu et al., 2016; Samuelsson et al., 24 

2006). In DLD, low maternal education level, low 5-min Apgar score, being a male and not 25 
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being a first child were consistently found to be risk factors according to a meta-analysis 1 

(Rudolph, 2017). In stuttering, pre-term birth or harmful events before or at birth were proposed 2 

as risk factors (Ajdacic-Gross et al., 2010; Stromswold, 2006); less clear is the role of socio-3 

economic status for this disorder (Yairi & Ambrose, 2013). However, there is strong evidence 4 

that all of the risk factors listed in this paragraph arise from gene-environment interactions, and 5 

thus it is difficult to dissociate them from other genetic risk factors for speech/language disorders 6 

without carefully designed genetic models. Unfortunately, very large-scale population cohort 7 

studies such as UK Biobank have generally not included speech/language or musical variables in 8 

their massive data collection efforts to date, although genome-wide summary statistics on 9 

educational attainment, SES, and pre-term birth are now widely available and could be 10 

incorporated into novel studies outlined here. 11 

Although we believe that the Atypical Rhythm Risk Hypothesis is a promising view 12 

which could facilitate the identification of speech/language disorders, some questions might arise 13 

for the reader. One could ask whether associations between musical rhythm and speech/language 14 

processing may be explained by other shared processes, such as intelligence, working memory or 15 

other general cognitive functions. Although these processes are definitely involved in both 16 

domains, it does not undermine the Atypical Rhythm Risk Hypothesis. First, associations 17 

between musical rhythm and speech/language processing were found to be associated after 18 

controlling for the variance in general cognitive measures (e.g., Gordon, Shivers, et al., 2015). 19 

Second, if musical rhythm at infancy or early childhood proves to be a sufficient risk factor for 20 

speech/language disorders, for practical purposes it is irrelevant what the underlying shared 21 

processes are. One could also ask why we propose that a non-linguistic impairment might 22 

contribute to speech/language disorders. Even though this contradicts some prevalent domain-23 



 

 

 

39 

39 

specific views about speech/language disorders, it is in line with the contemporary view of 1 

speech/language disorders stating that not only linguistic processes are impaired in these 2 

populations (e.g., Hill, 2001; Ullman & Pierpont, 2005). The reader could also wonder how 3 

rhythm tests would be integrated in clinical practice; we intentionally aim to be cautious and 4 

only focus in the current paper on research that must first be conducted before the potential 5 

integration of rhythm screeners into clinical practice. If research findings result in support of 6 

rhythm tests as a screener, the details of such implementation into clinical practice should be 7 

determined by experts from developmental research, speech-language pathology, and policy-8 

makers depending on local and national systems in place. 9 

 10 

7. Conclusion 11 

Inefficient identification of speech/language problems have academic, social, and 12 

economic consequences both for the affected individuals, their families, and society (e.g., Conti-13 

Ramsden et al., 2018; Snow, 2019). In the current paper, we reviewed evidence motivating the 14 

Atypical Rhythm Risk Hypothesis, which posits that individuals with atypical rhythm are at 15 

higher risk for developmental speech/language disorders. We reviewed different lines of research 16 

suggesting (a) shared underlying processes for musical rhythm and speech/language processing, 17 

(b) associations between musical rhythm and speech/language processing in typically developing 18 

populations and impaired musical rhythm processing in children with developmental disorders 19 

affecting speech/language skills, and (c) individual differences in mechanisms underlying 20 

rhythm processing in infants, which were associated with later speech/language development. 21 

The Atypical Rhythm Risk Hypothesis and its theoretical framework presented here 22 

allow us to generate a series of predictions (presented in Box 2) about co-morbidities between 23 
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rhythm and speech/language disorders and the shared underlying biology from genes to brain to 1 

behavior. For instance, one prediction of our theory is that if a screener for atypical rhythm is 2 

administered to a large population, individuals with rhythm deficits would show a higher 3 

prevalence of speech/language disorders. Associations between rhythm-related processes at 4 

infancy and language development reported by Kalashnikova et al. (2019) provide initial 5 

supporting evidence for this hypothesis. Furthermore, there is already some evidence for 6 

statistically increased prevalence rates of atypical rhythm in association with developmental 7 

disorders (Peretz & Vuvan, 2017) from a study of over 16,000 individuals, which identified 2.7% 8 

of their sample as “time-based amusics” and an additional 3.4% of the sample with general 9 

amusia/uncategorized deficits that included poor rhythm performance. In particular, the time-10 

based amusia group had higher prevalence of dyslexia, speech disorders, and attentional 11 

disorders than controls, consistent with the framing of atypical rhythm as a risk factor across 12 

these disorders. Although the contribution of pitch-based amusia and deficits in other aspects of 13 

music perception to atypical speech/language development (i.e., Couvignou, Peretz, & Ramus, 14 

2019) is beyond the scope of the current review, other elements of musicality should certainly be 15 

considered in the broader context of an influence of rhythm, melody, timbre, or harmony on 16 

speech and language development (see Brandt et al., 2012, for a model of how “musical hearing” 17 

may scaffold language acquisition). 18 

The Atypical Rhythm Risk Hypothesis is in line with the transdiagnostic approach 19 

(Mareva & Holmes, 2019) emphasizing the need for large-scale epidemiological studies (e.g., 20 

Raghavan et al., 2017). This work needs to incorporate various known and to-be-determined risk 21 

factors into prediction models and disentangle gene-environment interactions, intermediary 22 

neural endophenotypes, and underlying biological mechanisms. Once genome-wide data for 23 
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rhythm and language phenotypes from large enough samples are available, recently developed 1 

methods such as two-sample Mendelian Randomization (Zhu et al., 2018) may be used to begin 2 

to identify the hypothesized causal influence of rhythm on speech/language development (even 3 

when measured in separate samples) and to model other contributing variables. With new 4 

population-based efforts to assess individual differences in rhythm and speech/language abilities 5 

in tens and hundreds of thousands of participants (i.e., Niarchou et al., 2019, and ongoing work 6 

by the GenLang consortium), exploration of the hypothesized shared genetic architecture among 7 

these traits and other risk factors (e.g., Watanabe et al., 2019) is on the near horizon. 8 

 If a significant body of experimental evidence is found in favor of the hypothesized 9 

association between atypical rhythm and speech/language disorders, we can envision new risk 10 

factor models that incorporate atypical rhythm processing. Measuring rhythm processing could 11 

serve as a simple, easy-to-administer pre-screening test that can be conducted with young infants 12 

and children and even in parents to identify familial risk of atypical rhythm. These screening 13 

efforts could be used as a tool to increase referrals to appropriate speech/language pathology 14 

services with the end goal of closing the gap in identification and increasing access to early 15 

intervention to maximize long-term impact. 16 

 17 
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 1 

Box 1. Glossary of terms 
 
Attention Deficit Hyperactivity Disorder. Attention deficit 
hyperactivity disorder involves difficulties with attention, 
hyperactivity, and impulsivity (Biederman & Faraone, 
2005), and is frequently associated with language 
impairment (e.g., Randell, Somerville-Brown, & Chen, 
2018). 
 
Developmental Coordination Disorder. Developmental 
coordination disorder is characterized by impaired motor 
abilities, especially related to postural control, motor 
learning, and sensorimotor coordination that affect quality 
of life (Zwicker et al., 2009). Difficulties with language 
processing were also reported for DCD (e.g., Mirabella et 
al., 2017). 
 
Developmental Dyslexia. Dyslexia is a neurodevelopmental 
disorder affecting word decoding, which in turn impacts 
spelling performance and the development of reading 
fluency (Snowling, 2013). 
 
Developmental Language Disorder (DLD). DLD is a disorder 
affecting language comprehension and/or production, with 
no known biomedical causes such as brain injury, acquired 
epileptic aphasia, neurodegenerative disease, cerebral 
palsy, hearing loss, intellectual disability or autism 
spectrum disorder. DLD is likely to persist in middle 
childhood and beyond (Bishop et al., 2017). In accordance 
with recent recommendations (Bishop et al., 2017) we use 
the term Developmental Language Disorder for children 
who were often referred to as children with Specific 
Language Impairment in previous studies. Bishop et al. 
(2017) suggests eliminating the latter term because it is 
misleading to state that the impairment is specific to 
language. In addition, they suggest using the term disorder 
instead of impairment to convey greater seriousness and 
importance, and the naming consistent with the names of 
other developmental disorders (Autism Spectrum Disorder, 
Developmental Coordination Disorder, Attention Deficit 
Hyperactivity Disorder) and compatible with the two main 
diagnostic systems (DSM-5 (American Psychiatric 
Association, 2013) and ICD-11 (World Health Organization, 
2018)). 
 
 

Heritability. Heritability is the proportion of phenotypic 
variation that is due to genetic variation. Heritability 
analyses also allow for a comparison of the relative 
importance of genes and environment to the variation of 
traits within and across populations (Visscher, Hill, & Wray, 
2008). 
 
Mismatch negativity (MMN). MMN appears when a regular 
feature of a sound sequence is infrequently omitted (Kujala, 
Tervaniemi, & Schröger, 2007; Näätänen, Tervaniemi, 
Sussman, Paavilainen, & Winkler, 2000). 
 
Pleiotropy. Pleiotropy occurs when one genetic locus 
affects more than one trait (Solovieff, Cotsapas, Lee, 
Purcell, & Smoller, 2013). 
 
Rapid auditory processing. The ability to process and 
categorize fast acoustic changes over a millisecond time 
range (e.g., detecting changes in pitch of tones when they 
are presented with very short (70 ms-s) interstimulus 
intervals) (Benasich et al., 2006).  
 
Risk factors for language disorders. Risk factors are 
biological or environmental factors that are statistically 
associated with language disorders, but whose causal 
relationship to the language problem is unclear or partial 
(Bishop et al., 2017). 
 
Stuttering. Stuttering is a speech disorder characterized by 
frequent occurrences of repetitions or prolongations of 
sounds, syllables, or words that disrupt the rhythmic flow 
of speech (World-Health-Organization, 2010). Language 
impairments often co-occur with stuttering (Ntourou, 
Conture, & Lipsey, 2011). 
 
Transdiagnostic approach. The transdiagnostic approach 
focuses on underlying mechanisms that are relevant across 
a class of disorders instead of single diagnostic categories in 
research, diagnosis and treatment of disorders (see Sauer-
Zavala et al., 2017). 
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