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The Kalmag model as a candidate 
for IGRF-13
Julien Baerenzung1*, Matthias Holschneider1, Johannes Wicht2, Vincent Lesur3 and Sabrina Sanchez2

Abstract 

We present a new model of the geomagnetic field spanning the last 20 years and called Kalmag. Deriving from the 
assimilation of CHAMP and Swarm vector field measurements, it separates the different contributions to the observ-
able field through parameterized prior covariance matrices. To make the inverse problem numerically feasible, it 
has been sequentialized in time through the combination of a Kalman filter and a smoothing algorithm. The model 
provides reliable estimates of past, present and future mean fields and associated uncertainties. The version presented 
here is an update of our IGRF candidates; the amount of assimilated data has been doubled and the considered time 
window has been extended from [2000.5, 2019.74] to [2000.5, 2020.33].
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Introduction
The Earth’s magnetic field has different sources. Classi-
cally, we distinguish internal and external sources below 
and above the site where the field is measured. The 
three principal internal contributions are the core field, 
the lithospheric field and the magnetic fields induced 
in the ocean or within the crust and upper mantle. At 
large scales, the core field clearly dominates. Sustained 
by dynamo action in the liquid outer core, it is predomi-
nantly dipolar, and varies on timescales ranging from 
months to millennia. Magnetic field reversals, rare events 
on even longer times scales, are not considered here. 
On scales that correspond to spherical harmonics (SH) 
degree beyond about 16, the core field is dominated by 
the lithospheric field coming from the magnetized rocks 
of the crust. Since the Earth’s mantle evolves extremely 
slowly, the lithospheric field, can be considered as almost 
static. The external fields that are generated by electrical 
currents in the ionosphere and in the magnetosphere, 
on the other hand can vary extremely rapidly in time. 
Because the sources of the magnetospheric field (the ring 
current, the magnetopause and magnetotail currents) are 

distant from the Earth, only its large-scale contributions 
can be detected by the low-orbiting magnetic satellites or 
by measurements on Earth’s surface. This is not the case 
for the ionospheric field which is generated closer to the 
Earth’s surface. Because the dynamical behavior of both 
ionospheric and magnetospheric fields is controlled by 
solar radiations (and also thermospheric winds for the 
former), they are closely tied to solar activity, and can 
vary on very short timescales. The external fields can 
therefore also induce a non-negligible secondary field 
inside the electrically conducting parts of the mantle, 
crust and oceans. Other potentially important induced 
fields are created because the oceans move relative to the 
core fields.

Disentangling the different field contributions is a diffi-
cult task since they often overlap in spatial scale and time 
scale. Many field models therefore resort to a regulariza-
tion in space and time and only use selected data. Some 
examples are the CHAOS model series by Olsen et  al. 
(2006) and Finlay et al. (2016), the comprehensive mod-
els by Sabaka et al. (2002, 2015, 2018, 2020), the GRIMM 
models by Lesur et  al. (2008, 2010, 2015), the POMME 
models by Maus et al. (2005, 2010), or the gufm1 by Jack-
son et  al. (2000). The COV-OBS model by Gillet et  al. 
(2013) and the model recently proposed by Ropp et  al. 
(2020) are the only models that use a Bayesian approach 
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instead of regularization. Usually only vector field meas-
urements taken during night time, under geomagnetic 
quiet conditions, and at low- to mid-magnetic latitude 
are considered in order to minimize the contribution of 
fields created by currents in the ionosphere or in auroral 
regions (field-aligned currents, DP2, auroral electrojet). 
Four main contributions then remain, the core, the lith-
ospheric, the magnetospheric and the induced fields. The 
core and the lithospheric fields are usually treated as one 
internal source described by one set of spherical harmon-
ics coefficients. Small-scale contributions beyond degree 
16 or so are supposed to be of lithospheric origin and are 
static in time while the larger scales represent the vary-
ing core field. Most of the models also treat the induced 
fields and the magnetospheric field in a simplified way. 
The field induced by ocean circulation and the fields cre-
ated in the magnetotail and the magnetopause are either 
neglected or estimated separately. Only the magnetic field 
generated by the ring current and the respective induced 
part then remain to be modeled. Yet, when assuming a 
1d electrical conductivity profile for Earth’s mantle, 
the axisymmetric magnetospheric field and the related 
induced field can be parameterized by the disturbance 
short-time (Dst) index proposed by Sugiuara (1963). The 
Dst or other similar indices are independently estimated 
from observations and can serve as model input.

To achieve an optimal separation of the different con-
tributions, proper temporal parametrization of the dif-
ferent sources is mandatory. In many models (CHAOS, 
GRIMM, CM, COV-OBS), the time dependency of the 
core field is modeled by B-splines for an a priorly fixed 
time step. This imposes a relatively smooth evolution 
of the field, excluding the rapid variations attributed to 
external fields. In addition, with algorithms based on reg-
ularized least square approaches, only the time deriva-
tives of the core field are penalized and no constraints on 
the morphology of the field itself are imposed. With the 
COV-OBS model, Gillet et al. (2013) went a step further 
in characterizing a priori the spatio-temporal behavior of 
the core field. They assumed that its dynamical evolution 
was controlled by a specific second-order autoregres-
sive process which can reproduce the temporal statistical 
properties of the core field which have been character-
ized with both observatory measurements (see De Santis 
et al. 2003; Lesur et al. 2017) and numerical simulations 
of the geodynamo (see Bouligand et al. 2016).

Although a good calibration of the temporal con-
straints is crucial for deriving magnetic field models from 
observatory and satellite data, some key information can 
also be extracted from the morphology and the spatial 
correlation structure of the different fields. Holschnei-
der et al. (2016) have shown that the use of appropriate 
parameterized correlation kernels, could greatly improve 

the separation of the different components of the Earth’s 
magnetic field. Working with observatory data for a sin-
gle epoch, they could detect the spatial signature of the 
core, lithospheric, magnetospheric and ionospheric 
fields. Their Bayesian approach even allowed the quantifi-
cation of uncertainties.

The Kalmag model we propose here combines such a 
technique with the sophisticated temporal correlation 
functions introduced by Gillet et al. (2013). Since ground-
based observatories and satellite missions such as Oer-
sted, SAC-C, CHAMP, or Swarm, have produced or are 
still generating a huge amount of data, a block inversion 
would be numerically impossible. This is why we decided 
to assimilate the data sequentially using a Kalman filter 
approach combined with a smoothing algorithm.

The article is organized as follows: in the next section, 
the data selection criteria and the modeling strategy are 
detailed. We first present the different magnetic sources 
that are taken into account, we then show how they are 
a priori characterized, and how such prior information 
can be modeled through autoregressive processes. Based 
on these processes, the equations for the Kalman filter 
approach and the smoothing algorithm are then given. 
Finally, the methodology used to derive the different 
candidate models for IGRF-13 is explained. In "Results 
and discussion" section, we present and discuss the out-
comes of the model. However, since the spatio-temporal 
prior characterization of each modeled magnetic source 
is parameterized, we first show how these parameters are 
evaluated to be then incorporated in the model. The arti-
cle ends with some concluding remarks and perspectives 
to improve the Kalmag model.

Methods
Data
For the moment, the Kalmag model only uses the vec-
tor field measurements of the CHAMP and Swarm low-
orbiting satellites. We sample CHAMP data between 
2000.59 and 2010.63 at a rate of 1 datum every 5 s and 
only use measurements where the vector field mag-
netometer (VFM) and the star tracker (STR) instruments 
were functioning nominally. For the Swarm constella-
tion, we consider from 2013.8 the level 1B data from 
only the Alpha and Bravo satellites with baseline version 
0505/0506, using simultaneous sampling every 10 s. For 
the construction of the IGRF-13 candidate models, which 
we will refer to as the Kalmag candidates, a two times 
lower sampling rate was used, impacting marginally 
the accuracy of the model. Furthermore, we only used 
data up to 2019.74 for the Kalmag candidates, but now 
extended this to 2020.33.

Contrary to polar latitudes, where every vector field 
measurement is considered, for latitudes between 60◦ 
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north and south, only night-time data (when the sun is 
below the horizon), are kept. Furthermore, independently 
of the satellites locations, the following selection criteria 
are also applied:

• The z-component of the interplanetary magnetic 
field (IMF) is positive in order to minimize the influ-
ence of the substorm auroral electrojet.

• The index Kp ≤ 20 to operate under conditions of 
low geomagnetic activity.

All in all the dataset is composed of 2 985 442 vector field 
measurements for CHAMP and 4 606 159 for Swarm.

Magnetic sources
The different contributions to the observations are 
described in terms of magnetic sources of either internal 
or external origin. Except for the field produced by field-
aligned currents ( �bfac ), each of these contributions �bi is 
derived from a potential Vi:

The field-aligned currents (FAC), which are mostly flow-
ing in the polar region of the ionosphere, are generating 
a toroidal magnetic field. Following the development 
of Waters et al. (2001), we assume that the currents are 
poloidal. The resulting magnetic field can therefore be 
expressed through the potential Vfac as:

Note that depending on the source, the spherical coor-
dinate system {r, θs,φs} the magnetic field is expressed 
in may differ. Here four types of systems are used: geo-
graphic (GEO), magnetic (MAG), solar magnetic (SM), 
and geocentric solar magnetospheric (GSM) (see Laun-
dal and Richmond 2017).

Each potential Vi , including Vfac , the potential associ-
ated with the FAC, is then expanded in spherical har-
monics (SH), which for internal and external sources, 
respectively, read:

The Yℓ,m are Schmidt semi-normalized spherical har-
monics of degree ℓ and order m, ℓmax is the maxi-
mum of degree expansion, ai is a reference radius, and 
gi,ℓ,m(t) (later referred as gi ) are the spherical harmonics 

(1)�bi(r, θs,φs, t) = −�∇Vi(r, θs,φs, t) .

(2)�bfac(r, θs,φs, t) = −�r × �∇Vfac(r, θs,φs, t) .

(3)

V I
i (r, θs,φs, t) = ai

∑

ℓ≤ℓmax

m=m̃
∑

m=−m̃

(ai

r

)l+1
g Ii,ℓ,m(t)Yℓ,m(θs,φs) ,

(4)

V E
i (r, θs,φs, t) = ai

∑

ℓ≤ℓmax

m=m̃
∑

m=−m̃

(

r

ai

)l

gEi,ℓ,m(t)Yℓ,m(θs,φs) .

coefficients expressed at ai . m̃ is the maximum order con-
sidered for the spherical harmonics expansion. A com-
plete expansion, referred as standard, requires m̃ = ℓ . 
However, some sources, in particular external fields, are 
known to have a strong zonal signature (see Finlay et al. 
2017), and are therefore restricted to either zonal spheri-
cal harmonics modes with m̃ = 0 or to an expansion we 
refer to “zonal iso” where m̃ = 1.

The Kalmag model is composed of 7 sources. 3 of them 
are of internal origin, the core field ( gc ), the lithospheric 
field ( gl ) and the induced/residual ionospheric field ( gii ). 
gc and gl are expressed in the geographic coordinate sys-
tem and expanded in SH with the standard decomposi-
tion. gii is expressed in the solar magnetic coordinate 
system and its SH decomposition is restricted to m̃ = 1 
(zonal iso). Induced and residual ionospheric fields are 
treated as a single source since the former is known to 
be mostly dipolar (see Olsen et  al. 2005), whereas the 
latter, although not well known, is likely to be dominant 
at smaller scales. 3 sources are used to characterize the 
magnetospheric field. A remote one ( grm ) in GSM which 
is purely dipolar and zonal, and 2 close sources ( gm 
and gfm ) expressed in the SM coordinate system. gm is 
purely zonal and it is accompanied by gfm a fluctuating 
source expanded with the zonal iso SH decomposition. 
Finally, the source associated with field-aligned currents 
is expressed in the SM coordinate system and restricted 
to the zonal iso SH expansion. Originally, each external 
source, including gii , were expanded up to the arbitrary 
SH degree ℓ = 15 . It was, however, found in "Param-
eter estimation" section that gii required to be modeled 
at smaller scales, whereas the level of energy associated 
with grm was found to be negligible at SH degree ℓ > 1 , 
leading us to only keep its degree ℓ = 1 . The core field 
is expanded up to SH degree ℓ = 20 a value where time 
dependency might still be detected. The resolution of the 
lithospheric field was set to ℓ = 76 , a degree up to which 
the prior variance of the field as evaluated in "Parameter 
estimation" explains well the lithospheric field models of 
Olsen et al. (2017).

The nature of the 7 sources composing the Kalmag 
model, the coordinate system they are expressed in, and 
their spherical harmonics truncation level are listed in 
Table 1.

Prior characterization of spatial and temporal correlations
To obtain an optimal separation of the various contribu-
tions to geomagnetic observations, proper prior charac-
terization of the different magnetic sources is mandatory. 
Following the studies of Hulot and Le Mouël (1994), Gil-
let et  al. (2013), Holschneider et  al. (2016), full space–
time covariance matrices are used to characterize each 
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magnetic source gi . Assuming that E[gi] = 0 the latter 
read:

where the matrix �∞
gi

 corresponds to the stationary 
spatial covariance, and c(�t) is a temporal correlation 
matrix depending on the time lag �t . �∞

gi
 is assumed to 

be derived from energy spectra E∞
i (ℓ, ai) , expressed at 

given radii ai , such as:

where Nm is the number of modeled spherical harmon-
ics coefficients per degree ℓ , and F is the pre-factor of 
the energy spectra given by S(ℓ) = ℓ+ 1 and S(ℓ) = ℓ 
for internal and external sources, respectively. Two 
types of spectra are used for the model, flat ones, with 
E∞
i (ℓ) = A2

i  where Ai is a magnitude, and spectra of the 
form E∞

i (ℓ) = A2
i (2ℓ+ 1)S(ℓ) , referred as C-based spec-

tra, making Eq.  6 equivalent to the correlation kernels 
proposed by Holschneider et  al. (2016). Only 2 sources 
are characterized by a flat spectrum, the core field and 
the induced/residual ionospheric field. This choice was 
driven by the evaluation we performed in "Parameter 
estimation" section where such a parametrization ena-
bled us to better explain the data.

Note that the covariance matrices of Eq.  6 are diago-
nal. More complex covariance structures could be used, 
accounting for the correlations between different mag-
netic modes as they appear in dynamo simulations for 

(5)

E

[(

gi(t)
gi(t +�t)

)

(

gi(t)
Tgi(t +�t)T

)

]

=

(

�∞
gi

ci(�t)�∞
gi

�∞
gi
ci(�t)T �∞

gi

)

,

(6)

�∞
gi
(ℓ,m, ℓ′,m′, r = ai) = E[gi(ℓ,m)gi(ℓ

′,m′)]

=
E∞
i (ℓ, ai)

NmS(ℓ)
δ(ℓ− ℓ′)δ(m−m′)

instance (see Sanchez et  al. 2019). However, the large 
amount of data available for this study are sufficient to 
properly constrain the model and permit such general 
prior assumptions.

Temporal constraints are prescribed by the type of cor-
relation functions introduced by Gillet et al. (2013, 2015) 
in the context of geomagnetic modeling. They are derived 
from the autoregressive processes further discussed 
below, and read:

for first-order processes and:

for second-order processes. τi(ℓ) are scale-dependent 
characteristic timescales. For the core field, Christensen 
and Tilgner (2004) and Lhuillier et al. (2011) have shown 
that its characteristic timescales τc(ℓ) could be approxi-
mated by a power law such as τc(ℓ) = τSVℓ

−1 with τSV the 
secular variation timescale. In this study, we decided to 
use such a power law description of τi for each magnetic 
source except for the lithospheric field, leading to:

with amplitudes Mi and exponent αi . In our parametriza-
tion of the problem, we therefore use four main parame-
ters to characterize each source: (1) the amplitude Ai ; (2) 
the (virtual) source radius ai ; (3) the time-scale amplitude 
Mi and (4) the time-scale slope αi . In addition, because 
of the specific behavior of the dipole components, for the 
core field (see Christensen and Tilgner 2004; Lhuillier 
et al. 2011) but also for the magnetospheric sources (see 
Sugiuara 1963; Finlay et al. 2016), the spatial and tempo-
ral properties of each source’s dipole (except for the lith-
ospheric field) is treated separately from the remaining 
SH coefficients. These parameters are directly estimated 
with a subsample of the dataset following the procedure 
described in "Parameter estimation" section.

Sequentialization
For the following developments, the parameters charac-
terizing the prior covariance structures ( Ai , ai , Mi and 
αi ) are assumed to be known. Instead of performing a 
full Bayesian block inversion with the covariance matri-
ces given by Eq.  5 as a prior information, we proceed 
in a recursive way through the Kalman filter approach 
proposed by Kalman (1960). To do so, dynamical equa-
tions are required to forecast the statistical properties of 
the different modeled sources. As previously mentioned, 
the covariance structures we wish to a priori impose 
are derived from autoregressive processes. In their 

(7)ci(�t) = exp [−|�t|/τi(ℓ)]

(8)ci(�t) = (1+ (|�t|/τi(ℓ))) exp [−|�t|/τi(ℓ)]

(9)τi(ℓ) = Miℓ
−αi ,

Table 1 Magnetic sources considered in the model

The second column corresponds to the coordinate system each field is 
expressed in. GEO stands for geographic, SM for solar magnetic, MAG for 
magnetic and GSM for geocentric solar magnetospheric. ℓmax is the maximum 
degree of the SH expansion, for the three following types of decomposition: 
standard with m = [−l, l] , zonal with m = 0 and zonal iso where m = {0, 1,−1}

Source Coordinate ℓmax SH decomposition

Core gc GEO 20 Standard

Lithospheric gl GEO 76 Standard

Remote magnetospheric grm GSM 1 Zonal

Close magnetospheric gm SM 15 Zonal

Fluctuating magnetospheric 
gfm

SM 15 Zonal iso

Residual ionospheric/ induced 
gii

MAG 50 Zonal iso

Field-aligned currents gfac SM 15 Zonal iso
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continuous form the latter are given for first and second 
orders by, respectively:

where ω̇i1(t) and ω̇i2(t) are Gaussian white noises scaled 
by the factors σi1(ℓ) and σi2(ℓ) , respectively. These equa-
tions have explicit solutions which satisfy:

where the temporal Gaussian white noise ξi is spatially (in 
terms SH coefficients) characterized by the distribution 
N
(

0,�∞
zi

− Fi�
∞
zi
FT
i

)

 , and where �t can either be posi-
tive or negative.

For magnetic sources characterized by first-order 
autoregressive processes, zi = gi and Fi is given by:

The core field evolution is prescribed by a second-order 
autoregressive process, so the field itself and the secu-
lar variation are dynamically tied together. In this case, 
zi = (gi, ∂t gi)

T and:

Note that the covariance matrix of the core field when 
the later is assumed to be in a stationary state is given by:

as shown by Hulot and Le Mouël (1994).

Sequential assimilation
The Kalmag model consists in a vector z containing 
the spherical harmonics coefficients of every magnetic 
source (including the SH expansion of the secular vari-
ation). With the decomposition detailed in "Magnetic 
sources" section, z contains 6624 SH coefficient entries. 
Its evaluation is performed with a Kalman filter algo-
rithm which proceeds sequentially in two steps. In the 
first step, the forecast, the evolution of the mean model 
E[z] together with its associated covariance matrix �z 
are predicted until observations become available. In 
the second step, namely the analysis, the model is cor-
rected to better reflect the data through a Bayesian 
inversion.

(10)∂t gi,ℓ,m(t)+
1

τi(ℓ)
gi,ℓ,m(t) = σi1(ℓ)ω̇i1(t),

(11)

∂2t gi,ℓ,m(t)+
2

τi(ℓ)
∂t gi,ℓ,m(t)+

1

τ 2i (ℓ)
gi,ℓ,m(t) = σi2(ℓ)ω̇i2(t),

(12)zi(t +�t) = Fi(�t)zi(t)+ ξi(t,�t),

(13)Fi(ℓ,�t) = exp [−|�t|/τi(ℓ)].

(14)

Fi(ℓ,�t) =

(

1+ |�t|/τi(ℓ) �t

−�t/τ 2
i
(ℓ) 1− |�t|/τi(ℓ)

)

exp [−|�t|/τi(ℓ)] .

(15)�∞
gc,∂t gc

=

(

�∞
gc

0

0 �∞
gc
/τ 2c (ℓ)

)

,

To predict the simultaneous evolution of the different 
magnetic sources with the autoregressive processes pre-
sented in the previous section, a matrix F containing all 
the matrices Fi , and a matrix �̃ = �

∞ − F�
∞
F
T charac-

terizing the white noise of the complete evolution model, 
are constructed. The evolution of the mean model and its 
covariance from time step k − 1 to step k is then given by 
the forecast:

At iteration k, whenever measurements are available, the 
model is updated with the formulations:

where Kk is the Kalman gain matrix and Hk is the opera-
tor projecting the model to the data dk at iteration k.

Note that the time step of the algorithm has been set 
to �t = 30  min, corresponding to approximately one-
third of the different satellites orbital period. Within this 
time window most of the magnetic sources are assumed 
to be static. However, the spatio-temporal correlations 
of the field-aligned current (FAC) source as well as the 
non dipolar part of the close magnetospheric field are 
modeled within this time window for reasons detailed in 
"Parameter estimation" section.

Smoothing
With the Kalman filter algorithm, one gets access to the 
distribution p(zk |dk) , where dk corresponds to all the 
measurements up to iteration k. To obtain p(zk |d) the 
posterior distribution of the model at iteration k given the 
entire dataset d , one can apply a smoothing algorithm. 
In this study, we chose the formulation of Rauch et  al. 
(1965). Starting at the last iteration of the Kalman filter 
algorithm, the smoothing algorithm performs iteratively 
backward in time accordingly to the following steps:

(16)E[zk|k−1] = Fk−1E[zk−1],

(17)�zk|k−1
= Fk−1�zk−1

F
T
k−1 + �̃.

(18)Kk = �zk|k−1
H

T
k

(

Hk�zk|k−1
H

T
k

)−1
,

(19)E[zk|dk ] = E[zk|k−1] + Kk

(

dk −HkE[zk|k−1]
)

,

(20)�zk|dk
= (I− KkHk)�zk|k−1

,

(21)Gk−1 = �zk−1|dk−1
F
T
k�

−1
zk|k−1

,

(22)
E[zk−1|d] = E[zk−1|dk−1

] +Gk

(

E[zk|d] − E[zk|k−1]
)

,
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The combined Kalman filter-smoothing algorithm was 
also chosen by Ropp et al. (2020) for their IGRF-13 main 
field candidate. However, their approach differs from 
ours in many aspects. In particular, their core field evolu-
tion is prescribed by an Euler scheme and they estimate 
the secular variation through the fluctuation of the field 
within 3-month time windows. Here the secular variation 
is tied to the core field evolution through the AR2 pro-
cess. Its evaluation is therefore achieved through dynam-
ical link and correlation with the core field. The 3-month 
time step of the Kalman filter algorithm chosen by Ropp 
et al. (2020) also differs from the 30 min time step used 
here. This difference will have an effect on the modeling 
of rapidly varying fields, since the time step constrains 
the temporal window where the various sources are 
assumed to be static.

Candidate models
The models that we proposed as candidates for the IGRF-
13 in 2020.0 are the Kalman filter solutions after the last 
analysis step in 2019.74 (September the 27th ). This solu-
tion was forwarded in time until 2020.0 using the forecast 
of Eqs.  16 and 17 with propagators F and noise covari-
ance �̃ for a time step of �t = 0.26 year . The secular vari-
ation candidate is the mean secular variation estimation 
in 2020.0. The associated uncertainties were obtained 
by taking the square root of the diagonal elements of the 
covariance matrix �∂t gc(t = 2020) , providing the stand-
ard deviation corresponding to each SH coefficients of 
∂t gc.

Our internal field candidate model in 2020.0 contains 
the sum of the mean core field and the mean lithospheric 
field at this epoch 

(

E[gc] + E[gl]
)

 . The uncertainties 
estimates were derived from the covariance matrix 
�gc+gl = �gc +�gl +�gcl +�T

gcl
 in 2020.0, where �gcl is 

the cross covariance between the core field and the lith-
ospheric field. The square root of each diagonal elements 
of �gc+gl provides the standard deviation associated with 
E[gc] + E[gl].

Finally, our candidate for the DGRF 2015.0 model was 
constructed as our 2020.0 internal field model, except 
that the core and the lithospheric fields were taken from 
the smoothing solution.

The Kalmag model presented below uses additional 
data from September 27 2019 until April 2020.

Results and discussion
Parameter estimation
In this section, the parameters characterizing the dif-
ferent magnetic sources, the spectra amplitudes Ai and 

(23)
�zk−1|d

= �zk−1|dk−1
+Gk−1

(

�zk|d
− �zk|k−1

)

G
T
k−1 .

radius ai , the characteristic timescales magnitudes Mi 
and slopes αi are evaluated. Except for the induced/resid-
ual ionospheric field and the remote magnetospheric 
field for which different spherical harmonics truncation 
levels were tested, the spectral resolution as well as the 
SH expansion chosen to model the different fields are a 
priori imposed (see Table  1). The spherical harmonics 
coefficients of the different sources at the different mod-
eled time are calculated with our Kalman filter scheme 
with a subsample of the data between 2001.0 and 2018.0. 
In order to avoid measurements taken by CHAMP or 
Swarm during strongly magnetically disturbed epochs, 
and such as no permanent bias due to the static part of 
the magnetic field generated by the ring current remain 
in the data, measurements deviating by 60 nT in inten-
sity from the CHAOS-6 internal field model of Finlay 
et al. (2016) taken up to SH degree 20 and a yearly esti-
mation of a degree 1 external field expressed in the SM 
coordinate system are removed from the set. After this 
operation, a sample of Nest = 247 453 vector field meas-
urements regularly spaced in time is kept and used to 
estimate the parameters for the different sources.

This estimation procedure is initialized with a first 
guess for each parameter. For internal (or external) 
sources, radii lower (or larger) than the Earth’s radius 
are chosen. For the external sources we assume a char-
acteristic timescale of 1 day and set the slopes associated 
with τi(ℓ) to αi = 0 . The same is used for the induced 
and the ionospheric field. The lithospheric field, on the 
other hand, is assumed to be static. As mentioned above, 
several authors report that the core field time scales 
are inversely proportional to the spherical harmon-
ics degree (except for the axial dipole), implying αc = 1 . 
We start our estimation with an initial guess of αc = 0 
and Mc = 30 years and check whether we nevertheless 
recover the results suggested by the other authors.

Given a set of parameters, we perform the Kalman filter 
assimilation described above with the data subset. Before 
each analysis step we can calculate how well the model 
predicts the data with the relation:

Summing Mpred
k  over all k iterations provides the meas-

ure for the model compatibility with the data. We ran-
domly explore the multi-dimensional parameter space, 
seeking to maximize L =

∑

k M
pred
k  . The algorithm used 

to perform this operation is sequential. A parameter is 
chosen randomly, and a Gaussian perturbation is added 
to it. A Kalman filter simulation is then performed with 

(24)

M
pred
k

=− log
∣

∣

∣
Hk�zk|k−1

H
T
k

∣

∣

∣
−

(

dk −HkE[zk|k−1]
)T

(

Hk�zk|k−1
H

T
k

)−1
(

dk −HkE[zk|k−1]
)

.
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this new parameter value. If L is larger than at the previ-
ous iteration, the new value is assigned to the parameter, 
otherwise the model returns to its previous state. This 
step is repeated until the convergence of L is observed. 
Note that no range was imposed to any of the parameters. 
The final values from this parameter search are given in 
Table 2. Remember that for each source with the excep-
tion of the lithospheric field, we distinguish between the 
dipole spatial and timescales and the spatial and time-
scales of the other harmonics. The radii presented in 
Table  2 should not be considered as physical quantities 
where the source associated with would be lying at. They 
only enable to discriminate between internal and exter-
nal sources and influence the shape of the simple degree 
variance behavior of Eq. 6.

Figure  1 shows the static energy spectra projected 
at the Earth’s surface that define the spatial covariance 
structure of Eq.  6 for the optimal parameters. A com-
parison with the CHAOS-6.9 core field model of Finlay 
et  al. (2016) (black circles) and the LCS-1 lithospheric 
field model of Olsen et al. (2017) demonstrates the close 
agreement. The other internal source taken into account 
in our model is the residual ionospheric/ induced field 
( gii ). It is dipole dominated and exhibits an almost flat 
spectrum at the Earth’s surface as illustrated by the blue 
line in Fig.  1. Without the restriction to magnetically 
quiet data, this source would be much more energetic. 
This is also the case for the magnetic field generated by 
field-aligned currents ( gfac ), which reaches a similar 
amplitude as gii (dashed line in Fig.  1). The last sources 
are the external magnetospheric fields, which we model 
with a close ( gm ), a remote ( grm ) and a fluctuation com-
ponents ( gfm ). Together they exhibit a strong dipole and 
their energy spectra are rapidly decaying.

The different sources cover a large variety of time-
scales, ranging from minutes to centuries. For the core 

field, the characteristic time associated with its non dipo-
lar part reads τc(ℓ) = 514ℓ−1.06 . This power law is close 
to the slower estimate of Lhuillier et al. (2011) given by 
τ(ℓ) = 470ℓ−1 , but suggests about 10% longer time-
scales. For the core dipole, the estimation algorithm 
yields τc(1) = 935 years. Since we only consider data over 
a 17 year period, this estimate is likely not very precise 
but nevertheless illustrates that the dipole evolves much 
slower than the other harmonics. The residual iono-
spheric and induced fields vary very rapidly in compari-
son, with timescales between 1 h and 1 day, independent 
of the length scale. Sometimes assumed to be static (see 
Olsen et  al. 2014; Finlay et  al. 2016), the remote mag-
netospheric field has a timescale of τrm ∼ 10.3 years 
in our study, a value close to the solar cycle. The part 
of the external fields typically associated with the ring 
current are the degree ℓ = 1 contribution of the close 
and fluctuating magnetospheric fields. Whereas the 
purely zonal part gm exhibits a characteristic timescale 

Table 2 Magnetic sources parameters as described in "Magnetic sources" section

The prior spatial covariance matrices are derived from energy spectra expressed at some radii ai which are are either flat with E∞
i
(ℓ) = A

2
i
 or of the C-based type with 

the form E∞
i
(ℓ) = A

2
i
(2ℓ+ 1)S(ℓ) where S(ℓ) = ℓ+ 1 and S(ℓ) = ℓ for, respectively, internal and external sources. The characteristic timescales of Eqs. 5, 7 and 8 are 

parameterized by τi(ℓ) = Miℓ
−αi . In the Ai column, D corresponds to the magnitude of the dipole component

Field Spectrum Radius ai (km) Ai (nT) Mi αi

Core Flat 3456 D: 2.52× 105 9.74× 104 τc(1) : 935 years M(ℓ ≥ 2) = 514 years 1.06

Lithospheric C-based 6287 0.16 ∞ 0

Close magnetospheric C-based 12524 D: 9.16 1.88 τm(1) : 1.54 days M(ℓ ≥ 2) = 18 min 0

Remote magnetospheric C-based 235570 7.3 10.31 years 0

Fluctuating magnetospheric C-based 13028 D: 3 4.56 τfm(1) : 0.36 day τfm(2) : 0.55 days 
M(ℓ ≥ 3) = 4 days

1.15

Residual ionospheric/ induced Flat 6324 D: 5.48 4.39 τii(1) : 0.71 day M(ℓ ≥ 2) = 1.76 day 0.93

Field-aligned currents C-based 7917 D: 0 1.22 τfac(1) : 0 M(ℓ ≥ 2) = 1 min 0
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Fig. 1 Stationary state energy spectra at the Earth’s surface of the 
different magnetic sources given in Table 1. Black and red circles are 
the energy spectra of, respectively, the CHAOS-6.9 core field model of 
Finlay et al. (2016) in 2015.0 and the LCS-1 lithospheric field model of 
Olsen et al. (2017)



Page 8 of 13Baerenzung et al. Earth, Planets and Space          (2020) 72:163 

of τm(1) = 1.5 days, the fluctuating part gfm , assumed 
to have SH order m = {0, 1,−1} here, varies faster with 
τfm(1) ∼ 8  h. For the small-scale magnetospheric field, 
the timescales of the zonal contributions are shorter than 
those of the degree one contributions. Note that for gm , 
τm(ℓ ≥ 2) = 18 min, a characteristic time lower than the 
30 min time step of the Kalman filter algorithm. In such 
a case, where the estimation of τ was leading to lower 
values than the algorithm time step, the slope of the 
parameterized timescale was set to zero, and the source 
was only characterized by a spatio-temporal covariance 
structure of the form given by Eq.  5. Its evolution from 
one time step to the other was also treated as a tempo-
ral white noise. Finally, the fastest varying source is the 
field-aligned currents with τfac(ℓ) = 1 min. Together with 
the non dipolar part of gm , gfac , with its zonal structure 
and short memory of its past, strongly resembles the 
observed disturbance along satellite tracks discussed in 
Finlay et al. (2017), and generally affecting the construc-
tion of small-scale lithospheric field models (see Thébault 
et al. 2017).

Model results
The optimal model parameters described in the pre-
vious section are fixed in the sequential Kalman fil-
ter assimilation. The model seeks to describe the data 
with the spherical harmonics source coefficients gi(t) , 
which we call the Kalmag geomagnetic field model. 
Because the parameters were derived from data at low 

geomagnetic activity, we also have to restrict the final 
model data. This is done on the fly by testing how much 
a forecast differs from the data. Whenever the differ-
ence lies outside the 95.4% confidence interval pre-
dicted by the slow varying sources (the ones exhibiting 
some characteristic time larger or equal than a day 
at some degree ℓ ) the associated data points are dis-
missed. All in all, 28.6% of the originally selected data 
(see "Data" section) were dismissed. Note that this pro-
cedure to preselect the data to be assimilated also dif-
fers from the reweighted least-square approach chosen 
by Ropp et al. (2020).

We recall that the forecast time step is set to 30 min. 
The entire model (mean and covariance of z ) is stored 
every 0.25 year, although outputs could be saved down to 
every time steps. Figure 2 shows the Kalmag energy spec-
tra at the Earth’s surface for the core and the lithospheric 
field for the epoch 2015.0. For degree ℓ ≤ 15 , the stand-
ard deviations (SD) of both fields, shown with thin black 
and gray dashed lines, are comparable and exceed the 
mean value of the lithospheric field. Moreover, the SD 
of the combined field (thick black dashed line) is smaller 
than the SD of the individual fields. This illustrates that 
we cannot separate core and lithospheric contributions at 
these large scales. It also indicates that the prior level of 
variance of the lithospheric field, as estimated in the pre-
vious section and shown through its associated spectrum 
with triangles, is simply the extrapolation of the small-
scale stationary spectrum towards the larges sales.
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Figure  3 compares energy spectra for three types of 
solutions for the main field (left) and the secular varia-
tion (right) in 2015.0 plotted at the Earth’s surface. The 
Kalman filter solution (thin gray lines and symbols), the 
solution after the smoothing algorithm (thick black lines 
and symbols), and a third solution for a 5 year forecast 
from 2010.0 (thin black lines and symbols). Continuous 
lines show the mean, dashed lines the standard devia-
tion, triangles the differences to the DGRF-13 final field 
model, and circles the difference to the CHAOS-6.9 SV 
model.

Not surprisingly, the forecast yields the largest uncer-
tainties. The smallest uncertainties are achieved in the 
smoothed solution, since the smoothing process allows 
to take information from the future into account. For 
the field itself, the fact that the differences to the DGRF-
13 final model are similar to the model uncertainties, 
indicates that these uncertainties are reliably estimated. 
For the secular variation, the predicted uncertainty lev-
els seems to be slightly overestimated, at least for the 
Kalman filter and the smoothing solutions. The maxi-
mum resolution achieved for the SV is ℓ = 16 for the 
smoothing solution, beyond this value the SD becomes 
larger that the mean signal.

Figure  4 displays various estimations of the radial 
(left), azimuthal (middle) and longitudinal (right) secular 

variation at the level of several ground-based observato-
ries over the period 2000.0–2025.0. Blue dots correspond 
to SV estimations derived from ground-based observa-
tory measurements. They are obtained by taking annual 
differences of the measured magnetic field, selected 
under the same criteria we used for satellite data, and 
averaged over 0.1 years. The black lines are evaluations 
of the SV through the CHAOS-6.9 model taken up to 
SH degree ℓ = 16 . The blue and yellow lines are, respec-
tively, the IGRF-13 secular variation and the Kalmag 
candidate SV. The red area is the Kalmag mean secular 
variation  ±  2 standard deviation ( σ ). Between 2000.6 
and 2020.33 the outcomes of the smoothing solution 
are shown whereas outside this time window the secular 
variation is estimated with the forecast step the Kalman 
filter. Finally, the red dashed lines are the mean SV ± 2σ 
coming from 5 year forecast simulations.

The first observation one can make is that whenever 
the secular variation derived from observatory data 
exhibits a smooth evolution, the latter is well reproduced 
by the Kalmag model. We can also notice that at least 
until 2019.0, the CHAOS-6.9 SV is always lying within 
95.4% confidence interval ( E[∂tbc]± 2σ ) predicted by our 
model. The latter interval does not depend on the loca-
tion where the SV is evaluated. Nonetheless, estimated 
uncertainties are globally larger for the radial component 

10−2

10−1

100
101
102
103
104
105
106
107
108
109

mT

Spherical harmonics degree

M
ai
n
fie
ld

sp
ec
tr
a
E
(
)
(n
T

2 )

1 5 10 15 1 5 10 15
10−3

10−2

10−1

100

101

102

103

104

−1.0 −0.5 0.0 0.5 1.0 −30 −20 −10 0 10 20 30
µT/yr

Spherical harmonics degree

Se
cu
la
r
va
ri
at
io
n
sp
ec
tr
a
(n
T

2 /
yr

2 )

Kalman filter Smoothing 5 year forecast
Mean Standard deviation Difference with DGRF Difference with CHAOS-6.9

Fig. 3 Energy spectra at the Earth’s surface in 2015.0 associated with the main field (left) and the secular variation (right). Thin gray lines and 
symbols and thick black lines and symbols, correspond to the solutions of the Kalman filter and the smoothing algorithms, respectively. The thin 
black lines and symbols are associated with the outcomes of a 2010.0–2015.0 forecast simulation. Continuous and dashed lines are assigned to the 
energy spectra of, respectively, the different mean solutions and their associated standard deviation. Triangles and circles represent the spectra of 
the difference between the Kalmag mean models and the DGRF model in 2015.0 for the main field and the CHAOS-6.9 model of Finlay et al. (2016) 
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of the SV than for its azimuthal or longitudinal compo-
nents. This is certainly due to the fact that the main field 
is dipole dominated.

Because the Kalmag model is only derived from the 
CHAMP and Swarm measurements, data are missing 
between 2010.7 and 2013.8. This translates into a global 
increase of uncertainty predictions as it can clearly be 
witnessed for the longitudinal component of the SV in 
Mawson or Kourou. However, with the combination 
of the Kalman filter with the smoothing algorithm, the 
data gap does not lead to any particular issue to connect 
the two satellite eras since such an approach enables us 

to account for any space–time correlations. As already 
shown through the energy spectra of Fig. 3, the forecast 
algorithm is quite accurate to predict the future states of 
the secular variation. The three hindcast simulations cov-
ering the periods 2005–2010, 2010–2015 and 2015–2020 
are a confirming it. Nevertheless, in particular locations 
where the SV exhibits rapid variations as in Honolulu, 
the simple autoregressive dynamics propagating the 
core field, fails to not only reproduce but also bound the 
real evolution of the SV. This calls for using more com-
plex forecast models, able for example to account for the 
nonlinear interactions between the core field and a time 
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dependent outer core flow as in Barrois et  al. (2017), 
Bärenzung et  al. (2018), Sanchez et  al. (2019). For the 
incoming 5 years, both the IGRF-13 or our candidate 
SV models (which are everywhere quite close to one 
another) are lying well between the ± 2σ predicted error 
bars of the updated Kalmag model.

The last result analyzed in this study, is a comparison 
of the different candidates for the IGRF-13 main field in 
2020.0, and the field as it can be evaluated with meas-
urements taken after 2020.0. As shown in Fig.  3 and 
discussed previously, the accuracy of the model derived 
from the smoothing algorithm, which takes into account 
knowledge beyond the epoch of evaluation, is higher than 
the Kalman filter solution where the model derivation 
only accounts for previously assimilated data. We could 
also observe that the longer the forecasts the lower the 
accuracy of the model. For the construction of the IGRF-
13 model, measurements were only available up to maxi-
mum 2019.75, so the difference between the updated 
Kalmag model (which derives from data assimilated up to 
2020.33) and the various candidates can be considered as 
the errors of the candidates predictions. These errors are 
displayed in Fig. 5 through their energy spectra evaluated 
at the Earth’s surface. Whereas the error spectrum of the 
Kalmag candidate is drawn with a thick black line, the 
ones associated with the other candidates are shown with 
thin gray lines. Because the Kalmag model may exhibit a 
permanent bias, the difference between the model and 
the candidate may represent an erroneous evaluation 
of the error. Therefore the errors for each of the candi-
date models were also computed using another model 

taking recent data into account (up to March 2020), the 
CHAOS-7.2 model of Finlay et  al. (2020) which is also, 
in its first version, the parent model of the DTU candi-
date for IGRF-13. The spectra of these error evaluations 
are shown with dashed lines in Fig. 5. When compared to 
the Kalmag model, the Kalmag candidate appears to be 
the most accurate prediction of the main field in 2020.0 
with an error level lower than every other candidate at 
any SH degree ℓ . When the comparison is performed 
with the CHAOS-7.2 model, the Kalmag candidate glob-
ally remains the most precise estimation of the 2020.0 
field up to ℓ = 8 . However, at smaller scales the DTU 
candidate is closer to its parent model CHAOS-7.2, but 
the level of approximated error of the Kalmag candidate 
remains extremely low.

Conclusion
We presented in this study a new approach to derive a 
geomagnetic field model from direct measurements of 
the Earth’s magnetic field. Performing sequentially in 
time, the Kalmag model, which is the combination of a 
Kalman filter and a smoothing algorithm, enables us to 
consider complex prior covariance structure to character-
ize both spatially and temporally the different magnetic 
sources composing the observable field. The evaluation 
of the parameters controlling the statistical properties of 
each modeled source reveals the large variety of spatial 
and timescales populating the Earth’s magnetic field, and 
reinforces the idea of treating the assimilation of geomag-
netic data sequentially in time. By allowing the presence 
of a large-scale lithospheric field independent from the 
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core field, we could show that with the prior characteri-
zation we chose, the two sources could not be separated. 
Furthermore, although the sum of the two fields can be 
very accurately estimated, the level of uncertainty asso-
ciated with each individual source is directly linked to 
the prior variance of the lithospheric field. This implies 
a maximum resolution for the core field of spherical har-
monics degree ℓ =∼ 15 . Its time derivative however, 
can be accurately estimated up to ℓ = 16 . Globally, the 
model provides reliable uncertainty quantification for 
whether past, present or future field estimates. It also 
permits, through the spatio-temporal correlations a pri-
ori imposed, to consistently connect the CHAMP and 
the Swarm satellite eras.

For short-term forecasts, as the derivation of the IGRF 
model requires it, we could observe that our approach 
can be more accurate than other existing methods. This 
is certainly due to the fact that the secular variation is 
estimated through its dynamical correlation with the 
core field and is not a fit to the past evolution. There is 
nevertheless still some room for improvement. Consider-
ing more physically based dynamical equations to con-
strain the evolution of the various fields, such as dynamo 
simulations for the core field, would certainly improve 
the separation of the different sources, and provide more 
accurate predictions of future states. At high latitudes, 
a better treatment of the field generated by the auroral 
electrojet would certainly permit to reduce the amount 
of rejected data in the preselection phase of the Kalman 
filter algorithm. The temporal window covered by the 
model could also be extended by taking data from not 
only previous satellite missions, but also ground-based 
observatories or magnetic surveys.
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