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Novel anticancer medicines, including targeted therapies and immune checkpoint

inhibitors, have greatly improved the management of cancers. However, both

conventional and new anticancer treatments induce cardiac adverse effects, which

remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments

compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension,

myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none

of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe

and satisfactory. Certain clinically used cardioprotective drugs can even contribute to

cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent

of clinically used drugs, here we discuss the newly identified cardioprotective agents that

bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and

cannabidiol. We hope to provoke further drug development studies considering these

GPCRs as potential targets to be translated to treatment of human heart failure induced

by anticancer drugs.

Keywords: GPCRs, cardiotoxicity, melatonin, ghrelin, galanin, apelin, prokineticin, cannabidiol

INTRODUCTION

New anticancer treatments have improved overall mortality (1). However, most of the anticancer
drugs display a wide array of cardiovascular toxicities, leading to interruption of cancer therapies
and maladaptive remodeling in hearts, affecting the short- and long-term quality of life (2–4).
Oxidative stress and inflammation are inter-reliant processes involved in cardiovascular diseases
and cancers (5, 6), along with apoptosis (7, 8) and necrosis (9). Tissue resident and circulating
inflammatory cells (such as macrophages, mast cells, neutrophils, and monocytes) can also release
both reactive oxygen species (ROS) and reactive nitrogen species (RNS) to induce an oxidative
stress (6). Due to negligible detoxification capacity, the heart is particularly susceptible to ROS
and RNS injury (10). Thus, high levels of ROS and RNS can debilitate cardiac cellular signaling
pathways and can augment the gene expression of proinflammatory (11) and antioxidant defenses
as the major cause for necrosis and apoptosis.

Classic chemotherapeutics particularly anthracyclines are the prototype of drugs causing
cardiotoxicity (12). They can induce acute cardiotoxicity, including reversible hypotension,
pericarditis and transient electrocardiographic abnormalities (changes in the ST-T waves, QT
prolongation), and vasodilatation (13). However, after completion of cumulative dose regimens,
anthracyclines promote irreversible cardiomyopathy (classified as type (1) cardiotoxicity), leading
to heart failure (HF) (13, 14). Doxorubicin (DOX), the most frequently used anthracyclines can
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cause irreversible type 1 cardiotoxicity via accumulation of ROS
and RNS (15, 16). They also target Topoisomerase IIβ (Top
IIβ) in cardiomyocytes to induce DNA damage and apoptosis.
Recently, the anthracycline mediated cardiotoxicity has been
reviewed by Nebigil (17).

Targeted therapies also provoke some degree of cardiotoxicity.
Targeting key tyrosine kinases (TKs) with TK antibodies and
inhibitors has a remarkable achievement in cancer management.
However, they also induce cardiotoxicity, because they block
pathways that also regulate myocardial function (18). This
cardiotoxicity is often reversible, and thus classified as type
2 cardiotoxicity (19, 20). It results in ultrastructural changes
in cardiomyocytes, with reversible cardiac dysfunctions such
as elevated blood pressure, thromboembolism, pericardial
thickening, and arrhythmia (21). Type 1 and 2 forms of
cardiotoxicity can overlap, when the classic and targeted
therapeutics used together or subsequently. For example, in
patient treated with anthracyclines earlier, trastuzumab, a
monoclonal antibody anti-HER-2 can cause irreversible cardiac
damage and left ventricular (LV) dysfunction (18, 22, 23). On the
other hand, 27%, of patients who received both anthracycline and
trastuzumab encountered cardiac dysfunction, while this rate was
of 2-16% for patients treated with anthracyclines alone (24).

Recent studies have demonstrated that patients treated with
immune checkpoint inhibitors (25) also develop myocarditis
due to immune-related adverse events (6, 26). The therapeutic
mechanisms of inhibitors mostly rely on blocking either
the cytotoxic T-lymphocyte associated antigen-4 (CTLA-4)
or programmed cell death protein-1 (PD-1) pathways, while
activating the host’s immune system against cancer (27). CTLA-
4 and PD-1 act as immune response inhibitors (6, 28). They
suppress the T-cell response in order to prevent autoimmunity
and maintain T-cell tolerance. Cardiac immune-related adverse
events appear more frequently in patients treated with CTLA-
4 antagonists compared with PD-1 inhibitors (29) and the
myocarditis risk increases with combination therapy, leading
to discontinuation in approximately 50% of patients (30, 31)
probably due to targeting PD-1 and CTLA-4 in cardiomyocytes
as well.

Abbreviations:GPCR, G protein-coupled receptor; DOX, Doxorubicin; HF, Heart

failure; ROS, Reactive oxygen species; RNS, Reactive nitrogen species; Top Iiβ,

Topoisomerase Iiβ; LVEF, LV ejection fraction; HER2, Hergulin2; CTLA-4, T-

lymphocyte associated antigen-4; PD-1, Programmed cell death protein-1; LDL,

low-density lipoprotein; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-coenzyme A

reductase; PI3K, Phosphoinositide 3-kinases; MAPK, Mitogen-activated protein

kinases; β-ARs, β-adrenergic receptors; ? -ARs???-adrenergic receptors; CaMKII,

Calmodulin-dependent protein kinase II; Ang-II, Angiotensin II; AT-1R and AT-

2R, Angiotensin receptors; RAS, Renin-angiotensin system; ARB, Angiotensin-

II receptor blockers; IP3, Inositol trisphosphate; DAG, Diacylglycerol; PKD1,

Anchored protein kinase D1; ATP, Adenosine-triphosphate; A1R, A2AR, A2BR

and A3R, Adenosine receptors; MT1 and MT2, Melatonin receptors; mPTP,

Mitochondrial permeability transition pore; GHS-R, Ghrelin receptor, growth

hormone secretagogue receptor; VEGF, vascular endothelial growth factor; GalR1,

GalR2 and GalR3, Galanin receptors; APJ, Apelin receptor; ACE2, Angiotensin-

converting enzyme 2; PARP, Poly(ADP-ribose) polymerase; PROK1 and PROK2,

Prokineticins 1 and 2; PKR1 and PKR2, Prokineticin receptors; hiPSC-CMs,

Inducible pluripotent stem cell derived cardiomyocytes.

CLINICALLY USED CARDIOPROTECTIVE
AGENTS AGAINST CARDIOTOXICITY

There are several cardioprotective therapeutics that have been
used against anticancer-mediated cardiotoxicity. Their properties
are summarized in Table 1.

Antioxidants
Beneficial effects of antioxidants on LV remodeling and
amelioration of contractility have been demonstrated in many
experimental models of HF. For example, vitamin C effectively
mitigates DOX-induced oxidative stress and apoptosis in rats
(35). Resveratrol, a polyphenolic compound has also both
prophylactic and therapeutic benefits in reversing DOX induced
apoptosis and fibrosis in rat myocardium (36). Baicalein, a
bioflavonoid can alleviate cardiotoxicity in mice (37). However,
elimination of ROS and RNS by antioxidant drugs may be
detrimental and even impair physiological cellular functions
(58). There is also a risk of loss of oncological efficacy, because
of the overlapping mechanisms with cardioprotective effects.
Nevertheless, in clinic these approaches did not significantly
improve survival rate and they may even increase mortality if
they do not have other pharmacological properties (32, 59).

Dexrazoxane
Dexrazoxane is an iron chelator and detoxifying agent that
can prevent anthracycline-associated cardiotoxicity. It also acts
on Topoisomerase IIβ to promote cardioprotective effects.
Dexrazoxane is the only Food and Drug Administration
(FDA) and the European Medicines Agency (EMA) approved
cardioprotective drug to against chemotherapeutics-mediated
HF (38, 60). However, its use in children and adolescent
were forbidden by EMA in 2011, because it increases risk of
infection, myelosuppression and second primary malignancies.
These restrictions by EMA have been partially altered based
on the new findings in 2018 (39). Only use of dexrazoxane
was allowed in patients who have received a cumulative DOX
at the dose of 300 mg/m (2) and are continuing with this
medicine. Although dexrazoxane is a valuable option to prevent
cardiotoxicity, it induces a severe leukopenia in 78% of cancer
patients (40). Use of dexrazoxane is not recommended with
non-anthracycline chemotherapy regimens.

Statin
Statins are used to lower low-density lipoprotein (LDL) and
cholesterol amount in the blood on patients suffering to
arterosclerosis (61). The mechanism involved in this action
is due to inhibition of HMG-CoA reductase, which is
involved the biosynthesis of cholesterol. Statins also display
significant vasodilatation, platelet inhibition, anti-inflammatory,
and antioxidant effects due to their pleiotropic effects (62, 63).
Statin (atorvastatin) could be effective in maintenance of LV
ejection fraction (LVEF) in patients treated with anthracycline
(42). Moreover, it could limit oxidative stress and vascular
inflammation (64) and activate autophagy (43) to promote
cardioprotective effects against dasatinib. Statins also inhibits
Top IIβ mediated DNA damage via Rac1 inhibition. Recent
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TABLE 1 | Prophylactic cardioprotective agents.

Clinically used

cardioprotective agents

Mechanism of cardioprotection Name of molecules Anti-tumor effect Study limitations

Antioxidants ⇓ROS and RNS (32–34) Vitamin C (35)

Resveratrol (36)

Bicalein (37)

A risk of loss of oncological efficacy No improvement in survival rate (32)

Dexrazoxane Iron chelator and detoxifying agent,

⇓ Topoisomerase Iiβ (25, 38–41)

Topotect

Zinecard

Cardioxane

It increases risk of infection and

myelosuppression second

primary malignancies, leukopenia

(78%) (40)

No improvement in survival rate (39)

Statin ⇑Vasodilatation, anticoagulation,

⇓platelet, antioxidant and

anti-inflammatory functions;

⇓Topoisomerase II via Rac1

inhibition (42–45)

Lipitor

Simvastatin

Lovastatin

Zocor

Lescol

Crestor

Livalo

The meta-analyses suggested that

statin can reduce cancer (expecially

breast cancer)-mediated mortality

(46)

40% patients use ACEIs and β-blockers

together with statin, thus it is difficult to

estimate the cardioprotective

effectiveness of statin.

Decreasing synthesis of mevalonic acid

It can lead to muscle injury and

diabetes (47)

Beta-AR blokers

β1-AR acts through Gs and

Ca2+/calmodulin-

dependent protein kinase

(CaMKII)

β2-AR acts through the Gi

and Akt pathway

⇓ROS generation ⇓Apoptosis in

cardiomyocyte ⇓Mitochondrial

complex-I (carvedilol)(48, 49) and

vasodilatory effects (nebivolol) (50)

Carvedilol

Nebivolol

Metoprolol

The role of β-blockers on

cancer-specific survival rate resulted

in conflicting results (51, 52)

The benefit of the use of prophylactic

beta-blockers for prevention of

chemo-induced cardiotoxicity remains

unclear (53). The non-selective β1 and

β2 blockers could be more beneficial

due to antioxidant effects (28)

ACEIs and angiotensin

receptor blokers

AT1R uses

Gq/11, Gi, G12 and G13

coupled to PLCβ and

Rho/ROCK.

⇑ROS generation,

transactivation of growth

factor receptors (IGF-1R).

⇓Vasoconstriction, ⇓Inflammation,

⇓Fibrosis, ⇓Hypertrophy

⇓Catecholamine and aldosterone

release (54, 55)

Valsartan

Candesartan Cilexetil

Antitumor effect is conflicting

(56, 57)

Human trials are not conclusive yet.

Combination of enalapril with

metoprolol or candesartan has no clear

beneficial effects (48)

meta-analyses suggest that statins are at least equally potent
as dexrazoxane in the prevention of anthracycline-induced
cardiotoxicity (65). Calvillo-Argüelles and colleagues have found
that in HER2+ breast cancer patients treated with trastuzumab
with or without anthracycline, the concomitant statin use was
associated with a lower risk of cardiotoxicity (44). Although,
several studies on the influence of statin therapy on development
of cancer risk resulted in conflicting results, the recent meta-
analyses suggested that statin can reduce cancer-mediated
mortality (46). However, there are some studies show that statin
induces myopathies that may be due to decreased synthesis
of mevalonic acid, leading to decreased energy generation and
muscle injury. Another side effect associated with statin usage
is new-onset diabetes (47). Many of the beneficial effects of a
statin is due to inhibition of heterotrimeric G proteins, including
Ras and Rho or Rac1 signaling (45). Thus, the specific Rho
and Rac inhibitors may be more preferable targets for future
chemo-preventive strategies.

GPCRs
As seven transmembrane (7TM) domain proteins, G protein-
coupled receptors (GPCRs) represent the largest family of
cell surface proteins (66). GPCRs regulate many physiological
processes in every tissue, making the GPCR superfamily a

major target for therapeutic intervention (67). The binding of
agonists to GPCRs not only initiates the “classical,” signaling
cascades through heterotrimeric G proteins (composed of the
three subunits, Gα, Gβ, and Gγ). It can also activate G-
protein-independent pathways involving β-arrestin (68, 69).
Indeed, β-arrestins are identified as scaffolding proteins for
MAP kinases and serine/threonine kinases cascades (70). The
discovery that some GPCRs prefer to activate G-protein- or
arrestin-mediated pathways has given rise to efforts to produce
signal biased drugs (71). The drug discovery efforts aim to
produce “biased” and/or allosteric ligands with less adverse effects
without compromising their efficacy (72). In cardiovascular
system, GPCRs can lead to hypertrophy, apoptosis, contraction,
and cardiomyocytes survival. Some of the GPCR targeted
therapeutics are used in clinic for treatment of heart failure and
cardiotoxicity (Table 1).

Preventive and Prophylactic Strategies
Targeting GPCRs Against
Anticancer-Induced Cardiotoxicity
β-Blockers
β-adrenergic receptors (β-ARs) play a crucial role in
cardiovascular regulation. It exists 3 types of β-ARs: β1, β2
and β3. Cardiac adrenergic receptor corresponding to β1-ARs
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whereas β2-ARs are localized on blood vessels. β1-ARs, are
coupled to the Gαs and activate adenylyl cyclase to exert
a positive inotropic, chronotropic and dromotropic effects
in the heart. Indeed, β1-ARs increase heart rate, cardiac
contractility and myocardial oxygen demand, thus promoting
myocardial ischemia in patients with coronary heart disease.
More importantly, persistent β1-ARs induce myocyte apoptosis
and hypertrophy by activating CaMKII. On the opposite,
persistent β2-ARs activation protects myocardium through a
Gαi-mediated pathway, and activating PI3K, and Akt kinase
probably via small G proteins (73). Administration of β2-AR
agonist and β1-AR antagonist seems to be better than β2-AR
antagonist in HF prevention. Interestingly, β3-AR is activated
by catecholamines at higher concentration than those required
to activate β1-AR and β2-AR (73). Thus, β3-AR plays an
important protective role in the cardiovascular system during
sympathetic over-stimulation.

It exists three mains β-AR blockers. The first generation
of β-blockers, such as propranolol, inhibits both β1 and β2-
ARs. The second generation of β-blockers (metoprolol) are
cardioselective (β1-ARs).

The third generation of β-blockers (carvedilol and nebivolol)
are vasodilators that not only inhibit β1 and α1-adrenoreceptors,
but they also activate β3-adrenergic receptors (74). Carvedilol
also reduces ROS generation and apoptosis in cardiomyocyte
(49). Nebivolol has a vasodilatory effect mediated by nitric oxide
release and avoid vasoconstriction to decrease blood pressure
in hypertensive patients (50). Two clinical studies showed that
carvedilol prevent cardiotoxicity in female patients diagnosed
with breast cancer (75, 76). This cardioprotective effects has
been attributed to its antioxidant and anti-apoptotic properties
rather than its β-AR blocking activity, because carvedilol inhibits
mitochondrial complex-I that promotes cardiotoxicity (77). This
cardioprotective effect of carvedilol is superior than metoprolol
and atenolol for preventing cardiomyocytes against DOX-
induced apoptosis (78). In contrast, Avila and his colleague
showed that carvedilol has no impact on the LVEF reduction
induced by anthracycline in breast cancer patients (53). The
recent meta-analyses on cancer patients have demonstrated that
the use of β-blockers is not associated with cancer prognosis (51).
Indeed, several studies on the influence of β-blockers on cancer-
specific survival rate resulted in conflicting results (51, 52). The
beneficial effects of non-selective β1 and β2 blockers could be due
to their antioxidant effects (28).

Angiotensin Converting Enzyme Inhibitors (ACEI) and

Angiotensin (AngII) Receptor Blockers (ARB)
Renin-angiotensin-aldosterone (RAAS) system regulates
the cardiac and renal functions. Ang-II interacts with two
GPCRs: AT-1R and AT-2R that are associated with opposite
functions (79). However, most of the effects of renin-angiotensin
system (RAS) are mediated by AT-1R, which promotes
vasoconstriction, inflammation, fibrosis, hypertrophy, and
releasing of catecholamine and aldosterone. AT-2 is implicated
to vasodilatations, inhibition on cell growth, apoptosis, and
bradykinin releasing. Increasing of Ang-II also stimulates
sympathetic system and the production of aldosterone, leading

to LV hypertrophy (80). Reduction of excessive Ang-II and
aldosterone decrease cardiovascular morbidity and mortality.
Indeed, AT-1R blockers ACE inhibitors are of paramount
importance in treatment of cardiovascular diseases, including
hypertension (54).

Several clinical trials indicate that Angiotensin-II receptor
blockers (ARB) alleviate anthracycline cardiotoxicity (55),
however, prospective trials are still needed for further validation.
The expression of AngII and AT-1R have been found in many
cell types of the tumor microenvironment (56). Thus, the RAS
may alter remodeling of the tumor microenvironment and the
immuno-suppressive milieu, thereby affecting tumor growth. In
contrast, meta-analysis derived from the results of a group of
trials demonstrated that ARB may promote the occurrences of
new tumors (especially lung cancer) (57). These findings warrant
further investigation.

The cardioprotective effects of combined ACEIs/ARBs and β-
blockers have been evaluated during anthracycline, trastuzumab,
or sequential chemotherapy. The combination of carvedilol
and enalapril has been shown to preserve the LV function
in adult patients treated with anthracyclines (81). However,
other trials with combination of enalapril with metoprolol
(82) or candesartan with metoprolol (83), ended up with
disappointing results. Indeed, Guglin and his colleague recently
demonstrated that both lisinopril and carvedilol do not
prevent the cardiotoxicity of trastuzumab monotherapy in
breast cancer patients (48). However, both drugs significantly
alleviated the cardiotoxicity of anthracycline and trastuzumab
sequential therapy. Although, ARBs, ACEIs, and β-blockers are
necessary for treatment of HF, long-term studies are essential
to validate whether ARBs have cardioprotective effects against
the chronic or late-onset types of cardiotoxicities induced by
cancer treatments.

Newly Discovered GPCR Agonist Against
Anticancer-Mediated Cardiotoxicity
We discus here newly identified GPCR agonists that exhibit
cardioprotective effects against anti-cancer drugs in in vitro and
in vivo preclinical models (Figure 1 and Table 2).

Alpha Adrenergic Receptor (Dabuzalgron)
Both the adrenergic receptors alpha 1 (α-AR1) and alpha 2 (α-
AR2) bind catecholamines (epinephrine and norepinephrine).
The α-AR1 couples to Gαq type, resulting in activation of
phospholipase C, increasing Inositol trisphosphate (IP3) and
diacylglycerol (DAG), and ultimately increasing the intracellular
Ca2+ levels, leading to smooth muscle contraction and
glycogenolysis (104). Cardiac α1-ARs activate phospholipase C
and MAPK to promote ischemic preconditioning (105), cardiac
hypertrophy (106)and cardiac cell survival (107). The knockout
of α1A/α1B-adrenoceptor in mice develops small hearts (108)
and aggravates the pressure overload–induced HF. In support
of this study a large-scale clinical trial showed that doxazosin,
an inhibitor of α-AR1 signaling, increases HF in hypertension
patients (109). The α2-AR acts via Gαi/o to an inhibit adenylyl
cyclase, decreasing the available cAMP (110). It also decreases
neurotransmitter release and central vasodilation.
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FIGURE 1 | Overview of the cellular effects of cardioprotective GPCRs.

Dabuzalgron is a selective α1AR agonist that has been
clinically examined against urinary incontinence (111). Recent
study in mice showed that dabuzalgron displayed a strong
cardioprotection against DOX-induced cardiotoxicity (84). It
reduces ROS production and fibrosis, enhances contractile
function, and preserves myocardial ATP content via regulating
mitochondrial function, in DOX-treated mice. Cardioprotective
signaling pathways of α1-AR is not limited to activation
of MAPK1/2 pathways (84), it also activates pro-survival
pathways such as A kinase anchoring protein-Lbc (AKAP-Lbc)
and its anchored protein kinase D1 (PKD1) in cardiotoxicity
mice models (112). Future studies should determine whether
dabuzalgron can be used to treat chemotherapeutics-mediated
HF in cancer patients.

Adenosine Receptor Agonists
Adenosine is a naturally occurring nucleoside formed by the
degradation of ATP. Extracellular adenosine concentrations rise
in response to hypoxia and other stress (113). However, chronic
adenosine elevation can increase inflammation, cytokine release,
and induces brain dopamine depletion, fibrosis and kidney
damage (114). The adenosine receptors A1R, A2AR, A2BR, and
A3R can sense an imbalance of demand and supply of oxygen and
nutrients (115). Adenosine exerts a significant cardioprotective
effect during cardiac ischemia by activation of the A1R and
A3R (86, 116). However, full A1R agonists have promote several

cardiovascular adverse effects due to its off-target activation as
well as desensitization of A1R, leading to tachyphylaxis (117). In
contrast, a selective partial agonist for A1AR improves cardiac
function without promoting atrioventricular blocks, bradycardia,
or unfavorable effect on blood pressure (118, 119).

A selective A3R agonist (Cl-IB-ME) mitigates
bradycardia, elevated serum creatine kinase levels and
cardiac histopathological changes in DOX-treated mice.
Cardioprotective effect of Cl-IB-ME involves the inhibition of
ROS production and inflammation induced by DOX in vivo
(85). A3AR activation also prevents perioperative myocardial
ischemic injury (120), protects ischemic cardiomyocytes by
preconditioning (121), and induces ischemic tolerance that
is dependent on KATP channels (122). This cardioprotective
effects A3R agonists were absence in A3AR deficient mouse
cardiomyocytes, showing an A3AR-mediated effect. On the
opposite to A1AR, A3AR is expressed at very low levels in adult
ventricular cardiomyocytes. The efficacy of two A3AR agonists is
currently examined in multiple clinical trials (123).

Melatonin Receptor Agonists
Melatonin is a pineal gland hormone synthesized from the
amino acid tryptophan and is secreted into both the bloodstream
and cerebrospinal fluid. It regulates circadian, seasonal, and
transgenerational time cycles. Melatonin acts through 2 GPCRs,
MT1, andMT2 that are linked to Gαi/Gαo or Gαq/Gα11 to induce
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TABLE 2 | Newly discovered cardioprotective agents targeting GPCRs.

Newly discovered

cardioprotective agents

targeting GPCRs

Mechanism of cardioprotection

against anticancer-mediated

cardiotoxicity

Name of molecules Tumor effect Study limitations

Alpha adrenergic

receptor

(α 1AR)

Via Gαq/G11 ⇑PLC/Ca+2

⇓ROS,⇑ mitochondrial function,

⇑ATP content, ⇑ERK 1/2

phosphorylation (84)

Dabuzalgron

α 1AR agonist

No effect on anticancer efficacity in

animal models (84)

While dabuzalgron a well-tolerated oral

α1A-AR agonist, there has been no

clinical trial on its cardioprotective role

yet

Adenosine

(A1R and A3R)

Via Gαi/o ⇓ cAMP /PKA

/CREB.

Via Gαq ⇑PKC ⇓cardiac K+

channels and voltage

sensitive Ca2+ channels

⇓oxidant/⇑antioxidant

⇓inflammation, ⇓KATP

channels,⇑neovascularization

(85, 86)

Neladenoson (BAY

1067197) A1AR

agonist

Cl-IB-MECA

CP-608,039 34

CP-608,039 35

A3AR agonist

Highly selective receptor subtype

agents are necessary

Their effects on anticancer efficacity

is not known

Multiple clinical trials with two A3AR

agonists are ongoing

Melatonin

(MT1 and MT2)

MT1 via Gαi

⇓AC/AMPK/PGC1α,

⇑PLC/PKC via Gαq. MT2

couples Gαs

They dimerize with 5-HT2c,
GPR61, GPR62,

GPR50, GPR135

⇓ROS ⇓mitochondrial permeability

transition pore (mPTP) ⇓ lipid

peroxidation (87–93)

Circadin TM

Country Life®

Melatonin

Melatonin increases anticancer

efficacity of anthracycline in animal

models (93)

Receptor oligomerization may

contribute to the functional diversity of

Melatonin

It needs to be further exploded in

human trials

Ghrelin

(GHS-R)

⇑PI3K, Akt, and NOS and

p38-MAPK and ⇓AMPK

activity.

It dimerizes with SSTR5,

DR2, MC3R, 5-HT2C

⇑Autophagy

⇓ROS and mTOR induction (94, 95)

Hexarelin and

GHRP-6 agonist

The role of ghrelin administration on

antitumor efficacity of anticancer

drugs is not known

Receptor oligomerization may

contribute to the functional diversity of

ghrelin

Clinical trials are needed

Galanin

(GalR1, 2, 3)

GalR1-3 couple to

Gαi/Gαo, ⇑Rho

⇑ Functional and metabolic

tolerance of the heart (96, 97)

GalR1-3 agonist

Spexin (GalR3 agonist)

The role of galanin administration on

antitumor efficacity of anticancer

drugs is not known

It needs to be further exploded in

human trials

Apelin

(APJ)

⇑AMPK and PI3K, and

MAPK/ERK kinase 1/2

⇓ROS and SOD ⇓DNA damage

⇓PARP cleavage and caspases

activation (98, 99)

Apelin-13 (APJ

agonist)

The role of apelin administration on

antitumor efficacity of anticancer

drugs is not known

It needs to be further exploded in

human trials

Prokineticin

(PKR1 and PKR2)

PKR1 couple to Gαq/11

activates Akt, MAPK,

detoxification pathways.

PKR2 couple to Gα12/13

and Gs.

⇓ROS, ⇑detoxification sytem,

⇓DNA damage, ⇓Cleavage

of caspases Protects endothelial

cells, cardiomyocytes and cardiac

progenitor cells via Akt and MAPK

activation (100)

IS20, PKR1 agonist It does not alter anti-tumor efficacity

of chemotherapeutics in animal

models (100)

It needs to be further exploded in

human trials

Cannabidiol

(CB1 and CB2)

CB1 couples to Gαi/o, CB2

couples to Gαs and

activates MAPK, inhibit

Na+/Ca2+ exchange

It activates GPR55, TRPV1,

α1-AR, µ opioid and 5HT 1A

⇓ ROS and RNS,

⇑mitochondrial function

⇓ inflammation (101, 102)

Rimonabant, AM281

(CB1 receptor

antagonist),

AM1241 and

JWH-133

(CB2R agonist)

Cannabidiol has antitumor effects in

a large variety of cancer cell lines

(103)

Cannabidiol can be used glioblastoma

multiforme and childhood epilepsy in

humans

Receptor oligomerization should

be clarified

anti-adrenergic effects (124). These melatonin receptors are
ubiquitously present in central and peripheral organs, including
the cardiovascular system. Melatonin regulates blood pressure
and heart rate either normalizing the circadian rhythm of
blood pressure and ameliorating nocturnal hypertension, or
directly acting on heart and blood vessels (125). They also

regulate the renin-angiotensin system (126) and mitochondrial
function (127).

Melatonin inhibits necrosis and apoptosis, and
improves DOX-mediated cardiac dysfunction without
compromising the antitumor effect of DOX in mice (87)
and rats (88). The mechanism involved in cardioprotective
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effect against DOX-cardiotoxicity has been attributed
to its antioxidant effect (89) and suppression of lipid
peroxidation (90). Recent studies showed that melatonin
activates AMPK, PGC1α (91), and sirtuins (92) to
attenuate acute DOX-cardiotoxicity via alleviating
mitochondrial oxidative damage and apoptosis. Indeed,
high doses of melatonin are essential to reach adequate
subcellular concentrations to exert these cardioprotective
effects (128).

Ramelteon, is a dual MT1 and MT2 melatonin receptor
agonist used for insomnia that displays a strong cardioprotective
effect in the models of ischemic HF induced by the coronary
artery ligation (129), chronic intermittent hypoxia-induced HF
(130), and isoproterenol-induced myocardial infarction (131,
132). Unfortunately, the effect of ramelteon in anticancer-
mediated cardiotoxicity has not been studied yet. Melatonin
can also enhance antitumor effects of anthracycline in animal
model (93). Thus, the combined treatment of anthracyclines and
melatonin needs to be further explored in cancer patients.

Ghrelin Receptor Agonists
Ghrelin is a growth hormone-releasing and orexigenic peptide
that acts through growth hormone secretagogue receptor (GHS-
R) in the brain. However, expression of GHS-R in cardiovascular
system is controversial. Ghrelin regulates energy balance, body
weight maintenance, and metabolism (133). Roles of ghrelin
in protecting heart function and reducing mortality after
myocardial infarction are partly due to its role on the cardiac
vagal afferent nerve terminals (inhibition of cardiac sympathetic
and activation of cardiac parasympathetic nerve activity) (134).
Ghrelin significantly decreased blood pressure and heart rate in
healthy human (135) and prevents the arrhythmia in the mice
model of myocardial infarction (136).

Ghrelin significantly improves LV functions and attenuates
fibrosis (137) and development of cachexia (138) in rat HFmodel.
Ghrelin inhibits the DOX -induced cardiotoxicity in mice hearts
and cardiomyocytes by blocking AMPK activity and activating
the p38-MAPK pathway, which suppresses excessive autophagy
(94). A ghrelin-containing salmon extract given per os was
found to alleviate the cardiotoxicity of DOX in mice, mimicking
cardioprotective effect of synthetic ghrelin (95). Cardioprotective
effect of ghrelin can also be due to its angiogenic properties
in ischemic tissue (139–141). Ghrelin via GHS-R ameliorates
impaired angiogenesis by increasing VEGF levels in the ischemic
hearts of diabetic rats (140) and in a rat myocardial infarction
model (142). Despite the potent synthetic agonist of GHS-R, RM-
131 plays an anticatabolic effect in chronic HF models of rat
(143), its role in anti-cancer drug mediated cardiotoxicity has not
been studied yet.

Galanin Receptor Agonists
Galanin is a neuropeptide present in the nervous system and
some organs (144) that uses 3 kinds of GPCRs called GalR1,
GalR2 and GalR3 that are all expressed in the cardiovascular
system (145). The elevated sympathetic activity during cardiac
failure stimulates the release of galanin. This neuropeptide is
a one of the sympathetic co-transmitters together with ATP
and neuropeptide Y (NPY), in addition to norepinephrine.

Galanin released by sympathetic nerves may diminish vagal
neurotransmission (146). Indeed, galanin via GalR1 inhibits vagal
bradycardia (147). In accord with this study, GalR1 inhibitor,
M40 improves cardiac function and attenuate remodeling after
myocardial infarction in rats (148). In contrast, an peptide
agonist of galanin receptors and the full-length galanin reduce
infarct size and the cardiac damage markers in ischemia and
reperfusion rat model (96). Indeed, the natural N fragments
of Galanin that have more affinity to GalR2 than GalR1 and
GalR3 (145) limit acute myocardial infarction in rats in vivo
(149). Moreover, natural galanin and GalR2 agonist have shown
to increase cell viability by suppressing caspase-3 and 9 activity
against hypoxic insults in other cells (97).

The GalR1-3 agonist [RAla14, His15]-galanin (2-15) exhibits
cardioprotective properties against DOX-mediated cardiac injury
in rats. Coadministration of this agonist with DOX has
prevented the increase in plasma CK-MB activity and improved
the parameters of cardiac function and caused weight gain.
The obtained results demonstrate the ability of a novel
agonist of galanin receptors GalR1-3 to attenuate DOX-induced
cardiotoxicity (150). To conclude, galanin peptides via GalR1-
3 alleviate the cardiac dysfunctions induced by DOX. The role
of GalR1-3 agonist on anti-tumor effect of DOX in cancer mice
model needs to be studied.

Apelin Receptor Agonists
Apelin is an endogenous peptide that acts trough the APJ
receptor that is 54% identical with AngII receptor. However,
angiotensin II does not bind to APJ (151). Mature apelin,
apelin-36, and its shorter forms (apelin-17, -12, and -13) result
from the cleavage of pre-pro-apelin. Apelin itself can also be
cleaved in vitro by the angiotensin-converting enzyme 2 (ACE2)
(152). Apelin has a positive inotropic effect in vitro (153) and
is involved in lowering arterial blood pressure (154), inducing
arterial vasodilation (155), and improving cardiac output (156). It
protects the heart against ischemia/reperfusion-mediated injury
and promotes angiogenesis (157).

Moreover, in APJ knockout mice exhibited more severe heart
injury, including impaired contractility functions and survival
rate after DOX treatments as compare to wild type mice
receiving DOX (98). On the other hand, apelin protects H9c2
cardiomyocytes overexpressing APJ against DOX-mediated cell
death. These findings all together have suggested that the
suppression of APJ expression can worsen DOX-induced
cardiotoxicity. Impairment of the endogenous apelin-APJ system
may partially depress the protective signaling in DOX-treated
hearts (98). Apelin-13 pretreatment attenuates cisplatin-induced
cardiotoxicity by inhibiting apoptosis in cardiomyocytes via
activation of MAPKs and PI3K/Akt signaling in vitro and in
vivo in mice heart (99). The mechanism of cardioprotection in
vivo involves an attenuation of the ROS and superoxide anion
accumulation, inhibition of DNA damage, and suppression of
PARP and caspases as well as an improvement in angiogenesis.

Importantly, high levels of apelin and APJ have been found
in several cancer types that may be connected with obesity. For
example, increase levels of Apelin-12 in colon cancer patients
with obesity (158), or elevated levels of apelin-36 in endometrial
and breast cancer patients with obesity (159–161) have been
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found. The role of AJP agonist on anti-tumor effect of anti-
cancer agents in cancer mice model needs to be studied. Thus,
promoting APJ signaling in heart may represent an interesting
strategy to alleviate the cardiotoxicity of anticancer treatments.

Prokineticin Receptor Agonists
Prokineticins are peptides found in milk and macrophages (162).
These peptides are called prokineticin because of their first
identified biological activity was a prokinetic effect on smooth
muscle cells of the gastrointestinal tract (163). Prokineticins
exist as two isoforms, PROK1 and PROK2 that are expressed
in all mammalian tissues (164). They are angiogenic factors
(165) and induce mitogenic and survival pathway in lymphocytes
and hematopoietic stem cells (166), neuronal cells (167, 168),
cardiomyocytes (169), and endothelial cells (170). PROK1 and
PROK2 exert their biological activity on prokineticin receptors
1 and 2 (PKR1 and PKR2) (171).

We have showed that PROK2/PKR1 can induce angiogenesis,
while PROK2/PKR2 signaling promotes endothelial cell

fenestration and disorganization (170). In cardiomyocytes PKR1
signaling activates Gα11/Akt pathway to reduce cardiomyocyte
death (169), while PKR2 signaling induces hypertrophic
cardiomyopathy (172). Indeed, PKR1 gene therapy promotes
resistance to ischemia, protects heart against myocardial
infarction, and ameliorates heart structure and function (169).
Overexpression of PKR1 in transgenic mice hearts promotes
neovascularization, suggesting a novel myocardial-epicardial
interaction that is involved in differentiation of epicardial
progenitor cells (EPDCs) in to vasculogenic cells type by a
paracrine PROK2/PKR1 signaling (173).

PKR1 signaling controls epithelial mesenchymal
transformation (EMT) during heart (174) and kidney
development (175). PKR1 controls fate of tcf21+ fibroblast
(176) and Wt1+ epicardial cells (174). PKR1 epigenetically
controls stemness and differentiation of these cells, unraveling
a new neovasculogenic pathway vs. adipogenesis (177). PKR1
inhibits adipogenesis and reduce adipocyte accumulation
under high fat diet regime of mice (178, 179). PKR1 controls

FIGURE 2 | Proposed cardioprotective (A) and anti-cancer (B) drug studies.
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trans-endothelial insulin uptake, preadipocyte proliferation and
adipogenesis (180). Lack of PKR1 in mice induces developmental
defect in heart and kidney and in adult stage insulin resistance
and obesity (181, 182).

In 2015, Gasser et al. discovered the first PKR1 agonists
called IS20 (183). This agonist prevents the formation of cardiac
lesions and ameliorates the cardiac function and survival after
myocardial infarction in mice. IS20 inhibits DOX-mediated
cardiotoxicity in cultured cardiac cells including cardiomyocytes,
endothelial and progenitor cell as well as in mice models of acute
and chronic cardiotoxicity. Importantly, these small molecules
did not alter cytotoxic effect of DOX in cancer cells and in vivo
cancer cell line- derived xenograft mice model (100). This study
also described how classic chemotherapeutics, anthracyclines
affect cardiac cells in dose-and time-dependent manner and how
they impair NFR2 defense mechanism. These results indicate that
PKR1 is a target for development of cardioprotective drugs.

Cannabidiol
Cannabidiol is the most abundant non-psychoactive, derived
cannabinoid (184). In the low nanomolar range, cannabidiol
act as an antagonist of cannabinoid 1 receptor (CB1R) and
cannabinoid 2 receptor (CB2R), while it has agonist/inverse
agonist actions at micromolar concentrations (185, 186).
Cannabidiol activate TRPV1 channel and several GPCRs,
including the orphan receptor GPR55, the putative Abn-CBD
receptor, α1-adrenoreceptors, 5HT1A receptors and µ opioid
receptors (187). Several studies showed cardioprotective effects of
cannabidiol in animalmodels ofmyocardial ischemic reperfusion
injury (188), and myocardial infarction (189). It also ameliorates
cardiac functions in diabetic cardiomyopathy (186).

Cannabidiol protects hearts against DOX-induced cardiac
injury, in rats (101) and in mice (102). It improves cardiac
dysfunction by (i) attenuating ROS /RNS accumulation,
(ii) preserving mitochondrial function and biogenesis, (iii)
promoting cell survival, and (v) decreasing myocardial
inflammation. The involvement of CB1 and CB2 signaling
were not clarified in these studies. Recent data has shown
that CB1R and CB2R receptors have opposite effects. Indeed
CB1R antagonists and CB2R agonists both protect the heart
against clozapine-toxicity (190). Thus, CB1R antagonist reduces
DOX-induced cardiotoxicity and decreased cortical cerebral
infarction (191). By contrast, two CB2R agonists JWH-133,
AM 1241 alleviate quetiapine cardiotoxicity (192). Moreover,
cannabidiol by itself display cytotoxicity in many cancer cell
lines, and anti-tumor effects in cancer mice models (103),
suggesting that cannabidiol may have a synergistic effect with
antineoplastic drugs in the use of cardioprotective agents. In fact,
the cannabinoid HU-331 has been shown to be more potent and
less cardiotoxic than DOX (193). Indeed, Insys Therapeutics has
obtained FDA orphan drug designation for Cannabidiol for the
treatment of multiform glioblastoma and childhood epilepsy.

CONCLUSION

Cardiotoxicity induced by anti-cancer therapy may occur when
the anticancer agent targets a common signaling pathway that

are essential to maintain the functions of both cardiac and cancer
cells. It can also involve off-target effects due to non-selective
actions of anti-cancer agents. The choice of the cardioprotective
therapeutic approach relies on the delicate balance between
the efficiency of anti-neoplastic drugs and the management of
cardiovascular complication.

Cardioprotective utility of GPCR ligands will require
validation of preferentially expression of these GPCRs in both
cancer and cardiac cells, and identification of their signaling (e.g.,
G-protein- or arrestin-mediated pathways) and functional roles
(Figure 2A). Whether these cardioprotective ligands interfere
with the anti-tumor effect of the chemotherapeutics should
be studied as well. The human inducible pluripotent stem cell
derived cardiomyocytes (hiPSC-CMs), iPSC-CM-derived 3D
cultures and organoids provide human-based model systems
to explore the molecular mechanisms of cardiotoxicity and
cardioprotection (194). They may also serve as a platform for
personalized medicine. Thus, GPCR ligand efficacy can be
optimized and their side-effects can be examined in hiPSC-CMs
and organoids.

In addition, most of the data regarding the efficacy of
cardioprotective GPCR-ligands against cancer therapy mediated-
cardiotoxicity have been obtained from small animal models of
cardiotoxicity and cancer cell-derived xenograft mice models.
Therefore, further studies in bigger animals are necessary to
examine their efficacy and adverse effects before these findings
can be translated to a human study.

Interestingly, certain cancer cell types may retain a GPCR
expression pattern via serving novel biomarkers and/or as
valuable therapeutic targets. For example, GPR161 is functionally
expressed in breast cancer (195) and GPRC5A in pancreatic
cancer (196) and GPR68 in the tumor microenvironment (197).
However, both CD97 and GPR56 are highly express in multiple
cancer types and in normal tissues (198). Moreover, many
mutated GPCRs such as GPR110, GPR112, GPR125, GPR126,
GPR98, and GPR110 have been found in certain cancers (199).
These findings suggest that different types of cancers may be
characterized by a specific onco-GPCR-ome (67). It could be
interesting to examine if there is a “GPCR signature” in heart
as well. In precision medicine, selectively targeting GPCRs in
specific cancers can lead to a novel class of anti-cancer drugs
with less adverse cardiac effects, after defining their expression
and their role in heart (Figure 2B).
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