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Sequential modelling of the Earth’s core 
magnetic field
Guillaume Ropp1*  , Vincent Lesur1  , Julien Baerenzung2   and Matthias Holschneider2 

Abstract 

We describe a new, original approach to the modelling of the Earth’s magnetic field. The overall objective of this study 
is to reliably render fast variations of the core field and its secular variation. This method combines a sequential mod-
elling approach, a Kalman filter, and a correlation-based modelling step. Sources that most significantly contribute 
to the field measured at the surface of the Earth are modelled. Their separation is based on strong prior information 
on their spatial and temporal behaviours. We obtain a time series of model distributions which display behaviours 
similar to those of recent models based on more classic approaches, particularly at large temporal and spatial scales. 
Interesting new features and periodicities are visible in our models at smaller time and spatial scales. An important 
aspect of our method is to yield reliable error bars for all model parameters. These errors, however, are only as reliable 
as the description of the different sources and the prior information used are realistic. Finally, we used a slightly differ-
ent version of our method to produce candidate models for the thirteenth edition of the International Geomagnetic 
Reference Field.
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Introduction
The magnetic field surrounding the Earth is sustained 
by—and constantly evolving due to—the motions in the 
Earth’s liquid outer core. It has been observed and stud-
ied for centuries, and recent evolution in both techno-
logical and mathematical methods has allowed us to 
understand more and more of its dynamics. Although 
studies of ancient variations of the geomagnetic field 
must rely on archeomagnetic and paleomagnetic data 
which are sparse and thus give only access to long time 
scales, the study of recent changes relies on a worldwide, 
dense data distribution, and efficient data acquisition 
platforms. With the significant increase of the number 
of magnetic observatories since the 1950s and the launch 
of several magnetic satellite missions in the last two dec-
ades, a continuous set of high quality data has allowed a 
deeper insight into the magnetic field evolution.

The field measured at the surface of the Earth results 
from the contributions of numerous sources, that must 
be separated in order to access their individual varia-
tions. We are particularly interested in those of the core 
field, i.e. the field generated in the liquid outer core of 
the Earth. One obstacle to progress in this domain is 
the presence of fields generated by phenomena such 
as the interactions between the core field and charged 
particles in the thermosphere, where ionospheric cur-
rents flow, and in the magnetosphere. These generate 
currents that in turn produce signals—the so-called 
external fields—that contribute to the measured mag-
netic field. They evolve on time scales ranging from 
seconds to years and these variations induce currents 
in the Earth’s core, mantle, lithosphere and oceans that 
also generate magnetic signals. Separating all these 
contributions from the core field requires an adequate 
handling of data and has long been an important obsta-
cle to the development of high-resolution core field 
models. In the past decades, however, the geomagnetic 
modelling community has been able to build better, 

Open Access

*Correspondence:  ropp@ipgp.fr
1 Université de Paris, Institut de physique du globe de Paris, CNRS, 
75005 Paris, France
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7239-8869
https://orcid.org/0000-0003-2568-320X
https://orcid.org/0000-0002-0607-3695
https://orcid.org/0000-0003-3987-105X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-020-01230-1&domain=pdf


Page 2 of 15Ropp et al. Earth, Planets and Space          (2020) 72:153 

more accurate models of the core field and its secular 
variation (SV). The separation of the different sources 
is now well controlled, with some remaining difficul-
ties, especially at high latitudes. Modern models—e.g. 
the GRIMM (Lesur et  al. 2015) or, more recently, the 
Chaos-6 model (Finlay et  al. 2016), both of which use 
splines of order 6 for their time evolution—separate 
well contributions from the core and external sources. 
They are typically able to render short core field time 
scales, although with a precision depending on the 
spatial scales—e.g. small spherical harmonics degrees 
have a resolution of the order of 2 years. Besides using 
splines, sequential approaches have also been used. For 
example, the POMME model (Chulliat and Maus 2014) 
uses a 3-year sliding time window, but its time resolu-
tion remains of the same order.

In this paper, we describe an original method for 
modelling the Earth’s magnetic field. Our aim is to 
build a high-resolution times series of field models over 
the satellite era by separating most external and inter-
nal sources at small time scales. In order to achieve 
this, all modelled sources must be described as reliably 
as possible. This implies that the models contain a large 
amount of parameters, leading to very large models and 
considerable computation times, as soon as the field is 
modelled for more than a few months. To overcome 
this problem, we use a Kalman filter process to generate 
a time series of snapshot models. Each snapshot model 
covers only a given time period, of about 3 months (or 
12 months for the parent model of our IGRF-13 candi-
date). This reduces the amount of data analysed for a 
single inversion, so we need to add strong and reliable 
prior information on the spatial behaviour of the mod-
elled sources, in order to further constrain our prob-
lem. The Kalman filter is a 3-step process. In the first 
step—the analysis, an a priori information on the field 
is updated through a correlation-based data assimila-
tion method described in Holschneider et  al. (2016). 
In this latter work, the spatial correlations of the dif-
ferent signals are described in the spherical harmon-
ics (SH) domain and then used in the spatial domain 
to constrain the inversion process. Here, we have a 
similar approach, but we remain in the SH domain. 
Then, the information gained by the analysis at a given 
time step is used to predict an estimate of the field at 
the next time step, which serves as a new prior. When 
the whole time period is covered, a backward smooth-
ing is applied. The evolution in time is not directly 
parameterised—e.g. through splines—but is a conse-
quence of the analysis, prediction and smoothing steps. 
The Kalman filter has already been used, noticeably by 
Lesur et al. (2017), but no smoothing was applied there. 

Gillet et al. (2015) and Beggan and Whaler (2009) also 
proposed an implementation of the Kalman filter for 
geomagnetic modelling. The Kalman filter has also 
been used to compute core field and core surface flow 
models in geomagnetic modelling. Barrois et al. (2018) 
describe an application of the Kalman filter to the 
estimation of the surface core flow. Baerenzung et  al. 
(2018) use a full Ensemble Kalman filter to simulate the 
evolution of an ensemble of flow models, along with its 
statistical properties. None of these approaches have 
attempted to apply the Kalman filter to the modelling 
of all major sources as presented here.

The remaining of the paper is organised as follows: the 
first section describes the data sets used and the selec-
tion criteria applied to filter them. Then, the composition 
of the model and the parameterisation of each included 
source is detailed. Next, each of the three steps of the 
Kalman filter is described. In the Results section, we pre-
sent our model time series, spanning 2000.0 to 2019.75. 
Via different representations, we assess the reliability of 
our method by comparing the resulting models to the 
Chaos-6 models, and discuss the features that charac-
terise our models. We show how our approach can bring 
new insight on the core field secular variation. Before 
concluding, the application of this methodology in deriv-
ing candidates for the thirteenth edition of the Interna-
tional Geomagnetic Reference Field (IGRF) is detailed 
(see Thébault et al. (2015) for the preceding edition of the 
IGRF).

Data
The data set used for our modelling is compiled from 
ground observatory and satellite data, and is made up 
exclusively of vector magnetic data. It covers a period 
of 20 years, from 2000.0 to 2020.0. The observatory 
data set is built using hourly means from all available 
ground observatories from 2000.0 to 2020.0, repro-
cessed according to Macmillan and Olsen (2013), so 
that it covers this time period continuously. Satellite 
data are compiled from the Champ and Swarm mis-
sions data sets. The Champ data covers a time period 
ranging from Sept. 2000 to Aug. 2010. A gap of about 
3 years in satellite data separates the Champ and 
Swarm missions. The Swarm data set spans Nov. 2013 
to the end of 2020. It includes the latest available ver-
sions (0505, 0506 and 0507) of level-1b vectorial data 
files in December 2019 from the Swarm A (Alpha) 
and B (Bravo) satellites. Swarm C (Charlie) data were 
not used, as their information content on the core 
field is very similar to that of satellite A. We distin-
guish between “high latitude” (HL) data, with absolute 
magnetic latitudes above 55◦ , and “medium-to-low 
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latitude” (ML) data, of absolute magnetic latitudes 
below 55◦ . HL data are handled in the usual North, 
East, Centre (NEC) reference frame, whereas ML data 
are used in a Solar Magnetic (SM) reference frame, 
reducing this way the correlations between vector data 
component errors (Lesur et al. 2008). All data are orig-
inally taken in the NEC reference frame.

Data selection
We apply an overall light selection on the data set [see 
Thomson and Lesur (2007)]. The selection criteria for 
all types of data are detailed in Table  1. Different crite-
ria apply for HL and ML data. ML data are taken only 
inside the 23:00–5:00 local time window, while HL data 
are selected for all local times. Different time samplings 
are set for ML and HL data, to compensate for the higher 
data density at high latitudes due to the nearly sun-
synchronous satellite orbits (see Table  1). Data are also 
selected for a limited range of values of the Dst index, and 
for positive values of the z component of the interplan-
etary magnetic field (IMF). Finally, observatory and ML 
satellite data are selected only if they are located in a non-
sunlit area.

We define Nv and Nd , the number of selected vector 
data, and the total number of selected data, respectively 
( Nd = 3× Nv).

Data weights
The variances attributed to each type of data are given in 
Table 2. X,Y and Z are the coordinates in the NEC refer-
ence frame for HL data, and the SM frame for the ML data. 
In this study, data errors are assumed to be uncorrelated, 
so the time and spatial covariance is set to zero between 
different data samples. Similarly, the errors of the different 
data vector components are assumed to be uncorrelated. 
The inverse of the variances are used to weight the data.

Model parametrisation
To parameterise the model in time, we introduced a grid 
over the time period 2000.0–2020.0, composed from 
Nt + 1 knots denoted tk , such that tk = t0 + k�t , for 

k = 0 . . . ,Nt , with �t = 365.25/4 days (i.e. roughly 3 
months) and t0 corresponding to decimal year 2000.0. It 
results that Nt = 80 . A discrete time series of Nt snap-
shot models is computed over the whole time period.

One snapshot model is constructed for time tk using 
data from the time interval [tk; tk+1] . In this time inter-
val, the model includes multiple internal and external 
sources, nearly all of which are parameterised through 
spherical harmonics (SH). Internal sources include 
the static core field and its secular variation (up to SH 
degree 18) and the lithospheric field (for SH degrees 
15 to 30). They also include internal fields induced by 
magnetospheric currents that evolve on time scales up 
to a few months, along with their variations (up to SH 
degree 6), and the internal part of the Dst indexed field, 
which is denoted Ist (up to SH degree 3). Including this 
dependance to Ist allows to track as fast as hourly vari-
ations of the induced fields. A known lithospheric field 
model (Lesur et  al. 2013), computed from SH coeffi-
cients of degrees 30 to 120, is subtracted from the data. 
External sources include the outer magnetospheric 
field in Geocentric Solar Magnetic (GSM) coordinates, 
the inner magnetospheric field in Solar Magnetic (SM) 
coordinates, a time varying field indexed on the Est—
the external part of the Dst (in SM coordinates)—and 
another one indexed on hourly mean values of the Y 
component of the interplanetary magnetic field (IMF), 
in SM coordinates. All these sources are modelled for 

Table 1  Selection criteria for satellite (Champ and Swarm) and ground observatory data

Mag. latitude |mag. lat.| ≥ 55◦ |mag. lat.| ≤ 55◦

Data type Swarm Champ Obs. Swarm Champ Obs.

Time sampling 60 s 60 s 1 h 30 s 20 s 1 h

Local time     –     –     – 23:00–5:00 23:00–5:00 23:00–5:00

Dst [−30 : 30] nT [−30 : 30] nT [−30 : 10] nT [−30 : 30] nT [−30 : 30] nT [−30 : 10] nT

IMF BIMF
z > 0 BIMF

z > 0 BIMF
z > 0 BIMF

z > 0 BIMF
z > 0 BIMF

z > 0

Sunlit area excl. No No Yes Yes Yes Yes

Nv 1,104,672 637,561 906,513 822,246 1,004,634 1,646,564

Table 2  Data variances for  each type and  component 
in NEC coordinates (HL) or SM coordinates (ML)

Data are initially weighted by the inverse of their variance, before undergoing 
an iterative Huber-weighting process. These values aim at including unknown 
signals as well as instrument noise. They correspond to typical level of data 
misfit in prior studies [see e.g. (Lesur et al. 2015)]

Component/
data type

Satellite data Observatory data

ML HL ML HL

X v = 9 nT2 v = 100 nT2 v = 16 nT2 v = 36 nT2

Y v = 9 nT2 v = 81 nT2 v = 16 nT2 v = 25 nT2

Z v = 16 nT2 v = 81nT2 v = 25 nT2 v = 36 nT2
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where the various gmℓ  and qmℓ  are the model parameters 
for internal and external sources, respectively. The 
sources and coefficients are listed in Table  3. 
Oi =

(

Oi
x,O

i
y,O

i
z

)

 is the crustal offset at the location of 
observatory i, with (ri, θi,ϕi) the respective observatory 
spherical coordinates. The (θSM,ϕSM) (resp. (θGSM,ϕGSM) ) 
are the coordinates in the SM (resp. GSM) system of 
coordinates. The reference radius for the SH develop-
ment, denoted a, is set to the usual Earth’s surface radius, 
a = 6371.2 km . The symbol 

∑

ℓ,m stands for the double 
sum 

∑L
ℓ=1

∑ℓ
m=−ℓ , with L the maximal SH degree con-

sidered. The Ŷm
ℓ,ℓ+1 and Ŷm

ℓ,ℓ−1 are the vector spherical 
harmonics defined by:

Table 3  Summary of all modelled sources with relevant parameters and prior information values

From left to right: name of the source, minimum ( Li ) and maximum ( La ) harmonic degrees (when relevant), time scale, radius and scale for the HS prior (see “Analysis 
step” section), total number of parameters, and coefficient notation used in Eq. (1). �t is set to 3 months in this study. No R and S values are given for the induced field 
and its variation. See “Analysis step” section for the construction of the statistics for these latter contributions

Source Li , La Time scale Prior Nb. of par. Coef.

Static core field 1, 18 τ̃ cℓ = 415/ℓ year R = 3000 km

S = 2 · 109 nT2
360 Cgmℓ

Core SV 1, 18 τ̃ svℓ = 11 year R = 3500 km

S = 1.5 · 104 (nT/year)2
360 Cġmℓ

Lithospheric field 15, 30 τ lt = 106 year R = 6280 km

S = 2.7 · 10−2 nT2
736 Lgmℓ

Induced field 1, 6 τ I < �t – 48 Igmℓ

Induced field variation 1, 6 τ ∂t I < �t – 48 Iġmℓ

GSM ext. field 1, 3 τGSM < �t R = 1.6 · 104 km

S = 5.4 · 103 nT2
15 Gqmℓ

SM ext. field 1, 3 τ SM < �t R = 6900 km

S = 3.56 nT2
15 Sqmℓ

Ist indexed field 1, 3 τ Ist < �t R = 2537 km
S = 1.0

15 Istgmℓ

Est indexed field 1, 3 τ Est < �t R = 1.6 · 104 km
S = 5.4

15 Estqmℓ

BIMF
y  indexed field 1, 3 τ IMF < �t R = 6900 km

S = 0.1
15 Iqmℓ

Obs. offset Non SH τ lt = 106 year – 3× 200 Oi

SH degrees 1 to 3. For each ground observatory, local 
static contributions are modelled by 3 constant values, 
one for each vector direction. All modelled sources, 
along with their characteristics, are listed in Table  3. 
Note that the separation of the Dst in Ist and Est , its 
internal and external components, respectively, is 
part of the data preprocessing [see Maus and Weidelt 
(2004)].

The equation linking the model parameters to the value 
of the field B at a point (r, θ ,ϕ, t) in spherical coordinates 
(i.e. radius, colatitude and longitude), and time t = tk + δt , 
with δt < �t , is given in Eq. (1),

(1)

B(r, θ ,ϕ, t) =
∑

ℓ,m

(a

r

)ℓ+2[
Cgmℓ,k +

Lgmℓ,k + δtCġmℓ,k

]

Ŷ
m
ℓ,ℓ+1(θ ,ϕ)

+
∑

ℓ,m

(a

r

)ℓ+2[
Igmℓ,k + δtIġmℓ,k +

Istgmℓ,k Ist(t)
]

Ŷ
m
ℓ,ℓ+1(θ ,ϕ)

+
∑

ℓ,m

( r

a

)ℓ−1
Gqmℓ,k Ŷ

m
ℓ,ℓ−1(θGSM,ϕGSM)

+
∑

ℓ,m

( r

a

)ℓ−1[
Sqmℓ,k +

Iqmℓ,k B
IMF
y (t)+ Estqmℓ,k Est(t)

]

Ŷ
m
ℓ,ℓ−1(θSM,ϕSM)

+
∑

i∈Iobs

δ(r − ri, θ − θi,ϕ − ϕi)Oi,k ,
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The error e is a zero mean multivariate random vari-
able with a distribution described by a pdf N (0,�) . � is 
a diagonal matrix, its elements being the data variances 
given in Table 2.

Equation  (4) is solved for the mean model mk and 
covariance Ck via a re-weighted least-square (RLS) pro-
cess using Huber weights (Huber 1981). The solution is

where the weight matrix is Wj = �
− 1

2Uj�
− 1

2 , and j 
denotes the index of the iterations. Wj is updated at each 
of the 3 iterative steps of the RLS process. U0 = Id , and 
Uj for j > 0 is the diagonal matrix for Huber weights. The 
super-script t denotes the transpose.

In Eqs.  (5) and (6), the prior mean model m̃k and its 
prior covariance C̃k are updated according to the infor-
mation extracted from the data, to give the posterior 
mean model mk and covariance Ck . This prior model 
distribution N (m̃k , C̃k) describes what we know of the 
model before assimilation of the data. It is, for all time 
steps but the first, derived from the previous time step 
posterior model distribution through the prediction 
process that is described below. However, the prior dis-
tribution N (m̃0, C̃0) for time interval [t0 : t1] needs to 
be defined.

The initial mean prior model is null: m̃0 = 0 . This 
means we allow for each parameter to vary around 
zero, in a range characterised by the variances and 
covariances given in the matrix C̃0.

Regarding its structure, C̃0 is a block diagonal matrix, 
with one block for the core field and SV, and one block 
for each of the other sources.

Regarding the construction of the different matrix 
blocks (designated as covariance blocks in the follow-
ing), two possibilities are investigated. The first pos-
sibility is to use the Holschneider et  al. (2016) type of 
prior that consists in information on the energy spec-
trum of each modelled source. For each contribution, 
this spectrum is defined by a scaling S, and a radius R. 
The value of S is set either empirically, or by optimisa-
tion, or alternatively by using the actual spectrum of 
the source if it is known. R is the radius at which the 
spectrum of the source is flat. The values of R and S are 
given for all modelled sources in Table 3. The resulting 
covariance block is diagonal, containing the respective 
a priori variances of each model parameter. The vari-
ances vnsℓ  , where ns refers to the source type (i.e. core, 

(4)d = Amk + e.

(5)
mk =m̃k +

(

A
t
WjA + C̃

−1
k

)−1

A
t
Wj(d − Am̃k),

(6)Ck =
(

A
t
WjA + C̃

−1
k

)−1

,

where ∇ is the gradient operator. The Ym
ℓ (θ ,ϕ) are the 

Schmidt semi-normalised real spherical harmonics usu-
ally employed in geomagnetism. Positive orders ( m ≥ 0 ) 
are associated with cos(mθ) terms, and negative orders 
( m < 0 ) are associated with sin(|m|θ) terms. The vector 
harmonics Ŷm

ℓ,ℓ−1(θSM,ϕSM) (resp. Ŷm
ℓ,ℓ−1(θGSM,ϕGSM) ) 

are vectors in the SM (resp. GSM) system of coordinates.

Modelling method
The models we compute are model distributions that 
we assume to be Gaussian, a property which is required 
for the Kalman filter framework. Each distribution is 
described by the normal probability density function 
(pdf) N (mk ,Ck) , where k is the index for the time inter-
val [tk : tk+1] , mk is the mean model, and Ck is the covari-
ance of the model distribution. The mean model mk is 
a Nm-sized vector containing the mean values of the 
model parameters ( Nm = 2227 , see Table 3) and Ck is a 
Nm × Nm matrix. The Gaussian nature of the distribution 
is preserved through the whole process, since all opera-
tions applied are linear.

Our modelling approach relies on a Kalman filter 
(Kalman 1960), a 3-step process where data assimilation 
relies on a correlation-based technique (Holschneider 
et al. 2016). The first step of the process is to model the 
magnetic field from a subset of data spanning the time 
interval [tk; tk+1] , through a re-weighted least square 
process (hereinafter the analysis step). The model thus 
obtained is used to predict the model for the next time 
interval, through an extrapolation of its mean and covari-
ance (hereinafter the prediction step). When the full time 
series is built, a backward smoothing is applied, in order 
to constrain each model but the last with information 
from posterior time intervals (hereinafter the smoothing 
step). Each one of these three steps is described below.

Analysis step
The data available in the time interval [tk , tk+1] are gath-
ered in a vector dk . The model parameters and the data 
are linked by a linear operator Ak , and the uncertainty on 
the data is accounted for by an error vector ek . The ele-
ments of Ak are directly derived from Eq. (1).

To lighten notations, the index k is dropped for d , A 
and e as it does not impede the understanding of the 
equations. Therefore, the relation between the data and 
mean model is

(2)

Ŷ
m
ℓ,ℓ+1(θ ,ϕ) = −a

( r

a

)ℓ+2

∇

(

(a

r

)ℓ+1

Ym
ℓ (θ ,ϕ)

)

,

(3)

Ŷ
m
ℓ,ℓ−1(θ ,ϕ) = −a

(a

r

)ℓ−1

∇

(

( r

a

)ℓ

Ym
ℓ (θ ,ϕ)

)

,
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SV, etc.) and ℓ is the spherical harmonics degree, are 
defined as

for internal and external sources, respectively.
Note that for a given SH degree ℓ , variances do 

not depend on the SH order m. The initial vari-
ance for observatory offsets is set to 1000 nT2 for all 
observatories.

The second possibility is to derive covariance infor-
mation from a range of parameter samples. We used 
this approach for the core and induced fields. For the 
core field and SV, Gauss coefficient samples were 
obtained from numerical dynamo runs, of the Coupled 
Earth model described by Aubert (2013). Nine thou-
sand samples were taken for each Gauss coefficient, 
and variance and covariances derived from them. This 
yields a block containing variances and covariances for 
both the core field and SV, as well as the cross-covari-
ances between the two sources. For the induced field, 
we built the prior through an empirical approach. We 
first built a model where all Igmℓ  and Iġmℓ  were imposed 
to take zero values. This resulted in very noisy core and 
SV time series of Gauss coefficients. These time series 
were smoothed using a 2-years averaging window, slid-
ing with time. The residuals of this smoothing process 
were used to derive variances for the Igmℓ  and Iġmℓ  Gauss 
coefficients. Given the simplicity of this ad hoc process, 
no covariance terms were calculated. The correspond-
ing covariance block is therefore diagonal. It should 
be noted that these matrices concern only the spatial 
correlations of the core and induced fields, and do not 
affect their time dependance, which is handled sepa-
rately (via the prediction and smoothing).

In this work, two series of model distributions were 
derived. Both series are parameterised in the same way 
and are using the same data and the same prior, except 
for the core field and SV. The HS series uses the Holsch-
neider et al. (2016) type of prior information for the core 
field and its secular variation, whereas the CE series use 
the statistics derived from the Coupled Earth model for 
these two contributions.

Prediction step
The prediction step defines the prior model distribution 
N (m̃k+1, C̃k+1) at time tk+1 from the posterior model 

(7)v
ns ,int
ℓ = Sns

( a

Rns

)2ℓ+4

,

(8)v
ns ,ext
ℓ = Sns

(

Rns

a

)2ℓ

,

distribution N (mk ,Ck) at time tk . The prediction is 
based on the assumption that the model is a multivariate 
random variable with stationary second order statistics. 
It evolves according to

where P is the prediction operator. Since this prediction 
step is not exact, an error term is introduced. This term is 
also a multivariate random variable normally distributed: 
N (w,Cw) . The mean of the error is null: w = 0 , but its 
covariance matrix Cw depends, as the operator P , on the 
physics governing the evolution of the different sources. 
In particular, for all the sources, but the core field and its 
secular variation, it is assumed that the parameters evolve 
in time as auto-regressive processes of order 1 (AR1). For 
such processes a single parameter g with a timescale τ 
evolves following:

where α is defined by:

The timescale τ for the different sources is specified 
in Table  3. The prediction error ω is a random variable 
with zero mean. The requirement that the statistics of 
the parameter g are stationary over time defines the vari-
ance vω of ω . Assuming the parameter g has a variance 
vg constant in time, i.e. vg is the corresponding diagonal 
element on C̃0 , then the variance of ω is vω = vg (1− α2) . 
For external sources, the timescales are smaller than the 
time step �t . Therefore, α = 0 and the predicted param-
eter has, as ω , a zero mean and a variance vω = vg . On 
the contrary, for the lithospheric field, the prediction is 
strongly dependent on the precedent state, α ≃ 1 and the 
variance of ω is vω ≃ 0.

For the core field and secular variation, the evolution 
of a given coefficient is given through the coupled set of 
equations:

where ωc and ω̇c are the errors. These errors have, to 
the first order, amplitudes proportional to the coef-
ficient accelerations g̈mℓ  . As in the case of AR1 pro-
cesses, we assume that the errors have zero means, and 
we set ω̇c (resp. ωc ) variances to vω̇c = vġmℓ (

�t
τ̃sa

)2 (resp. 

(9)m̃k+1 = Pmk + w,

(10)C̃k+1 = PCkP
t + Cw ,

(11)gk+1 = αgk + ω,

(12)α =

{

e−
�t
τ for τ > �t

0 for τ < �t

(13)gmℓ,k+1 = αℓ
(

gmℓ,k +�t ġmℓ,k
)

+ ωc,

(14)ġmℓ,k+1 = α̇ℓ ġ
m
ℓ,k + ω̇c,
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vωc = vġmℓ (
�t
τ̃sa

)2(�t
2
)2 ), where τ̃sa is the timescale for 

acceleration. The value of τ̃sa is known to be around 11 
years up to spherical harmonics degree 13 (Christensen 
et al. 2012), and we used this same value up to degree 18. 
vġmℓ  is the known variance of the secular variation Gauss 
coefficient ġmℓ —i.e. a diagonal element of the C̃0 matrix. 
From there, the stationary hypothesis defines the αℓ and 
α̇ℓ:

where vgmℓ  is the variance of the core field Gauss coeffi-
cient gmℓ  as estimated in C̃0 . τ̃sv is the timescale for the 
secular variation. Note that we used in this work the 
definition of αℓ that does not involve τ̃sv . As an indica-
tion, τ̃sv ≃ 415/ℓ is in the range of acceptable values for 
Chaos [see Christensen et al. (2012)]. In Additional file 1: 
Appendix S1, more details are given on the way the α , αℓ 
and α̇ℓ values are derived. The exact construction of the 
matrices P and Cw is also detailed.

Smoothing
The result of the process presented above is a time series 
of model distributions N (mk ,Ck) for k = 0, . . . ,Nt . The 
final model distributions are smoothed versions of this 
time series. The smoothing consists in re-computing 
the model at a time step k by using the information pro-
vided by the data analysed at every time step k ′ > k . The 
smoothed model distributions are identified with a upper 
script  s : N (ms

k ,C
s
k) . This smoothing is achieved through 

the following equations ( Anderson and Moore (1979), 
Rauch et  al. (1965)) for the mean and covariance of the 
smoothed model at time tk , respectively:

where the matrix Gk is defined by

and P and Cw are, respectively, the prediction operator 
and covariance matrix introduced in the previous sec-
tion. These equations are similar to Eqs.  (5) and (6), as 
they give the solution ms

k of the inverse problem set by 
Eq. (9), where ms

k+1
 defines the data.
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Results
We present the results of the process described above 
applied to our data set. We recall that the full output 
is described by a series of mean models and covari-
ances, each pair defining a normal distribution of 
models. Strictly speaking, a single model would have 
to be randomly drawn from this ensemble. Here, we 
systematically use the series of mean models for our 
representations. When specified, the mean models 
are presented with a ±2σ wide error range. We recall 
also that two series of model distributions have been 
derived, the HS and CE series, that differ only by the 
prior information used for the core field and secular 
variation statistics. Through this section, our results 
are compared with the Chaos-6 model (Finlay et  al. 
2016) in its version Chaos-6-×9.

For each time interval [tk , tk+1] the normalised misfit to 
the data is defined by:

where Wi is defined in “Analysis step” section. The val-
ues of Rk are in the range [0.98, 1.92] nT for both CE 
and HS models, depending essentially on the type of 
data available during this time interval. Over the whole 
time period, the mean of the misfits for both models is 
1.44 nT . It shows that our models achieve a fairly good fit 
to the data. These values are estimated after the analysis 
process, but before the smoothing steps. The misfit after 
smoothing is not reported here as its estimation requires 
adjusting other contributions to the geomagnetic field 
such as external and induced fields.

In Fig.  1, the CE and HS model core field radial 
components are plotted at the core–mantle boundary 
(CMB) for year 2019.5. The field models are truncated 
at degree 14. Figure  2 displays the radial compo-
nents of the SV of the same two models at the CMB. 
The Chaos-6 SV model is also displayed. All three are 
truncated at degree 14. Both CE and HS models are 
quite consistent with Chaos-6, although some differ-
ences appear in small-scale features, over the Pacific or 
Indian oceans, for example. Some noticeable and inter-
esting differences can be highlighted at other time peri-
ods. Concerning the core field, the largest differences 
occur at the poles, where they rarely exceed ±10 nT 
at the Earth’s surface, when satellite data are avail-
able. Secular variation differences occur mostly during 
years 2010 to 2014. They are characterised by localised 
maxima in the Indian Ocean, as shown in Fig. 3. These 
maxima change signs between 2011.75 and 2013.75 
suggesting a spike of acceleration in the HS/CE mod-
els during this period of time. Otherwise, SV radial 

(19)Rk =

√

1

Nd
(d − Amk)

t
Wi(d − Amk),
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component differences are mostly contained inside a 
±5nT/year interval. The maps shown in Fig.  3 do not 
include the HS model, for which the results described 
above are also valid. All models are truncated at degree 
12.

Figure 4 displays the spherical harmonics power spec-
tra of the calculated core field and SV (HS on the left, 
CE on the right) for year 2019.5. The crosses picture 
the Chaos-6 power spectra, and the spectra of the prior 
are displayed in dotted lines. These spectra show the 

Fig. 1  Maps of the radial component of the core field at the core–mantle boundary (CMB) at year 2019.5. The CE model (on the left) is compared 
with the HS model (right). Models have been truncated at harmonic degree 14

Fig. 2  Maps of the radial component of the SV field at the core–mantle boundary (CMB) at year 2019.5. The CE model (on the left) is compared 
with the HS model (right) and the Chaos-6 model (bottom). Models have been truncated at harmonic degree 14
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Fig. 3  On the left: maps of the difference (Chaos-6)-(CE), radial comp. of the SV, at the Earth’s Surface, for years 2011.75 (top) and 2013.75 (bottom). 
On the right: maps of the corresponding SV radial component for the CE model, at the same epochs. Local positive and negative maxima in 2011.75 
change sign in 2013.75. This is the signature of a spike of acceleration between these two epochs. Models are truncated at degree 12

Fig. 4  Power spectra are displayed for the core field and secular variation for harmonic degrees 1 to 18, for epoch 2019.5. Left: CE model. Right: 
HS model. The blue line is the power spectrum of the core field. The orange line is the power spectrum of the SV. The dotted lines represent the 
power spectra of the respective priors. The green and red crosses represent the power spectra of the core field and SV, respectively, for Chaos-6. The 
spectra of the lithospheric field, at SH degree greater than 14, is not displayed
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general agreement of both HS and CE model core field 
with those obtained by other modellers, but they have 
too much energy at small scales compared to the prior 
(from degree 14 for the SV, degree 15 for the core field). 
As a simple, first analysis, this suggests either that our 
priors are poor—e.g. too small for some Gauss coeffi-
cients of the lithospheric field, or that there are some 
un-modelled signals in the data at these wavelengths. 
This excess of energy probably results from a combina-
tion of the two hypotheses. To discriminate between 
them would require a more thorough analysis of the 
results, focusing on the output distributions of the core 
field Gauss coefficients, their variances and possible 
covariances with other contributions. The conclusions 
of this analysis are not yet completely clear. However, 
it suggests that sources (e.g. small-scale induced signals 
and high latitude ionospheric contributions) are miss-
ing in our description of the observed signal. In favour 
of the first hypothesis, the CE distribution of models 
is closer to the prior at earlier epochs (not shown) and 
keeps closer to the prior at later epochs. This highlights 
the importance of cross-correlations, which are absent 
from the HS prior information.

In Fig.  5, we compare the time series for several SH 
coefficients of the secular variation models before 

and after the Kalman smoothing step (see the process 
description in  “Modelling method” section). Results are 
shown for both CE and HS secular variation models. The 
non-smoothed time series present a time lag, as com-
pared to the smoothed and Chaos-6 time series, which 
agree on the general trend of the variation for most 
large-scale coefficients. This lag results from the diffi-
culty to resolve the secular variation within a single time 
step, using mainly information from the past—thanks to 
the prediction step, but very little information from the 
future, as only 3 months worth of data are used. It leads 
to an underestimation of the secular variation when the 
acceleration is positive, and an overestimation when the 
acceleration is negative. The smoothing step clearly alle-
viates this time lag.

Figure  6 displays the time series of CE and HS secu-
lar variations compared with Chaos-6 for some low 
SH degrees. The variations are overall compatible with 
Chaos-6. Major differences can appear during the time 
period 2010–2014, because of the lack of satellite data 
combined with radically different ways of handling 
ground observatory data. The bottom part of the figure 
displays the Fourier Transform (FT) spectra of the time 
series to which a linear trend has been first removed to 
avoid spectral leakage.

Fig. 5  Times series for SV Gauss coefficients of degrees 1, 3, 5 and order 0. The times series span 2000 to 2019.75. The dotted blue lines represent 
the Chaos-6-×9 model. The orange line represents the MCM model before the smoothing operation. The green line represents the final model, 
after smoothing. Both series are presented within a 2σ interval. Top: CE series. Bottom: HS series
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Coefficients time series (and their Fourier spectra) are 
displayed for higher SH degrees (i.e. lower spatial scales), 
in Figs.  7 and  8. At these spatial scales, the SV models 
sometimes present very different behaviours. The Fou-
rier spectra of several Gauss coefficients show signifi-
cant periodicities of 4 to 6 years (e.g. for ġ16 and ġ66 at 5 
years). Higher degree Gauss coefficients show various 
peaks in their Fourier spectra, such as ġ07 , which pre-
sents very strong variations between 4 and 10 years, or 
ġ18 with peaks at 3 and 4 years. Chaos-6 is systemati-
cally and strongly smoothed, with little energy for peri-
ods under 5 years. This most certainly results from the 
temporal smoothing used in the process leading to this 
latter model. It contrasts with the approach used here 
where the time scales controlling the temporal behav-
iour of the core field are set to realistic values. However, 
although our HS and CE models present more energy 
at periods under 5 years, they are not free of anomalous 
features. The high variability of the Fourier spectra at 
small time scales is probably a signature of noise (or uni-
dentified contributions) affecting the models. For exam-
ple, the periodicity observed in some coefficients (e.g. 
ġ07 in Fig. 8) might be explained by an incorrect separa-
tion of some ionospheric fields with the core field. This 

is a significant risk, considering that satellites see iono-
spheric fields as internal sources. These ionospheric fields 
could be co-estimated in the future, using a suitable para-
metrisation and proper prior information. Furthermore 
the ad hoc way in which we handled the induced fields 
has smoothed out short time variations of the core field 
Gauss coefficients, but did not allow a clear separation of 
core and induced field signals for periodicity longer than 
2 years. To progress in this matter, it should be assessed 
whether the amplitude of the estimated induced fields is 
physically plausible, considering the mantle conductiv-
ity and external fields amplitudes. In particular, harmon-
ics of the 11 years solar cycle (e.g. 5 years periodicity) 
are often more pronounced in our models than, e.g. in 
CHAOS-6. This is visible, for example, in the Cġ01 time 
series of the HS model, but not in the CE model or the 
Chaos-6 model.

To test the coherency of our models, we compared the 
modelled SV time series (HS and CE SV) to the varia-
tions of the modelled core field time series. For this pur-
pose, we computed a SV series by finite differences of the 
mean core field model series (referred to as the FD SV). 
The coherency between both the CE and HS SV series 
and the FD SV series was verified by evaluating the power 

Fig. 6  Output time series are displayed for SV Gauss coefficients of degrees and orders (2,0), (3,3) and (4,3). Top: Times series of the coefficients, 
spanning 2000 to 2019.75. The blue dotted line represents the Chaos-6-×9 model. The purple and cyan blue lines, respectively, represent the CE 
and HS model. Both CE and HS series are presented within a 2σ interval. Bottom: time spectra of the corresponding SV Gauss coefficients with the 
same colour code. In green: the k−2 slope, where k is the frequency, i.e. one over the period
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spectra of their respective differences. The residuals of 
this comparison have a total energy of less than 0.03% of 
the total energy of the SV spectrum, for both CE and HS 
models. The difference between the FD SV and the CE or 
HS SV is most important where the secular variation pre-
sents steep slopes.

Finally, we would like to point out that, because there 
is no smooth parametrisation in time—such as splines 
would provide—in our model, the core field secular 
acceleration cannot be derived in a robust way directly 
from our mean SV Gauss coefficient series. If, for further 
analysis, a core field acceleration model is required, it is 
recommended to pick a SV Gauss coefficient series in 
the model distribution such that the derived acceleration 
varies smoothly in time, rather than using the mean SV.

Discussion
The results presented in the previous section show that 
the core field and secular variation general features are 
well recovered through the process presented. Some dif-
ficulties have been identified, e.g. extracting information 
on the secular acceleration requires further processing 
of the derived series of snapshots. There are nonetheless 

technical advantages in using a sequential modelling 
approach over more classical methods, such as, for exam-
ple, the relatively light computing power requirements. 
However, the main motivation for applying this method 
is first to extract from the data better models through the 
information provided by the prior, and second to have, as 
an output, reliable estimates of the model uncertainties. 
We discuss in the following these two points.

The spatial prior information for a time interval 
[tk , tk+1] is provided to the model through the covari-
ance matrix C̃k in Eq. (5). This matrix cannot be singular 
because it would imply that some parts of the model are 
perfectly known, an hypothesis that we reject by impos-
ing a minimum variance to all eigenvectors of the matrix. 
However, in the same equation the matrix At

WjA can be 
singular when the data set cannot resolve the model and 
the spatial prior information has an important role in this 
case. The prior information on the temporal behaviour of 
the model components intervene in the prediction part 
of the Kalman filter through the definition of the αℓ and 
α̇ℓ in Eq.  (9). They influence the output of the model as 
soon as they differ from unity. It follows that in our core 
field model, the prior information plays an important 

Fig. 7  Output time series are displayed for SV Gauss coefficients of degrees and orders (5,0), (6,1) and (6,6). Top: Times series of the coefficients, 
spanning 2000 to 2019.75. The blue dotted line represents the Chaos-6-×9 model. The purple and cyan blue lines, respectively, represent the CE 
and HS model. Both CE and HS series are presented within a 2σ interval. Bottom: Time spectra of the corresponding SV Gauss coefficients with the 
same colour code. In green: the k−2 slope, where k is the frequency, i.e. one over the period
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role in the definition of the small scales of the secular 
variation, and in the separation of core and induced field 
contributions.

We point out that the HS and CE models differ only by 
the spatial prior information. It is therefore the spatial 
prior information that leads to different temporal behav-
iour for the HS and CE Gauss coefficients of the secular 
variation, for intermediate-to-high SH degrees as shown 
in Figs. 7 and 8. In contrast, both the spatial and temporal 
prior information influence the deviations of the Chaos-6 
SV model from our model series. At these spatial scales, 
and for a given SH degree, the HS and CE prior variances 
are very similar. The observed differences are therefore 
mainly due to the covariance between coefficients of dif-
ferent degree and order. These covariances are present 
only in the initial prior of the CE model. In particular, 
covariances between well resolved large scales and poorly 
defined small scales can be responsible for observed dif-
ferences. As long as the information carried by the Cou-
pled Earth dynamo model outputs is correct, there is no 
reason to believe less in the variations of the SV Gauss 
coefficient distributions of our CE models than in those 
of our HS or Chaos-6 models. Of course, the spread of 

the model distributions, characterised by the variance 
values, plays an important role, and it is worth studying 
what influences these values. The example of the induced 
fields is here particularly instructive.

The first point to notice is that if the contribution of 
the induced field is neglected, the output variances of 
the core field distributions are particularly small. In 
that case, of course, the induced field signals are partly 
described by the core field model, the noise, and pos-
sibly spread over other components of the model. The 
prior information we can provide to separate them from 
the core field is extremely limited, particularly regard-
ing their low frequency components. We used here the 
fact that they are potential fields of internal origins, 
with small amplitudes. This information is not suffi-
cient to separate them from the core contributions, and 
when co-estimated, the output variances of the latter 
increase considerably. However, we also assumed that the 
induced fields over a 3-months period are uncorrelated 
to the induced field of the next time period (whereas the 
core field components are strongly correlated in time). 
It is this characteristic, although not entirely valid, that 
allows an acceptable separation of the two contributions 

Fig. 8  Output time series are displayed for SV Gauss coefficients of degrees and orders (7,0), (8,1) and (8,8). Top: Times series of the coefficients, 
spanning 2000 to 2019.75. The blue dotted line represents the Chaos-6-×9 model. The purple and cyan blue lines, respectively, represent the CE 
and HS model. Both CE and HS series are presented within a 2σ interval. Bottom: time spectra of the corresponding SV Gauss coefficients with the 
same colour code. In green: the k−2 slope, where k is the frequency, i.e. one over the period
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in our model. In principle, it should be possible to use 
our knowledge of the deep mantle conductivity and the 
external fields behaviours to improve the separation.

Through this example, it is clear that a contribution 
which is not described in the model “leaks” inside other 
modelled contributions. These model components may 
then present spurious behaviours and small variances. 
As another example, the lithospheric field contribution at 
SH degrees lower than 15 cannot be distinguished from 
the static core field, and trying to model it would again 
increase the variance of the core field model. In contrast, 
the tidal signals separate well from the other compo-
nents because of their well defined periodicities in time. 
When un-modelled they are likely to remain in the noise, 
whereas trying to co-estimate them should not increase 
the variances of the core field model. Overall, the core 
field model we obtained is probably not completely free 
of induced field contributions, it also certainly describes 
the small SH degree lithospheric field, some ionospheric 
fields, and possibly unexpected other minor, more or less 
static contributions. Nonetheless, while improvements 
are possible, our field model provides a good description 
of the main field, together with an estimation of its vari-
ance, that is probably slightly under-estimated.

Candidate models to the IGRF
The models presented here have contributed to set two 
independent contributions to the IGRF-13: the IPGP 
candidate to the IGRF main field 2020, and the Japanese 
team candidate to the IGRF predictive secular varia-
tion (Minami et  al. 2020). In both cases, the data selec-
tion criteria were those described in the first section, but 
Swarm-B satellite data were not used.

Regarding the contribution of the Japanese candidate, 
the model is nearly the same as the HS model presented 
here with a data set including data only up to 2019.5. The 
scaling and reference radius used for the different covari-
ance matrices were those of Table  3. The obtained core 
field and secular variation components of the model were 
then used as input data to the En4dVar assimilation pro-
cess that led ultimately to a prediction of the mean SV 
over 2020–2025—see Minami et al. (2020) for details on 
this assimilation process.

For the IPGP main field model, the general scheme for 
deriving the candidate is the same as the CE model pre-
sented here, but with a data set reduced to 2013.5–2019.5 
and a Kalman time step set to a year. In total only 6 time 
steps had to be done. This length of the Kalman step 
insures robust estimations of the secular variation and 
reduces significantly the contribution of the induced field 
components that required to be modelled. The scaling 
and radius parameter were the same as in Table  3 except 
for the Igmℓ  and Iġmℓ  . Their radii R were set to 2200 km and 

their S values to 1 · 10−3 . From the main field model and 
its SV derived this way for 2019.0, the main field was lin-
early extrapolated to 2020.0 giving a main field candidate 
not much different from other candidates, although with 
generally slightly lesser energy.

Conclusion
In this paper, we have presented a sequential approach 
to core field modelling based on a combination of 
a Kalman filter and a correlation-based modelling 
method. We aim at modelling separately most major 
sources contributing to the observed Geomagnetic 
field. The separation of these different contributions 
relies on a strong prior information on their spatial and 
temporal behaviours. We built a sequence of snapshot 
models constituting a time series that spans 2000.0 to 
2019.75, using data from 2000.0 to 2020.0.

Our model time series present mean values that are 
generally in agreement with recent, reliable models 
such as the Chaos-6 model (Finlay et al. 2016).

Nonetheless, the results suggest that more temporal 
variability exists in the small spatial scales of the core 
field compared to what is shown by classic modelling 
techniques. In particular, several Gauss coefficient time 
series present significant periodicities at time scales 
ranging from 3 to 10 years that are absent in the Chaos-6 
time series. This technique offers the further advantage 
to give reasonably good estimates of the Gauss coeffi-
cients variances, provided that the separation of the dif-
ferent sources is appropriately handled. Our main field 
and SV models, as it is, probably yield slightly under-
estimated variances for their Gauss coefficients.

The idea behind the method presented in this paper is 
that, starting from a prior information on the behaviour 
of the different sources contributing to the magnetic 
field, we seek to improve this information through the 
analysis of data. This knowledge comes in the poste-
rior model distribution, via the Gauss coefficients mean 
values and variances, that are reduced through the 
process. This can come, however, at the cost of increas-
ing covariances between model coefficients, due to the 
incomplete separation of sources. The parametrisation 
of the modelled sources, and the tuning of their associ-
ated prior information is therefore the backbone of this 
technique. As further work is achieved for this purpose, 
the produced models should provide more precise and 
reliable information on the dynamics of the core field. 
The setup described in this paper, used with a different 
time step, has allowed the production of a candidate 
model for the IGRF-13.
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