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ISOMORPHISMS OF β-DYSON’S BROWNIAN MOTION WITH

BROWNIAN LOCAL TIME

TITUS LUPU

Abstract. We show that the Brydges-Fröhlich-Spencer-Dynkin and the Le Jan’s isomor-
phisms between the Gaussian free fields and the occupation times of symmetric Markov pro-
cesses generalizes to β-Dyson’s Brownian motion. For β P t1, 2, 4u this is a consequence of the
Gaussian case, however the relation holds for general β. We further raise the question whether
there is an analogue of β-Dyson’s Brownian motion on general electrical networks, interpolating
and extrapolating the fields of eigenvalues in matrix valued Gaussian free fields. In the case
n “ 2 we give a simple construction.

1. Introduction

There is a class of results, known as isomorphism theorems, relating the squares of Gaussian
free fields (GFFs) to occupation times of symmetric Markov processes. They originate from
the works in mathematical physics [Sym69, BFS82]. For a review, see [MR06, Szn12]. Here in
particular we will be interested in the Brydges-Fröhlich-Spencer-Dynkin isomorphism [BFS82,
Dyn84a, Dyn84b] and in the Le Jan’s isomorphism [LJ10, LJ11]. The BFS-Dynkin isomorphism
involves Markovian paths with fixed ends. Le Jan’s isomorphism involves a Poisson point process
of Markovian loops, with an intensity parameter α “ 1{2 in the case of real scalar GFFs. For
vector valued GFFs with d components, the intensity parameter is α “ d{2. We show that both
Le Jan’s and BFS-Dynkin isomorphisms have a generalization to β-Dyson’s Brownian motion.

For β P t1, 2, 4u, a β-Dyson’s Brownian motion is the diffusion of eigenvalues in a Brownian
motion on the space of real symmetric pβ “ 1q, complex Hermitian pβ “ 2q, respectively
quaternionic Hermitian pβ “ 4q matrices. Yet, the β-Dyson’s Brownian motion is defined for
every β ě 0. The one-dimensional marginals of β-Dyson’s Brownian motion are Gaussian beta
ensembles GβE. The generalization of Le Jan’s and BFS-Dynkin isomorphisms works for every
β ě 0, and for β P t1, 2, 4u is follows from the Gaussian case. The intensity parameter α
appearing in the Le Jan’s type isomorphism is given by

2α “ dpβ, nq “ n` npn´ 1qβ
2
.,

where n is the number of ”eigenvalues”. In particular, α takes not only half-integer values,
as in the Gaussian case, but a whole half-line of values. The BFS-Dynkin type isomorphism
involves polynomials defined by a recurrence with a structure similar to that of the Schwinger-
Dyson equation for GβE. These polynomials also give the symmetric moments of the β-Dyson’s
Brownian motion.

We further ask the question whether an analogue of GβE and β-Dyson’s Brownian motion
could exist on electrical networks and interpolate and extrapolate the distributions of the eigen-
values in matrix valued GFFs. Our motivation for this is that such analogues could be related to
Poisson point process of random walk loops, in particular to those of non half-integer intensity
parameter. If the underlying graph is a tree, the construction of such analogues is straightfor-
ward, by taking β-Dyson’s Brownian motions along each branch of the tree. However, if the
graph contains cycles, this is not immediate, and one does not expect a Markov property for
the obtained fields. However, in the simplest case n “ 2, we provide a construction working on
any graph.

Key words and phrases. Dyson’s Brownian motion, Gaussian beta ensembles, Gaussian free field, isomorphism
theorems, local time, permanental fields, topological expansion .
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Our article is organized as follows. In Section 2 we recall the BFS-Dynkin and the Le Jan’s
isomorphisms in the particular case of 1D Brownian motion. In Section 3 we recall the definition
of Gaussian beta ensembles and the corresponding Schwinger-Dyson equation. In Section 4 we
give the recurrence on polynomials that will be used for the BFS-Dynkin type isomorphism. The
Section 5 deals with β-Dyson’s Brownian motion and the corresponding isomoprhims. Section 6
deals with general electrical networks. We give our construction for n “ 2 and ask our questions
for n ě 3.

2. Isomorphism theorems for 1D Brownian motion

Let pBtqtě0 be the standard Brownian motion on R. Lx will denote the Brownian local times:

LxppBsq0ďsďtq “ lim
εÑ0

1

2ǫ

ż t

0

1|Bs´x|ăεds.

ppt, x, yq will denote the heat kernel on R, and pR`pt, x, yq the heat kernel on R` with condition
0 in 0:

ppt, x, yq “ 1?
2πt

e´ py´xq2

2t , pR`pt, x, yq “ ppt, x, yq ´ ppt, x,´yq.

P
t,x,yp¨q will denote the Brownian bridge probability from x to y in time t, and P

t,x,y
R`

p¨q (for

x, y ą 0) the probability measures where one conditions P
t,x,yp¨q on that the bridge does not

hit 0. pGR` px, yqqx,yě0 be the Green’s function of 1
2

d2

dx2 on R` with 0 condition in 0, and for

K ą 0, pGKpx, yqqx,yě0 the Green’s function of 1
2

d2

dx2 ´K on R:

GR`px, yq “ 2x^ y “
ż `8

0

pR`pt, x, yqdt,

GKpx, yq “ 1?
2K

e´
?
2K|y´x| “

ż `8

0

ppt, x, yqe´Ktdt.

Let pµx,y
R`

qx,yą0, resp. pµx,yK qx,yPR be the following measures on finite duration paths:

(2.1) µ
x,y
R`

p¨q :“
ż `8

0

P
t,x,y
R`

p¨qpR` pt, x, yqdt, µ
x,y
K p¨q :“

ż `8

0

P
t,x,yp¨qppt, x, yqe´Ktdt.

The total mass of µx,y
R`

, resp. µx,yK , is GR` px, yq, resp. GKpx, yq. The image of µx,y
R`

, resp. µx,yK ,

by time reversal is µy,x
R`

, resp. µy,xK .

Let Tx denote the first hitting time of a level x by the Brownian motion pBtqtě0. γ will
denote a generic path of R. Let pµ̌x,yp¨qqxăyPR, resp. pµ̌x,yK p¨qqxăyPR be the following measures
on paths from x to y:

µ̌x,ypF pγqq “ EB0“yrF ppBTx´tq0ďtďTxqs, µ̌
x,y
K pF pγqq “ EB0“y

“
e´KTxF ppBTx´tq0ďtďTxq

‰
.

µ̌x,y has total mass 1 (probability measure), whereas the total mass of µ̌x,yK is

EB0“y

“
e´KTx

‰
“ e´

?
2K|y´x| “ GKpx, yq

GKpx, xq .

For 0 ă x ď y ă z, the measure µx,z
R`

can be obtained as the image of the product measure

µ
x,y
R`

b µ̌y,z under the concatenation of two paths. Similarly, for x ď y ă z P R, the measure

µ
x,z
K is the image of µx,yK b µ̌

y,z
K under the concatenation of two paths.

Let pW pxqqxPR denote a two-sided Brownian motion, i.e. pW pxqqxě0 and pW p´xqqxě0 being
two independent standard Brownian motion started from 0 (W p0q “ 0). Note that here x is
rather a one-dimensional space variable then a time variable. dW pxq is a white noise on R.
Let pφR`pxqqxě0 denote the process p

?
2W pxqqxě0. The covariance function of φR` is GR` . Let

pφKpxqqxPR be the stationary Ornstein–Uhlenbeck process with invariant measureN p0, 1{
?
2Kq.

It is a solution to the SDE

dφKpxq “
?
2dW pxq ´

?
2KφKpxqdx.
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The covariance function of φK is GK .
What follows is the BFS-Dynkin isomorphism (Theorem 2.2 in [BFS82], Theorems 6.1 and

6.2 in [Dyn84a], Theorem 1 in [Dyn84b]) in the particular case of a 1D Brownian motion. In
general, the BFS-Dynkin isomorphism relates the squares of Gaussian free fields to local times
of symmetric Markov processes.

Theorem 2.1 (Brydges-Fröhlich-Spencer [BFS82], Dynkin [Dyn84a, Dyn84b]). Let F be a
bounded measurable functional on CpR`q, resp. on CpRq. Let k ě 1 and x1, x2, . . . , x2k in
p0,`8q, resp. in R. Then

E

” 2kź

i“1

φR`pxiqF pφ2R`
{2q

ı
“

ÿ

ptai,biuq1ďiďk

partition in pairs
of J1,2kK

ż

γ1,...,γk

E

”
F pφ2R`

{2`Lpγ1q`¨ ¨ ¨`Lpγkqq
ı kź

i“1

µ
xai

,xbi

R`
pdγiq,

resp.

E

” 2kź

i“1

φKpxiqF pφ2K{2q
ı

“
ÿ

ptai,biuq1ďiďk

partition in pairs
of J1,2kK

ż

γ1,...,γk

E

”
F pφ2K{2`Lpγ1q`¨ ¨ ¨`Lpγkqq

ı kź

i“1

µ
xai

,xbi

K pdγiq,

where the sum runs over the p2kq!{p2kk!q partitions in pairs, γi-s are Brownian paths and Lpγiq
are the corresponding occupation fields x ÞÑ Lxpγiq.
Remark 2.2. Since for x ă y, the measure µx,y

R`
, resp. µx,yK , can be decomposed as µx,x

R`
b µ̌x,y,

resp. µx,xK b µ̌
x,y
K , Theorem 2.1 can be rewritten using only the measures of type µx,x

R`
and µ̌x,y,

resp. µx,xK and µ̌x,yK .

To a wide class of symmetric Markov processes one can associate in a natural way an infinite,
σ-finite measure on loops [LW04, LTF07, LL10, LJ10, LJ11, LJMR15, FR14]. It originated
from the works in mathematical physics [Sym65, Sym66, Sym69, BFS82]. Here we recall it in
the setting of a 1D Brownian motion, which has been studied in [Lup18]. Of course, the range
on a loop will be just a segment on the line, but it will carry a non-trivial Brownian local time
process which will be of interest for us.

Given a Brownian loop γ, T pγq will denote its duration. The measures on (rooted) loops are

(2.2) µ
loop
R`

pdγq :“ 1

T pγq

ż

R`

µ
x,x
R`

pdγqdx, µ
loop
K pdγq “ 1

T pγq

ż

R

µ
x,x
K pdγqdx.

Usually one considers unrooted loops, but this will not be important here. The 1D Brownian

loop-soups are the Poisson point processes, denoted Lα
R`

, resp. Lα
K , of intensity αµloop

R`
, resp.

αµ
loop
K , where α ą 0 is an intensity parameter. LpLα

R`
q, resp. LpLα

Kq, will denote the occupation
field of Lα

R`
, resp. Lα

K :

LxpLα
R`

q :“
ÿ

γPLα
R`

Lxpγq, LxpLα
Kq :“

ÿ

γPLα
K

Lxpγq.

The following statement deals with the law of LpLα
R`

q, resp. LpLα
Kq. See Proposition 4.6,

Property 4.11 and Corollary 5.5 in [Lup18]. For the analogous statements in discrete space
setting, see Corollary 5, Proposition 6, Theorem 13 in [LJ10] and Corollary 1, Section 4.1,
Proposition 16, Section 4.2, Theorem 2, Section 5.1 in [LJ11] In general, one gets α-permanental
fields (see also [LJMR15, FR14]). For α “ 1

2
in particular, one gets square Gaussians. We recall

that given a matrix M “ pMijq1ďi,jďk, its α-permanent is

PermαpMq :“
ÿ

σ permutation
of t1,2,...,ku

α# cycles of σ
kź

i“1

Miσpiq.
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Theorem 2.3 (Le Jan [LJ10, LJ11], Lupu [Lup18]). For every α ą 0 and x P R`, resp.
x P R, the r.v. LxpLα

R`
q, resp. LxpLα

Kq, follows the distribution Gammapα,GR` px, xq´1q, resp.
Gammapα,GKpx, xq´1q. Moreover, the process α ÞÑ LxpLα

R`
q, resp. LxpLα

Kq is a pure jump

Gamma subordinator with Lévy measure

1lą0

e
´l{GR`

px,xq

l
dl, resp. 1lą0

e´l{GKpx,xq

l
dl.

Let x1, x2, . . . , xk P R`, resp. R. Then

E

” kź

i“1

LxipLα
R`

q
ı

“ Permα

`
GR`pxi, xjq1ďi,jďk

˘
, E

” kź

i“1

LxipLα
Kq

ı
“ Permα

`
GKpxi, xjq1ďi,jďk

˘
.

For x ě 0, x ÞÑ LxpLα
R`

q is a solution to the SDE

dLxpLα
R`

q “ 2
`
LxpLα

R`
q
˘ 1

2dW pxq ` 2αdx,

with initial condition L0pLα
R`

q “ 0. That is to say it is a square Bessel process of dimension

2α. For x P R x ÞÑ LxpLα
Kq is a stationary solution to the SDE

dLxpLα
Kq “ 2

`
LxpLα

Kq
˘ 1

2dW pxq ´ 2
?
2KLxpLα

Kq ` 2αdx.

In particular, for α “ 1
2
, one has the following identities in law between stochastic processes:

(2.3) LpLα
R`

q p law q“ 1

2
φ2R`

, LpLα
Kq p law q“ 1

2
φ2K .

3. Gaussian beta ensembles

For references on Gaussian beta ensembles, see [DE02, For15], Section 1.2.2 in [EKR18],
and Section 4.5 in [AGZ09]. Fix n ě 2. For λ “ pλ1, λ2, . . . , λnq P R

n, Dpλq will denote the
Vandermonde determinant

Dpλq :“
ź

1ďjăj1ďn

pλj1 ´ λjq.

For q ě 1, pqpλq will denote the q-th power sum polynomial

pqpλq :“
nÿ

j“1

λ
q
j .

By convention,
p0pλq “ n.

A Gaussian beta ensemble GβE follows the distribution

(3.1)
1

Zβ,n

|Dpλq|βe´ 1

2
p2pλq

nź

j“1

dλj ,

where Zβ,n is given by (Formula (17.6.7) in [Meh04] and Formula (1.2.23) in [EKR18])

Zβ,n “ p2πqn
2

nź

j“1

Γ
`
1 ` j β

2

˘

Γ
`
1 ` β

2

˘ .

The brackets x¨yβ,n will denote the expectation with respect to (3.1). For β “ 0 one gets n i.i.d.
N p0, 1q Gaussians. For β equal to 1, 2, resp. 4, one gets the eigenvalue distribution of GOE,
GUE, resp. GSE random matrices [Meh04, EKR18]. Usually the GβE are studied for β ą 0
[DE02], but the distribution (3.1) is well defined for all β ą ´ 2

n
. For β P p´ 2

n
, 0q there is an

attraction between the λj-s instead of a repulsion as for β ą 0. Moreover, as β Ñ ´ 2
n
, λ under

(3.1) converges in law to ´ 1?
n
ξ,

1?
n
ξ, . . . ,

1?
n
ξ
¯
,

where ξ follows N p0, 1q.
4



Let dpβ, nq denote

dpβ, nq “ n` npn´ 1qβ
2
.

For β P t1, 2, 4u, dpβ, nq is the dimension of the corresponding space of matrices.
Let be ν “ pν1, ν2, . . . , νmq, where m ě 1, and for all k P t1, 2, . . . ,mu, νk P Nzt0u. We will

denote

mpνq “ m, |ν| “
mpνqÿ

k“1

νk.

pνpλq will denote

pνpλq :“
mpνqź

k“1

pνkpλq.

By convention, we set pHpλq “ 1 and |H| “ 0. Note that pHpλq ‰ p0pλq. We are interested in
the expression of the moments xpνpλqyβ,n. These are 0 if |ν| is not even. For |ν| even, these mo-
ments are given by a recurrence known as loop equation or Schwinger-Dyson equation (Lemma
4.13 in [LC09], slide 3{15 in [LC13] and Section 4.1.1 in [EKR18]). For the combinatorial in-
terpretation of the solutions in terms of ribbon graphs or surfaces, see [LC13, LC09]. See the
Appendix for the expression of some moments.

Proposition 3.1 (Schwinger-Dyson equation [LC09, LC13, EKR18]). For every β ą ´2{n and
every ν as above with |ν| even,

xpνpλqyβ,n “ β

2

νmpνq´1ÿ

i“1

xppνrqr‰mpνq
pλqpi´1pλqpνmpνq´1´ipλqyβ,n(3.2)

`
´
1 ´ β

2

¯
pνmpνq ´ 1qxppνrqr‰mpνq

pλqpνmpνq´2pλqyβ,n

`
mpνq´1ÿ

k“1

νkxppνrqr‰k,mpνq
pλqpνk`νmpνq´2pλqyβ,n,

where p0pλq “ n. In particular, for q even,

xpqpλqyβ,n “ β

2

q´1ÿ

i“1

xpi´1pλqpq´1´ipλqyβ,n `
´
1 ´ β

2

¯
pq ´ 1qxpq´2pλqyβ,n,

and for ν with νmpνq “ 1,

xpνpλqyβ,n “
mpνq´1ÿ

k“1

νkxppνrqr‰k,mpνq
pλqpνk´1pλqyβ,n.

The recurrence (3.2) and the initial condition p0pλq “ n determine all the moments xpνpλqyβ,n.
Proof. Note that (3.2) determines the moments xpνpλqyβ,n because on the left-hand side one
has a degree |ν|, and on the right-hand side all the terms have a degree |ν| ´ 2. For a proof of
(3.2) for β ą 0, see Lemma 4.13 in [LC09] and Section 4.1.1 in [EKR18]. For β P p´2{n, 0q, the
proof works the same, with some care about the divergences in the density. Alternatively, on
can use the analiticity in β to extend to β P p´ 2

n
, 0q. �

Next are some elementary properties of GβE, which follow from the form of the density (3.1).

Proposition 3.2. The following holds.

(1) For every β ą ´2{n, 1?
n
p1pλq under GβE has for distribution N p0, 1q.

(2) For every β ą ´2{n, p2pλq{2 under GβE has for distribution Gammapdpβ, nq{2, 1q.
(3) p1pλq and λ´ 1

n
p1pλq under GβE are independent.

(4) 1
2

`
p2pλq´ 1

n
p1pλq2

˘
“ 1

2
p2

`
λ´ 1

n
p1pλq

˘
under GβE has for distribution Gammappdpβ, nq´

1q{2, 1q.
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Next is an embryonic version of the BFS-Dynkin isomorphism (Theorem (2.1)) for the GβE.
One should imagine that the state space is reduced to one vertex, and a particle on it gets killed
at an exponential time.

Proposition 3.3. Let β ą ´2{n. The following holds.

(1) Let a ě 0. Let h : R
n Ñ R be a measurable function such that x|hpλq|yβ,n ă `8.

Assume that h is a-homogeneous, that is to say hpsλq “ sahpλq for every s ą 0. Let
F : r0,`8q Ñ R be a bounded measurable function. Let θ be a r.v. with distribution
Gammappdpβ, nq ` aq{2, 1q. Then

(3.3) xhpλqF pp2pλq{2qyβ,n “ xhpλqyβ,nErF pθqs.
(2) In particular, let ν be a finite family of positive integers such that |ν| is even. Let

T1, . . . ,T|ν|{2 be an i.i.d. family of exponential times of mean 1, independent of the
GβE. Then

xpνpλqF pp2pλq{2qyβ,n “ xpνyβ,nE
“
xF pp2pλq{2 ` T1 ` ¨ ¨ ¨ ` T|ν|{2qyβ,n

‰
.

Proof. (1) clearly implies (2). It is enough to check (3.3) for F of form F ptq “ e´Kt, with
K ą 0. Then

xhpλqe´ 1

2
Kp2pλqyβ,n “ 1

Zβ,n

ż

Rn

hpλq|Dpλq|βe´ 1

2
pK`1qp2pλq

nź

j“1

dλj

“ pK ` 1q´n
2

Zβ,n

ż

Rn

hppK ` 1q´ 1

2 λ̃q|DppK ` 1q´ 1

2 λ̃q|βe´ 1

2
p2pλ̃q

nź

j“1

dλ̃j

“ pK ` 1q´ 1

2

`
n`npn´1qβ

2
`a

˘
xhpλ̃qyβ,n,

where on the second line we used the change of variables λ̃ “ pK ` 1q 1

2λ, and on the third line
the homogeneity. Further,

pK ` 1q´ 1

2

`
n`npn´1qβ

2
`a

˘
“ Ere´Kθs. �

4. A recurrence on formal polynomials

We consider a family of formal commuting polynomial variables pYkk, qYk k`1qkě1. We will
consider finite families of positive integers ν “ pν1, ν2, . . . , νmpνqq with |ν| even. The order of the
νk will matter. We want to construct a family of polynomials Pν,β,n with parameters ν,β and n,

where Pν,β,n has for variables pYkkq1ďkďmpνq and pqYk´1kq2ďkďmpνq. To simplify the notations,
we will drop the subscripts β, n and just write Pν . The polynomials Pν will appear in the
expression of the symmetric moments of β-Dyson’s Brownian motion and the corresponding
BFS-Dynkin type isomorphism. We will give a recursive definition of the Pν-s.

The solutions to the recurrence (3.2), which for β P p´2{n,`8q are the moments xpνpλqyβ,n,
will be denoted cpν, β, nq. By convention, cpp0q, β, nq “ n and cpH, β, nq “ 1. For k ě k1 P N,
Jk, k1K will denote the interval of integers

Jk, k1K “ tk, k ` 1, . . . , k1u.
For k ě 1 and P a polynomial, P kÐ will denote the polynomial in the variables pYk1k1q1ďk1ďk and

pqYk1´1k1q2ďk1ďk, obtained from P by replacing each variable Yk1k1 with k1 ě k`1 by the variable

Ykk, and each variable qYk1´1 k1 with k1 ě k ` 1 by the constant 1. Note that P
mpνqÐ
ν “ Pν and

that P 1Ð
ν is an univariate polynomial in Y11. For Y a formal polynomial variable, degY will

denote the partial degree in Y.

Definition 4.1. The family of polynomials pPνq|ν| even is defined by the following.

(1) P 1Ð
ν “ cpν, β, nqY|ν|{2

11 .
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(2) If mpνq ě 2, then for every k P J2,mpνqK,

B
BYkk

P kÐ
ν “ β

2

ÿ

kďk1ďmpνq
νk1ą2

νpk1q
2

νk1 ´2ÿ

i“2

P kÐ
ppνrqr‰k1 ,i´1,νk1 ´1´iq(4.1)

`β

2
n

ÿ

kďk1ďmpνq
νk1 ą2

νpk1qP kÐ
ppνrqr‰k1 ,νk1 ´2q

`β

2
n2

ÿ

kďk1ďmpνq
νk1 “2

P kÐ
pνrqr‰k1

`
´
1 ´ β

2

¯ ÿ

kďk1ďmpνq
νk1 ą2

νk1pνk1 ´ 1q
2

P kÐ
ppνrqr‰k1 ,νk1 ´2q

`
´
1 ´ β

2

¯
n

ÿ

kďk1ďmpνq
νk1 “2

P kÐ
pνrqr‰k1

`
ÿ

kďk1ăk2ďmpνq
νk1 `νk2 ą2

νk1νk2P kÐ
ppνrqr‰k1,k2 ,νk1 `νk2 ´2q

`n
ÿ

kďk1ăk2ďmpνq
νk1“νk2 “1

P kÐ
pνrqr‰k1,k2

.

If k “ mpνq, then the last two lines of (4.1) are zero.
(3) If mpνq ě 2, then for every k P J2,mpνqK, the polynomial P kÐ

ν pYkk “ 0q (i.e. the part of
P kÐ
ν that does not contain terms in Ykk) is such that each of its monomials Q satisfies

degqYk´1k
Q “

ÿ

kďrďmpνq
νr.

Proposition 4.2. Definition 4.1 uniquely defines a family of polynomials pPνq|ν| even. Moreover,
the following properties hold.

(1) For every Q monomial of Pν and every k P J2,mpνqK,

degqYk´1 k
Q` 2

ÿ

kďk1ďmpνq
degYk1k1

Q “
ÿ

kďk1ďmpνq
νk1 ,

and

2
ÿ

1ďk1ďmpνq
degYk1k1

Q “ |ν|.

(2) For every k P J1,mpνqK and every permutation σ of Jk,mpνqK,
P kÐ

pνrq1ďrďk´1,pνσprqqkďrďmpνq
“ P kÐ

ν .

Proof. The fact that the polynomials Pν are well defined can be proved by induction on |ν|{2.
For |ν|{2 “ 1, there are only two polynomials, Pp2q and Pp1,1q. According to the condition

(1),

Pp2q “ cpp2q, β, nqY11 “ dpβ, nqY11 “
´β
2
n2 `

´
1 ´ β

2

¯
n

¯
Y11.

The conditions (2) and (3) do not apply for Pp2q. For Pp1,1q, according to the condition (2),

B
BY22

Pp1,1q “ 0.
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Thus, Pp1,1q contains no terms in Y22. According to the condition (3), Pp1,1q “ rP pY11qqY12. From
the condition (1) we further get

Pp1,1q “ cpp1, 1q, β, nqY11
qY12 “ nY11

qY12.

The induction step works as follows. Assume |ν|{2 ě 2. The right hand side of (4.1) involves

only families of integers ν̃ with |ν̃| “ |ν|´2. According to the induction hypotheses,
B

BYkk

P kÐ
ν is

uniquely determined for every k P J2,mpνqK. Thus, for every k P J2,mpνqK, P kÐ
ν ´P kÐ

ν pYkk “ 0q
is uniquely determined. By the condition (1), P 1Ð

ν is also uniquely determined. By the condition
(3), for every k P J2,mpνqK,

P kÐ
ν pYkk “ 0q “

`
P k´1Ð
ν ´

`
P kÐ
ν ´ P kÐ

ν pYkk “ 0q
˘k´1Ð˘qY|pνrqkďrďmpνq|

k´1 k .

Thus, all the polynomials pP kÐ
ν q1ďkďmpνq are uniquely determined, with consistency by the

P ÞÑ P kÐ operations. Finally, Pν “ P
mpνqÐ
ν .

The properties (1) and (2) again follow easily by induction on |ν|{2. �

Next are the expressions for Pp1,1,...,1q and Pp2,2,...,2q that can be proved by induction.

Proposition 4.3. Let m P Nzt0u. Let M “ pMkk1q1ďk,k1ďm be the formal symmetric matrix
with entries given by

(4.2) Mkk “ Ykk, for k ă k1, Mkk1 “ Mk1k “ Ykk

ź

k`1ďrďk1

qYr´1 r.

The following holds.

(1) Assume m is even, and let ν “ p1, 1, . . . , 1q, where 1 appears m times. Then Pp1,1,...,1q
satisfies the Wick’s rule for Gaussians:

Pp1,1,...,1q “ n
m
2

ÿ

ptai,biuq1ďiďm{2

partition in pairs
of J1,mK

Maibi ,

where the sum runs over the m!{p2m
2 pm{2q!q partitions in pairs.

(2) Let ν “ p2, 2, . . . , 2q, where 2 appears m times. Then

Pp2,2,...,2q “ 2m Permdpβ,nq{2pMq.
For other examples of Pν , see the Appendix.
Next we observe that for β “ ´ 2

n
, the polynomials Pν give the moments of the stochastic

processes pφR` pxqqxě0 and pφKpxqqxPR introduced in Section 2, which are Gaussian.

Proposition 4.4. Let n ě 1. Let K ą 0. Let ν be a finite family of positive integers with |ν|
even. Let x1 ď ¨ ¨ ¨ ď xmpνq be mpνq points in p0,`8q, resp. in R. Then

Pν,β“´ 2

n
,nppYkk “ 2xkq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq “ nmpνq´|ν|{2

E

” mpνqź

k“1

φR`pxkqνk
ı
,

resp.

Pν,β“´ 2

n
,nppYkk “ 1{

?
2Kq1ďkďmpνq, pqYk´1 k “ e´

?
2Kpxk´xk´1qq2ďkďmpνqq

“ nmpνq´|ν|{2
E

” mpνqź

k“1

φKpxkqνk
ı
.

That is to say, the variables Ykk are replaced by GR`pxk, xkq, resp. GKpxk, xkq, and the variables
qYk´1k by GR`pxk´1, xkq{GR` pxk´1, xk´1q, resp. GKpxk´1, xkq{GKpxk´1, xk´1q.
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Proof. First, one can check that

(4.3) c
´
ν, β “ ´ 2

n
, n

¯
“ nmpνq´|ν|{2 |ν|!

2|ν|{2p|ν|{2q! .

This follows from Proposition (3.2). The key point is that

d
´
β “ ´ 2

n
, n

¯
“ 1.

Given ν a finite family of positive integers, let kν : J1, |ν|K ÞÑ J1,mpνqK be the function such
that

(4.4) k´1
ν p1q “ J1, ν1K, for k1 P J2,mpνqK, k´1

ν pk1q “ Jν1 ` ¨ ¨ ¨ ` νk1´1 ` 1, ν1 ` ¨ ¨ ¨ ` νk1K.

Further, let p rPνq|ν| even be the following formal polynomials:

rPν “ nmpνq´|ν|{2 ÿ

ptai,biuq1ďiď|ν|{2

partition in pairs
of J1,|ν|K

Mkνpaiqkνpbiq,

where the Mkk1 are given by (4.2). To conclude, we need only to check that rPν “ Pν,β“´ 2

n
,n for

all ν with |ν| even. From (4.3) follows that the rPν satisfy the condition (1) in Definition 4.1.

The condition (3) is immediate since rP kÐ
ν pYkk “ 0q corresponds to the partitions in pairs where

each element of k´1
ν pJk,mpνqKq is paired with an element of k´1

ν pJ1, k ´ 1Kq. One can further
check the recurrence (4.1), and this amounts to counting the pairs in k´1

ν pJk,mpνqKq. �

5. Isomorphisms for β-Dyson’s Brownian motion

5.1. β-Dyson’s Brownian motions and the occupation fields of 1D Brownian loop-

soups. For references on β-Dyson’s Brownian motion, see [Dys62, Cha92, RS93, CL97, CL07],
Chapter 9 in [Meh04] and Section 4.3 in [AGZ09]. Let β ě 0 and n ě 2. The β-Dyson’s
Brownian motion is the process pλpxq “ pλ1pxq, . . . , λnpxqqqxě0 with λ1pxq ě ¨ ¨ ¨ ě λnpxq,
satisfying the SDE

(5.1) dλjpxq “
?
2dWjpxq ` β

ÿ

j1‰j

dx

λjpxq ´ λj1pxq ,

with initial condition λp0q “ 0. pdWjpxqq1ďjďn are independent white noises. Since we will be
interested in isomorphisms with Brownian local times, the variable x corresponds here to a one-
dimensional spatial variable rather then a time variable. For every x ą 0, λpxq{

a
GR`px, xq “

λpxq{
?
2x, is distributed, up to a reordering of the λjpxq-s, as a GβE (3.1). For β equal to

1, 2 resp. 4, pλpxqqxě0 is the diffusion of eigenvalues in a Brownian motion on the space of
real symmetric, complex Hermitian, resp. quaternionic Hermitian matrices. For β ě 1, there
is no collision between the λjpxq-s, and for β P r0, 1q two consecutive λjpxq-s can collide, but
there is no collision of three or more particles [CL07]. Note that for β ą 0 and j P J2, nK,
pλjpxq ´ λj´1pxqq{2 behaves near level 0 like a Bessel process of dimension β ` 1 reflected at
level 0, and since β`1 ą 1, the complication with the principal value and the local time at zero
does not occur; see Chapter 10 in [Yor97]. In particular, each pλjpxqqxě0 is a semimartingale.

For β “ 0, pλpxq{
?
2qxě0 is just a reordered family of n i.i.d. standard Brownian motions.

Remark 5.1. We restrict to β ě 0 because the case β ă 0 has not been considered in the
literature. The problem is the extension of the process after a collision of λjpxq-s. The collision

of three or more particles, including all the n together for β ă ´ 2pn´3q
npn´1q , is no longer excluded.

However, we believe that the β-Dyson’s Brownian motion can be defined for all β ą ´ 2
n
. This
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is indeed the case if n “ 2. One can use the reflected Bessel processes for that. Let pρpxqqxě0

be the Bessel process of dimension β ` 1, reflected at level 0, satisfying away from 0 the SDE

dρpxq “ dW pxq ` β

2ρpxqdx,

with ρp0q “ 0. The reflected version is precisely defined for β ą ´1 “ ´2
2
; see Section XI.1 in

[RY99] and Section 3 in [Law19]. Let pĂW pxqqxě0 be a standard Brownian motion started from
0, independent from pW pxqqxě0 Then, for n “ 2 one can construct the β-Dyson’s Brownian
motion as

(5.2) λ1pxq “ ĂW pxq ` ρpxq, λ2pxq “ ĂW pxq ´ ρpxq.
Next are some simple properties of the β-Dyson’s Brownian motion.

Proposition 5.2. The following holds.

(1) The process
`

1?
n
p1pλpxqq

˘
xě0

has same law as φR` .

(2) The process p1
2
p2pλpxqqqxě0 is a square Bessel process of dimension dpβ, nq started from

0.
(3) The processes pp1pλpxqqqxě0 and

`
λpxq ´ 1

n
p1pλpxqq

˘
xě0

are independent.

(4) The process
`
1
2

`
p2pλpxqq ´ 1

n
p1pλpxqq2

˘˘
xě0

is a square Bessel process of dimension

dpβ, nq ´ 1 started from 0.

Proof. With Itô’s formula, we get

dp1pλpxqq “
?
2

nÿ

j“1

dWjpxq,

d
1

2
p2pλpxqq “ 2

nÿ

j“1

λjpxq?
2
dWjpxq ` dpβ, nqdx,

(5.3) d
1

2

´
p2pλpxqq ´ 1

n
p1pλpxqq2

¯
“ 2

nÿ

j“1

λjpxq ´ 1
n
p1pλpxqq?
2

dWjpxq ` pdpβ, nq ´ 1qdx,

where the points x P R` for which λjpxq “ λj´1pxq for some j P J2, nK can be neglected. This
gives (1), (2) and (4) since the processes

dĂW pxq “
nÿ

j“1

λjpxqa
p2pλpxqq

dWjpxq, ĂW p0q “ 0,

and

d|W pxq “
nÿ

j“1

λjpxq ´ 1
n
p1pλpxqqb

p2pλpxqq ´ 1
n
p1pλpxqq2

dWjpxq, |W p0q “ 0,

are both standard Brownian motions. Again, one can neglect the points x P R` where p2pλpxqq´
1
n
p1pλpxqq2 “ 0, which only occur for n “ 2.
For (3), we have that

d
´
λjpxq ´ 1

n
p1pλpxqq

¯
“

?
2d

´
Wjpxq ´ 1

n
p1pW pxqq

¯

` β
ÿ

j1‰j

dx
`
λjpxq ´ 1

n
p1pλpxqq

˘
´

`
λj1pxq ´ 1

n
p1pλpxqq

˘ ,

where

p1pW pxqq “
nÿ

j1“1

Wj1pxq.
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The Brownian motion p1pW q “ 1?
2
p1pλq is independent from the family of Brownian motions`

Wj ´ 1
n
p1pW q

˘
1ďjďn

. Further, the measurability of
`
λj ´ 1

n
p1pλq

˘
1ďjďn

with respect to
`
Wj ´

1
n
p1pW q

˘
1ďjďn

follows from the pathwise uniqueness of the solution to (5.1); see Theorem 3.1

in [CL97]. �

By combining Proposition 5.2 with Theorem 2.3, we get a first relation between the β-Dyson’s
Brownian motion and 1D Brownian local time. Compare it with Le Jan’s isomorphism (2.3).

Corollary 5.3. The process
`
1
2
p2pλpxqq

˘
xě0

has same law as the occupation field pLxpLα
R`

qqxě0

of a 1D Brownian loop-soup Lα
R`

, with the correspondence

(5.4) 2α “ dpβ, nq “ n` npn´ 1qβ
2
.

Further, let L
α´ 1

2

R`
and rL

1

2

R`
be two independent 1D Brownian loop-soups, α still given by (5.4).

Then, one has the following identity in law between pairs of processes:
´1

2

´
p2pλpxqq ´ 1

n
p1pλpxqq2

¯
,
1

2n
p1pλpxqq2

¯
xě0

(law)“ pLxpLα´ 1

2

R`
q, Lxp rL

1

2

R`
qqxě0.

5.2. Symmetric moments of β-Dyson’s Brownian motion. We will denote by x¨yR`

β,n the

expectation with respect the β-Dyson’s Brownian motion (5.1).

Proposition 5.4. Let ν be a finite family of positive integers, with |ν| even. Let Pν “ Pν,β,n

be the polynomial given by Definition 4.1. Let x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`. Then,

A mpνqź

k“1

pνkpλpxkqq
E
R`

β,n
“ PνppYkk “ 2xkq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq.

We start by some lemmas.

Lemma 5.5. Let q ě 3. Then

dpqpλpxqq “ q
?
2

nÿ

j“1

λjpxqq´1dWjpxq ` β

2
q

q´2ÿ

i“2

pi´1pλpxqqpq´1´ipλpxqqdx

`2
β

2
nqpq´2pλpxqqdx `

´
1 ´ β

2

¯
qpq ´ 1qpq´2pλpxqqdx.

Proof. By Itô’s formula,

dpqpλpxqq “ q
?
2

nÿ

j“1

λjpxqq´1dWjpxq ` qpq ´ 1qpq´2pλpxqqdx

` βq
ÿ

1ďjăj1ďn

λjpxqq´1 ´ λj1pxqq´1

λjpxq ´ λj1pxq dx.

But

ÿ

1ďjăj1ďn

λjpxqq´1 ´ λj1pxqq´1

λjpxq ´ λj1pxq “
ÿ

1ďjăj1ďn

q´2ÿ

r“0

λjpxqrλj1pxqq´2´r “

´
n´ q ´ 1

2

¯
pq´2pλpxqq ` 1

2

q´2ÿ

i“2

pi´1pλpxqqpq´1´ipλpxqq. �

Lemma 5.6. Let q, q1 ě 1 with q ` q1 ą 2. Then

dxpqpλpxqq, pq1 pλpxqqy “ 2qq1pq`q1´2pλpxqqdx.
Moreover,

dxp1pλpxqq, p1pλpxqqy “ 2ndx.
11



Proof. This is a straightforward computation. �

Lemma 5.7. Let ν be a finite family of positive integers and let q ě 0. Then the process

(5.5)

ż x

0

pνpλpyqq
nÿ

j“1

λjpyqqdWjpyq

is a martingale.

Proof. (5.5) is a local martingale. It actually has a locally L
1 bounded quadratic variation:

A ż x

0

pνpλpyqq2p2qpλpyqqdy
E
R`

β,n
“ xpνpλq2p2qpλqyβ,n

ż x

0

p2yq|ν|`qdy ă `8

So it is a true martingale. �

Proof of Proposition 5.4. The proof is done by induction on |ν|{2.
The case |ν|{2 “ 1 corresponds to ν “ p1, 1q or ν “ p2q. These are treated by Proposition 4.3

and Proposition 5.2, and taking into account that the square Bessel processes are permanental
fields.

Now consider the induction step. Assume |ν|{2 ě 2. Let x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`. For
k P J1,mpνqK, fkpxq will be the function

fkpxq :“
A k´1ź

k1“1

pνk1 pλpxk1qq
mpνqź

k1“k

pνk1 pλpxqq
E
R`

β,n
.

We have that

(5.6) f1px1q “ cpν, β, nqp2x1q|ν|{2 “ P 1Ð
ν pY11 “ 2x1q,

where for the second equality we applied the condition (1) in Definition 4.1. Ifmpνq “ 1, there is
nothing more to check. In the case mpνq ě 2, we need only to check that for every k P J2,mpνqK
and every x ą xk´1,

d

dx
fkpxq “ B

BxP
kÐ
ν ppYk1k1 “ 2xk1q1ďk1ďk´1,Ykk “ 2x, pqYk1´1 k1 “ 1q2ďk1ďkq(5.7)

“ 2
´ B

BYkk

P kÐ
ν

¯
ppYk1k1 “ 2xk1q1ďk1ďk´1,Ykk “ 2x, pqYk1´1 k1 “ 1q2ďk1ďkq.

Indeed, given (5.6), by applying (5.7) to k “ 2, we further get

f2px2q “ P 2Ð
ν pY11 “ 2x1,Y22 “ 2x2, qY12 “ 1q,

and by successively applying (5.7) to k “ 3, . . . , k “ mpνq, we at the end get

fmpνqpxmpνqq “ PmpνqÐ
ν ppYk1k1 “ 2xk1 q1ďk1ďmpνq, pqYk1´1 k1 “ 1q2ďk1ďmpνqq,

which is exactly what we want. To show (5.7), we proceed as follows. Let pFxqxě0 be the
filtration of the Brownian motions ppWjpxqq1ďjďnqxě0. Then, for x ą xk´1,

fkpxq “
A k´1ź

k1“1

pνk1 pλpxk1qq
A mpνqź

k1“k

pνk1 pλpxqq
ˇ̌
ˇFxk´1

ER`

β,n

ER`

β,n
,

where x¨|Fxk´1
yR`

β,n denotes the conditional expectation. To express

A mpνqź

k1“k

pνk1 pλpxqq
ˇ̌
ˇFxk´1

ER`

β,n
,

we apply Itô’s formula to

mpνqź

k1“k

pνk1 pλpxqq ´
A mpνqź

k1“k

pνk1 pλpxk´1qq
ER`

β,n
.
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The local martingale part is, according to Lemma 5.7 a true martingale, and thus gives a 0
conditional expectation. The bounded variation part is a linear combination of terms of form
pν̃pλpxqqdx, with

|ν̃| “
´ mpνqÿ

k1“k

νk1

¯
´ 2,

the exact expressions being given by Lemma 5.5 and Lemma 5.6. By comparing these expres-
sions with the recurrence (4.1), and using the induction hypothesis at the step |ν|{2´ 1, we get
(5.7). �

Note that in the proof above we did not use the condition (3) in Definition 4.1. It will be
needed only later.

5.3. BFS-Dynkin isomorphism for β-Dyson’s Brownian motion. We will denote by Υ
a generic finite family of continuous paths on R, Υ “ pγ1, . . . , γJq, and JpΥq will denote the
size J of the family. We will consider finite Brownian measures on Υ where JpΥq is not fixed
but may take several values under the measure. Given x P R, LxpΥq will denote the sum of
Brownian local times in x:

LxpΥq “
JpΥqÿ

i“1

Lxpγiq.

LpΥq will denote the occupation field x ÞÑ LxpΥq.
Given ν a finite family of positive integers with |ν| even and 0 ă x1 ă x2 ă ¨ ¨ ¨ ă xmpνq,

µ
ν,x1,...,xmpνq

R`
pdΥq (also depending on β and n) will be the measure on finite families of continuous

paths obtained by substituting in the polynomial Pν “ Pν,β,n for each variable Ykk the measure

µ
xk,xk

R`
, and for each variable qYk´1k the measure µ̌

xk´1,xk

R`
; see Section 2. Since we will deal with

the functional LpΥq under µ
ν,x1,...,xmpνq

R`
pdΥq, the order of the Brownian measures in a product

will not matter. For instance, for ν “ p2, 1, 1q (see Appendix),

Pp2,1,1q “
´β
2
n3 `

´
1 ´ β

2

¯
n2

¯
Y11Y22

qY23 ` 2nY2
11

qY2
12

qY23,

and

µ
p2,1,1q,x1,x2,x3,x4

R`
“

´β
2
n3 `

´
1 ´ β

2

¯
n2

¯
µ
x1,x1

R`
b µ

x2,x2

R`
b µ̌

x2,x3

R`

`2nµx1,x1

R`
b µ

x1,x1

R`
b µ̌

x1,x2

R`
b µ̌

x1,x2

R`
b µ̌

x2,x3

R`
.

Next is a version of BFS-Dynkin isomorphism (Theorem (2.1)) for β-Dyson’s Brownian mo-
tion.

Proposition 5.8. Let ν be a finite family of positive integers, with |ν| even and let 0 ă x1 ă
x2 ă ¨ ¨ ¨ ă xmpνq. Let F be a bounded measurable functional on CpR`q. Then

(5.8)
A mpνqź

k“1

pνkpλpxkqqF
´1

2
p2pλq

¯E
R`

β,n
“

ż

Υ

A
F

´1

2
p2pλq ` LpΥq

¯E
R`

β,n
µ
ν,x1,...,xmpνq

R`
pdΥq.

Remark 5.9. In the limiting case when xk “ xk´1 for some k P J2,mpνqK, qYk´1k in Pν has to
be replaced by the constant 1 instead of a measure on Brownian paths.

Remark 5.10. For β P t0, 1, 2, 4u, (5.8) reduces to the Gaussian case of Theorem (2.1).

We start by some intermediate lemmas. Recall that pFxqxě0 denotes the filtration of the
Brownian motions ppWjpxqq1ďjďnqxě0 in (5.1). χpxq will be a continuous non-negative function
with compact support in p0,`8q. uχÓ will denote the unique solution to

1

2

d2

dx
u “ χu
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which is positive non-increasing on R`, with uχÓp0q “ 1. See Section 2.1 in [Lup18] for details.
Then

uχÓp`8q “ lim
xÑ`8

uχÓpxq ą 0.

Lemma 5.11. Let Dχp`8q be the positive r.v.

(5.9) Dχp`8q :“ uχÓp`8q´ 1

2
dpβ,nq exp

´
´ 1

2

ż `8

0

p2pλpyqqχpyqdy
¯
.

Then xDχp`8qyR`

β,n “ 1. Moreover,

(5.10) Dχpxq :“ xDχp`8q|FxyR`

β,n

“ uχÓpxq´ 1

2
dpβ,nq exp

´
´ 1

2

ż x

0

p2pλpyqqχpyqdy
¯
exp

´1

4
p2pλpxqq

u1
χÓpxq
uχÓpxq

¯
.

Let

Mχpxq :“ 1?
2

ż x

0

u1
χÓpyq
uχÓpyq

nÿ

j“1

λjpyqdWjpyq.

Then pMχpxqqxě0 is a martingale with respect the filtration pFxqxě0 and for all x ě 0,

Dχpxq “ exp
´
Mχpxq ´ 1

2
xMχ,Mχypxq

¯
.

Proof. (5.9) and (5.10) follow from the properties of square Bessel processes. See Theorem (1.7),
Section XI.1 in [RY99]. pMχpxqqxě0 is obviously a (true) martingale, as can be seen with the
quadratic variation. Further,

d
´1

4
p2pλpxqq

u1
χÓpxq
uχÓpxq

¯
“ dMχpxq` 1

2
p2pλpxqqχpxqdx´ 1

4
p2pλpxqq

u1
χÓpxq2
uχÓpxq2 dx` 1

2
dpβ, nq

u1
χÓpxq
uχÓpxqdx,

and

d
1

2
xMχ,Mχypxq “ 1

4
p2pλpxqq

u1
χÓpxq2
uχÓpxq2 dx.

Thus

d
´
Mχpxq ´ 1

2
xMχ,Mχypxq

¯
“ d logpDχpxqq. �

Lemma 5.12. Let be pλ̃pxq “ pλ̃1pxq, . . . , λ̃npxqqqxě0 with λ̃1pxq ě ¨ ¨ ¨ ě λ̃npxq, satisfying the
SDE

(5.11) dλ̃jpxq “
?
2dWjpxq `

u1
χÓpxq
uχÓpxq λ̃jpxqdx ` β

ÿ

j1‰j

dx

λ̃jpxq ´ λ̃j1pxq
,

with initial condition λ̃p0q “ 0. Further consider a change of measure with density Dχp`8q
(5.9) on the filtered probability space with filtration pFxqxě0. Then λ after the change of measure

and λ̃ before the change of measure have same law.

Proof. The existence and uniqueness of strong solutions to (5.11) is given by Theorem 3.1 in
[CL97]. The rest is a consequence of Girsanov’s theorem; see Theorems (1.7) and (1.12), Section
VIII.1, in [RY99]. Indeed,

dxWjpxq,Mχpxqy “ 1?
2

u1
χÓpxq
uχÓpxqλjpxqdx.

Thus, after the change of measure, the

Wjpxq ´ 1?
2

ż x

0

u1
χÓpyq
uχÓpyqλjpyqdy

for j P J1, nK are n i.i.d. standard Brownian motions. �
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Let ψχ denote the following diffeomorphism of R`:

ψχpxq “
ż x

0

dy

uχÓpyq2 .

ψ´1
χ will denote the inverse diffeomorphism.

Lemma 5.13. If λ̃ is a solution to the SDE (5.11), then the process
´ 1

uχÓpψ´1
χ pxqq

λ̃pψ´1
χ pxqq

¯
xě0

satisfies the SDE (5.1).

Proof. The process
´ 1

uχÓpxq λ̃pxq
¯
xě0

satisfies

d
´ 1

uχÓpxq λ̃jpxq
¯

“
?
2

uχÓpxqdWjpxq ` β
ÿ

j1‰j

1

uχÓpxq´1λ̃jpxq ´ uχÓpxq´1λ̃j1pxq
dx

uχÓpxq2 .

By further performing the change of variable given by ψχ, one gets (5.1). �

In the sequel pGR`,χpx, yqqx,yě0 will denote the Green’s function of 1
2

d2

dx2 ´ χ on R` with
condition 0 in 0. Then for 0 ď x ď y,

(5.12) GR`,χpx, yq “ 2uχÓpxqψχpxquχÓpyq.
Indeed,

1

2

B2
By2

´
2uχÓpxqψχpxquχÓpyq

¯
“ χpyq

´
2uχÓpxqψχpxquχÓpyq

¯
,

1

2

B2
Bx2

´
2uχÓpxqψχpxquχÓpyq

¯
“ 1

2

B
Bx

´
2u1

χÓpxqψχpxquχÓpyq ` 2
uχÓpyq
uχÓpxq

¯

“ χpxq
´
2uχÓpxqψχpxquχÓpyq

¯
` 0,

and
1

2

´ B
Bx

ˇ̌
ˇ
x“y

´ B
By

ˇ̌
ˇ
y“x

¯´
2uχÓpxqψχpxquχÓpyq

¯
“ 1.

Lemma 5.14. Let pλ̃pxqqxě0 be the solution to (5.11) with λ̃p0q “ 0. Let ν be a finite family
of positive integers, with |ν| even. Let x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`. Then,

A mpνqź

k“1

pνkpλ̃pxkqq
ER`

β,n
“ PνppYkk “ GR`,χpxk, xkqq1ďkďmpνq, pqYk´1 k “ uχÓpxkq{uχÓpxk´1qq2ďkďmpνqq.

Proof. From Lemma 5.13 and Proposition 5.4 it follows that

A mpνqź

k“1

pνkpλ̃pxkqq
E
R`

β,n
“

´ mpνqź

k“1

uχÓpxkqνk
¯
PνppYkk “ 2ψχpxkqq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq.

Further, let Q be a monomial of Pν . One has to check that

´ mpνqź

k“1

uχÓpxkqνk
¯
QppYkk “ 2ψχpxkqq1ďkďmpνq, pqYk´1k “ 1q2ďkďmpνqq

“ QppYkk “ GR`,χpxk, xkqq1ďkďmpνq, pqYk´1 k “ uχÓpxkq{uχÓpxk´1qq2ďkďmpνqq.
This follows from (5.12) and the point (1) in Proposition 4.2. �
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Proof of Proposition 5.8. It is enough to show (5.8) for functionals F of form

F ppℓpxqqxě0q “ exp
´

´
ż

R`

ℓpxqχpxqdx
¯
,

where χ is a continuous non-negative function with compact support in p0,`8q. For such a χ,

A mpνqź

k“1

pνkpλpxkqq exp
´

´ 1

2

ż

R`

p2pλpxqqχpxqdx
¯ER`

β,n
“

A
exp

´
´ 1

2

ż

R`

p2pλpxqqχpxqdx
¯E

R`

β,n

A mpνqź

k“1

pνkpλ̃pxkqq
E
R`

β,n
,

where λ̃ is given by (5.11), with λ̃p0q “ 0. The symmetric moments of λ̃ are given by Lemma
5.14. To conclude, we use that

ż

γ

exp
´

´
ż

R`

Lzpγqχpzqdz
¯
µ
x,x
R`

pdγq “ GR`,χpx, xq,

and for 0 ă x ă y,
ż

γ

exp
´

´
ż

R`

Lzpγqχpzqdz
¯
µ̌x,ypdγq “ GR`,χpx, yq

GR`,χpx, xq “ uχÓpyq
uχÓpxq ;

see Section 3.2 in [Lup18]. �

5.4. The stationary case. In this section we consider the stationary β-Dyson’s Brownian
motion on the whole line and state the analogues of Propositions 5.2, 5.4 and 5.8 for it. The
proofs are omitted, as they are similar to the previous ones. As previously, n ě 2 and β ě 0.
Let K ą 0. We consider the process the process pλpxq “ pλ1pxq, . . . , λnpxqqqxPR with λ1pxq ě
¨ ¨ ¨ ě λnpxq, satisfying the SDE

(5.13) dλjpxq “
?
2dWjpxq ´

?
2K λjpxq ` β

?
2K

ÿ

j1‰j

dx

λjpxq ´ λj1pxq ,

the dWj , 1 ď j ď n being n i.i.d. white noises on R, and λ being stationary, with p2Kq 1

4λpxq
being distributed according to (3.1) (up to reordering of the λjpxq).

Proposition 5.15. The following holds.

(1) The process
`

1?
n
p1pλpxqq

˘
xPR has same law as φK .

(2) Consider a 1D Brownian loop-soup Lα
K , with α given by (5.4). The process p1

2
p2pλpxqqqxPR

has same law as the occupation field pLxpLα
KqqxPR.

(3) The processes pp1pλpxqqqxPR and
`
λpxq ´ 1

n
p1pλpxqq

˘
xPR are independent.

(4) Let L
α´ 1

2

K and rL
1

2

K be two independent 1D Brownian loop-soups, α given by (5.4). Then,
one has the following identity in law between pairs of processes:

´1

2

´
p2pλpxqq ´ 1

n
p1pλpxqq2

¯
,
1

2n
p1pλpxqq2

¯
xPR

(law)“ pLxpLα´ 1

2

K q, Lxp rL
1

2

KqqxPR.

x¨yKβ,n will denote the expectation with respect the stationary β-Dyson’s Brownian motion.

Given ν a finite family of positive integers with |ν| even and x1 ă x2 ă ¨ ¨ ¨ ă xmpνq P R,

µ
ν,x1,...,xmpνq

K pdΥq (also depending on β and n) will be the measure on finite families of continuous
paths obtained by substituting in the polynomial Pν “ Pν,β,n for each variable Ykk the measure

µ
xk,xk

K , and for each variable qYk´1k the measure µ̌
xk´1,xk

K .
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Proposition 5.16. Let ν a finite family of positive integers with |ν| even. Let x1 ď x2 ď ¨ ¨ ¨ ď
xmpνq P R. Then,

A mpνqź

k“1

pνkpλpxkqq
EK

β,n
“ PνppYkk “ 1{

?
2Kq1ďkďmpνq, pqYk´1 k “ e´

?
2Kpxk´xk´1qq2ďkďmpνqq.

Further, let F be a bounded measurable functional on CpRq. For x1 ă x2 ă ¨ ¨ ¨ ă xmpνq P R,

A mpνqź

k“1

pνkpλpxkqqF
´1

2
p2pλq

¯EK

β,n
“

ż

Υ

A
F

´1

2
p2pλq ` LpΥq

¯EK

β,n
µ
ν,x1,...,xmpνq

K pdΥq.

6. The case of general electrical networks: a construction for n “ 2 and

further questions

6.1. Formal polynomials for n “ 2. In this section n “ 2, and β is arbitrary, considered as
a formal parameter. Note that dpβ, n “ 2q “ β ` 2. In Section 4 we introduced the formal
commuting polynomial variables pYkkqkě1. Here we further consider the commuting variables
pYkk1q1ďkăk1 , and by convention set Ykk1 “ Yk1k for k1 ă k. Given ν̃ “ pν̃1, . . . , ν̃mq with
ν̃k P N (value 0 allowed), Pν̃,β will be the following multivariate polynomial in the variables
pYkk1q1ďkďk1ďm:

Pν̃,β :“ Permβ`1

2

ppYfpiqfpjqq1ďi,jďν̃1`¨¨¨`ν̃mq,

where f is a map f : J1, ν̃1 ` ¨ ¨ ¨ ` ν̃mK Ñ J1,mK, such that for every k P J1,mK, |f´1pkq| “ ν̃k.
It is clear that Pν̃,β does not depend on the particular choice of f . In case ν̃1 “ ¨ ¨ ¨ “ ν̃m “ 0,
by convention we set Pν̃,β “ 1. Given ν a finite family of positive integers with |ν| even, let
kν : J1, |ν|K ÞÑ J1,mpνqK be the map given by (4.4). Let Iν be the following set of subsets of
J1, |ν|K:

Iν :“ tI Ď J1, |ν|K| @k P J1,mpνqK, |k´1
ν pkqzI| is even u,

where | ¨ | denotes the cardinal. Note that necessarily, for every I P Iν , the cardinal |I| is even.
Let pPν,β be the following multivariate polynomial in the variables pYkk1q1ďkďk1ďmpνq:

pPν,β :“
ÿ

IPIν
2mpνq´|I|{2

´ ÿ

ptai,biuq1ďiď|I|{2

partition in pairs
of I

|I|{2ź

i“1

Ykνpaiqkνpbiq
¯
Pp 1

2
|k´1

ν pkqzI|q1ďkďmpνq,β
.

By construction, for every Q monomial of pPν,β and every k P J1,mpνqK,

(6.1) 2 degYkk
Q`

ÿ

1ďk1ďmpνq
k1‰k

degYkk1
Q “ νk.

Proposition 6.1. Let ν be finite family of positive integers with |ν| even. Pν,β,n“2 is obtained

from pPν,β by replacing each variable Ykk1 with 1 ď k ă k1 ď mpνq by Ykk

ś
k`1ďrďk1

qYr´1 r:

Pν,β,n“2 “ pPν,β

``
Ykk1 “ Ykk

ź

k`1ďrďk1

qYr´1 r

˘
1ďkăk1ďmpνq

˘
.

Proof. Let be

rPν,β :“ pPν,β

``
Ykk1 “ Ykk

ź

k`1ďrďk1

qYr´1 r

˘
1ďkăk1ďmpνq

˘
.

We want to show the equality rPν,β “ Pν,β,n“2. Since a direct combinatorial proof would be a bit
lengthy, we proceed differently. Let β ě 0 and let pλpxq “ pλ1pxq, λ2pxqqqxě0 be the β-Dyson’s
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Brownian motion (5.1) in the case n “ 2. We use its construction through (5.2). We claim that
for x1, x2, . . . , xmpνq P R`,

A mpνqź

k“1

pνkpλpxkqq
ER`

β,n“2
“ pPν,β

``
Ykk1 “ GR` pxk´1, xkq

˘
1ďkďk1ďmpνq

˘
.

Indeed, in the expansion of
´

ĂW pxkq ` ρpxkq
¯νk `

´
ĂW pxkq ´ ρpxkq

¯νk

only enter the even powers of ρpxkq, which is how Iν appears. Then one uses that the square
Bessel process pρpxqqxě0 is a pβ`1q{2-permanental field with kernel pGR`px, yqqx,yPR` . Because
of the particular form of GR` , we have that for x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`,

A mpνqź

k“1

pνkpλpxkqq
ER`

β,n“2
“ rPν,βppYkk “ 2xkq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq.

By combining with Proposition 5.4, we get that the following multivariate polynomials in the
variables pYkkq1ďkďmpνq are equal for β ě 0:

rPν,βppqYk´1 k “ 1q2ďkďmpνqq “ Pν,β,n“2ppqYk´1 k “ 1q2ďkďmpνqq.

Since the coefficients of both are polynomials in β, the equality above holds for general β. To

conclude the equality rPν,β “ Pν,β,n“2, we have to deal with the variables pqYk´1kq2ďkďmpνq. For

this we use that both Pν,β,n“2 and rPν,β satisfy the point (1) of Proposition 4.2. For rPν,β this
follows from (6.1). �

6.2. A construction on discrete electrical networks for n “ 2. Let G “ pV,Eq be an
undirected connected graph, with V finite. We do not allow multiple edges or self-loops. The
edges tx, yu P E are endowed with conductances Cpx, yq “ Cpy, xq ą 0. There is also a not
uniformly zero killing measure pKpxqqxPV , with Kpxq ě 0. We see G as an electrical network.
Let ∆G denote the discrete Laplacian

p∆Gfqpxq “
ÿ

y„x

Cpx, yqpfpyq ´ fpxqq.

Let pGG,Kpx, yqqx,yPV be the massive Green’s function GG,K “ p´∆G ` Kq´1. The (massive)
real scalar Gaussian free field (GFF) is the centered random Gaussian field on V with covariance
GG,K , or equivalently with density

(6.2)
1

pp2πq|V | detGq 1

2

exp
´

´ 1

2

ÿ

xPV
Kpxqϕpxq2 ´ 1

2

ÿ

tx,yuPE
Cpx, yqpϕpyq ´ ϕpxqq2

¯
.

Let Xt be the continuous time Markov jump process to nearest neighbors with jump rates
given by the conductances. Xt is also killed by K. Let ζ P p0,`8s be the first time Xt gets
killed by K. Let pG,Kpt, x, yq be the transition probabilities of pXtq0ďtăζ . Then pG,Kpt, x, yq “
pG,Kpt, y, xq and

GG,Kpx, yq “
ż `8

0

pG,Kpt, x, yqdt.

Let P
t,x,y
G,K be the bridge probability measure from x to y, where one conditions by t ă ζ. For

x, y P V , let µx,y
G

be the following measure on paths:

µ
x,y
G,Kp¨q :“

ż `8

0

P
t,x,y
G,K p¨qpG,Kpt, x, yqdt.
18



It is the analogue of (2.1). The total mass of µx,y
G

is GG,Kpx, yq, and the image of µx,y
G

by time

reversal is µy,x
G

. Similarly, one defines the measure on (rooted) loops by

µ
loop
G,Kpdγq :“ 1

T pγq
ÿ

xPV
µ
x,x
G,Kpdγq,

where T pγq denotes the duration of the loop γ. It is the analogue of (2.2). µloop
G,K has an infinite

total mass because it puts an infinite mass on trivial ”loops” that stay in one vertex. For α ą 0,

one considers Poisson point processes Lα
G,K of intensity αµ

loop
G,K . These are (continuous time)

random walk loop-soups. For details, see [LTF07, LL10, LJ10, LJ11].
For a continuous time path γ on G of duration T pγq and x P V , we denote

Lxpγq :“
ż T pγq

0

1γpsq“xds.

Further,

LxpLα
G,Kq :“

ÿ

γPLα
G,K

Lxpγq.

One has equality in law between pLxpL
1

2

G,KqqxPV and p1
2
φG,Kpxq2qxPV , where φG,K is the GFF

distributed according to (6.2) [LJ10, LJ11]. This is the analogue of (2.3). For general α ą 0, the
occupation field pLxpLα

G,KqqxPV the α-permanental field with kernelGG,K [LJ10, LJ11, LJMR15].

In this sense it is analogous to squared Bessel processes. If pχpxqqxPV P R
V is such that

´∆G `K ´ χ is positive definite, then

(6.3) E

”
exp

´ ÿ

xPV
χpxqLxpLα

G,Kq
¯ı

“
ˆ

detp´∆G `Kq
detp´∆G `K ´ χq

˙α

.

Now we proceed with our construction. Fix β ą ´1. Let α “ 1
2
dpβ, n “ 2q “ β`2

2
ą 1

2
.

Let φG,K be a GFF distributed according to (6.2), and L
α´ 1

2

G,K an independent random walk
loop-soup. For x P V we set

λ1pxq :“ 1?
2
φG,Kpxq `

c
LxpLα´ 1

2

G,K q, λ2pxq :“ 1?
2
φG,Kpxq ´

c
LxpLα´ 1

2

G,K q,

and λ :“ pλ1pxq, λ2pxqqxPV . x¨yG,Kβ,n“2 will denote the expectation with respect to λ. As in Section

5.3, Υ “ pγ1, . . . , γJpΥqq will denote a generic family of continuous time paths, this time on the
graph G. For x P V ,

LxpΥq :“
JpΥqÿ

i“1

Lxpγiq,

and LpΥq will denote the occupation field of Υ, x ÞÑ LxpΥq. Given ν a finite family of positive

integers with |ν| even, and x1, x2, . . . , xmpνq P V , µ̂
ν,β,x1,...,xmpνq

G,K will denote the measure on

families of |ν|{2 paths on G obtained by substituting in the polynomial pPν,β for each variable

Ykk1, 1 ď k ď k1 ď mpνq, the measure µ
xk,xk1

G,K . The order of the paths will not matter.

Proposition 6.2. The following holds.

(1) For every x P V , pλ1pxq{
a
GG,Kpx, xq, λ2pxq{

a
GG,Kpx, xqq is distributed, up to reorder-

ing, according to (3.1) for n “ 2.
(2) Let x, y P V . Let

(6.4) η “ GG,Kpx, xqGG,Kpy, yq
GG,Kpx, yq2 ě 1.

Then the couple p
?
2λpxq{

a
GG,Kpx, xq,?2ηλpyq{

a
GG,Kpy, yqq is distributed like the β-

Dyson’s Brownian motion (5.1) at points 1 and η, for n “ 2.
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(3) Let ν be finite family of positive integers with |ν| even and x1, x2, . . . , xmpνq P V . Then

A mpνqź

k“1

pνkpλpxkqq
EG,K

β,n“2
“ pPν,βppYkk1 “ GG,Kpxk, xk1qq1ďkďk1ďmpνqq.

(4) (BFS-Dynkin’s isomorphism) Moreover, given F a measurable bounded function on R
V ,

(6.5)
A mpνqź

k“1

pνkpλpxkqqF
´1

2
p2pλq

¯EG,K

β,n“2
“

ż

Υ

A
F

´1

2
p2pλq ` LpΥq

¯EG,K

β,n“2
µ̂
ν,β,x1,...,xmpνq

G,K pdΥq.

(5) For β P t1, 2, 4u, pλ1pxq, λ2pxqqxPV is distributed like the ordered family of eigenvalues
in a GFF with values in 2ˆ2 real symmetric pβ “ 1q, complex Hermitian pβ “ 2q, resp.
quaternionic Hermitian pβ “ 4q matrices, with density proportional to

(6.6) exp
´

´ 1

2

ÿ

xPV
KpxqTrpMpxq2q ´ 1

2

ÿ

tx,yuPE
Cpx, yqTrppMpyq ´Mpxqq2q

¯
.

(6) Assume that β ą 0. Let φ1 and φ2 be two independent scalar GFFs distributed according

to (6.2). Lα´1
G,K be a random walk loop-soup independent from pφ1, φ2q, with still α “ β`2

2
.

Then pλ1pxq, λ2pxqqxPV is the ordered family of eigenvalues in the matrix valued field

(6.7)

¨
˝ φ1pxq

b
LxpLα´1

G,K qb
LxpLα´1

G,K q φ2pxq

˛
‚, x P V.

(7) Given another killing measure rK P R
V
`, non uniformly zero, and λ̃ “ pλ̃1, λ̃2q the field

obtained by using rK instead of K, the density of the law of λ̃ with respect to that of λ is

ˆ
detp´∆G ` rKq
detp´∆G `Kq

˙β`2

2

exp
´

´ 1

2

ÿ

xPV
p rKpxq ´Kpxqqp2pλpxqq

¯
.

Proof. (1) This follows from Proposition 3.2 and the fact that φG,Kpxq{
a
GG,Kpx, xq is dis-

tributed according to N p0, 1q, and LxpLα´ 1

2

G,K q{
a
GG,Kpx, xq according to Gamma

`
α´ 1

2
, 1

˘
.

(2) One uses (5.2). Indeed, p
?
2φG,Kpxq{

a
GG,Kpx, xq,?2ηφG,Kpyq{

a
GG,Kpy, yqq is distributed

as pφR`p1q, φR` pηqq, and p
?
2LxpLα´ 1

2

G,K q{
a
GG,Kpx, xq,?2ηLypLα´ 1

2

G,K q{
a
GG,Kpy, yqq is distributed

as pρp1q, ρpηqq. The latter can be seen using the moments, that characterize the finite-dimensional
marginals of the Bessel process ρ.

(3) This follows by expanding

´ 1?
2
φG,Kpxkq `

c
LxkpLα´ 1

2

G,K q
¯νk `

´ 1?
2
φG,Kpxkq ´

c
LxkpLα´ 1

2

G,K q
¯νk

.

(4) The GFF φG,K satisfies the BFS-Dynkin isomorphism; see Theorem 2.2 in [BFS82],
Theorems 6.1 and 6.2 in [Dyn84a], Theorem 1 in [Dyn84b]. Moreover, there is a version of BFS-

Dynkin isomorphism for the occupation field LpLα´ 1

2

G,K q obtained by applying Palm’s identity to

Poisson point processes; see Theorem 1.3 in [LJMR15] and Sections 3.4 and 4.3 in [Lup18].
Together, this implies (6.5).

(5) Recall that for all three matrix spaces considered, β`2 is the dimension. Given pMpxqqxPV
an matrix field distributed according to (6.6), M0pxq will denoted Mpxq ´ 1

2
TrpMpxqqI2, where

I2 is the 2ˆ2 identity matrix, so that TrpM0pxqq “ 0. Since the hyperplane of zero trace matrices
is orthogonal to I2 for the inner product pA,Bq ÞÑ RepTrpABqq, we get that pM0pxqqxPV and
pTrpMpxqqqxPV are independent. Moreover, p 1?

2
TrpMpxqqqxPV is distributed as the scalar GFF
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(6.2). As for pTrpMpxq2qqxPV , on one hand it is the sum of β ` 2 i.i.d. squares of scalar GFFs
(6.2) corresponding to the entries of the matrices. On the other hand,

TrpMpxq2q “ TrpM0pxq2q ` 1

2
TrpMpxqq2.

So pTrpM0pxq2qqxPV is distributed as the sum of β ` 1 i.i.d. squares of scalar GFFs (6.2). So

in particular, this is the same distributions as for p2LxpL
β`1

2

G,K qqxPV . Finally, the eigenvalues of

Mpxq are
1

2
TrpMpxqq ˘ 1?

2

a
TrpM0pxq2q.

(6) The eigenvalues of the matrix (6.7) are

φ1pxq ` φ2pxq
2

˘
b
LxpLα´1

G,K q ` pφ2pxq ´ φ1pxqq2{4.

pφ1 ` φ2q{
?
2 and pφ2 ´ φ1q{

?
2 are two independent scalar GFFs. Moreover,

LpLα´1
G,K q ` 1

4
pφ2 ´ φ1q2

has same distribution as LpLα´ 1

2

G,K q.
(7) The density of the GFF φ

G, rK with respect to φG,K is

ˆ
detp´∆G ` rKq
detp´∆G `Kq

˙ 1

2

exp
´

´ 1

2

ÿ

xPV
p rKpxq ´Kpxqqϕpxq2

¯
.

The density of LpLα´ 1

2

G, rK q with respect to LpLα´ 1

2

G,K q is

ˆ
detp´∆G ` rKq
detp´∆G `Kq

˙α´ 1

2

exp
´

´
ÿ

xPV
p rKpxq ´KpxqqLxpLα´ 1

2

G,K q
¯
,

as can be seen from the Laplace transform (6.3). �

6.3. Further questions. Here we present our questions that motivated this paper. The first
question is combinatorial. We would like to have the polynomials Pν,β,n given by Definition
4.1 under a more explicit form. The recurrence on polynomials (4.1) is closely related to the
Schwinger-Dyson equation (3.2). Its very form suggests that the polynomials Pν,β,n might be ex-
pressible as weighted sums over maps drawn on 2D compact surfaces (not necessarily connected),
where the maps associated to ν have mpνq vertices with degrees given by ν1, ν2, . . . , νmpνq, with
powers of n corresponding to the number of faces. This is indeed the case for β P t1, 2, 4u, and
this corresponds to the topological expansion of matrix integrals [BIPZ78, IZ80, MW03, Lup19].

Question 6.3. Is there a more explicit expression for the polynomials Pν,β,n? Can they be
expressed as weighted sums over the maps on 2D surfaces (topological expansion)?

The second question is whether there is a natural generalization of Gaussian beta ensembles
and β-Dyson’s Brownian motion to electrical networks. For n “ 2, such a generalization was
given in Section 6.2.

Question 6.4. We are in the setting on an electrical network G “ pV,Eq endowed with a
killing measure K, as in Section 6.2. Given n ě 3 and β ą ´ 2

n
, is there a distribution on the

fields pλpxq “ pλ1pxq, λ2pxq, . . . , λnpxqqqxPV , with λ1pxq ą λ2pxq ą ¨ ¨ ¨ ą λnpxq, satisfying the
following properties?

(1) For β P t1, 2, 4u, λ is distributed as the fields of ordered eigenvalues in a GFF with
values into n ˆ n matrices, real symmetric pβ “ 1q, complex Hermitian pβ “ 2q, resp.
quaternionic Hermitian pβ “ 4q.

(2) For β “ 0, λ is obtained by reordering n i.i.d. scalar GFFs (6.2).
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(3) As β Ñ ´ 2
n
, λ converges in law to

´ 1?
n
φG,K,

1?
n
φG,K , . . . ,

1?
n
φG,K

¯
,

where φG,K is a scalar GFF (6.2).

(4) For every x P V , λpxq{
a
GG,Kpx, xq is distributed, up to reordering, as the GβE (3.1).

(5) For every x, y P V , the couple p
?
2λpxq{

a
GG,Kpx, xq,?2ηλpyq{

a
GG,Kpy, yqq, with η

given by (6.4), is distributed as the β-Dyson’s Brownian motion (5.1) at points 1 and η.
(6) The fields p1pλq and λ´ 1

n
p1pλq are independent.

(7) The field 1?
n
p1pλq is distributed as a scalar GFF (6.2).

(8) The field 1
2

`
p2pλq ´ 1

n
p1pλq2

˘
is the α ´ 1

2
-permanental field with kernel GG,K , where

α “ 1
2
dpβ, nq, and in particular is distributed as the occupation field of the continuous-

time random walk loop-soup L
α´ 1

2

G,K .

(9) The field 1
2
p2pλq is the α-permanental field with kernel GG,K , where α “ 1

2
dpβ, nq, and

in particular is distributed as the occupation field of the continuous-time random walk
loop-soup Lα

G,K (already implied by (6)+(7)+(8)).

(10) The symmetric moments

A mpνqź

k“1

pνkpλpxkqq
EG,K

β,n

are linear combination of products
ź

1ďkďk1ďmpνq
GG,Kpxk, xk1qakk1 ,

with akk1 P N and for every k P J1,mpνqK,

2akk `
ÿ

1ďk1ďmpνq
k1‰k

akk1 “ νk,

the coefficients of the linear combination being universal polynomials in β and n, not
depending on the electrical network and its parameters; see also Question 6.3.

(11) Given rK P R
V
`, non uniformly zero, and λ̃ “ pλ̃1, λ̃2, . . . , λ̃nq the field associated to the

killing measure rK instead of K, the law of λ̃ has the following density with respect to
that of λ:

ˆ
detp´∆G ` rKq
detp´∆G `Kq

˙1

2
dpβ,nq

exp
´

´ 1

2

ÿ

xPV
p rKpxq ´Kpxqqp2pλpxqq

¯
.

(12) λ satisfies a BFS-Dynkin type isomorphism with continuous time random walks (already
implied by (10)+(11)).

If the graph G is a tree, the answer for the properties (1),(2),(4),(5),(6),(7),(8),(9),(11),(12)
is yes, at least for β ě 0. In absence of cycles, λ satisfies a Markov property, and along each
branch of the tree one has the values of a β-Dyson’s Brownian motion at different positions.
On the random walk loop-soup side, (8) and (9) is ensured by the covariance of the loop-soups
under the rewiring of graphs; see Chapter 7 in [LJ11]. Constructing λ on a tree for β P

`
´ 2

n
, 0

˘

is a matter of constructing the corresponding β-Dyson’s Brownian motion. However, if the
graph G contains cycles, constructing λ is not immediate, and we have not encountered such
a construction in the literature. One does not expect a Markov property, since already for
β P t1, 2, 4u one has to take into account the angular part of the matrices.
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Appendix: A list of moments for GβE and the corresponding formal

polynomials

xp1pλq2yβ,n “ n,

Pp1,1q “ nY11
qY12,

xp2pλqyβ,n “ β

2
n2 `

´
1 ´ β

2

¯
n “ dpβ, nq,

Pp2q “
´β
2
n2 `

´
1 ´ β

2

¯
n

¯
Y11 “ dpβ, nqY11,

xp1pλq4yβ,n “ 3n2,

Pp1,1,1,1q “ n2Y11
qY12Y33

qY34 ` 2n2Y11
qY12Y22

qY2
23

qY34,

xp2pλqp1pλq2yβ,n “ β

2
n3 `

´
1 ´ β

2

¯
n2 ` 2n,

Pp2,1,1q “
´β
2
n3 `

´
1 ´ β

2

¯
n2

¯
Y11Y22

qY23 ` 2nY2
11

qY2
12

qY23,

Pp1,2,1q “
´β
2
n3 `

´
1 ´ β

2

¯
n2 ` 2n

¯
Y11

qY12Y22
qY23,

Pp1,1,2q “
´β
2
n3 `

´
1 ´ β

2

¯
n2

¯
Y11

qY12Y33 ` 2nY11
qY12Y22

qY2
23,

xp2pλq2yβ,n “ β2

4
n4 ` 2

β

2

´
1 ´ β

2

¯
n3

`
´´

1 ´ β

2

¯2

` 2
β

2

¯
n2 ` 2

´
1 ´ β

2

¯
n

“ dpβ, nqpdpβ, nq ` 2q,

Pp2,2q “
´β2
4
n4 ` 2

β

2

´
1 ´ β

2

¯
n3 `

´
1 ´ β

2

¯2

n2
¯
Y11Y22

`
´
2
β

2
n2 ` 2

´
1 ´ β

2

¯
n

¯
Y
2
11

qY2
12,

xp3pλqp1pλqyβ,n “ 3
β

2
n2 ` 3

´
1 ´ β

2

¯
n,

Pp3,1q “
´
3
β

2
n2 ` 3

´
1 ´ β

2

¯
n

¯
Y
2
11

qY12,

Pp1,3q “
´
3
β

2
n2 ` 3

´
1 ´ β

2

¯
n

¯
Y11

qY12Y22,

xp4pλqyβ,n “ 2
β2

4
n3 ` 5

β

2

´
1 ´ β

2

¯
n2 `

´β
2

` 3
´
1 ´ β

2

¯2¯
n,

Pp4q “
´
2
β2

4
n3 ` 5

β

2

´
1 ´ β

2

¯
n2 `

´β
2

` 3
´
1 ´ β

2

¯2¯
n

¯
Y
2
11,

xp3pλq2yβ,n “ 12
β2

4
n3 ` 27

β

2

´
1 ´ β

2

¯
n2 `

´
3
β

2
` 15

´
1 ´ β

2

¯2¯
n,

Pp3,3q “ 9
´β2
4
n3 ` 2

β

2

´
1 ´ β

2

¯
n2 `

´
1 ´ β

2

¯2

n
¯
Y
2
11

qY12Y22

`3
´β2
4
n3 ` 3

β

2

´
1 ´ β

2

¯
n2 `

´β
2

` 2
´
1 ´ β

2

¯2¯
n

¯
Y
3
11

qY3
12.
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