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ISOMORPHISMS OF p-DYSON’S BROWNIAN MOTION WITH
BROWNIAN LOCAL TIME

TITUS LUPU

ABSTRACT. We show that the Brydges-Frohlich-Spencer-Dynkin and the Le Jan’s isomor-
phisms between the Gaussian free fields and the occupation times of symmetric Markov pro-
cesses generalizes to 8-Dyson’s Brownian motion. For 8 € {1,2,4} this is a consequence of the
Gaussian case, however the relation holds for general 8. We further raise the question whether
there is an analogue of S-Dyson’s Brownian motion on general electrical networks, interpolating
and extrapolating the fields of eigenvalues in matrix valued Gaussian free fields. In the case
n = 2 we give a simple construction.

1. INTRODUCTION

There is a class of results, known as isomorphism theorems, relating the squares of Gaussian
free fields (GFFs) to occupation times of symmetric Markov processes. They originate from
the works in mathematical physics [Sym69, BES82]. For a review, see [MRO6l [Szn12]. Here in
particular we will be interested in the Brydges-Frohlich-Spencer-Dynkin isomorphism [BES82,
Dyn84al [Dyn84b|] and in the Le Jan’s isomorphism [LLJ10, [LJ11]. The BFS-Dynkin isomorphism
involves Markovian paths with fixed ends. Le Jan’s isomorphism involves a Poisson point process
of Markovian loops, with an intensity parameter a = 1/2 in the case of real scalar GFFs. For
vector valued GFFs with d components, the intensity parameter is a = d/2. We show that both
Le Jan’s and BFS-Dynkin isomorphisms have a generalization to S-Dyson’s Brownian motion.

For g € {1,2,4}, a 5-Dyson’s Brownian motion is the diffusion of eigenvalues in a Brownian
motion on the space of real symmetric (8 = 1), complex Hermitian (5 = 2), respectively
quaternionic Hermitian (8 = 4) matrices. Yet, the S-Dyson’s Brownian motion is defined for
every 8 = 0. The one-dimensional marginals of S-Dyson’s Brownian motion are Gaussian beta
ensembles GSE. The generalization of Le Jan’s and BFS-Dynkin isomorphisms works for every
B = 0, and for g € {1,2,4} is follows from the Gaussian case. The intensity parameter «
appearing in the Le Jan’s type isomorphism is given by

2 =d(B,n) =n+n(n— 1)?.,

where n is the number of ”eigenvalues”. In particular, o takes not only half-integer values,
as in the Gaussian case, but a whole half-line of values. The BFS-Dynkin type isomorphism
involves polynomials defined by a recurrence with a structure similar to that of the Schwinger-
Dyson equation for GSE. These polynomials also give the symmetric moments of the S-Dyson’s
Brownian motion.

We further ask the question whether an analogue of GSE and S-Dyson’s Brownian motion
could exist on electrical networks and interpolate and extrapolate the distributions of the eigen-
values in matrix valued GFFs. Our motivation for this is that such analogues could be related to
Poisson point process of random walk loops, in particular to those of non half-integer intensity
parameter. If the underlying graph is a tree, the construction of such analogues is straightfor-
ward, by taking S-Dyson’s Brownian motions along each branch of the tree. However, if the
graph contains cycles, this is not immediate, and one does not expect a Markov property for
the obtained fields. However, in the simplest case n = 2, we provide a construction working on
any graph.

Key words and phrases. Dyson’s Brownian motion, Gaussian beta ensembles, Gaussian free field, isomorphism
theorems, local time, permanental fields, topological expansion .
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Our article is organized as follows. In Section [2] we recall the BFS-Dynkin and the Le Jan’s
isomorphisms in the particular case of 1D Brownian motion. In Section [§we recall the definition
of Gaussian beta ensembles and the corresponding Schwinger-Dyson equation. In Section 4 we
give the recurrence on polynomials that will be used for the BFS-Dynkin type isomorphism. The
Section Bl deals with S-Dyson’s Brownian motion and the corresponding isomoprhims. Section
deals with general electrical networks. We give our construction for n = 2 and ask our questions
for n = 3.

2. ISOMORPHISM THEOREMS FOR 1D BROWNIAN MOTION

Let (Bi)¢=0 be the standard Brownian motion on R. L* will denote the Brownian local times:

1 t
Lm((BS)OSsS ) = ili% %J l\BSf:v\<ed5-

p(t’ 1’ y) W 1.11 deIlO t'e t:he :hea‘t lieI Ilel on Hg’ aIld pR+ (t’ 1’ y) tlle lleat 1:61 Ilel on Hg“r W i tll COIldi tiOIl
0 1.11 0:
t 9 x? e 9 biadb] t 9 x? biadb] .

Pt*¥(.) will denote the Brownian bridge probability from z to y in time ¢, and PY JC’y( -) (for
2,y > 0) the probability measures where one conditions P»*¥(-) on that the bridge does not
hit 0. (Gr, (2,¥))z,y=0 be the Green’s function of %dd—z on R, with 0 condition in 0, and for
K >0, (Gg(x,y))z,y=0 the Green’s function of L& K on R:

2 da?
+oo
Gr.(z,y) = 2xAy= fo PR, (t,z,y)dt,
Gg(z,y) = \/%e\/ﬁ'yﬂ = LJroop(t,x,y)etht.
Let (uf{’f)%Po, resp. (117Y)zyer be the following measures on finite duration paths:
+00 +00
21) gl r=f0 PETY (pw (fwy)dt,  pg () :=L P ()p(t @, y)e " dt.

The total mass of ,uR , Tesp. ,uK , is Gr, (x,y), resp. Gk (x,y). The image of MR , resp. pu,
by time reversal is ,uR , resp. pyt

Let T, denote the ﬁrst hitting time of a level x by the Brownian motion (By)i=o. v will
denote a generic path of R. Let (4%¥(-))z<yer, resp. (@5 (+))z<yer be the following measures
on paths from z to y:

ATY(F(Y)) = Egy=y[F((Br,—t)ost<r,)l, A" (F(7)) = EBo:y[e_KT"F ((Br,—t)o<t=<m.)]-

A*Y has total mass 1 (probability measure), whereas the total mass of 7Y is

Gk (z,
For 0 < z < y < 2, the measure ,uﬂm%’f can be obtained as the image of the product measure
g T ® Y% under the concatenation of two paths. Similarly, for z < y < z € R, the measure
py is the image of p7Y ® %" under the concatenation of two paths.

Let (W(x))zer denote a two-sided Brownian motion, i.e. (W (x));>0 and (W(—x))y>0 being
two independent standard Brownian motion started from 0 (W (0) = 0). Note that here = is
rather a one-dimensional space variable then a time variable. dW (z) is a white noise on R.
Let (¢r, (7))z>0 denote the process (v2W (z))z>0. The covariance function of ¢g, is Gg, . Let
(¢ (2))zer be the stationary Ornstein-Uhlenbeck process with invariant measure A'(0, 1/v/2K).
It is a solution to the SDE

dorc(z) = V2dW (2) — V2K ¢ (z)da
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The covariance function of ¢ is Gk.

What follows is the BFS-Dynkin isomorphism (Theorem 2.2 in [BES82], Theorems 6.1 and
6.2 in [Dyn84aj, Theorem 1 in [Dyn84b]) in the particular case of a 1D Brownian motion. In
general, the BFS-Dynkin isomorphism relates the squares of Gaussian free fields to local times
of symmetric Markov processes.

Theorem 2.1 (Brydges-Frohlich-Spencer [BES82], Dynkin [Dyn84al, [Dyn84b|). Let F' be a
bounded measurable functional on C(R;), resp. on C(R). Let k = 1 and x1,22,...,29, in
(0, +0), resp. in R. Then

[H% wFE, D= Y[ B[P 2L L) ]HuR (),
(aisbit)icick 41,7
partition in pairs
of [1,2k]

resp.

[H¢K ;) ¢K/2)] Z f [ (% )2+ L(y1)+- -+ L()) ]f[ % (dy),

({az7b })1<'L<k V15 VE
partition in pairs

of [1,2k]
where the sum runs over the (2k)!/(2Fk!) partitions in pairs, v;-s are Brownian paths and L(~;)
are the corresponding occupation fields x — L*(7y;).

Remark 2.2. Since for x <y, the measure ,uR , resp. pyY, can be decomposed as ,ux’x ®[ﬂ”7y
resp. Wi ®,uK’y, Theorem [Z1] can be rewritten using only the measures of type ,qu (md st

resp. py and [y

To a wide class of symmetric Markov processes one can associate in a natural way an infinite,
o-finite measure on loops [LWO04, [LTFO7, [LL10, LJ10, LJ11, LJMRI5, [FR14]. It originated
from the works in mathematical physics [Sym65], [Sym66], [Sym69, BFS82]. Here we recall it in
the setting of a 1D Brownian motion, which has been studied in [Lupl8]. Of course, the range
on a loop will be just a segment on the line, but it will carry a non-trivial Brownian local time
process which will be of interest for us.

Given a Brownian loop 7y, T'(y) will denote its duration. The measures on (rooted) loops are

1 1 1
2.2 (1P (dy) 1= —f pw” (dry)dx, P (dy) = —f pt (dry)da.
( ) R4 ( ) T(’)/) R, R4 ) K ) T(’)/) R K )

Usually one considers unrooted loops, but this will not be important here. The 1D Brownian

loop-soups are the Poisson point processes, denoted ER , resp. L%, of intensity aulﬂgfp, resp.

aulfé‘m where a > 0 is an intensity parameter. L(Lg ), resp. L(L%), will denote the occupation

field of £%+, resp. L%
L(Lg,) = Y, L°(v),  L*(L%):= D, L*(%).

fyeﬁﬂ%Jr veLE

The following statement deals with the law of L(Lg ), resp. L(L%). See Proposition 4.6,
Property 4.11 and Corollary 5.5 in [Lupl8]. For the analogous statements in discrete space
setting, see Corollary 5, Proposition 6, Theorem 13 in [L.J10] and Corollary 1, Section 4.1,
Proposition 16, Section 4.2, Theorem 2, Section 5.1 in [LJ11] In general, one gets a-permanental
fields (see also [LIMRI5, [FR14]). For a = 1 in particular, one gets square Gaussians. We recall
that given a matrix M = (M;;)1<i j<k, its a-permanent is

k
Perm,, (M) - Z a# cycles of o H Mio(i) )
o permutation i=1
of {1,2,....,k}
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Theorem 2.3 (Le Jan [LJ10, [LJ11], Lupu [Lupl8|). For every o > 0 and x € Ry, resp.
z€R, the rv. L*(Lg ), resp. L(L%), follows the distribution Gamma(c, G, (z,2)71), resp.
Gamma(a, Gk (x,2)~1). Moreover, the process o > L*(Lg,), resp. L¥(L%) is a pure jump
Gamma subordinator with Lévy measure

e*l/GRJr (z,) efl/GK(:r,:r)
11>0fdl, resp. ll>0fdl.
Let x1,29,...,2 € Ry, resp. R. Then
k k
E[HLml(ﬁﬁ+)] = Perma (G[{g+ (mi,xj)1<i7j<k), E[HLmZ (ﬁ%)] = Perma (GK(wi,xj)lgi,jgk).
i=1 i=1

Forx >0, x — L*(Lg,) is a solution to the SDE

dL(L8,) = 2(L7(£2,)) 2dW (z) + 2adz,

with initial condition LO(E%J = 0. That is to say it is a square Bessel process of dimension
2a. For x e R x — L*(L%) is a stationary solution to the SDE

dL*(L%) = 2(L*(LE)) QdW (r) — 2V2K L*(L%) + 2adzx.
In particular, for a = %, one has the followz’ng identities in law between stochastic processes:
law ( law y 1

(23) eg) " SR, ne ') Jek

3. GAUSSIAN BETA ENSEMBLES

For references on Gaussian beta ensembles, see [DE02, [Forl5], Section 1.2.2 in [EKRIS],
and Section 4.5 in [AGZ09]. Fix n > 2. For A = (A1, A2,...,A\,) € R", D(X) will denote the
Vandermonde determinant

DW= ] =)

1<j<j’<n

For ¢ > 1, pg(A) will denote the ¢-th power sum polynomial

j=1

By convention,
po(A) = n.
A Gaussian beta ensemble GSE follows the distribution

(3.1)

6 =
ZBn‘D emam Hd/\w

where Z3 ,, is given by (Formula (17.6.7) in [Meh04] and Formula (1.2.23) in [EKR1S])

o e T(1458)
Zgn = (27 —=
B:n (2m) ]1:[1 F(l n g )
The brackets (-)g,, will denote the expectation with respect to ([B.1)). For 8 = 0 one gets n i.i.d.
N(0,1) Gaussians. For 8 equal to 1, 2, resp. 4, one gets the eigenvalue distribution of GOE,
GUE, resp. GSE random matrices [Meh04) [EKR18]. Usually the GSE are studied for 5 > 0
[DE02], but the distribution (B1)) is well defined for all 3 > —2. For 8 € (—2,0) there is an
attraction between the );-s instead of a repulsion as for 8 > 0. Moreover, as 3 — f%, A under
BI) converges in law to

N

(6 gt m6):

4
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Let d(B,n) denote

d(B,n) =n+n(n— 1)§
For 5 € {1,2,4}, d(5,n) is the dimension of the corresponding space of matrices.
Let be v = (v1,v2,...,Vn), where m > 1, and for all k € {1,2,...,m}, v, € N\{0}. We will

denote
m(v)

m(v) =m, lv| = Z V.

pu(A) will denote

m(v)
]_[ P (A

By convention, we set pg(A) = 1 and |F] = 0. Note that pg(A) # po(A). We are interested in
the expression of the moments (p, ()\))s,,. These are 0 if || is not even. For |v| even, these mo-
ments are given by a recurrence known as loop equation or Schwinger-Dyson equation (Lemma
4.13 in [LCOY|, slide 3/15 in [LCI13] and Section 4.1.1 in [EKRI18]). For the combinatorial in-
terpretation of the solutions in terms of ribbon graphs or surfaces, see [LCI13| [LC09]. See the
Appendix for the expression of some moments.

Proposition 3.1 (Schwinger-Dyson equation [LC09, [LC13, [EKRI1S]). For every 5 > —2/n and
every v as above with |v| even,

m(v)
(3'2) <pV()‘)>5,n = g Z <p(1/7‘ Jrm(v) )pi—l()\)pum(u)—l—i()\»ﬁ,n
=1

g
+<1 - 5) V() — 1)<p(w)#m(y) ()\)pym(u)_Q()\)mn
m(v)—1

+ Z Vk<p(ur)r¢k,m(y) ()‘)pvk+vm(y) -2 ()‘)>57n7
k=1

where po(A) =n. In partz’cular for q even,

(A)pn = Z@z 1(A)pg—1-i(A))gn + (1 - g) (¢ = 1)Pg-2(A)pin;

and for v with vy, = 1,

m(v)—1

B = S By NP1 (N

k=1
The recurrence [3.2) and the initial condition po(\) = n determine all the moments {(p,(\))a.n-

Proof. Note that ([3.2) determines the moments (p,()\))g, because on the left-hand side one
has a degree |v|, and on the right-hand side all the terms have a degree |v| — 2. For a proof of
B2) for 5 > 0, see Lemma 4.13 in [LCO9] and Section 4.1.1 in [EKRI1S]|. For 8 € (—2/n,0), the
proof works the same, with some care about the divergences in the density. Alternatively, on
can use the analiticity in /3 to extend to 8 € (—2,0). O

Next are some elementary properties of GSE, which follow from the form of the density (3.1]).

Proposition 3.2. The following holds.

(1) For every 8> —2/n, \} 1(A) under GBE has for distribution N'(0,1).
(2) For every 8> —2/n, pa(N\)/2 under GBE has for distribution Gamma(d(S,n)/2,1).
(3) p1(A) and A — Lpi(N) under GBE are independent.
(4) 3(P2(N)=Lp1(N)?) = p2(A—2p1(N)) under GBE has for distribution Gamma((d(3,n)—
)/2,1).

1
2
1

5



Next is an embryonic version of the BFS-Dynkin isomorphism (Theorem (2.1])) for the GSE.
One should imagine that the state space is reduced to one vertex, and a particle on it gets killed
at an exponential time.

Proposition 3.3. Let § > —2/n. The following holds.
(1) Let @ = 0. Let h : R" — R be a measurable function such that {|h(\)[)gn < +0.
Assume that h is a-homogeneous, that is to say h(s\) = s*h(X\) for every s > 0. Let

F : [0,40) — R be a bounded measurable function. Let 6 be a r.v. with distribution
Gammal((d(5,n) +a)/2,1). Then

(3.3) Ch(N)F (p2(A)/2))pn = Ch(A))gnE[F(6)]-
(2) In particular, let v be a finite family of positive integers such that |v| is even. Let
Tiy- s T2 be an ii.d.  family of exponential times of mean 1, independent of the
GBE. Then

<pl/(>\)F(p2 (A)/2)>ﬁ,n = <pu>ﬁ,nE[<F(p2()‘)/2 + T+ + 7Tu\/2)>57n]-

Proof. (1) clearly implies (2). It is enough to check (B3 for F of form F(t) = e X with
K > 0. Then

1 1 n
o MLIOILV [T

- B [ e D 1) R [,

_ (K+1) (n+n(n Hg +a)<h )>5,n7

where on the second line we used the change of variables A= (K + 1)%)\, and on the third line
the homogeneity. Further,

(K + 1)7%(n+n(n71)§+a) _ E[efKG]. O

4. A RECURRENCE ON FORMAL POLYNOMIALS

We consider a family of formal commuting polynomial variables (Ykk,\v(k k+1)k>1. We will
consider finite families of positive integers v = (11,2, ..., V() With [v] even. The order of the
vy, will matter. We want to construct a family of polynomials P, g ,, with parameters v,3 and n,
where P, 5, has for variables (Yir)i<k<m(v) and (\v(k,l k)2<k<m(v)- To simplify the notations,
we will drop the subscripts 8,n and just write P,. The polynomials P, will appear in the
expression of the symmetric moments of S-Dyson’s Brownian motion and the corresponding
BFS-Dynkin type isomorphism. We will give a recursive definition of the P,-s.

The solutions to the recurrence ([B.2), which for § € (—2/n, +00) are the moments (p,()))3 .,
will be denoted ¢(v, 8,n). By convention, ¢((0),8,n) = n and ¢(,5,n) = 1. For k > k' € N,
[k, k'] will denote the interval of integers

[k k'] = (kb +1,..., k')
For k > 1 and P a polynomial, P*~ will denote the polynomial in the variables (Yx)1<k<x and

(\7,4_1 k' )2<k'<k, Obtained from P by replacing each variable Y with &’ > k41 by the variable

Yk, and each variable Vkul w with ¥ > k + 1 by the constant 1. Note that Pl?,n(l')H = P, and
that P! is an univariate polynomial in Yi;. For Y a formal polynomial variable, degy will
denote the partial degree in Y.

Definition 4.1. The family of polynomials (P,)j| even 5 defined by the following.
(1) Pl = c(u,ﬂ,n)Yln‘/Q.



(2) If m(v) = 2, then for every k € [2,m(v)],

l//72
(4.1) aY—kku = Z T Z P((yr)h&k,,ifl,uk/flfi)
k<k’<m( 1=2

Vk’>2
+én Z v(k" Pk
2 ((VT)r;ék“Vk/_z)

E<Kk'<m(v)

Vk’>2
/8 2 k—
LD Y R
k<k'<m(v)
Vk’=2
B Vk/(ljk/ — 1) ko
+<1 - 5) 2 — 5 L), -2

k<k'<m(v)
Vit >2

g pe
+<1*§)” > Fio
k<k'<m(v)
Vk’:2

+ Z Vk‘/Vk?"P((UT)T#k/ Wit Vgt F Vg —2)
k<k'<k"<m(v)
Vit +Vn>2

k<
+n Z P(Vr)r;ek’,k"'
k<k'<k”<m(v)

Vk’:l/k”zl
If k = m(v), then the last two lines of ([@I]) are zero.
(3) If m(v) = 2, then for every k € [2,m(v)], the polynomial P*~(Yy = 0) (i.e. the part of
Pk that does not contain terms in Yy) is such that each of its monomials Q satisfies

deg\?k_lk Q= Z V.

k<r<m(v)
Proposition 4.2. Definition[{.1 uniquely defines a family of polynomials (P,)|y| even- Moreover,
the following properties hold.
(1) For every @Q monomial of P, and every k € [2,m(v)],
degy = Q+2 Z degy,, , @ = Z Vgt
k<k'<m(v) k<k/’<m(v)

and

2 Z dngk’k’ Q = |V|

1<k’'<m(v)
(2) For every k € [1,m(v)] and every permutation o of [k, m(v)],

k— _ pke
(r1gr<k—1:Vo(r) ksrsm(v) LA

Proof. The fact that the polynomials P, are well defined can be proved by induction on |v|/2.
For [v|/2 = 1, there are only two polynomials, Py and P 1y. According to the condition

(1),
Play = e(2).B.m)¥ 1 = d(B.m¥n = (502 + (12 )n)¥us
The conditions (2) and (3) do not apply for P). For P 1y, according to the condition (2),

0
Nog —~—Pay =
7



Thus, P,y contains no terms in Yg3. According to the condition (3), Payy = ZS(YH)\?lg. From
the condition (1) we further get

Py = (1, 1), 8,7)Y11Y12 = nY11Y10.
The induction step works as follows. Assume |v|/2 > 2. The right hand side of (41]) involves

%
only families of integers 7 with || = |v|—2. According to the induction hypotheses, aY—Pl]f‘_ is
kk

uniquely determined for every k € [2,m(v)]. Thus, for every k € [2,m(v)], P¥~—PF¥= (Y, = 0)
is uniquely determined. By the condition (1), P}~ is also uniquely determined. By the condition
(3), for every k € [2,m(v)],

PE (Vi = 0) = (P = (P = PE (Y = 0))TH )V ereme

Thus, all the polynomials (Pl])“_)1<k<m(u) are uniquely determined, with consistency by the

P — P* operations. Finally, P, = Pm(y)
The properties (1) and (2) again follow easily by induction on |v|/2. O

Next are the expressions for P11 1) and P . 2) that can be proved by induction.

Proposition 4.3. Let m € N\{0}. Let M = (Myp)i<kir<m be the formal symmetric matrix
with entries given by

(4.2) Mr = Y, Jor k < k', My = My, = Y H Yoo
k+1<r<k’
The following holds.

(1) Assume m is even, and let v = (1,1,...,1), where 1 appears m times. Then P,
satisfies the Wick’s rule for Gaussians:

P(1,1,...,1) =n? Z Ma,b;

({aibiD)1<ismy2
partition in pairs
of [L,m]

where the sum runs over the m!/(2% (m/2)!) partitions in pairs.
(2) Letv =(2,2,...,2), where 2 appears m times. Then

P(272’___72) = 2m Permd(ﬁm)/Q(M).

For other examples of P,, see the Appendix.
Next we observe that for g = —%, the polynomials P, give the moments of the stochastic
processes (¢r, (2))z>0 and (¢x(2))zer introduced in Section 2] which are Gaussian.

Proposition 4.4. Let n > 1. Let K > 0. Let v be a finite family of positive integers with |v|
even. Let 1 < -+ < Ty be m(v) points in (0, +00), resp. in R. Then

P2 o((Yik = 221 1chem(v)) (Yh-1k = Dacham) = 0" ‘VI/ZE[ H ]

resp.

Puﬁ:—%,n((Ykk = 1/V2K)1<k<mv); (Yio1k = e7\/ﬁ(xk7$k*1))2<k<m(u))

m(v)
= nm(V)*IV\/2E[ H (bK(xk)Vk].
k=1

That is to say, the variables Yy, are replaced by Gr, (zk, xy), resp. Gg(xk,xy), and the variables

Yeo1k by Gr, (Tk—1,2k)/Gr, (Tk—1,Tk—1), resp. Gr(xr—1,2k)/GKr(Th—1,Tk—1)-
8



Proof. First, one can check that

2 _ lv|!
__z — )=yl Pl
(4.3) c<y,ﬁ n,n) n R
This follows from Proposition ([8.2)). The key point is that
2
d(ﬂ = ——,n) =1.
n

Given v a finite family of positive integers, let k,, : [1, |v|] — [1,m(v)] be the function such
that

(4.4) kY1) = [1,1], for k' € [2,m()], k' () =[vi + - +vp_1 + Lvy + - + ).

~

Further, let (PV)‘ v| even b€ the following formal polynomials:

P, = pm)=lvl2 Z M, (a: ke ()
({ai,biDi<i<iv)/2

partition in pairs

of [1,|v[]

where the Mgy are given by ([@.2). To conclude, we need only to check that B, = P, 5 for

_2z,
all v with |v| even. From (@3] follows that the P, satisfy the condition (1) in Definition E.Il
The condition (3) is immediate since P¥ (Y, = 0) corresponds to the partitions in pairs where
each element of k, *([k, m(v)]) is paired with an element of k; *([1,k — 1]). One can further
check the recurrence (@1l), and this amounts to counting the pairs in k' ([k, m(v)]). O

5. ISOMORPHISMS FOR [3-DYSON’S BROWNIAN MOTION

5.1. f-Dyson’s Brownian motions and the occupation fields of 1D Brownian loop-
soups. For references on S-Dyson’s Brownian motion, see [Dys62} [Cha92l [RS93| [CL97, [CL0T],
Chapter 9 in [Meh04] and Section 4.3 in [AGZ09]. Let § > 0 and n > 2. The S-Dyson’s
Brownian motion is the process (A(z) = (A1(x),..., \(2)))z=0 with Aj(z) = -+ = A\ (2),
satisfying the SDE

dx
(5.1) dXj(x) = V2dW (@) + ﬁj;j N@) @)

with initial condition A(0) = 0. (dW;(x))1<j<n are independent white noises. Since we will be
interested in isomorphisms with Brownian local times, the variable x corresponds here to a one-
dimensional spatial variable rather then a time variable. For every x > 0, A()/4/Gr, (z,x) =
Mx)/+/2z, is distributed, up to a reordering of the \;(z)-s, as a GSE (@J). For 3 equal to
1,2 resp. 4, (A(x))z>0 is the diffusion of eigenvalues in a Brownian motion on the space of
real symmetric, complex Hermitian, resp. quaternionic Hermitian matrices. For 8 > 1, there
is no collision between the A;(x)-s, and for 5 € [0,1) two consecutive A;(x)-s can collide, but
there is no collision of three or more particles [CL07]. Note that for § > 0 and j € [2,n],
(Aj(xz) — Aj—1(x))/2 behaves near level 0 like a Bessel process of dimension 5 + 1 reflected at
level 0, and since 5+ 1 > 1, the complication with the principal value and the local time at zero
does not occur; see Chapter 10 in [Yor97]. In particular, each (\;(x))z>0 is a semimartingale.
For 8 =0, (A(2)/v/2)z>0 is just a reordered family of n i.i.d. standard Brownian motions.

Remark 5.1. We restrict to 8 = 0 because the case S < 0 has not been considered in the

literature. The problem is the extension of the process after a collision of A;j(x)-s. The collision

2(n—3)

n(n—1)’

Howewver, we believe that the B-Dyson’s Brownian motion can be defined for all 3 > —%. This
9
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is indeed the case if n = 2. One can use the reflected Bessel processes for that. Let (p(z))z=0
be the Bessel process of dimension 8+ 1, reflected at level 0, satisfying away from 0 the SDE

B
2p(x)
with p(0) = 0. The reflected version is precisely defined for f > —1 = _72; see Section XI.1 in

[IRY99] and Section 3 in [Lawl9]. Let (W(x))xgo be a standard Brownian motion started from
0, independent from (W (x)).=o0 Then, for n = 2 one can construct the [3-Dyson’s Brownian
motion as

(5.2) M(@) =W@) +p),  Aa@) = W(z)—p(x).

Next are some simple properties of the 8-Dyson’s Brownian motion.

dp(x) = dW (z) + dx,

Proposition 5.2. The following holds.
(1) The process (ﬁpl()\(x)))ggo has same law as PR, .

(2) The process (3p2(A\(x)))z=0 is a square Bessel process of dimension d(j3,n) started from
0.
(3) The processes (p1(A(2)))z=0 and (A(z) — %pl()\(x)))gpo are independent.

(4) The process (3(p2(A(z)) — %pl()\(x))2))$>0 is a square Bessel process of dimension
d(B,n) — 1 started from 0.

Proof. With 1t6’s formula, we get

dpi(\(z)) = V2 Z dW;(

"N () — Lo (M(x
63 di(pO@) - 2p@)2) =2y 2D &gl“( D v (@) + (d(8,n) — 1)da,
j=1

where the points z € Ry for which A;(z) = X\j_;(z) for some j € [2,n] can be neglected. This
gives (1), (2) and (4) since the processes

(@)=Y Lﬂv))de(%), W) =0,

<.
—_
=
V)
=
8
~—

and

n 1 )\ —_
- POy (o) o
= \/m — Lpi(A(@))?
are both standard Brownian motions. Agaln, one can neglect the points x € R where py(A(x))—
1p1(A(z))? = 0, which only occur for n = 2.
For (3), we have that

A(X(@) — T (A(@)) = Vad(Wy(a) — Lo (W ()

where



The Brownian motion p; (W) = %pl()\) is independent from the family of Brownian motions
(Wj — %pl(W))lgjgn' Further, the measurability of ()\j — %pl()\))lgjgn with respect to (Wj —
%pl(W))l <j<n follows from the pathwise uniqueness of the solution to (5.II); see Theorem 3.1
in [CL97]. O

By combining Proposition 52l with Theorem 23] we get a first relation between the S-Dyson’s
Brownian motion and 1D Brownian local time. Compare it with Le Jan’s isomorphism (2Z.3)).

Corollary 5.3. The process (%pg()\(az)))m>o has same law as the occupation field (L*(Lg, ))z>0
of a 1D Brownian loop-soup £a+, with the correspondence

(5.4) 20 = d(3,n) = n + n(n — 1)

1 ~1
Further, let £§+2 and th be two independent 1D Brownian loop-soups, a still given by (5.4]).
Then, one has the following identity in law between pairs of processes:

(5 (@) = o1 OA@P), 5mO@?) " (17,17 (LR, Do

5.2. Symmetric moments of 5-Dyson’s Brownian motion. We will denote by <>ﬂ§; the
expectation with respect the S-Dyson’s Brownian motion (5.1).

Proposition 5.4. Let v be a finite family of positive integers, with |v| even. Let P, = P, 5,
be the polynomial given by Definition[4.1 Let x1 < T3 < -+ < Tyy(y) € Ry. Then,

m(v R, -
< 11 Puk()\($k))>ﬁ = P,((Yrr = 278)1<h<m@), Ye-1& = Dock<m))-
k=1 4

We start by some lemmas.

Lemma 5.5. Let q = 3. Then

dpy(\(z)) = q\/iiAj( LW (@) + qsz 1A (@))pg—1-i(N(z))dx

2 ngpy s (@) + (1 - §)q<q — pga(A)dz.

Proof. By It6’s formula,

dpy(A(z)) = qv2 Z Aj(2)7 AW () + g(q — 1)pg—2(A(@))dz
Aj(@)tt = Ayt
- 5q1<j;/<n N ) de.
But
Aj(@) Tt = Aje (@)t 2)T 2T =
1<j;’<n A (@) - Ay (z) 1<J<ZJ'<"7Z )\
q—2
(n— %)pq_zww b3 D pa(A@)pe1(A@). O
1=2

Lemma 5.6. Let q,q' > 1 with ¢+ ¢ > 2. Then

dpg(A(2)), Py (A(2))) = 244 Pg+q—2(A(z))dz.
Moreover,

dlp1(A(2)), p1(A(x))) = 2ndz.



Proof. This is a straightforward computation. O
Lemma 5.7. Let v be a finite family of positive integers and let ¢ = 0. Then the process

(5.5) j PO S A (), ()
0 i

s a martingale.

Proof. (5.5) is a local martingale. It actually has a locally L' bounded quadratic variation:

T R, T
([ PO = NP2 | ()1 < 20
So it is a true martingale. O

Proof of Proposition [5.7]. The proof is done by induction on |v|/2.

The case |v|/2 = 1 corresponds to v = (1,1) or v = (2). These are treated by Proposition [1.3]
and Proposition [(.2] and taking into account that the square Bessel processes are permanental
fields.

Now consider the induction step. Assume |v|/2 > 2. Let 11 < 22 < -+ < @y,(,) € Ry For
ke [1,m(v)], fx(x) will be the function

m(v)

< 1_[ pl/k/ (zrr) H puk/ >R+ .

k=1
We have that
(5.6) fi(@1) = c(v, B,n)(221)"12 = Pr=(Y1, = 2a1),

where for the second equality we applied the condition (1) in Definition 1]l If m(v) = 1, there is
nothing more to check. In the case m(v) > 2, we need only to check that for every k € [2, m(v)]
and every x > Tp_1,

d 0 _he -
(57) @fk(l’) = a—xpf ((Yk’k’ = ka')lgk’sk—laYkk = 21’, (Yk’—lk’ = 1)2<k’<k>

= (%P’““)((Yk/k/ = 201 ) 1w <it, Yik = 22, Yi_1w = Dacw<i)-
Indeed, given (5.6)), by applying (5.7) to & = 2, we further get
folws) = P2~ (Y11 = 221, Yoo = 229, Y12 = 1),
and by successively applying (5.7) to k = 3,...,k = m(v), we at the end get
Fin) @) = PO (Y = 200 ) 1<w<mwys V1w = Dockcm));

which is exactly what we want. To show (5.7)), we proceed as follows. Let (F,)z>0 be the
filtration of the Brownian motions ((Wj(x))1<j<n)z>o. Then, for x > x;_1,

< H puk/ xk’ < H puk/ zk 1> >H§;a

k=1
where <.‘f$k—1>§;z denotes the conditional expectation. To express

m(v)
(T p @7
k' =k ’

we apply It6’s formula to
m(v) R,

m(v)
H pl/k/ < H pl/k/ ,Ik 1 > .
K=k Bom

12



The local martingale part is, according to Lemma [B.7] a true martingale, and thus gives a 0
conditional expectation. The bounded variation part is a linear combination of terms of form
po(A(x))dz, with

m(v)

71 = (> w) -2,

k'=k
the exact expressions being given by Lemma and Lemma By comparing these expres-
sions with the recurrence (4.1]), and using the induction hypothesis at the step |v|/2 — 1, we get

). O

Note that in the proof above we did not use the condition (3) in Definition 1l Tt will be
needed only later.

5.3. BFS-Dynkin isomorphism for §-Dyson’s Brownian motion. We will denote by T
a generic finite family of continuous paths on R, T = (v1,...,7y), and J(T) will denote the
size J of the family. We will consider finite Brownian measures on Y where J(T) is not fixed
but may take several values under the measure. Given z € R, L*(T) will denote the sum of

Brownian local times in z:
J(T)

Z L ().

L(Y) will denote the occupation field x — Lx(T).
Given v a finite family of positive integers with |v| even and 0 < 71 < xa < -++ < Ty,

uﬂé’fl""’ ™ (dY) (also depending on § and n) will be the measure on finite families of continuous

paths obtained by substituting in the polynomial P, = V?an for each variable Yy the measure

uf{’“ @k and for each variable Yy_1 ), the measure i, ko1
VyT1yeeey

the functional L(Y) under pp,

; see Section 2l Since we will deal with

“m) (@), the order of the Brownian measures in a product
will not matter. For instance, for v=(2,1,1) (see Appendix),

/8 /8 N ~ ~
Py = (§n3 + (1 - §>n2>Y11Y22Y23 +2nY2,Y2,Y o3,
and
(27171)733 yL2,T3,T /8 3 /8 , , - ,
. 1,22,23,04 (—n+(1—§> )Iu§1+m® mzmz® Z2,T3
+2n’u$17$1 ®thml ®Ia§1+,mz ®Ia§1+,m ®/2]§2+’x3

Next is a version of BFS-Dynkin isomorphism (Theorem (2.1])) for S-Dyson’s Brownian mo-
tion.

Proposition 5.8. Let v be a finite family of positive integers, with |v| even and let 0 < x1 <
Ty < o0 < Tyyy). Let Fbe a bounded measurable functional on C(Ry.). Then

m(v)
(5.8) <1_[pyk()\(xk))F(; J<F Zpa(X +L(T))> e (),
k=1

Remark 5.9. In the limiting case when x = xi_1 for some k € [2,m(v)], \v(k,lk i P, has to
be replaced by the constant 1 instead of a measure on Brownian paths.

Remark 5.10. For § € {0,1,2,4}, (5.8]) reduces to the Gaussian case of Theorem (2.1]).

We start by some intermediate lemmas. Recall that (F,),>¢ denotes the filtration of the
Brownian motions ((W;(z))i<j<n)z=0 in (BI). x(z) will be a continuous non-negative function
with compact support in (0, 400). u, will denote the unique solution to

1 d?
——U = XU

2 dx
13



which is positive non-increasing on R, with u,(0) = 1. See Section 2.1 in [Lupl8] for details.
Then

Uy (+00) = xl_lﬁrloouxi( z) > 0.

Lemma 5.11. Let Dy (+00) be the positive r.v.

CliyBm 1
(5.9) Dy () = g (o) H P exp (= 3 |

400

p2(A(y))x(y)dy) :
Then <Dx(—|—oo)>]§;1 = 1. Moreover,

(5.10) Dy(x) 1= (Dy(+0)|Fo)sl,

= gy (&) 310 e - % fo ) p2<A<y>>x<y>dy) exp (12 (A2)

Let

M,y (z) = i (y)dW;(y).

\/7 uxl
Then (My(x))z=0 is a martingale with respect the ﬁltmtion (Fz)a=0 and for all x =0,
1
D(@) = exp (M (@) = 5(My, M) () )

Proof. (5.9)) and (5.10) follow from the properties of square Bessel processes. See Theorem (1.7),
Section XI.1 in [RY99]. (M, (z))z=0 is obviously a (true) martingale, as can be seen with the
quadratic variation. Further,

u (x ()2 u (x
() 2 T) = M)+ g N LA 2+ L) 2
and

1 1 ul (@)
Ay My M) = g2\ 2 e
Thus 1
d</\/lx(x) - §<MX,MX>(35)) — dlog(Dy(x)). 0

Lemma 5.12. Let be (A(z) = (A1(2), ..., A (2)))am0 with Ay (z) = --- = A\, (x), satisfying the
SDFE

(5.11) \j(z) = V2dW;(x) + /(x) dx+52

uxl(x) Iz A A (@)

with initial condition \(0) = 0. PFurther consider a change of measure with density Dy (+o0)
B9) on the filtered probability space with filtration (F;)z=0. Then X after the change of measure
and X\ before the change of measure have same law.

Proof. The existence and uniqueness of strong solutions to (5.I11)) is given by Theorem 3.1 in
[CLI7]. The rest is a consequence of Girsanov’s theorem; see Theorems (1.7) and (1.12), Section
VIIIL1, in [RY99]. Indeed,
1 u l(m)
dWj(x), My (x)) = X \j(x)d.
’ * 2 Uy (z) "

S\

Thus, after the change of measure, the

163)

W \/— uxl

for j € [1,n] are n i.i.d. standard Brownian motions. O
14



Let 1, denote the following diffeomorphism of R
O
X 0 Ux| (y)?

Yy 1 will denote the inverse diffeomorphism.

Lemma 5.13. If \ is a solution to the SDE (5.11), then the process

1 3 (=1
(m)\(%( (x)))

=0

satisfies the SDE (B.1).

1 -
Proof. The process (m)\(x)>x>o satisfies
I \/" 1 dzx
A5 hi(@) = +8 3
Uy () uxl( iz uxl (@ A (@) =y () 71N () Uy (2)
By further performing the change of variable given by 1, one gets (5.1)). O
In the sequel (Gr, y(2,¥))zy=0 will denote the Green’s function of 3 2d L —x on Ry with
condition 0 in 0. Then for 0 < x < ¥,
(5.12) Gry x(@,y) = 2uy) (2)Yx (2t ().
Indeed,
1 07
5 37 (2t @)y (1)) = x(0) (2t () (s 1)),
1 02 10 , Uy} (Y)
5@(2%@( )y (@) (y )) = §%<2Ux¢($)¢x($)uxi(y) +2m>

and
%(a% amy a_ay‘yzx) <2uxi($)7/)x($)uxi(y)) =1L

Lemma 5.14. Let (\(z))y>0 be the solution to (GII) with \(0) = 0. Let v be a finite family
of positive integers, with |v| even. Let 11 < T2 < -+ < Tyy() € Ry. Then,

Y

m(v)

< 1_[ Pu, (M) > = Py((Yik = Gry (@, 1)) 1 <hcm(e)s Vho1k = Ul (@) /1y (T5-1))2ham())-

Proof. From Lemma [5.13] and Proposition [5.4] it follows that

m(v)
< H pwc(j‘(xk > < H Uy (k) k) o (Yir = 2¢x(xk))1<k<m(u) (Yk—lk = 1)2<k<m(u))-
k=1

Further, let @) be a monomial of P,. One has to check that

m(v)

( H Uy (k) k) (Yir = 205 (@) 1<hem)s Ve—1x = Dochemn))

= Q((Yir = Gry oy (@ 28)) 1<hcm(e)s Yim1k = ) (1) /1y (T1—1) Ja<hcmv))-

This follows from (5.12]) and the point (1) in Proposition O
15



Proof of Proposition [5.8. Tt is enough to show (B.8) for functionals F' of form

F((U@)is0) = e (= [ ta)x(o)iz),

Ry

where x is a continuous non-negative function with compact support in (0, +0). For such a Yy,

m(v) .
< IH Py, (A(zk)) exp ( - % jRJr pQ(A(x))X(x)dx) >ﬁ’n =

O R

<exp ( - % jR+ pQ(A(x))X(x)dx) ﬁ,n< IH pyk()\(xk))>ﬁ,n’

where A is given by (5.I1)), with A(0) = 0. The symmetric moments of A are given by Lemma
B.14l To conclude, we use that

e (= ] v ugrn = Gante o),

and for 0 < z < y,

o z Ndz ) % _ GR+7X(x’y) _ qu(y)
L exp fRf (X(2)) i) = ey =

see Section 3.2 in [Lupl§]. O

5.4. The stationary case. In this section we consider the stationary g-Dyson’s Brownian
motion on the whole line and state the analogues of Propositions (.2 (5.4l and (.8l for it. The
proofs are omitted, as they are similar to the previous ones. As previously, n > 2 and g > 0.
Let K > 0. We consider the process the process (A(x) = (A (2),..., A ()))zer with A\i(z) >
-+ = Ap(z), satisfying the SDE

(5.13) d\j(x) = V2dWj(x) — V2K \j(z) + BV2K ) Adfx,\(x)
J

= hie)
the dW;, 1 < j < n being n ii.d. white noises on R, and A being stationary, with (2K)i)\(az)
being distributed according to ([B.I) (up to reordering of the \;(z)).

Proposition 5.15. The following holds.
(1) The process (ﬁpl()\(uv)))we]R has same law as ¢ .

(2) Consider a 1D Brownian loop-soup LS-, with  given by (5.4). The process (%pg()\(x)))m]g
has same law as the occupation field (L*(L%))zeR-
(3) The processes (p1(A(z)))zer and (A(z) — %pl()\(aﬂ)))weR are independent.
1

_1 ~1
(4) Let E?( > and L} be two independent 1D Brownian loop-soups, o given by ([&.4)). Then,
one has the following identity in law between pairs of processes:

(5 (@)~ 2p A@)), pom (M@ (175, 1 (B e

<>§ ,, Will denote the expectation with respect the stationary S-Dyson’s Brownian motion.

Given v a finite family of positive integers with |v| even and 27 < x9 < -+ < Tme) € R,

,u;fl""’mm(”) (dY) (also depending on 8 and n) will be the measure on finite families of continuous

paths obtained by substituting in the polynomial P, = P, g, for each variable Yy the measure

Tk, Tk . 7 L Tp—1,Tk
pye*, and for each variable Yj;_q the measure jiy’ .

16



Proposition 5.16. Let v a finite family of positive integers with |v| even. Let 11 < 9 < -+ <
Tm) € R. Then,

m(v

) K -
< 1_[ puk(A(ﬂJk))>B = P,(Yee = 1/V2K)1<p<m)s Ye-1k = e_m(xk_xk_l))stSm(u))'
k=1 n

Further, let F' be a bounded measurable functional on C(R). For r1 <xy < -+ <xp € R,
m(v)
1 K — 1 K V,l'l,...7$m(y)
{ g pyk<A<xk>>F(§p2<A>)>Bm - L (F(5p00 + L(T)))BmuK (dY).

6. THE CASE OF GENERAL ELECTRICAL NETWORKS: A CONSTRUCTION FOR 1 = 2 AND
FURTHER QUESTIONS

6.1. Formal polynomials for n = 2. In this section n = 2, and ( is arbitrary, considered as
a formal parameter. Note that d(8,n = 2) = 8+ 2. In Section [l we introduced the formal
commuting polynomial variables (Yxx)r>1. Here we further consider the commuting variables
(Yrr)1<k<k, and by convention set Yy = Yy for K < k. Given v = (0q,...,0,) with
U € N (value 0 allowed), PB; 3 will be the following multivariate polynomial in the variables
(Yer ) 1<k<h <m!

Frp 1= Permo i (Y p() )1<igeot+im);

where f is a map f: [1,71 + - + U] — [1,m], such that for every k € [1,m], |f~1(k)| = 7.
It is clear that 9; g does not depend on the particular choice of f. In case 74 = --- = i, = 0,
by convention we set By g = 1. Given v a finite family of positive integers with |v| even, let
k, : [1,|v|]] — [1,m(v)] be the map given by (@4]). Let Z, be the following set of subsets of

[, [v1]:
T, :={I < [L,|v[]]|Vk € [1,m()], |k; ' (k)\]] is even },
where | - | denotes the cardinal. Note that necessarily, for every I € Z,,, the cardinal |I| is even.

Let ﬁyﬁ be the following multivariate polynomial in the variables (Yir)i<k<i/<m(v):

|11/2

P oo m(v)—|I/2
P p:= Z 2 ( Z H qu(ai)ku(bi))‘43(%|k;1(k)\1|)lgksm(y),5-
IeT, ({aibiD1<i<iryy2 =1
partition in pairs
of I

By construction, for every ) monomial of ﬁyﬁ and every k € [1,m(v)],

(6.1) 2degy,, Q + Z degy, , @ = V.
1<k'<m(v)
k' #k
Proposition 6.1. Let v be finite family of positive integers with |v| even. P, g,—2 is obtained
from P, g by replacing each variable Yy with 1 <k < k' <m(v) by Yir [ [p1<rap Yro1r:

Pogn=s = Pos((Yiw =Y [ Yr1r)icpcramp)-

k+1<r<k’

Proof. Let be
Pog:=Pop((Yow =Yee [ Yeo1r)icpcpame):

k+1<r<k’

We want to show the equality 13,,, 3 = P, g n—2. Since a direct combinatorial proof would be a bit
lengthy, we proceed differently. Let 8 = 0 and let (A(z) = (A1(x), A2(2)))z>0 be the S-Dyson’s
17



Brownian motion (&) in the case n = 2. We use its construction through (5.2)). We claim that
for x1,xa, ..., Tp) € Ry,

m(v)

+ ~
< 1_[ Puy (A >B,n:2 =P, s((Yew = Gr, (xkfhxk))lgkgk/gm(y))-

Indeed, in the expansion of

~

(W) + p(an) " + (Wiaw) = plan)) "

only enter the even powers of p(zy), which is how Z,, appears. Then one uses that the square
Bessel process (p(x))zx0 is a (8+1)/2-permanental field with kernel (Gr, (z,9))zyer, . Because
of the particular form of Ggr, , we have that for z1 < xg < -+ < Zp,) € Ry,

m(v)

R, N -
< 1_[ Do (A >/3 = Py a((Yek = 22%)1<hemv) Ye-1k = Dockam))-

By combining with Proposition [5.4], we get that the following multivariate polynomials in the
variables (Yik)i<k<m(v) are equal for 8 = 0:

Pos((Yi1k = Docremw) = Prpn—2(Yic1k = Dackem))-

Since the coefficients of both are polynomials in 3, the equality above holds for general 5. To
conclude the equality B, 8 = P, 3n=2, we have to deal with the variables (Yk 1 k)2<k<m(y) For

this we use that both P, g,—2 and P,,,g satisfy the point (1) of Proposition [4 For Pyﬁ this
follows from (G.1). O

6.2. A construction on discrete electrical networks for n = 2. Let G = (V,E) be an
undirected connected graph, with V finite. We do not allow multiple edges or self-loops. The
edges {z,y} € E are endowed with conductances C(z,y) = C(y,z) > 0. There is also a not
uniformly zero killing measure (K (z))zey, with K(z) = 0. We see G as an electrical network.
Let Ag denote the discrete Laplacian

(Agf)(@) = > Cla,y)(fy) — f(=)).

y~z

Let (Gg,k(2,y))xzyev be the massive Green’s function Gg x = (—Ag + K)~!. The (massive)

real scalar Gaussian free field (GFF) is the centered random Gaussian field on V' with covariance
Gg Kk, or equivalently with density

(62) o (g D K@@ -5 Y Cuel) - e@)?).

l
((27T)|V‘ det G)2 zeV {m,y}eE

Let X; be the continuous time Markov jump process to nearest neighbors with jump rates
given by the conductances. X; is also killed by K. Let ¢ € (0,+00] be the first time X; gets
killed by K. Let pg i (t,x,y) be the transition probabilities of (X;)o<t<¢c. Then pg k(t,z,y) =

pg.i(t,y, ) and

+00

Gg (v, y) = fo pg.xi (T, z,y)dt.

Let ngl’(y be the bridge probability measure from x to y, where one conditions by ¢ < (. For
z,y €V, let ug? be the following measure on paths:

+00 .
1g'g () = L Pg" (Vpg.x (t, 2, y)dt.
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It is the analogue of (ZI)). The total mass of u;? is Gg i (x,y), and the image of ;¥ by time
reversal is ,ué’m. Similarly, one defines the measure on (rooted) loops by

ng R (dy Z ",
a:EV
where T'(y) denotes the duration of the loop 7. It is the analogue of (2.2)). ulg():}? has an infinite
total mass because it puts an infinite mass on trivial ”loops” that stay in one vertex. For a > 0,
one considers Poisson point processes L£g ;- of intensity a,uhmp These are (continuous time)
random walk loop-soups. For details, see [LTFO? LL10, [LJT0L LJII].

For a continuous time path v on G of duration T'(y) and = € V, we denote

N T(v)
L (’y) = J; 1,y(5)=$d8.

Further,

L) = ) 1),
'\/EE&K
1
One has equality in law between (L*(L§ ))zev and (266, (7)?)zev, where ¢g k is the GFF
distributed according to (6.2)) [LJ10, LJ11]. This is the analogue of ([2.3]). For general o > 0, the
occupation field (L*(L§ ))zev the a-permanental field with kernel Gg, - [LJ10, LJ11L LJMRI5].
In this sense it is analogous to squared Bessel processes. If (x(z))zevy € RY is such that
—Ag + K — x is positive definite, then

det(—Ag + K) @
6.3 B[ exp ( L°(£5 ) | = .
Now we proceed with our construction. Fix g8 > —1. Let a = %d(ﬁ,n =2) = % > %

_1
Let ¢g k be a GFF distributed according to (6.2]), and Eg K an independent random walk
loop-soup. For x € V' we set

M@:%WMHVL%;) mm:%wmwmﬁéx

and A := (A1(z), A2(2))zev- <>gf;2 will denote the expectation with respect to A\. As in Section
B3 T = (71,---,7s¢r)) will denote a generic family of continuous time paths, this time on the
graph G. For x € V|

J ()

i=1
and L(Y) will denote the occupation field of T, z — L*(Y). Given v a finite family of positive
integers with |v| even, and 1,22, Ty € V), ﬂg’ifl"”’xm(") will denote the measure on

families of |v|/2 paths on G obtained by substituting in the polynomial ]3,,75 for each variable

Yiw, 1 <k <k <m(v), the measure ,ugk’ *. The order of the paths will not matter.

Proposition 6.2. The followmg holds.

(1) For everyzxz eV, )/ G ik (z,x), X\o(2)/+/Gg K (z,)) is distributed, up to reorder-

ing, according to (B:I:l) form = 2.
(2) Let x,ye V. Let

_ Gox(z,2)Gg.k(y,y)
Ggx(7,y)?

Then the couple (v2A(z)/+/Gg .k (z,2),v/20\Y)/r/Gg.Kx (y,y)) is distributed like the j3-

Dyson’s Brownian motion (B.1) at points 1 cmd n, forn = 2.
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(3) Let v be finite family of positive integers with |v| even and x1,%9, ..., Ty € V. Then

m(v)

< 1_[ Doy, (A(w) >5 = Pys((Yiw = Gg.k(Th, Tht)) 1<k <mv))-

(4) (BFS-Dynkin’s isomorphism) Moreover, given F a measurable bounded function on RV,

m(v)
65) (I1 p,,k()\(xk))F<%p2 m ; f <F —pa(A +L(T))>Zf=2 e ()
k=1 )

(5) For B e {1,2,4}, (M (z), Aa(z))zev is distributed like the ordered family of eigenvalues
in a GFF with values in 2 x 2 real symmetric (§ = 1), complex Hermitian (§ = 2), resp.
quaternionic Hermitian (8 = 4) matrices, with density proportional to

66)  en(— 3 N K@TM@) 5 Y Cly) T(ME) - M@)?).
eV {z,y}eE

(6) Assume that B > 0. Let ¢1 and ¢2 be two independent scalar GFF's distributed according
to ([62)). L'g_Kl be a random walk loop-soup independent from (p1, P2), with still « = %
Then (A1(x), A2(x))zev is the ordered family of eigenvalues in the matriz valued field

z(ra—1
(6.7) #1(2) LEG 1) , zeV
L*(LY) pa(z)

(7) Given another killing measure K e RK, non uniformly zero, and A = (5\1, 5\2) the field
obtained by using K instead of K, the density of the law of X with respect to that of X is

~ o BE2
(%) exp ( - %m;(%(w) - K(@)p(A\@))-

Proof. (1) This follows from Proposition and the fact that ¢g i (z)/r/Gg .k (2, ) is dis-
tributed according to AV (0,1), and L* Eg;(% //Gg, K (z,z) according to Gamma (o — 3,1).

(2) One uses ([0.2)). Indeed, \/_tbgK (2)/7/ G,k (%, 2), 200,k (y)/\/Gg.k (y,y)) is distributed
as (¢r, (1), ér, (n)), and (vV2L*(L a__ )Gk (x,2),v/2nLY (L a__ 2)/\/Ga i (y,y)) is distributed

as (p(1), p(n)). The latter can be seen using the moments, that Characterlze the finite-dimensional
marginals of the Bessel process p.
(3) This follows by expanding

(F5domtan) + A/ (25:)) " + (5dom(an) = T (5)) ™

(4) The GFF ¢g i satisfies the BFS-Dynkin isomorphism; see Theorem 2.2 in [BES82],
Theorems 6.1 and 6.2 in [Dyn84a], Theorem 1 in [Dyn84b] Moreover, there is a version of BF'S-

Dynkin isomorphism for the occupation field L(Eg % 2) obtained by applying Palm’s identity to
Poisson point processes; see Theorem 1.3 in [LJMRI15] and Sections 3.4 and 4.3 in [Lupl§].
Together, this implies ([6.0)).

(5) Recall that for all three matrix spaces considered, f+2 is the dimension. Given (M (x))zev
an matrix field distributed according to (6.8)), Mo(z) will denoted M (z) — 3 Tr(M (2))I,, where
I, is the 2 x 2 identity matrix, so that Tr(My(z)) = 0. Since the hyperplane of zero trace matrices
is orthogonal to Iy for the inner product (A4, B) — Re(Tr(AB)), we get that (Mo(z))zey and
(Tr(M(x)))zey are independent. Moreover, (% Tr(M(zx)))zey is distributed as the scalar GFF
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@2). As for (Tr(M(z)?))zev, on one hand it is the sum of 3 + 2 i.i.d. squares of scalar GFFs
(62) corresponding to the entries of the matrices. On the other hand,

Te(M (2)2) = Tr(My(x)?) + %Tr(M(a:))z.

So (Tr(My(x)?))sey is distributed as the sum of 8 + 1 i.i.d. squares of scalar GFFs (62). So

B+1
in particular, this is the same distributions as for (2L%(Lg% ))zev. Finally, the eigenvalues of

M(x) are ) )
5 Tr(M(z)) £ —=+/Tr(Mp(x)?).

V2

(6) The eigenvalues of the matrix (6.7) are

AD > 5D .\ [(2g30) + (@ala) — or(a) /.

(1 + ¢2)/v/2 and (¢p2 — ¢1)/+/2 are two independent scalar GFFs. Moreover,

L(EG) + 362 — 1)

_1
has same distribution as L(Eg )
(7) The density of the GFF ¢g i with respect to ¢g r is

1 1
The density of L(Eg 1”(2) with respect to L(E;KQ) is

)

~ 1
det(—Ag + K) @72 ~ a_l
_— — K _ K Lx 2
as can be seen from the Laplace transform (6.3)). 0

6.3. Further questions. Here we present our questions that motivated this paper. The first
question is combinatorial. We would like to have the polynomials P, g, given by Definition
[4.1] under a more explicit form. The recurrence on polynomials (4.1)) is closely related to the
Schwinger-Dyson equation ([B.2). Its very form suggests that the polynomials P, 5 ,, might be ex-
pressible as weighted sums over maps drawn on 2D compact surfaces (not necessarily connected),
where the maps associated to v have m(v) vertices with degrees given by vy, s, . .. s Vim(v), With
powers of n corresponding to the number of faces. This is indeed the case for § € {1,2,4}, and
this corresponds to the topological expansion of matrix integrals [BIPZ78], 1280, MW03| Lup19].

Question 6.3. Is there a more explicit expression for the polynomials P, 3, ¢ Can they be
expressed as weighted sums over the maps on 2D surfaces (topological expansion)?

The second question is whether there is a natural generalization of Gaussian beta ensembles
and B-Dyson’s Brownian motion to electrical networks. For n = 2, such a generalization was
given in Section

Question 6.4. We are in the setting on an electrical network G = (V, E) endowed with a
killing measure K, as in Section[6.2. Givenn = 3 and 8 > f%, is there a distribution on the
fields (A(z) = (M(z), Aa(x), ..., A\ () eV, with Ad1(x) > Aa(x) > -+ > N\ (2), satisfying the
following properties?
(1) For p € {1,2,4}, X\ is distributed as the fields of ordered eigenvalues in a GFF with
values into n x n matrices, real symmetric (8 = 1), complex Hermitian (8 = 2), resp.
quaternionic Hermitian (8 = 4).

(2) For =0, X\ is obtained by reordering n i.i.d. scalar GFFs (6.2]).
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(3)

(4)
(5)

(6)
(7)

(8)

(9)

(10)

(11)

(12)

As 8 — f%, A converges in law to

1 1 1
<%¢Q7K7 %(ﬁgJ(a ceey %(ﬁgj()a
where ¢g i is a scalar GFF (6.2).

For every x € V, XN(z)/+/Gg, Kk (z,x) is distributed, up to reordering, as the GﬁE BI1).
For every z,y € V, the couple (v2X(z)/A/Gg.x(z,2),v20\(y)/r/Gg.x (y,y)), with

given by (64), is distributed as the 3-Dyson’s Brownian motion (BI) at points 1 and 1.
The fields p1(X\) and A — Lpi(\) are independent.
The field fpl()\) is distributed as a scalar GFF (6.2]).

The field % (p2(A) — 2p1(A)?) is the a — §-permanental field with kernel Gg i, where

a = %d(ﬁ,n), and in particular is distributed as the occupation field of the continuous-
_1
time random walk loop-soup EZKQ

The field %pg()\) is the a-permanental field with kernel Gg i, where o = %d(ﬂ,n), and
in particular is distributed as the occupation field of the continuous-time random walk
loop-soup LG y (already implied by (6)+(7)+(8)).

The symmetric moments

m(v) G.K
(TT P
k=1 pim
are linear combination of products

H GQ,K(xhxk’)akk’?

1<k<k’<m(v)

with agry € N and for every k € [1,m(v)],

2akk + Z Ak = Uk,
1<K’ <m(v)
k' #k
the coefficients of the linear combination being universal polynomials in B and n, not
dependmg on the electrical network and its parameters; see also Question [6.3.
Given K € RK, non uniformly zero, and A= ()\1,)\2, e A ) the field associated to the

killing measure K instead of K, the law of X has the following density with respect to
that of A:

et(— )\ 24B:m) N
(%) exp ( - % x;(f((w) - K(w))pa(k(w)))-

A satisfies a BFS-Dynkin type isomorphism with continuous time random walks (already
implied by (10)+(11)).

If the graph G is a tree, the answer for the properties (1),(2),(4),(5),(6),(7),(8),(9),(11),(12)

is yes, at least for § = 0. In absence of cycles, A satisfies a Markov property, and along each
branch of the tree one has the values of a 5-Dyson’s Brownian motion at different positions.
On the random walk loop-soup side, (8) and (9) is ensured by the covariance of the loop-soups

under the rewiring of graphs; see Chapter 7 in [LJ11]. Constructing A on a tree for 5 € (— %, O)

is a matter of constructing the corresponding S-Dyson’s Brownian motion. However, if the
graph G contains cycles, constructing A is not immediate, and we have not encountered such
a construction in the literature. Omne does not expect a Markov property, since already for

Be{1,2

,4} one has to take into account the angular part of the matrices.
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APPENDIX: A LIST OF MOMENTS FOR GSE AND THE CORRESPONDING FORMAL

POLYNOMIALS
PrNDgn = n,
P(1,1) = nYn\?lz,
s = Gnt+ (1= 5)n=d(p,m),
Poy = (9024 (1= D)n)vu = (g
PN Den = 307
Paiiy = n?Y11Y12Y33Y34 + 2n2Y11\712Y22\V(§3\V(34,
PaNpr(N))pn = gng ( §>n + 2n,
Poi1 = <§n3 + ( ) >Y11Y22Y23 +2nY} Y3, Yas,
Pusi) = <§n3 v (1 >n + 2n) Y11V 19Ye0 Vs,
Paig = <§n3 + (1 ) >Y11Y12Y33 +20Y 11 Y122 V35,
s = Lt 2l (1= D)
+((1—§ : +2§)n2+2(1— §>n
= d(B,n)(d(B,n) + 2),
2
= (ootenda- s (-2 e
+<2§n2 + 2(1 g)n)vfl\v@,
BN = 3502 +3(1- ),
Pay = <3§n2 + 3(1 - g)n)vflvu
Pus = <3§n2 + 3(1 . §>n)Y11Y12Y22
e 2%2713 + 5?(1 . g)nQ + (g + 3(1 . §>2>n
o - (o e (s 2
(p3(N)Ppm = 12542 o7 (1 - §>n2 + <3§ +15(1- §>2>n
Psg = (ﬁQ +2§ (1- §>n2 +(1- g)Qn)YH\vﬁngg

p
2

s

(%2 3+3§(1* 2
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