
HAL Id: hal-02996433
https://hal.science/hal-02996433v1

Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NOVN: A named-object based virtual network
architecture to support advanced mobile edge

computing services
Francesco Bronzino, Sumit Maheshwari, Ivan Seskar, Dipankar Raychaudhuri

To cite this version:
Francesco Bronzino, Sumit Maheshwari, Ivan Seskar, Dipankar Raychaudhuri. NOVN: A named-
object based virtual network architecture to support advanced mobile edge computing services. Per-
vasive and Mobile Computing, 2020, 69, �10.1016/j.pmcj.2020.101261�. �hal-02996433�

https://hal.science/hal-02996433v1
https://hal.archives-ouvertes.fr

NOVN: A Named-Object Based Virtual Network Architecture to Support Advanced
Mobile Edge Computing Services

Francesco Bronzino+∗ , Sumit Maheshwari#§∗ , Ivan Seskar# , Dipankar Raychaudhuri#

+Université Savoie Mont Blanc

#WINLAB, Rutgers University

Abstract

Achieving advanced Mobile Edge Computing (MEC) services such as dynamic resource assignment and slicing,
maintaining Quality of Service (QoS), and enabling heterogeneous virtual functions are some of the technical
challenges associated with edge-cloud enhanced 5G architectures now under consideration. This paper proposes
a named-object based virtual network (NOVN) architecture to support low-latency applications in the MEC.
Software router implementation running on the ORBIT testbed validates the named-object approach, showing
low VN processing and control overhead, and making it possible to achieve low latency. A latency performance
improvement of 30% is achieved as compared to the baseline implementation without NOVN. The results also
validate feasibility of using the advanced MEC services for an example latency constrained edge cloud scenario.

Keywords: Virtual Networks; Name-object Networking; Mobile Edge Computing; Network Slicing;

1. Introduction

Mobile Edge Computing (MEC) is envisioned to be a core component in future cellular architectures,
expected to grow rapidly in the next few years due to continuing large-scale adoption of smartphones as well as
emerging technologies such as IoT (Internet-of-Things) and augmented, virtual or mixed reality (AR/VR/MR)
[38, 4, 44]. MECs exploit resource locality and have been embraced by infrastructure and service providers for
their network evolution. In particular, providers are increasingly aiming to distribute their service points of
presence (i.e. processing and storage) in order to serve their clients right at the edge of the networks they are
connected to. The industry and research communities alike have embraced this approach and are proposing
solutions known as edge clouds [46, 31, 13], or fog computing [7], that can better scale and provide low delay
services to real-time applications.

Edge clouds distributed at the periphery of the network represent a conceptually simple and scalable solution
for delivering computing services to mobile users. Moreover, because of the lower network delay in reaching cloud
resources, MEC offers the potential to meet strict service requirements (e.g. low latency). These advantages
come at the cost of significant technical challenges associated with moving cloud processing from a centralized
data center to a loosely coupled set of servers located at the edge of the network. One central challenge is
that of distributed control: By their very nature, edge clouds are placed in multiple network domains with
heterogeneous bandwidth and latency properties without a single point of control. While existing solutions
such as network slicing [55] and service chaining [40] provide ways to interconnect distributed, heterogeneous
resources, end-to-end quality remains a concern as existing large-scale in-network measurement techniques do
not provide sufficient insights required to achieve cross-layer optimizations such as seamless service access via
customized routing. A second key challenge arises from the heterogeneity of computing resources and the limited
amount of computational power they are equipped with. In contrast to the previous data center driven cloud
model, edge clouds are often co-located with existing network equipment and deploy limited computational

§Corresponding author. Email address: sumitm@winlab.rutgers.edu.
∗co-first author

Preprint submitted to Elsevier Pervasive and Mobile Computing Journal November 25, 2020

resources. This implies the need for distributed resource management (i.e. task assignment, load balancing and
application-level quality-of-service management) across heterogeneous edge computing resources. User mobility
further exacerbates this issue, as link or node failures and network congestion induce additional challenges in
the edge clouds inhibiting seamless service access.

To support the large-scale, distributed, and localized nature of edge cloud a general technology and archi-
tectural solution for edge clouds will thus require: (a) Control as well management plane protocols to provision
these heterogeneous resources in real-time; (b) Distributed or centralized resource assignment strategies, for
traffic load balancing, orchestration of computing functions and related network routing of data; (c) Mobil-
ity management techniques such as dynamic network slicing, and (d) Low-overhead mechanisms to reach the
heterogeneous set of distributed resources in real-time.

This paper designs, integrates, and evaluates edge cloud components aimed at fulfilling the requirements
of advanced services over the MEC architecture. First, we design the Named-Object Virtual Network archi-
tecture (NOVN), a Layer 3 virtual network solution. The named-object based networking abstraction has
been introduced in the literature [42] as a way to support seamless mobility in the network. By dynamically
resolving their names to the network addresses, the named-object abstraction provides a way support services
such as distributed caching, faster multihoming, efficient multicast, and delay-tolerant content distribution. We
extend this general abstraction to design a virtual network solution that can provide the control mechanisms
at Layer 3 to connect distributed resources across network domains. Starting from the NOVN framework, we
develop routing mechanisms that exploit the abstractions of the architecture to support distributed edge-cloud
services. This technique, called Application Specific Routing (ASR), supports routing service requests based
on cross-layer information extracted from network and application. Through this technique network operators
can achieve dynamic resource management using in-network resource slicing and devising mechanisms for the
quality of service (QoS) control. Finally, we develop a working implementation of NOVN, ASR, and advanced
service scenarios using the Click [24] modular router and the MobilityFirst network architecture software pro-
totype [11]. As part of this effort, we present experimental results obtained to validate the feasibility of this
architecture and demonstrate significant latency improvements for real-time applications.

The rest of this paper is structured as follows. Section 2 presents edge cloud requirements to support
the advanced services such as cross domain connectivity, dynamic re-routing and cross-layer network support,
and align them with the key MEC architectural components. Section 3 introduces the core design of NOVN ;
starting from the definition of named-objects, the high level design choices taken are described. The scalability
and consistency challenges of name resolution server (NRS) are discussed in Section 4. Section 5 introduces how
NOVN, integrated with techniques such as application specific routing and network slicing could be exploited
to support advanced network services. To support the proposed design, in Section 6 a comprehensive set of
experiments based on a working prototype deployed on the ORBIT testbed [43] is presented. Performance
evaluation of the proposed NOVN architecture and the related scenarios including comparison with the overlay
based solutions are described in the Section 7. Finally, in Section 8 a further discussion on the design choices
and a comparison to related work is provided. Section 9 concludes the paper.

2. Edge Cloud Requirements

In this section we discuss the requirements imposed by edge clouds on developing an architecture involving
virtual network and advanced MEC services to interconnect and manage distributed resources. Starting from
a review of existing virtualization techniques, we discuss the need for the introduction of Layer 3 network
virtualization.

Edge clouds are highly distributed architectures that require loosely coupled coordination mechanisms to
operate. Resource allocation in edge clouds is more difficult than in a data center. This is due to the fact that
edge clouds do not have the law-of-large-numbers advantage of a data center which aggregates requests from
tens of thousands of users. Instead, they must deal with requests from smaller numbers of users characterized
by significant randomness in both the spatial and temporal dimensions. Due to their physical presence in
multiple network domains and the type of resources they deploy, the following requirements are identified in
contrast to the ones usually presented by datacenter based clouds.

2

Cross Domain Connectivity. Management of distributed cloud resources becomes more complex when the
edges extend across multiple domains. A key requirement for this scenario is to be able to synchronize resources
to coordinate and communicate state potentially across multiple domains managed by different commercial
entities such as network or service providers.

Dynamic Re-Routing. Due to the nature of IP addresses, any configuration change caused by failure or
resource migration requires to reconfigure connectivity between edge computing resources. The new information
has to be propagated across all the participating entities. This can – and often does – cause all ongoing traffic
to be lost. This is due to packets not being able to carry the necessary information to self-correct temporary
errors. Approaches to reduce this impact have been explored [51, 2], but require the creation of dedicated
control channels to maintain persistent traffic flow.

Support Cross-Layer Interactions. Edge clouds require dealing with a mix of computing and networking
resources with complex cross-layer interactions and considerable heterogeneity in both networking and com-
puting metrics across the region of deployment. Conventional large datacenters have addressed this problem
by requiring uniformity in the network fabric and using software-defined network (SDN) technologies to assign
resources in a logically centralized manner. On the contrary, for a distributed architecture, a key requirement
arises due to the need of dynamic allocation of cloud processing requests across available edge computing and
networking resources [30].

Seamless Service Integration. Edge clouds promise to support tighter close loop low latency applications
which require a seamless integration of services with the network entities whose performance can be monitored,
reported and enhanced. The key requirements therefore is to design mechanisms which can blend service state
parameters into the network to create a fully virtualized end-to-end QoS-enabled system.

The mapping of these requirements to the corresponding architectural component of MEC is further dis-
cussed as follows.

2.1. Enabling QoS using Virtual Networks:

Virtual Networks (VNs) are now days the main technology used to connect resources across the Internet.
VNs support the illusion of a customized network with a user-specified topology, offering the ability to share
the the underlying infrastructure through network slicing. Further, depending on the solution employed, VNs
can offer the ability secure the communication channel between member of the virtualized network as well as
to achieve deterministic QoS characteristics matched to application requirements [22].

Depending on the purpose, different techniques have been applied at different layers of the networking stack
in order to realize virtual networks. Existing VN solutions can be roughly grouped into two categories: tag
based virtualization at Layer 2 and overlay based Layer 7 solutions

Tag Based Virtualization. Tag based approaches exploit flat unique identifiers placed at different layers of
the network stack to uniquely identify packet flows. Example of this are VLANs [6] and MPLS [45]. Cloud
networks have been one of the main adopters of Layer 2 virtual networks, with VN techniques being used to
abstract the distribution of physical and logical resources - e.g. applications, databases and more - within data
centers, allowing for flexible management techniques. This approach is exemplified by NVP [25] (and similarly
by FlowN [15]) that exploits it to implement a network management system, within an enterprise data center.
Thanks to the built-in mechanisms available within the network domain fabric –e.g. Ethernet’s class of service
(CoS)– L2 VNs offer the ability to implement fine grained QoS scheduling of the traversing traffic. The core
issue with these solutions is the limited scope in which they can be applied, as the employed tags are limited
in size and have validity only within a single network. For this reason they can solely be used to support single
domain solutions.

Overlay Networks. Overlay networking approaches, e.g. VINI [5, 14] or point to point connectivity between
remote cloud locations [41, 52], represent a flexible way for deploying experimental networks and protocols
on top of the existing infrastructure. Through encapsulation of network packets on top of UDP packets and
tunneling across participating nodes, they allow for the quickest solution to implement experimental protocols

3

Virtual Layer

Name Layer

Physical Layer

Figure 1: NOVN layers of abstraction.
Figure 2: The named-object abstraction applied to core use
cases.

on top of the existing infrastructure. With this solution, flexibility and simplicity come at the cost of additional
overhead. Moreover, residing at the application layer they lack the visibility of underlying network layer
performance parameters, limiting their utility in scenarios that might benefit from custom metrics and deeper
cross layer optimization [49, 53].

The need for Layer 3 network virtualization. Looking at the two available solutions, we identify three limita-
tions: 1) Most virtualization techniques are limited to single domain scopes, e.g. a data center or an access
network; further, when extended to support larger networks, they either 2) need full control of the network en-
vironment, or 3) rely on overlay solutions that are expensive due to the generated overhead and lack any access
to the underlying network environment. The overall goal is to provide a solution that enables the exchange of
information between the virtualized environment, the applications that run on top and the underlying network.
This solution should offer service providers the ability to exploit network virtualization to enhance deployed
solutions like edge clouds, where applications might benefit from affecting routing decisions based on custom
metrics and cross layer optimization. From this analysis, we identify the network layer as the right level to
host a Virtual Network design. Layer 3 is by definition where protocols are used to interconnect networks
resources. Extending it to support virtualization provides the most natural solution to conveniently support
interconnecting resources that span multiple networks. The next section defines how a VN can be integrated
into the network layer.

3. Named-Object Based L3 Network Virtualization

Recognizing the need to provide a solution that offers the logical simplicity of L2 network virtualization
while offering the flexibility to control traffic across network domains, this paper presents NOVN [8], a virtual
network solution that exploits the concept of named-objects [9] introduced in the MobilityFirst future Internet
architecture [42] to realize a logically clean, easily deployable, virtual networking framework at Layer 3. NOVN
tackles the control mechanism challenge by applying name indirection to create clean partitions across logical
layers (Figure 1). First, physical network resources are mapped to globally unique names, eliminating the need
of continually tracking routers addresses and possible configuration changes. A second layer of abstraction then
maps network elements to the participants of the virtual network, creating a logical network on top of the
infrastructure.

For more than a decade, the research community has advocated the separation of names (identities) from
network addresses [33, 16, 27, 19, 42]. Named-objects [9] are a powerful abstraction achieved through the use of
a dynamic globally available Name Resolution Service (NRS) for mapping names to routable network entities.
This separation has inherent benefits in handling mobility and dynamism for one-to-one communications. The
general concept of named-objects can be extended to achieve considerable flexibility in creating a variety of
new service abstractions [10] as shown in Figure 2. First, names can be used to represent many different
Internet objects; for example, a cell-phone, a person, or a group of devices; the latter concept also applies in
the context of network virtualization, as it provides the basis for NOVN ’s solution of defining participation of
network elements to the logical network. In this case, the named-object abstraction can be used to define entire
VNs and store the corresponding topology directly into the NRS. The routers’ job is then simplified as they

4

Network
19

Network 53

VR1
VR2 VR3

VR4 VR5
VR6

Network 5

NRS Service Plane
GUID Locator/Mapping

VN-1 VR1, VR2, VR3, VR4, …

VR1 R1.1

R1.1 53.a

Normal Mapping GUID to Location

Mapping VN-ID to VN-Members

Mapping VN-Name to Phy-Name

R1.1

R1.2

R1.3
R1.4

PKT

Previous
Headers Payload

Src: 53.a
Dst: 53.d

VN-Src: VR1
VN-Dst: VR6

Src: R1.1
Dst: R1.4

VNID:
VN-1

R2.1

R2.2

R2.3 R3.1

R3.2
R3.3

Figure 3: NOVN design

can support multiple virtual network policies simply by indexing their routing table to the Virtual Network
Identifier (VNID) associated with a given network. This makes it possible to operate VNs without the need for
any additional overlay protocols, creating the sense of VNs as an integral feature of the network protocol stack.

The named-object based virtualization has many advantages. Traditional QoS control mechanisms require
complex packet sniffing and processing to manage network resources for achieving traffic prioritization and
resource reservations. The name-based network virtualization technique described here simplifies the QoS
control by mapping each virtual network to a unique identifier (Virtual Network Identifier – VNID) encapsulated
in the packet header. Striping VNID from the packet header and querying a Name Resolution Server (NRS) for
the VNID’s allowed traffic capacity provides a L3 in-network support for the scanarios such as shaping network
traffic, limiting bandwidth for a VN, and ensuring QoS using the ASR metrics. Furthermore, with a network
entity (NE) such as router allowed to be a part of multiple name-based virtual networks, techniques such as
network slicing can be achieved by the statistical multiplexing of the resources while pushing the VNID to the
resource mapping to the NRS during VN instantiation or dynamically, and run-time retrieval of the same by
the NE involved in the VN. The prime advantage of this approach is that the resource provisioning and their
chaining need not be done in advance. At each NE hop, both the resource metric and the next hop information
is obtained from the NRS which thereby inherently handles scenarios such as node failure, link failure and
traffic congestion without affecting the ongoing virtual network connection.

3.1. NOVN General Design

NOVN addresses the fundamental issues of virtual network management and deployment support through
the use of named-objects. Figure 3 lists for clarity the set of core design operations are at the base of the
framework. To simplify the discussion, three basic assumptions are considered throughout this section: (1) the
availability of a globally accessible NRS capable of storing mappings from names to list of values; (2) the ability
to identify network classes based on a unique identifier (SID); and (3) the flexibility of accessing names and
addresses as part of a network header to enable hybrid routing, similar in spirit to the one employed in the
MobilityFirst architecture [42].

Logical Definition of a VN through Naming. NOVN simplifies the definition of the virtualized logical
layer through information offloading to the NRS. This is done as a three step process: 1) first, a unique identifier
is assigned to the VN and a mapping from such name (VNID) to all participating resources is stored in the
naming service (red box in the Figure); referenced resources are identified with a name that has meaning only
within the limits of the VN logic - i.e. they are unique and not shared across different VN instances; this
provides the dual function of simple access and distributed information recovery. 2) Each VN resource name,
is then mapped into two values: a) the name identifying the resource the virtualized element is running on top
and b) the list of its neighbors. 3) Finally, these identifiers are mapped into physical Network Addresses (NA)
allowing for normal forwarding operations. Items 1 and 2 above define the higher abstraction level shown in
Figure 1 and their mapping into the mid-layer, while item 3 provides the last translation to the bottom layer,
that is, the physical infrastructure.

Bootstrap Process & Management. As the topology information is made available at a global scale
through the NRS and can be dynamically retrieved from participating resources, the scope of what information

5

Virtual
Route
r 1a

Dynamic Interface
Mapping

VR1

VR2

VR2

GNRS Service Plane

GUID Locator

VN-1 VR1, VR2, …

VR2 2b 3a

Ongoing
traffic
forwarded

New traffic
dynamically
resolved

Name
resolution

Packets with
destination
address IP-2
are lost

Virtual
Route
r 1b

Virtual
Route
r 2a

Dynamic Interface
Mapping

Virtual
Route
r 2b

Virtual
Route
r 2b

Dynamic Interface
Mapping

Virtual
Route
r 3a

Migration

IP-1

IP-2
IP-3

Figure 4: The effect of router migration on overlay deployments (left) and NOVN (right).

is required to share at each layer of the network infrastructure is limited in comparison to other solutions, e.g.
[5]. This allows two core issues to be handled separately: the local problem of mapping virtual to physical
resources and the global problem of coordinating the virtualized logic across domains. The first one can be
handled either in a network-by-network basis or by a centralized authority while the second one is offloaded
to the NRS. To this end, the bootstrap process in NOVN is then limited to allocating on participating nodes
instructions on how to retrieve the VN topology, i.e. the VN unique identifier used to query the NRS, and the
information about the physical resources that are required. Similarly, management operations, e.g. migration,
of resources can be handled through NRS offloading too, whereas local changes are reflected into the globally
accessible service and dynamically resolved at forward time.

Routing & Forwarding. Providing full flexibility for different routing configurations, NOVN does not
constrain VN users to employ specific routing protocols. Routing information is exchanged across nodes through
control packets encapsulated accordingly in order to reach participating nodes. Similarly, data forwarding
happens on a hop-by-hop manner across routers of the virtual network. When a data chunk reaches one of
these routers and a routing decision is taken, the chunk is encapsulated within an external network header
that contains information to reach the next VN router (shown in Figure 3). At nodes not participating in the
protocol, normal routing decisions are taken using the external network header. As names identify each hop,
forwarding can happen independently from the physical network configuration.

3.2. An Embedded Virtualization Abstraction

Conventional network virtualization techniques suffer from the fundamental shortcomings of the underlying
IP architecture and address structure, limiting their flexibility and increasing deployment complexity. Consider
the case of overlay based solutions (e.g. VINI [5]) where virtual router interfaces are assigned private IP
addresses and then mapped to public ones that can be used to tunnel packets across participating resources
(Figure 4). Due to the nature of IP addresses, any configuration change due to failure or resource migration
requires the tunnel to be reconfigured, the new information to be propagated across all the participating
resources, causing the loss of all ongoing traffic. This is due to packets not being able to carry the necessary
information to self-correct temporary errors. Approaches to reduce this impact have been explored [51], but
require the creation of dedicated control channels to maintain persistent traffic flow.

NOVN solves this issues by creating clean partitions across logical layers, as previously shown in Figure 1.
This is obtained by recursively mapping from VN dedicated names, to network elements names and finally to
the physical addresses. These layers of abstraction are critical in allowing a separation of management issues.
Consider, for example, the case of virtual router migration. In NOVN, the process is simplified by limiting
the impact of the migration to remapping identifiers between the top two layers. Once the required migration
process is defined, the entry mapping the VN element to the network element is re-written to the new location.
If in-flight packets are forwarded during the transfer process, name indirection allows for fast recovery without
need of end-to-end retransmission, by resolving the delivery location through the NRS. Similarly, if a physical
machine needs to be replaced due to failure or an address change is required, a new one can be instantiated
and the state transferred.

One could argue that the employment of multiple layers of abstraction can introduce additional overhead

6

NRS Service Plane

GUID Locator/Mapping

VN-1 VR1, VR2, VR3

VR1 R1.1

R1.1 53.a

Global
Local

Global Service
Manager

Local Service
Manager

Local Service
Manager

1

3

4

2

5

Network 53 Network 19

Service
initialization request

Create virtual
router VR1 on
resource R1.1

Insert mappings
<VR1,R1.1> and
<R1.1,53a>

Report result

Insert VN-1 mapping

Figure 5: Separation of local and global scale problems through a distributed coordination plane.

due to the resolution costs of crossing the different logical layers through name resolution and due to the
additional headers employed. The impact of these is alleviated though by the employment of two separate
techniques: 1) While name resolution can become costly if performed for each forwarding decision, the action is
not required as for the majority of the time the resources do not change; hence, information can be pre-cached
on the participating routers and only once resources are notified of occurring changes they have to update their
mappings by querying the NRS. 2) As tag switching and SDN techniques [32] have demonstrated, matching
multiple fields in hardware is a feasible task and as software components take over, this becomes an even easier
task. An empirical demonstration of the feasibility of the approach will be given as part of the prototype
deployment presented in later sections.

3.3. Separating Local and Global Tasks

Managing resources in virtualized environments increases in complexity when extended to multiple domains.
This is true for overlay approaches, where resources need to be coordinated and communicated potentially
across multiple networks in order to synchronize, and it is mostly untreatable for tag based solutions that
are usually optimized for small domains, e.g. a data center or an access network [25]. This is a consequence
of the complexity of assigning coherent resources across multiple domains that can be managed by different
commercial entities.

NOVN approaches the problem by creating a distinction between the local problem of assigning network and
computing resources and the global problem of providing coordination mechanisms across domains. The NRS
and the named-object abstraction are the key elements employed to offer ways for eliminating the complexity as
they provide the infrastructure a way to offload the sharing of the virtualized topology and the mapping of the
underlying elements. With this, network administrators can then separately focus on deploying techniques for
optimizing the management of their infrastructure and the placement of the resources while relying on globally
available mappings for coordinating with partnering networks.

Figure 5 outlines the resource allocation process when a hierarchical set of service coordinators is employed.
In this example, each network domain exposes an interface that services deploying a multi-network VN can
invoke to allocate resources that span across the participating networks. While this example employs the
concept of a single service interface per network with a centralized controller for requesting and coordinate
resources across networks, the same tools can enable more distributed mechanisms for allocating and deploying
virtual networks.

3.4. Network State Exchange

Similar in spirit to previous attempts of providing full control of the deployed routing protocols on top
of virtualized networks [5], NOVN has been designed to offer routing independent network abstractions. In
other words, administrators of virtual networks can independently choose which routing protocols better suit
their needs as long as they have ways of learning the underlying network conditions, e.g. virtual links costs.
This latter problem could be approached in multiple ways: a) resorting to over the tops approaches where
measurement tools are used to extract the information, as done in VINI [5]; b) by allowing routing information
sharing across layers, through the use of APIs exposed by the underlying networking logic. The current NOVN

7

design favors the second approach, acknowledging the increasing reliance of software based routing tools that
can support APIs used by the virtual layers on top to extract link state information.

4. Name Resolution Service Impact on the Architecture Scalability

The named-object abstraction of NOVN relies upon the use of a Name Resolution Service (NRS). Therefore,
the performance of the NRS becomes critical to achieve consistent performance. Multiple previous projects
have demonstrated how different NRS designs [50, 47] achieve low resolution latency goals of less than 100ms
on average for lookup operations. Moreover, additional studies demonstrate how to further reduce response
time exploiting concepts such as caching and locality [20]. Commercial [16] and experimental [47] versions of
such services are currently running and are available for use. This section provides an overview of the different
implementation approaches and details how to handle consistency and scalability issues while relying on the
NRS to deploy the NOVN architecture.

4.1. NRS Implementations

NRS designs can be classified as either hierarchical or flat based on their naming structure. For hierarchical
namespaces, commercially proven implementations such as DNS are available. Unfortunately, it has been
demonstrated that DNS is not suitable as an NRS implementation in a highly mobile environment due to its
static placement strategies inherently, e.g. time-to-live (TTL) based caching, limiting its effectiveness upon end-
host mobility. This work relies on the use of a flat namespace for which there are several NRS implementations
available in the literature. We select two designs as candidate implementations for NOVN.
Auspice [47]. Auspice’s logic uses a demand-aware replica placement engine to distribute GUID to NA records
across available caches to provide low lookup latency, low update cost, and high availability by carefully choosing
the number and locations of required replicas for each GUID as per the lookup and update request rates, the
existing replicas for a GUID, and aggregate load at a replica. This geo-distributed engine is implemented as
a logically centralized authority which tracks query demands using a recursively mapped key-value store. In
Auspice, a GUID belongs to a number of replica-controllers (fixed) and active replicas (variable). The replica-
controllers maintain information about active replicas such as their number and locations whereas the actives
replicas maintain a GUID record and process a request. The placement algorithm is computed locally at each
replica using lookup to update ratio of a GUID thus limiting the update cost. The replica location is chosen
such that the lookup latency is minimal by selecting some replicas closer to the higher demand zones while
others placed randomly for load balancing.
DMAP [50] / GMAP [21]. In DMAP, name mappings to network addresses are distributed among par-
ticipating Autonomous Systems (ASes) while also choosing a deputy As which has minimum IP distance to
the current hash value of an IP address. DMAP routers apply K consistent hash functions (where K is the
number of replicas desired) to map names to the gateway routers wherein they are are stored. GMAP builds
over DMAP by organizing the name to NA mappings hierarchically in three levels – local, regional, and global
– to exploit spatial locality. Furthermore, the server lookups are load balanced using a concept of probabilistic
caching, thus improving scalability over the baseline solution.

4.2. NRS Challenges

The implementation of a large scale database such as a Name Resolution Service creates challenges of infor-
mation freshness as well as lookup delay that might compromise the requirements of the NOVN architecture.
In the following section we describe how both architectures could be safely employed to deploy NOVN.
Consistency. Inconsistency may arise when a query reaches a cache that does not hold an up to date
name/address mapping due to host mobility and late update, or incorrect prefix cache in a BGP table, thus
incurring additional query response delay.

In Auspice [47], the consistency issue is handled using an explicit coordination mechanism between the
consensus engines of the replica-controllers and active replicas, where each NRS node propagates information
to a set of replica servers. In DMAP [50], consistency is quantified as the probability of BGP churn by varying
the percentage of prefixes that are newly announced or withdrawn from 0 to 10%. If a GUID is not found

8

at an AS, it replies with a ”GUID missing” message and the querying node contacts another replica. The
fragmentation of IP address space may lead to an unannounced IP as a hash causing the IP hole problem. To
maintain consistency, the withdrawing AS sends a GUID insert message to the deputy AS while deleting its
own entry. Later, the subsequent queries hit a IP hole and thus the deputy AS is queried to obtain the latest
mapping. In case a query is not found at an AS, the querying AS sends a one-time migration message to the
deputy to self-assign a mapping thus removing an inconsistency.

GMAP [21] further enhances DMAP’s consistency mechanisms by using a sequential scheme which piggy-
backs the server availability updates in the query replies along the request path. It is shown that for up to 5
replicas, there is only a 5% failure rate which shifts the median from 40.5ms to 41.3ms which is acceptable for
consistency in NOVN as there are practically a very few origin changes for an AS prefix according to [39, 29].
Scalability. An increase in number of replicas improves NRS scalability but creates a consistency problem.
In Auspice, the dynamic nature of its placement algorithm maintains a balance between the cost and the
performance. At lower loads, the lookup latency is minimized by selecting maximum number of replicas
whereas at higher loads, only the popular GUIDs are replicated at multiple locations thus keeping cost under
control without sacrificing performance a lot, making the solution scalable.

In DMAP the balance between consistency and scalability is provided by (a) using a single overlay-hop path
to a storage location and (b) not adding a table maintaining traffic unlike other DHT implementations. The
query response time evaluation of 105 name insertions and 106 queries shows that with K=5, 95% of the queries
complete within 86ms which is reasonable for a large scale system. The query response delay in DMAP is low
because the updates do not introduce additional delays, and a name/address mapping is stored at multiple
locations which can be queried by a node from a location closest to the itself. GMap provides scalability at the
cost of not maintaining per-GUID state at all the servers, and keeping the cache size low for popular GUIDs.
As even commercially available VN techniques [48] introduce a delay in the order of ∼150-200ms when using
3–4 network hops —almost twice as compared to the delay value of less than 100ms achieved by DMAP— we
argue that these implementations are acceptable for NOVN.

5. Advanced MEC Techniques

The increasing softwarization of the network infrastructure, enabled by the advancements in computing
power and virtualization techniques, has facilitated the support of new applications and services inside the
network. Among different opportunities, network vendors and researchers have looked at solutions that explore
how to better integrate inputs from the application logic to optimize network functionality [49, 53, 54, 18]. While
this is a useful direction, more general solutions capable of extending beyond the limits of single networks are
still lacking. Such working solutions would highly benefit distributed service scenarios, where advanced control
mechanisms are required. In this section, techniques to efficiently utilize the named-object based virtualization
in the MEC architecture are described.

5.1. Application Specific Routing

MEC architecture using NOVN is extended to support advanced routing through a technique called Applica-
tion Specific Routing (ASR). ASR defines a mechanism aimed at exploiting a comprehensive set of information
from both network and application layers to enable custom delivery mechanisms, giving service providers the
flexibility to incorporate parameters which allow for utilizing information above the network layer for routing
decisions. Consider, for example, the case of a service deployed at multiple locations across different domains:
application state could be exploited to implement advanced anycast delivery based on network metrics and
service load at the end points.

Two key technology components are required and introduced into the NOVN framework to support ASR:
(1) the ability to aggregate multiple service instances under a single name, a natural extension of the named-
object abstraction. (2) the ability to make application nodes participate in the routing protocol by sharing
their application state. NOVN supports the first one by offloading the list of participant locations under a
single name into the name resolution service and the second one by allowing custom routing protocols to be

9

NRS Service Plane

GUID Locator/Mapping

Fun-1 VR1.1, VR1.2

Srv-1 VC3.1, VC5.2

… …

Service
Srv-1

App State

VN Data

Region IV
<Compute
Load

Region I
<Distance

Region III
<Distance

Region II
<Compute
Load

Decision Space /
Threshold based

Di
st

an
ce

Compute load

Decision based on
Net Metric and
App State

Figure 6: Application Specific Routing as an advanced routing service for the edge cloud use cases

Figure 7: QoS control (traffic shaping) example in NOVN

deployed on top of any underlying infrastructure and integrating end point APIs to push application state into
the VN.

For edge clouds to scale well and deploy easily, it is necessary to develop a robust and self-organizing
distributed architecture analogous to the way in which inter-domain protocols in the Internet enable networks to
cooperate on routing while retaining some measure of local policy control. Of course, the distributed algorithm
design problem for edge clouds is a more difficult one because we are dealing with a mix of computing and
networking resources with complex cross-layer interactions and considerable heterogeneity in both networking
and computing metrics across the region of deployment.

ASR supports edge cloud solutions through the support of advanced cross-layer routing mechanisms. Con-
sider for example the scenario depicted in Figure 6, where a collection of servers offer a service to its clients.
NOVN and ASR provide the base to deploy such distributed tools by: a) allowing push of state to participat-
ing nodes and b) make use of the named-object abstraction to support advanced anycast delivery to service
instances based on both network and application metrics (Figure 6). At branching locations, routers can then
take informed decisions. For example, Figure 6 shows a decision space scenario where given thresholds define
different states that can influence how routing decision. While the effectiveness of the ASR approach has been
proposed in our previous work in the context of cyber physical systems [34], coupling NOVN with ASR can
support a low latency and scalable solution for any service that would benefit of the locality of edge clouds.

5.2. Quality of Service Control

Maintaining QoS is a key requirement in the MEC architecture specifically to support low-latency applica-
tions. General QoS control mechanisms favor class-based approach where each traffic flow is assigned a QoS
class identifier (QCI) to tackle issues such as admission control, queue management, and limiting bandwidth.
The QCI value is pre-configured and cannot be adjusted dynamically during the run-time therefore lack required
flexibility in the QoS control. Edge clouds are often co-located with the existing network equipment and often
have limited computation and storage. For this reason, they are solely capable of hosting a limited amount
of applications at any point in time, requiring service orchestrators to engage in dynamic traffic management.
NOVN maps the VNID to its control parameter by querying NRS at the run-time, thereby providing a per-flow
as well as per chuck based fine-grain QoS control. Figure 7 illustrates a traffic shaping example using NOVN.
A service ID (SID) can be classified either as a part of virtual network or as a best effort traffic at the router
during run-time. The VN forwarding engine queries the NRS service plane for the traffic rate information for
the VNID and thus achieves the traffic shaping function inherently.

10

Figure 8: Network Slicing in NOVN

5.3. Network Slicing

In a multi-provider network scenario, to support a variety of services, network slicing allows statistical
multiplexing of the available resources. NOVN allows a virtual router to be a part of multiple virtual networks
thus enabling network slicing implicitly. The resource provisioning to each of the network slice is similar in
spirit to the QoS control mechanism described above. Figure 8 illustrates as example of two network slices
with a common virtual router (VR1). The VNID header lookup at the NRS provides the information about
the participating virtual routers. Finally, each of the VN traffic is handled according to its own QoS policy
thereby ensuring a cleaner approach to a sliced network.

5.4. Inter-Domain Peering

Inter-domain connections might require additional coordination across parties involved if no overlay solution
is implemented. For this, it is arguable that the increasing reliance of ISPs on point to point agreements via
Remote Peering [12] and private interconnections over IXP locations via VLANs [6] would well serve this type
of architecture. Both techniques rely on the use of tag based forwarding, e.g. long distance MPLS for the first,
to interconnect networks, providing a suitable environment to map higher level VNs defined in NOVN to these
channels.

6. Prototype and Experiment Set-up

In order to understand the achievable performance and feasibility of the proposed NOVN architecture and
its associated advanced techniques, we implement a fully working prototype of the framework. The NOVN
prototype uses as its foundation the MobilityFirst (MF) future Internet architecture [42] prototype [11]. The
MF architecture is an example of how the named-object abstraction can be integrated into an Internet network
design and for this reason provides the perfect environment to natively deploy the features at the base of
NOVN. At the core of the architecture is a new name-based service layer which serves as the “narrow waist”
of the protocol stack. The name-based service layer uses flat Globally Unique Identifiers (GUIDs) of 160 bits
to identify all principals or network-attached objects. Names are resolved through a Global Name Resolution
Service (GNRS) that provides APIs to insert and query for <key,value> mappings and support hybrid routing
schemes [35] that exploit availability of both names and addresses in the network header for dynamic resolution
of destination locations. A Service Identifier (SID) flag placed in network header allows network components
to be aware of different service types in order to apply different forwarding modes.

The main components of the architecture prototype are three: a DHT based NRS implementation to
distribute mapping entries, a software router implementing MF’s hybrid name/address routing logic, and a
host guid based API and network stack. The open access code repository of the prototype is available for more
details [1].

6.1. Core Prototype Components

Name Resolution Service. This replaceable component currently supports IPv4 and MF routing enabling
the possibility of running both overlay and native virtualization solutions. We employ DMap’s [50] DHT based
implementation to evenly distribute mapping entries across all service instances. DMap’s NRS is implemented

11

NRS
Service

UniCast Rtn

Blk
Seg

Hold
Buffer

VN
Mng

Fwd
Logic

ASR
Logic

Click Router
Elements Abstraction

Rx Queue Tx Queue

VN Logic
Routing Logic

Rtn Tables

MultiCast Rtn
AnyCast Rtn

Elements
Tables
APIsRtn/Fwd

Tables

Pkt Flow
API
Access

Srv
Class

Blk
Aggr

Pkt
Class

Net
BinderIf If

Useful Acronyms:

Class → Classifier
Blk → Block

Srv → Service

Rtn → Routing

Fwd → Forwarding

Aggr → Aggregator

Seg → Segmentor

If → Interface
Abstraction

Pkt → Packet

Mng → Manager

Chunk Format

L2 NET PL

ETH/ETH+IP/ETH+IP+UDP

Src GUID,
Dst GUID

Src NA,
Dst NA

Ext
Header

VN-Src,
VN-Dst

VNID

Chunk

Figure 9: Click router elements graph for data plane flow

in Java and achieves the same performance guarantees demonstrated in simulation [11]. Further, this imple-
mentation ensures that each server is able to operate over any networking layer/technology without changes to
the core code.

NOVN Routers. The software router is implemented as a set of forwarding elements and table objects within
the Click modular router [24] run at user-level. As a baseline, the router implements dynamic-binding using
GNRS, hop-by-hop reliable transport using a HOP [28] inspired protocol (by aggregation and segmentation
of large chunks of data), and storage-aware routing [35]. It integrates a large storage, via an in-memory hold
buffer, to temporarily hold data blocks for destination endpoints during short-lived disconnections or poor
access connections. A particular instance of this system, implements what we call an MF access router, a
router providing access connectivity to clients.

The base router has been extended to introduce the NOVN logic (Figure 9). Multiplexing across different
delivery services is handled via the Service ID (SID) tag available in the MF routing header (Srv Class).
Encapsulation of the NOVN required headers has been implemented exploiting extension fields in the MF
network layer.

When traversing a non-VN enabled router, the SID is not recognized and the data is forwarded based
on normal unicast rules. Once packets enter the VN logic layer, the router checks whether a) the packet is
intended for itself (destination GUID) and b) if the VN belongs to the ones currently active; the simple field
base matching exploits VN native concepts as explained in section 3.2 allowing for a performant decision logic,
as shown in the results of the next Section. VN tables (Routing/Forwarding/ASR) are stored and quickly
retrieved via a Hash Map, guaranteeing high performance; when invoked, the routing logic (and if deployed,
the ASR one) can access the information and take fast decisions.

The control plane (not shown in the picture) is handled in similar fashion: the current design implements a
Link State like Protocol (LSP), to exchange routing information between routing instances; routers periodically
generate and distribute the aggregated cost view of each virtualized link to neighbors that, following the logic of
the protocol, store and forward the information. Path costs are extracted from the underlying unicast routing
tables (Rtn Tables) via APIs. Initialization of the logic for a given VN can be done via two different methods:
either statically within the click configuration files using as inject point or based on a managing protocol exposed
via the Click software control interface.

Finally, the routers have been enabled with interchangeable Interface classes that can adapt to different
networking environments, supporting different deployment scenarios; these include: a) native support of the
MF protocols on top of a L2 network and overlay support both on top of b) barebone IP network or c) a full
overlay solution on top of UDP.

Advanced Service Extensions. The core NOVN prototype is further extended to support QoS control and
network slicing by introducing a VNID based mapping technique. An MF chuck consists of number of packets.
As shown in the Figure 10, resource management is achieved by marking the incoming packets in a chunk
and then classifying them according to their VNIDs. The classified chucks are stored into a buffer which are
pulled by a bandwidth shaper at a specified rate before aggregating them back as a chunk and sending at the

12

Figure 10: A sample traffic shaper implementation in NOVN

output port. This simple VNID based classification and shaping technique enables NOVN with the resource
provisioning and traffic shaping, and therefore aids in the network slicing.

Clients. In similar fashion, the baseline client network stack and API [10] have been extended to support
NOVN operations including: a) exposure of the required API options during socket initialization (i.e. open)
to b) instantiate resources in the network stack and c) encapsulation of messages as required by the protocol.

6.2. Overlay based VN Implementation

For performance evaluation and comparison purposes, we implement an overlay based virtual network as
follows. We integrate OpenVPN [17] based tunnels on top of a barebone IP router implementation using Click
[24]. Tunnels connecting nodes are set-up between each pair of virtual routers (VR). Upon transmission, data is
encrypted, encapsulated and tunneled to the neighboring virtual router. An encapsulation table maps an UDP
tunnel to the public IP of the adjacent router at the overlay virtual router. An OSPF-like (Open Shortest Path
First) protocol is used for routing at the IP layer. Predefined virtual paths are set using the aforementioned
tunnels between virtual routers. Finally, the VN packet is implemented in click with the following fields: virtual
source IP, virtual destination IP, transport identifier (UDP), OpenVPN header, source IP, destination IP and
the payload.

The named-object based VN is evaluated by running an additional Name Resolution Service, which for
simplicity we deploy using a single server. The network topology information consisting physical router con-
nectivity, physical to virtual router mapping, and participating VN and service identifier, is disseminated at
all the routers before the network bootstrap. A named-object VN packet has the following fields: source NA,
destination NA, service ID, source GUID, destination GUID, VNID, source VGUID, destination VGUID and
the payload, as described in the previous sections. Each virtual router is mapped to its physical router’s GUID
whose network address is queried from the NRS during run-time.

7. Performance Evaluation

A combination of routers, clients, and NRS servers have been deployed on the ORBIT testbed [43]. We
select 19 nodes of the testbed and deploy different networks for the different use cases analyzed. Throughout
all cases, we co-locate one NRS server with each router deployed. All nodes are interconnected via 1 Gbit
Ethernet switches, creating a single L2 network. As the testbed provides a single L2 network, a logical split
has been implemented within the click routers to enforce the topology. We present the following evaluation
results: (a) a set of micro-benchmark experiments aimed at demonstrating the baseline computation overhead
of our VN implementation against the baseline MF prototype, (b) an analysis of how to achieve network slicing
in which different VNs can co-exist on the deployed network, (c) results on the traffic shaping to achieve QoS
control, (d) an ASR edge cloud use case deployment scenario, and (e) a comparative analysis of NOVN with
the traditional VN deployed as an overlay network on top of the current Internet architecture.

7.1. NOVN Performance Benchmarks

In order to understand the basic overhead introduced by running the virtual network logic on top of the
baseline prototype, two sets of benchmarks are performed: first, a latency evaluation using a ping-like applica-
tion that collects RTTs for a small (64B) and a large (1MB) chunks size; second, using a port of iperf that uses
the new API and stack to transmit data, achievable bandwidth is estimated. For both scenarios the network
shown in Figure 11 is used, but traffic generation is limited to VN-2 (blue color).

13

MF Router

MF Host

VN1 Member
VN2 Member
VN3 Member

Name Resolution Service
1

2

3

4

5

6

Figure 11: Network topology used for benchmarks

Size RTT without NOVN RTT with NOVN

64 B 7.6 ms 8.8 ms
1 MB 128.1 ms 128.1 ms

Throughput without NOVN Throughput with NOVN

64 B 14 mbps 11 mbps
1 MB 916 mbps 903 mbps

Table 1: Latency and throughput NOVN Benchmarks

Latency and Throughput: Total values reported in Table 1 account for the sum of three time components: 1)
the processing time of the software router (including potentially the VN logic); 2) the queries to the NRS (2ms
RTT from the routers to the NRS with query results cached on the routers for 30 seconds); and 3) the HOP
like protocol which requires the transmission of initial and final control packets for each chunk to provide a
reliable transmission on a hop-by-hop basis. For this experiment, RTTs for the smaller chunk size do suffer
some small increase in the NOVN case due to the overhead generated by the processing of the added logic
and the additional queries to the NRS (to resolve the higher layer mappings). The effect of the NRS queries
is limited though, as they are averaged over the number of total collected samples (1000, one every second),
even considering that a 30s cache is quite conservative, especially for VN like scenarios where changes are
unlikely to happen in the order of seconds. The bigger size is less impacted by the additional overhead. The
performance impact of NOVN ’s overhead on the achievable throughput is also minimally noticeable, but with
increasing chunk size the effect is proportionally minimized. For this metric, the impact of the queries to the
NRS is a lesser factor (at 1MB, ∼113 chunks per second are transmitted and only one time every 30s or ∼3400
chunks the NRS is queried). The decrease in throughput has then to be attributed to the additional header
and processing overhead caused by the VN logic. Even though these do factor for a decrease in performance,
this is small enough that the evaluated scenario does not causes concern for the effectiveness of the design.

7.2. QoS Control

A major advantage inherent to the NOVN design is the possibility of performing multiplexing across different
VNs by switching traffic based on a single header field, i.e., the VNID. To test the overhead and functionality
of the VN switching mechanisms in the prototype, three VNs have been deployed on the network shown in
Figure 11. Best effort & managed traffic scenarios are evaluated without and with the QoS control mechanisms.

Multi VN Co-existence: Each traffic source (left side nodes), generates traffic at 100 Mbps. Figure 12 shows
the results after running a five mins. experiment without employing traffic shaping. While initial competition
on the wire, causes some overshooting of the goal throughput, the traffic stabilizes shortly after and it is
maintained until the experiment is completed (at around 300s). The overshooting is introduced by the chunk
base nature of the protocols implemented, where a sudden arrival of large chunks (1MB) requires time to adjust.

Managed Traffic Network Slicing: Using the topology described in Figure 11, traffic is generated at the rate
of 100 Mbps at all three sources and managed in-network using the traffic shaper. VNID to allowed traffic rate
mapping information is updated at the start of the experiment and dynamically retrieved during the run-time
by querying NRS. As shown in Figure 13, each of the red, blue and green VNs pushed traffic up to their allowed
limits of 0.5, 10 and 20 Mbps respectively. Similar to our previous observation, while the initial competition
on the wire shoots up the traffic, due to the rate limiting implementation in the traffic shaper, all three VN’s

14

Figure 12: Multiplexing NOVN benchmark Figure 13: QoS control benchmark in NOVN

Figure 14: ASR edge cloud use case example

traffic stabilizes to reach up to their allowed capacity.

7.3. ASR Use Case

To exemplify the implementation of the ASR concept, a closed-loop (round-trip) application has been
deployed on the network pictured in Figure 14, where clients send requests of 10KB each in size to a set of
two servers representing a cloud service. ASR is deployed to consider in its forwarding decisions both network
metrics used in the normal routing scheme (latency and delay) and the servers load. Cloud servers loads are
emulated by adding emulated delays before sending responses of 10KB back to the client. Server-1 has dynamic
load chosen uniformly every 30 seconds from the set of values 0, 0.2, 0.4, 0.6, 0.8, representing linearly increasing
delays of 0, 20, 40, 60, 80 ms. Server-2 is statically configured to always select parameter 0.4. A 20 ms extra
RTT has been added in the path to the bottom server by using tc to emulate different path distance between the
servers. Servers announce their load via the ASR protocol every 2 seconds. Figure 14 shows the performance
obtained, representing the taken decisions by the ASR logic; at the bifurcation, requests are forwarded based
on a simple threshold logic, where potential destinations are divided into a decision space in which different
regions have higher priority: if there are servers with load lower than 0.5, choose the one with the best path;
otherwise simply choose the best path. This guarantees for the experiment setup that all requests are sent to
a router with load lower than 0.5 capping response time to ∼70ms.

This setup has then be extended to represent a more realistic scenario as shown in Figure 15. In this case,
three clients are deployed, connecting to three networks each equipped with a local service instance. Crossing
border routers introduce a 5ms delay each way, replicating the cost of traversing across domains. The server
loads are dynamic with the same parameters. Each case has been run for one hour and collected results show
how the combination of NOVN and ASR impact the service response time. Figure 16 shows the obtained
results. The following should be observed: 1) up to ∼50ms, the difference between the two lines should be
recollected to the local servers’ load variations over time (i.e. if the load is below 50%, the local server is chosen)
and should converge over a longer time; 2) the ASR impact is very noticeable above such threshold, where 90%
of requests are serviced in less than 68ms, a more than 30% improvement from the baseline case (where the
local server is always selected).

The NOVN framework, as described in Section 3, provides a clean way to define a virtual network topology
through the use of the named-object abstraction. While using this technique it is possible to achieve the purpose

15

C
loud Service

Network 1

Network 2

Network 3

Figure 15: Network topology used for edge cloud deployment Figure 16: Response time for edge cloud deployment

Figure 17: Network topology for VN comparison

of providing the high level mechanisms that characterize the system, additional details are required to provide
a better sense of how NOVN can fully overcome the issues presented and how it could be deployed on top of
the current TCP/IP Internet architecture.

7.4. Comparing NOVN with Overlay VN Solution

Overlay based virtual networking approaches rely upon complex packet processing at the router and the
setting flags to carry extra information such as fragmentation. These approaches increase the round trip time
(RTT) of a packet in the network and lowers data throughput, but may also fail the integrity of a tunneled
packet for a larger size due to fragmentation flag set. This is generally avoided using a no fragmentation flag
which causes loss of packets which are bigger than the MTU. Furthermore, overlay based solutions rely upon
tunnels which are set up a priori. In case of a run-time failure, the tunnel needs to be set up again.

During link failures, overlay virtual networks lose packets until the link becomes active again or the route
converges, incurring packet loss and lowering system throughput. In case of short duration link failures, the
route converges to the same path and therefore the packet loss is directly proportional to the duration of the
failed link. For the permanent link failures (equivalently, long duration link failures), the route converges to
a different path and therefore the packet loss is proportional to the sum of losses due to timer expiration and
route convergence time. Due to the slow start behavior of TCP, it is time expensive to create new tunnels in
case of route change impacting throughput and delay.

In the embedded NOVN approach, network addresses are dynamically retrieved using a logically centralized
geographically distributed NRS. The route is therefore resolved at the run-time by querying NRS which strictly
decouples network functions from the hardware functions, shifting focus from complex packet processing to a
simple packet forwarding. This also alleviates network configuration issues as assigning a GUID to a node is
as simple as declaring a variable.

VN comparison experimental set-up We deploy both, the overlay as well as named-object based VN
architectures described in the Section 6.2 on a small network on ORBIT as shown in the Figure 17. Seven
routers form the core network and are connected via the Ethernet with 900 Mbps bandwidth. A simple ping
application is run from the client to the server with different packet size to compare both the approaches in
terms of protocol data plane overhead and recovery time from link failure.

Latency comparison. The round-trip delays associated with the data traversed across the network capture the
encryption, tunneling, encapsulation and any other packet processing; therefore, the RTT can be approximated
as protocol overhead for the architecture comparison. Table 2 shows round trip times (RTTs) obtained for

16

Figure 18: Comparing effect of link failure for overlay VN and NOVN

different packets sizes for overlay and NOVN. The ping latency is averaged over a large number of pings
(>1000). We notice that NOVN experiences increased latency compared to the results obtained by the overlay
network. We attribute the added latency to the periodic NRS queries in case of NOVN whereas overlay network
is pre-configured and the only overhead it experiences is in replacing headers. Moreover, the MF based solution
uses 160 bits long names for objects identification, a large increase in headers overhead compared to the other
solution. Even considering these elements, NOVN still achieves close performance results compared to the
overlay network.

Packet Size Overlay (RTT in ms) NOVN (RTT in ms)

64 B 6.1 7.2
1400 B 6.3 7.5
5 KB 7.9 9.6
10 KB 9.4 12.9
50 KB 13.6 17.8
100 KB 20.1 24.4
500 KB 72.4 78.5

Table 2: Overhead comparison.

Link Failure. We emulate link failures by introducing packet loss at the link between the routers R6 and R7.
We analyse two cases: (i) 100ms (short term failure) and (ii) 100s (long term failure), using the RandomSample
element in click router, sampling packets at the loss rate 1 for the specified duration. For the first case, neither
of the approaches had enough time to react to the failure and converging to a new path; both cases simply
recover once the link is re-established. Packet loss observed in the overlay case is MTTR∗rate while for NOVN
there is no loss due to store and forward capability of the router inherited from the MF architecture. In the
100s case, the overlay approach has to wait for the routing protocol to re-converge to a new path and set-up
new VPN [3] tunnels before a client can get ping responses back from the destination. In contrast, NOVN
reacts much faster as the next node’s network address is dynamically resolved by querying the NRS. Figure 18
compares the effect of link failure for both the cases. The server transmission rate is a ping response to the
ten 64 B packet ping requests sent by the client shown the Figure 17. The failure is introduced at time t=35
seconds. NOVN recovers in about 1 second without losing any packets due to its in-network store and forward
scheme. Overlay VN loses the packets equivalent to the mean time to recover (MTTR) which is more than 5
seconds in this case.

8. Related Work
NOVN takes inspiration from within two broad categories of works: 1) virtual network designs and man-

agement techniques and 2) software based solutions to enhance services on networks. Most recent VN designs
in general span from overlay solutions [5, 23] to lower layer integrations using tag switching [25, 15]. NOVN
differs from all these works by offering a native network-layer solution based on separating names identifying
VN resources from the underlying infrastructure. No other work has looked at this type of generalization,
providing capabilities that can extend across multiple domains.

17

ASR takes inspiration from the broad variety of software enhanced solutions aimed at allowing greater
control and interaction to application and services populating networks. SDN [32] and its extensions [18] have
provided contributions to this research area, but have been limited their scope to single domains. Active net-
works [37] had also been proposed as an extreme solution to the problem, allowing packets to carry instructions
interpreted by the network fabric. Multi-domain approaches have mostly focused on single specific issues,
such as anycast delivery or path selection to distributed services [49, 53]. Similar to ASR, Internet standard-
ization organizations have also introduce overlay approaches for custom routing [27]. ASR in NOVN differs
from previous work by providing a distributed and integrated solution for deploying both advanced network
control and allowing applications to influence network layer decisions. Lastly, NOVN, through the employed
named-object abstraction, belongs to the categories of Information Centric Networking [26, 36, 42] and name
separation [33, 16] works.

9. Conclusions

This paper presents NOVN, a novel network virtualization architecture aimed at providing a clean and
logically simple solution for deploying virtual networks. Exploiting the named-object abstraction, NOVN
provides a solution that offers the logical simplicity of L2 network virtualization which augmented with the
advanced mobile edge cloud (MEC) techniques such as application specific routing, network slicing and QoS
control, achieves a high degree of flexibility in creating customized topologies and routing of traffic in an
application-aware manner. Results based on a working prototype deployed on the ORBIT testbed demonstrate
that the new framework provides an efficient realization for defining and managing virtual networks without
compromising performance or incurring excessive control overhead. Performance evaluation of various MEC
scenarios are presented and the solution is compared with the overlay based virtual networks. Results show
that NOVN provides faster path recovery and incurs no packet loss during link failure. The ASR improves the
latency performance by 30% as compared to the baseline approach for a 90 percentile response time at 68 ms.
Future work includes evaluating ASR techniques applied to large scale edge cloud scenarios.

Acknowledgement

This research is supported by NSF Future Internet Architecture–Next Phase Award CNS-1345295.

References

References

[1] [n. d.]. MobilityFirst Wiki. http://mobilityfirst.orbit-lab.org/.

[2] Thomas Anderson, Larry Peterson, and others. 2005. Overcoming the Internet impasse through virtual-
ization. Computer 38, 4 (2005), 34–41.

[3] YL Andersson, T Madsen, and AB Acreo. 2005. Provider Provisioned Virtual Private Network (VPN)
Terminology. RFC 4026. https://tools.ietf.org/html/rfc4026

[4] Ronald T Azuma. 1997. A survey of augmented reality. Presence: Teleoperators & Virtual Environments
6, 4 (1997), 355–385.

[5] Andy Bavier, Nick Feamster, and others. 2006. In VINI veritas: realistic and controlled network experi-
mentation. ACM SIGCOMM Computer Communication Review 36, 4 (2006), 3–14.

[6] E. Bell, A. Smith, and others. 1999. Definitions of Managed Objects for Bridges with Traffic Classes,
Multicast Filtering and Virtual LAN Extensions. RFC 2674. https://www.ietf.org/rfc/rfc2674.txt

[7] Flavio Bonomi, Rodolfo Milito, and others. 2012. Fog computing and its role in the internet of things. In
Proceedings of the first edition of the MCC workshop on Mobile cloud computing. ACM, 13–16.

18

http://mobilityfirst.orbit-lab.org/
https://tools.ietf.org/html/rfc4026
https://www.ietf.org/rfc/rfc2674.txt

[8] Francesco Bronzino, Sumit Maheshwari, and others. 2019. NOVN: named-object based virtual network ar-
chitecture. In Proceedings of the 20th International Conference on Distributed Computing and Networking.
ACM, 90–99.

[9] Francesco Bronzino, Shreyasee Mukherjee, and Dipankar Raychaudhuri. 2017. The Named-Object Ab-
straction for Realizing Advanced Mobility Services in the Future Internet. In Proceedings of the Workshop
on Mobility in the Evolving Internet Architecture. ACM, 37–42.

[10] Francesco Bronzino, Kiran Nagaraja, and others. 2013. Network service abstractions for a mobility-centric
future internet architecture. In Proceedings of the eighth ACM international workshop on Mobility in the
evolving internet architecture. ACM, 5–10.

[11] Francesco Bronzino, Dipankar Raychaudhuri, and Ivan Seskar. 2015. Experiences with testbed evaluation of
the mobilityfirst future internet architecture. In Networks and Communications (EuCNC), 2015 European
Conference on. IEEE, 507–511.

[12] Ignacio Castro, Juan Camilo Cardona, and others. 2014. Remote peering: More peering without internet
flattening. In Proceedings of the 10th ACM International on Conference on emerging Networking Experi-
ments and Technologies. ACM, 185–198.

[13] Abhishek Chandra, Jon Weissman, and Benjamin Heintz. 2013. Decentralized edge clouds. IEEE Internet
Computing 17, 5 (2013), 70–73.

[14] Brent Chun, David Culler, and others. 2003. Planetlab: an overlay testbed for broad-coverage services.
ACM SIGCOMM Computer Communication Review 33, 3 (2003), 3–12.

[15] Dmitry Drutskoy, Eric Keller, and Jennifer Rexford. 2013. Scalable network virtualization in software-
defined networks. IEEE Internet Computing 17, 2 (2013), 20–27.

[16] Dino Farinacci, Darrel Lewis, and others. 2013. The locator/ID separation protocol (LISP). RFC 6830.
https://tools.ietf.org/html/rfc6830

[17] Markus Feilner. 2006. OpenVPN: Building and integrating virtual private networks. Packt Publishing Ltd.

[18] Andrew D Ferguson, Arjun Guha, and others. 2013. Participatory networking: An API for application
control of SDNs. In ACM SIGCOMM computer communication review, Vol. 43. ACM, 327–338.

[19] V Fuller, D Farinacci, and others. 2013. Locator/ID separation protocol alternative logical topology (LISP+
ALT). Technical Report.

[20] Yi Hu, Roy D Yates, and Dipankar Raychaudhuri. 2015. A Hierarchically Aggregated In-Network Global
Name Resolution Service for the Mobile Internet. Technical Report. WINLAB TR 442.

[21] Yi Hu, Roy D Yates, and Dipankar Raychaudhuri. 2015. A Hierarchically Aggregated In-Network Global
Name Resolution Service for the Mobile Internet. WINLAB: New-Brunswick, NJ, USA (2015).

[22] Jinho Hwang, K K Ramakrishnan, and Timothy Wood. 2015. NetVM: High performance and flexible
networking using virtualization on commodity platforms. IEEE Transactions on Network and Service
Management 12, 1 (2015), 34–47.

[23] Xuxian Jiang and Dongyan Xu. 2005. Violin: Virtual internetworking on overlay infrastructure. Parallel
and Distributed Processing and Applications (2005), 937–946.

[24] Eddie Kohler, Robert Morris, and others. 2000. The Click modular router. ACM Transactions on Computer
Systems (TOCS) 18, 3 (2000), 263–297.

19

https://tools.ietf.org/html/rfc6830

[25] Teemu Koponen, Keith Amidon, and others. 2014. Network virtualization in multi-tenant datacenters. In
11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14). 203–216.

[26] Teemu Koponen, Mohit Chawla, and others. 2007. A data-oriented (and beyond) network architecture. In
ACM SIGCOMM Computer Communication Review, Vol. 37. ACM, 181–192.

[27] Michael Kowal, Dino Farinacci, and Parantap Lahiri. 2018. LISP Traffic Engineering Use-Cases. Technical
Report. https://tools.ietf.org/html/draft-ietf-lisp-te-02

[28] Ming Li, Devesh Agrawal, and others. 2009. Block-switched Networks: A New Paradigm for Wireless
Transport.. In NSDI, Vol. 9. 423–436.

[29] Ratul Mahajan, David Wetherall, and Tom Anderson. 2001. A study of BGP origin as changes and
partial connectivity. Slide Presentation, University of Washington, Asta Networks,(ritual@ cs. washington.
edu)(22 pages) (2001).

[30] Sumit Maheshwari, Shalini Choudhury, and others. 2018. Traffic-aware dynamic container migration for
real-time support in mobile edge clouds. In 2018 IEEE International Conference on Advanced Networks
and Telecommunications Systems (ANTS). IEEE, 1–6.

[31] Sumit Maheshwari, Dipankar Raychaudhuri, and others. 2018. Scalability and Performance Evaluation
of Edge Cloud Systems for Latency Constrained Applications. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 286–299.

[32] Nick McKeown, Tom Anderson, and others. 2008. OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review 38, 2 (2008), 69–74.

[33] R. Moskowitz, P. Nikander, and others. 2008. Host Identity Protocol. RFC 5201. https://tools.ietf.

org/html/rfc5201

[34] Kiyohide Nakauchi, Francesco Bronzino, and others. 2016. vMCN: virtual mobile cloud network for real-
izing scalable, real-time cyber physical systems. In Proceedings of the 4th Workshop on Distributed Cloud
Computing. ACM, 6.

[35] Samuel C Nelson, Gautam Bhanage, and Dipankar Raychaudhuri. 2011. GSTAR: generalized storage-aware
routing for mobilityfirst in the future mobile internet. In Proceedings of the sixth international workshop
on MobiArch. ACM, 19–24.

[36] Jianli Pan, Subharthi Paul, and others. 2008. MILSA: a mobility and multihoming supporting identi-
fier locator split architecture for naming in the next generation internet. In Global Telecommunications
Conference, 2008. IEEE GLOBECOM 2008. IEEE. IEEE, 1–6.

[37] Konstantinos Psounis. 1999. Active networks: Applications, security, safety, and architectures. IEEE
Communications Surveys 2, 1 (1999), 2–16.

[38] Zhijing Qin, Grit Denker, and others. 2014. A software defined networking architecture for the internet-
of-things. In 2014 IEEE network operations and management symposium (NOMS). IEEE, 1–9.

[39] Sophie Y Qiu, Patrick D McDaniel, and others. 2006. Characterizing address use structure and stability
of origin advertisement in Inter-domain routing. In 11th IEEE Symposium on Computers and Communi-
cations (ISCC’06). IEEE, 489–496.

[40] Paul Quinn and Jim Guichard. 2014. Service function chaining: Creating a service plane via network
service headers. Computer 47, 11 (2014), 38–44.

20

https://tools.ietf.org/html/draft-ietf-lisp-te-02
https://tools.ietf.org/html/rfc5201
https://tools.ietf.org/html/rfc5201

[41] KK Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe. 2007. Live data center migration across
WANs: a robust cooperative context aware approach. In Proceedings of the 2007 SIGCOMM workshop on
Internet network management. ACM, 262–267.

[42] Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani. 2012. Mobilityfirst: a robust and
trustworthy mobility-centric architecture for the future internet. ACM SIGMOBILE Mobile Computing
and Communications Review 16, 3 (2012), 2–13.

[43] Dipankar Raychaudhuri, Ivan Seskar, and others. 2005. Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network protocols. In Wireless Communications and Networking
Conference 2005, Vol. 3. IEEE, 1664–1669.

[44] Howard Rheingold. 1991. Virtual reality: exploring the brave new technologies. Simon & Schuster Adult
Publishing Group.

[45] E. Rosen, A. Viswanathan, and R. Callon. 2001. Multiprotocol Label Switching Architecture. RFC 3031.
https://tools.ietf.org/html/rfc3031

[46] Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (2017), 30–39.

[47] Abhigyan Sharma, Xiaozheng Tie, and others. 2014. A global name service for a highly mobile internetwork.
In ACM SIGCOMM Computer Communication Review, Vol. 44. ACM, 247–258.

[48] Daniel Turull, Markus Hidell, and Peter Sjödin. 2014. Performance evaluation of OpenFlow controllers for
network virtualization. In 2014 IEEE 15th International Conference on High Performance Switching and
Routing (HPSR). IEEE, 50–56.

[49] Vytautas Valancius, Nick Feamster, and others. 2010. Wide-Area Route Control for Distributed Services..
In USENIX Annual Technical Conference.

[50] Tam Vu, Akash Baid, and others. 2012. Dmap: A shared hosting scheme for dynamic identifier to locator
mappings in the global internet. In Distributed Computing Systems (ICDCS), 2012 IEEE 32nd Interna-
tional Conference on. IEEE, 698–707.

[51] Yi Wang, Eric Keller, and others. 2008. Virtual routers on the move: live router migration as a network-
management primitive. In ACM SIGCOMM Computer Communication Review, Vol. 38. ACM, 231–242.

[52] Timothy Wood, KK Ramakrishnan, and others. 2011. CloudNet: dynamic pooling of cloud resources by
live WAN migration of virtual machines. In ACM Sigplan Notices, Vol. 46. ACM, 121–132.

[53] Xiongqi Wu and James Griffioen. 2014. Supporting application-based route selection. In Computer Com-
munication and Networks (ICCCN), 2014 23rd International Conference on. IEEE, 1–8.

[54] Yiannis Yiakoumis, Sachin Katti, and Nick McKeown. 2016. Neutral Net Neutrality. In Proceedings of the
2016 conference on ACM SIGCOMM 2016 Conference. ACM, 483–496.

[55] Haijun Zhang, Na Liu, and others. 2017. Network slicing based 5G and future mobile networks: mobility,
resource management, and challenges. IEEE communications magazine 55, 8 (2017), 138–145.

21

https://tools.ietf.org/html/rfc3031

	Introduction
	Edge Cloud Requirements
	Enabling QoS using Virtual Networks:

	Named-Object Based L3 Network Virtualization
	NOVN General Design
	An Embedded Virtualization Abstraction
	Separating Local and Global Tasks
	Network State Exchange

	Name Resolution Service Impact on the Architecture Scalability
	NRS Implementations
	NRS Challenges

	Advanced MEC Techniques
	Application Specific Routing
	Quality of Service Control
	Network Slicing
	Inter-Domain Peering

	Prototype and Experiment Set-up
	Core Prototype Components
	Overlay based VN Implementation

	Performance Evaluation
	NOVN Performance Benchmarks
	QoS Control
	ASR Use Case
	Comparing NOVN with Overlay VN Solution

	Related Work
	Conclusions

