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Abstract

IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a 

spectrum of autoinflammatory phenotypes including Aicardi–Goutières syndrome and Singleton 

Merten syndrome. Ascertaining patients through a European and North American collaboration, 

we set out to describe the molecular, clinical and interferon status of a cohort of individuals with 

pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families 

segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all 

mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All 

mutations were associated with enhanced type I interferon signaling, including six variants (22%) 

which were predicted as benign according to multiple in silico pathogenicity programs. The 

identified mutations cluster close to the ATP binding region of the protein. These data confirm 

variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a 

consistent association with enhanced type I interferon signaling, and a common mutational 

mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis 

and filament disassembly rate.
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1 ∣ INTRODUCTION

In 2014, heterozygous gain-of-function mutations in IFIH1 were reported to cause a 

spectrum of neuroimmune phenotypes including classical Aicardi–Goutières syndrome 

(AGS; Oda et al., 2014; Rice et al., 2014). IFIH1 encodes interferon-induced helicase C 

domain-containing protein 1 (IFHI1; also known as melanoma differentiation associated 
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gene 5 protein: MDA5) which senses viral double-stranded (ds) RNA in the cytosol, leading 

to the induction of a type I interferon-mediated antiviral response. Consequent to Mendelian 

determined gain-of-function, it is suggested that IFIH1 inappropriately senses self-derived 

nucleic acid as viral, leading to an autoinflammatory state classified as a type I 

interferonopathy (Ahmad et al., 2018; Crow & Manel, 2015). In 2015, a p.Arg822Gln 

substitution in IFIH1 was shown to cause Singleton Merten syndrome (SMS), an autosomal 

dominant trait variably characterized by a deforming arthropathy, abnormal tooth 

development and cardiac valve calcification, again in association with enhanced type I 

interferon signaling (Rutsch et al., 2015). Although it was initially considered that SMS was 

a distinct, mutation-specific disorder, subsequent reports indicate that SMS and the 

neuroinflammatory phenotypes seen in the context of IFIH1 gain-of-function constitute part 

of the same disease spectrum (Buers, Rice, Crow, & Rutsch, 2017; Bursztejn et al., 2015).

Type I interferonopathy associated IFIH1 mutations are either absent from control databases, 

or only present at very low frequency. However, we have noted previously that in silico 

algorithms are not always reliable in differentiating IFIH1 disease-causing variants from 

benign polymorphisms (Ruaud et al., 2018). Such difficulty in assigning molecular 

pathogenicity is compounded by marked variability in disease expression, sometimes even 

within the same family, and the observation of complete non-penetrance in certain pedigrees 

(Rice et al., 2014). Given this background, we considered it important to provide an update 

of our experience of sequencing individuals for pathogenic IFIH1 mutations associated with 

a type I interferonopathy state. In total, we describe molecular and clinical data relating to 

74 individuals from 51 families, identifying 27 likely pathogenic mutations that cluster close 

to the ATP binding region of the protein. Our data confirm variable expression and 

nonpenetrance as important characteristics of these mutant genotypes, and the consistent 

association with enhanced type I interferon signaling as assessed by interferon-stimulated 

gene (ISG) expression, referred to as the interferon score.

2 ∣ MATERIALS AND METHODS

2.1 ∣ Subjects

Patients were ascertained through direct contact and/or collaborating physicians across 

clinical research laboratories in the UK and France (Crow), the USA (Vanderver), and Italy 

(Orcesi). The study was approved by the Leeds (East) Research Ethics Committee (10/

H1307/132), the Comite de Protection des Personnes (ID-RCB/EUDRACT: 2014-

A01017-40), IRB study protocol (Myelin Disorders Bioregistry Project: IRB# 14-011236) 

and the local ethics committee of the IRCCS Mondino Foundation, Pavia, Italy (3549/2009 

of 30/9/2009 and 11/12/2009; n.20170035275 of 23/10/2017). Amino acid substitutions 

were considered as pathogenic mutations when they were seen in the context of a 

neuroimmune/autoinflammatory state (including AGS, a spastic-dystonic syndrome, 

nonsyndromic spastic paraparesis or SMS), and when two or more of the following applied: 

observation of the same variant in an unrelated family; de novo occurrence; documented 

increase in ISG expression; in vitro data consistent with IFIH1 gain-of-function.
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2.2 ∣ Mutational analysis

Mutations were identified on a variety of next-generation sequencing platforms. Where 

Sanger sequencing was undertaken, primers were designed to amplify the coding exons of 

IFH1, with mutation annotation based on the reference cDNA sequence NM_022168.2. 

Variants were assessed using the in silico programs SIFT (http://sift.jcvi.org), Polyphen2 

(http://genetics.bwh.harvard.edu/pph2/), and CADD (https://cadd.gs.washington.edu), 

summarized in VarCards (http://varcards.biols.ac.cn/). Population allele frequencies were 

obtained from the gnomAD database (http://gnomad.broadinstitute.org).

2.3 ∣ Protein modeling

Molecular graphics figures were generated with PyMOL (Schrödinger) using the PDB 

coordinates (4GL2).

2.4 ∣ Interferon score

Interferon scores were calculated on the basis of the expression of ISGs according to 

previously published protocols. In brief, this involved either a quantitative reverse 

transcription-polymerase chain reaction (qPCR) analysis using TaqMan probes (Crow 

laboratory: Rice et al., 2013), or testing on a Nanostring platform (Vanderver laboratory: 

Adang et al., 2018+). In the former, the relative abundance of IFI27 (Hs01086370_m1), 

IFI44L (Hs00199115_m1), IFIT1 (Hs00356631_g1), ISG15 (Hs00192713_m1), RSAD2 
(Hs01057264_m1), and SIGLEC1 (Hs00988063_m1) transcripts was normalized to the 

expression levels of HPRT1 (Hs03929096_g1) and 18S (Hs999999001_s1). The median fold 

change of the six genes, compared to the median of 29 previously collected healthy controls, 

was then used to create an interferon score for each individual, with an abnormal interferon 

score being defined as greater than +2 standard deviations above the mean of the control 

group that is 2.466. Alternatively, the copy number of mRNA transcripts of the six ISGs 

listed above, and four housekeeping genes (ALAS1, HPRT1, TBP, and TUBB), was 

quantified using a Nanostring nCounter™ Digital Analyzer. The raw copy number of mRNA 

transcripts of each ISG was standardized using the geometric mean of the four housekeeping 

genes for each individual, and the six-gene interferon signature for each individual 

calculated using the median of the Z scores, with the result considered positive if ≥1.96 

(>98th centile; one tail analysis).

2.5 ∣ Interferon reporter assay

The pFLAG-CMV4 plasmid encoding IFIH1 has been described elsewhere (Rice et al., 

2014). Indicated mutations were introduced using Phusion HiFi DNA polymerase. HEK 

293T cells (ATCC) were maintained in 48-well plates in DMEM (Cellgro) supplemented 

with 10% fetal bovine serum and 1% L-glutamine. At 80% confluence, cells were 

cotransfected with pFLAGCMV4 plasmids encoding wild-type or mutant IFIH1 (5 ng, 

unless indicated otherwise), interferon β (IFNb) promoter-driven firefly luciferase reporter 

plasmid (100 ng), and a constitutively expressed Renilla luciferase reporter plasmid (pRL-

TK, 10 ng), by using Lipofectamine 2000 (Life Technologies) according to the 

manufacturer’s protocol. The medium was changed 6 hr after transfection, and cells were 

subsequently incubated for 18 hr with or without stimulation with poly(I-C) (500 ng; 
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InvivoGen) using Lipofectamine 2000. Cells were lysed with Passive Lysis Buffer 

(Promega), and IFNb promoter activity was measured using a Dual-Luciferase Reporter 

Assay (Promega) and a Synergy 2 plate reader (BioTek). Firefly luciferase activity was 

normalized to Renilla luciferase activity Each experiment was performed in triplicate and 

data are presented as mean ± standard mean of error. Statistical significance was determined 

by two-tailed, unpaired Student’s t-test with *, **, and *** indicating p values <.05, <.01, 

and <.001, respectively. Expression levels of individual constructs were tested by western 

blot analysis.

3 ∣ RESULTS

3.1 ∣ Molecular data

We collected data on 74 individuals from 51 families, identifying 27 distinct mutations in 

total (Figure 1; Table 1). Fourteen mutations were recorded in a single proband, seven in 

more than one individual belonging to a single-family, and six in more than one family. Of 

these six recurrent mutations, the p.Arg720Gln, p.Arg779Cys, and p.Arg779His 

substitutions were observed most frequently (6, 8, and 10 times, respectively). Twenty-two 

mutations were recorded to have occurred de novo in at least one individual, whilst four 

mutations were only ascertained in familial cases demonstrating autosomal dominant 

transmission (two mutations, p.Ala489Thr and p.Gly495Arg, were transmitted from a father 

in whom the mutation arose de novo). Three mutations, p.Thr331Arg, p.Arg779Cys, and 

p.Arg779His, was documented to have occurred both de novo, in association with severe, 

AGS-like, neurological disease, and in families with transmission across two or more 

generations.

For six putative mutations (p.Gly389Arg; p.Asn449Lys; p.Ile583Val; p.Ile803Phe; 

p.Asp848Glu; p.Ile956Val), in silico predictions using both SIFT and Poyphen2 suggested 

that the substitutions were benign, with relatively poor evolutionary conservation (Figure 

S1). However, all of these variants were novel (i.e., not recorded in gnomAD), and assays of 

interferon signaling (ISG expression and in vitro testing) indicate that they represent 

pathogenic mutations conferring gain-of-function (Table S1; Figure S2). Of note, four of 

these variants were seen in the context of a spastic paraparesis phenotype with no or 

minimal cognitive impairment. Clinical nonpenetrance was observed in three of these 

families (the other three variants arising in the proband de novo).

3.2 ∣ Clinical phenotype

Consistent with previous data, we observed a spectrum of phenotypes in our cohort, 

encompassing classical AGS, less easily defined rapid neuroregression, a spastic-dystonic 

syndrome, spastic paraparesis, SMS, and clinical nonpenetrance (Figure 2; Table 2; Table 

S2). A single individual, AGS2222, experienced neonatal hepatitis and then developed 

chronic fibrotic liver disease in the absence of any other clinical features (note that this same 

variant was seen in another proband, AGS735, presenting with neuroregression at age 1 

year). Unequivocal episodes of rapid neuroregression were noted in at least 20 patients, in 

seven of whom an acute loss of skills occurred after the age of 1 year on a background of 

completely normal development. Recognition/onset of symptoms was frequently later in 
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patients with a spastic paraparesis phenotype, with one patient experiencing the development 

of lower limb spasticity beginning at 13 years of age (AGS531_P4). Six symptomatic 

patients were recorded to have died. Five of these individuals demonstrated a severe AGS 

phenotype with features obvious at, or soon after, birth that is indicating prenatal onset. One 

further deceased patient presented with neuroregression at age 15 months, and died suddenly 

of a cardiorespiratory arrest at 16 years of age, with pulmonary hypertension documented on 

postmortem examination. Ten individuals were reported as asymptomatic mutation carriers, 

across five mutations (p.Gly389Arg, p.Arg779Cys, p.Arg779His p.Asp848Glu, and 

p.Ile956Val), with seven aged over 50 years.

3.3 ∣ Interferon status

Where tested, all mutations (i.e., 26 of 27) were associated with increased expression of 

ISGs in peripheral blood (Table 1). Samples were unavailable for the single patient carrying 

the p.Glu773Gln substitution. This variant is not recorded in gnomAD, occurring de novo in 

the context of a phenotype compatible with IFIH1 upregulation, and conferring a gain-of-

function in our in vitro assay (Figure S2). Considering all (51) mutation-positive individuals 

tested for ISG expression in the Crow laboratory (given that a direct comparison of results 

across laboratories is not possible), 109 of 117 values were positive (Table S3; Figure S3). 

Only one clinically symptomatic patient (AGS2154_1) demonstrated a negative interferon 

signature (on two of three occasions tested). The phenotype, in this case, was unusual; a 

child with white matter disease confined to the right cerebral hemisphere on MRI and no 

abnormal neurological signs on examination, having presented at age 8 years with 

headaches. We leave open the possibility that these two normal results, and three normal 

results from his mother, might be due to technical artifact, given that the samples had been 

stored for many months before testing. Sixteen samples from seven clinically nonpenetrant 

subjects exhibited an upregulation of interferon signaling, with two asymptomatic mutation 

carriers demonstrating normal interferon signatures (each tested on three occasions).

3.4 ∣ Modeling of IFIH1 gain-of-function mutations

Modeling of the 27 mutations described here showed that most residues cluster near the ATP 

binding site within the helicase domain (Figure 3). Three mutations, p.Ileu583Val, 

p.Ileu956Val, and p.Leu979Trp were the only residues not situated in the cluster (colored 

cyan; only p.Ileu583Val and p.Leu979Val are shown since residue p.Ileu956 is disordered in 

the crystal structure). Within this main cluster, residues can be further categorized into three 

groups: those at the ATP binding pocket (magenta spheres), those in the double stranded 

RNA (dsRNA) binding surface (colored blue) and those not directly involved in either ATP 

or RNA binding (colored green). Three published mutations (p.Leu372phe; p.Ala452Thr; 

p.Glu813Asp; Table S4) not ascertained in our cohort are also located within the main 

cluster (colored orange), further supporting the importance of this region in the regulation of 

IFIH1 signaling activity.

4 ∣ DISCUSSION

Here we present data on 74 individuals, 41 previously unreported, from 51 families, with a 

putative gain-of-function mutation in IFIH1. Consistent with previous descriptions, we 
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observed a spectrum of phenotypes, encompassing AGS, spastic-dystonia, spastic 

paraparesis, SMS and clinical nonpenetrance. Phenotypic variability was common, both in 

the context of familial inheritance and mutations seen recurrently across families so that no 

obvious genotype–phenotype correlations could be ascertained.

Acute regression was noted in almost one-third of symptomatic mutation carriers, occurring 

after the age of 1 year in seven patients demonstrating completely normal development to 

that time. Beyond acute regression, a slower onset of disease, and subsequent progression, 

was seen in patients demonstrating a spastic paraparesis phenotype. Together with the 

observation of clinical nonpenetrance (10:13.5% of 74 mutation-positive individuals in our 

series), with seven individuals identified to be apparently disease-free beyond the age of 50 

years, these data suggest the importance of additive genetic factors and/or environmental 

triggers in determining phenotypic status. Although we did not formally record 

neuroimaging features in our cohort, white matter disease and intracranial calcification were 

observed frequently. Such imaging characteristics can be seen in the absence of overt 

neurological signs (see Bursztejn et al., 2015 and de Carvalho et al., 2017). Conversely, 

significant neurological disease, most typically spastic paraparesis, can occur in the context 

of normal brain and spinal imaging (e.g., the father in family AGS524).

Clinically manifest extraneurological illness was uncommon in our series, but there appears 

to be a real association between IFIH1 gain-of-function and lupus-like illness, autoimmune 

hepatitis, and hypothyroidism. Furthermore, psoriatic-like skin disease is a well-recognized 

feature of the SMS phenotype. As recently described (Adang et al., 2018), two patients 

included here were diagnosed with pulmonary hypertension, a feature which was not 

searched for in most patients and may be under-recognized.

We observed a strong association of mutation status with an enhanced expression of ISGs, 

with 109 of 117 samples from 51 patients being positive in the experience of one laboratory. 

A similar conclusion can be drawn from in vitro testing. As such, upregulated interferon 

signaling represents a reliable biomarker of IFIH1 gain-of-function, and can serve as an 

indicator of variant pathogenicity where doubt exists as to the significance of a molecular 

lesion. This is important given that we show here that in silico algorithms do not always 

accurately predict pathogenicity (involving 22% of the mutations that we recorded). Where 

tested, clinical nonpenetrance was also associated with a persistent upregulation of 

interferon signaling, with only two of nine such individuals nonpenetrant on ISG testing in 

blood. Whether these individuals demonstrate fluctuations in ISG expression is not known at 

this time.

Despite documented clinical nonpenetrance in some cases, all putative IFIH1 gain-of-

function substitutions are rare, with only two of the 30 discrete mutations described here and 

in previous reports recorded in gnomAD. Furthermore, all ascertained type I 

interferonopathy associated mutations are missense variants, likely conferring increased 

sensitivity to a self-derived nucleic acid. Although premature termination mutations in the 

helicase domain are seen in control populations as common polymorphisms, none has been 

associated with a type I interferonopathy phenotype, further supporting the role of nucleic 

acid binding by the helicase domain in disease pathogenesis. Substitutions of the arginine 
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residues at positions 720 and 779 were seen in six and 19 probands, respectively, in our 

series. Given the focus of our laboratories on pediatric neurological disease, our data are 

likely to subject to ascertainment bias. Indeed, although only observed once by us, the 

p.Arg822Gln mutation has been reported in an additional five pedigrees demonstrating a 

classical SMS phenotype (Pettersson et al., 2017; Rutsch et al., 2015).

IFIH1 is a member of the retinoic acid-inducible gene I (RIG-I) receptor family (del Toro 

Duany, Wu, & Hur, 2015). Recognition of cytoplasmic viral dsRNA by IFIH1 induces 

filament assembly along the dsRNA axis, with the helicase domains and C terminal domain 

responsible for RNA recognition. Filament formation then induces oligomerization of the 

tandem CARD domains (2CARD) of IFIH1, leading to the interaction with mitochondrial 

MAVS and subsequent induction of interferon and other proinflammatory cytokines. IFIH1 

filament stability is intrinsically regulated by ATP hydrolysis, which is stimulated upon 

dsRNA binding. Mutations that impair ATP hydrolysis generally increase filament stability 

and, often, but not always, confer gain-of-function signaling activity. The clustering of 

mutations that we ascertained, and of a further three unique published mutations, near the 

ATP binding region likely highlights common mechanisms, perhaps increasing RNA binding 

affinity or decreasing the efficiency of ATP hydrolysis and the rate of filament disassembly.

Summarizing, IFIH1 gain-of-function is associated with a spectrum of phenotypes, 

occurring due to de novo mutations or transmitted as an autosomal dominant trait. Testing 

for an interferon signature in blood represents a useful biomarker in this context, which can 

aid in the interpretation of identified sequence variants.
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FIGURE 1. 
Schematic showing the positions of protein domains and their amino acid boundaries within 

the 1,025-residue IFIH1 protein. The 27 mutations ascertained in the present study are 

annotated, with the numbers in brackets indicating the number of families in which each 

mutation was observed. Three previously published mutations (p.Leu372Phe; p.Ala452Thr; 

p.Glu813Asp), not ascertained in our series, are also denoted (below the cartoon). CARD, 

caspase activation recruitment domain; Hel, helicase domain, where Hel1 and Hel2 are the 

two conserved core helicase domains and Hel2i is an insertion domain that is conserved in 

the RIG-I-like helicase family; P, pincer or bridge region connecting Hel2 to the C-terminal 

domain (CTD) involved in binding double stranded RNA
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FIGURE 2. 
Overview of phenotypes observed in the IFIH1-mutation-positive cohort. Classification of 

68 of 74 individuals according to phenotype. For clarity, six individuals displaying 

characteristics difficult to classify were omitted from this analysis
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FIGURE 3. 
Mutation mapping. Structure of human IFIH1 (4GL2) in complex with double stranded 

RNA (dsRNA; blue stick model in the center). Only the RNA binding domain (helicase 

domain and C-terminal domain, CTD) are included in the crystal structure. Note that the 

helicase domain consists of Hel1, Hel2i, and Hel2. Mutations are indicated by spheres using 

the following color code: residues in the ATP binding pocket (magenta), residues in the 

dsRNA binding surface (blue), residues within the main cluster but not directly involved in 

RNA binding or ATP binding (green), residues outside the main cluster (cyan), and residues 

previously reported by others but not in our cohort (orange). We considered all 27 mutations 

reported here plus three previously published mutations (p.Leu372Phe; p.Ala452Thr; 

p.Glu813Asp) not ascertained in our series. Residues p.Arg822, p.Arg824, and p.Ile956 are 

not shown because they are disordered in the crystal structure, but are expected to be located 

in the ATP binding (p.Arg822 and p.Arg824) and RNA binding (p.Ile956) pockets
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