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Abstract
Phototrophic microbial mats dominated terrestrial ecosystems for billions of years, largely 
causing, through cyanobacterial oxygenic photosynthesis, but also undergoing, the great oxidation 
event (GOE) at ca. 2.5 Ga. Taking a space-for-time approach based on the universality of core 
metabolic pathways expressed at ecosystem level, we studied gene content and co-occurrence 
networks in high-diversity metagenomes from spatially close microbial mats along a steep redox 
gradient. The observed functional shifts suggest that anoxygenic photosynthesis was present but 
not predominant under early Precambrian conditions, being accompanied by other autotrophic 
processes. Our data also suggest that, in contrast to general assumptions, anoxygenic 
photosynthesis largely expanded in parallel to the subsequent evolution of oxygenic 
photosynthesis and aerobic respiration. Finally, our observations might represent space-for-time 
evidence that the Wood-Ljungdahl carbon fixation pathway dominated phototrophic mats in early 
ecosystems, whereas the Calvin cycle likely evolved from pre-existing variants before becoming 
the dominant contemporary form of carbon fixation.
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Phototrophic microbial mats were the forests of the past. Fossil stromatolites, their fossil 
remnants, constitute the oldest reliable traces of life on Earth1,2. These microbial 
ecosystems dominated shallow aquatic and terrestrial habitats before large multicellular 
organisms expanded ca. 550 Ma ago3–5. As such, early Archaean mats, likely built by 
anoxygenic photosynthetic bacteria3, witnessed the atmospheric oxygen rise that occurred at 
2.4-2.5 Ga (Great Oxidation Event, GOE). It is widely assumed that the GOE was promoted 
by the evolution of oxygenic photosynthesis in the cyanobacterial lineage3 (including the 
phylogenetic ancestors of extant cyanobacteria), although oxygen derived from atmospheric 
water photolysis or released from the Earth’s mantle might have also contributed6. Today, in 
addition to several coastal settings, microbial mats are restricted to a few, mostly extreme 
(e.g. hot or salty) environments7, where they are not outcompeted, and are commonly 
considered as analogs of major Precambrian ecosystems3,8,9. The idea that phototrophic 
mats prior to the GOE were built by anoxygenic photosynthetic bacteria and later by 
cyanobacteria is actually simplistic, since these stratified microbial communities are 
phylogenetically and metabolically diverse. Microbial diversity studies of both calcifying10–
13 and non-calcifying7,14–18 phototrophic mats reveal a wide variety of members from the 
three domains of life, although most often bacterial and sometimes also archaeal lineages 
dominate. Metagenomic analyses show a variety of potential associated metabolic functions, 
including oxygenic and anoxygenic photosynthesis, sulfate reduction and sulfur 
oxidation19–23, which are consistent with the steep redox gradients that these communities 
both endure and contribute to maintain24.

Yet, how good are modern microbial mats as analogs of past ecosystems? From a 
phylogenetic perspective, there is a severe limit to actualism (the idea that the present is the 
key to the past) because biological evolution is at work. Species and lineages are not static 
but change through time and, with them, their phenotypic properties, including most 
metabolic abilities. This is further complicated by the prevalence of horizontal gene transfer, 
especially among prokaryotes and involving metabolism-related genes25. Even long-
distance (e.g. bacteria-to-archaea) transfers affecting genes involved in key metabolic 
processes, such as aerobic respiration, have repeatedly occurred26. Thus, despite some 
general trends27 and the notable exception of oxygenic photosynthesis (exclusive of 
cyanobacteria and their plastid derivatives) and possibly methanogenesis (exclusive of some 
archaea, and perhaps ancestral to the domain), inferring ancient functions from 
contemporary microbial diversity data might be risky. Nonetheless, from the perspective of 
core metabolism the situation is radically different. Despite the incredible diversity of life28, 
only a handful of core metabolic processes is known. Cell bioenergetics is universally 
sustained by the generation of electrochemical potential across biological membranes 
(though using a wide variety of electron donors and acceptors) and/or fermentative 
substrate-level phosphorylation29,30. Likewise, only seven pathways of C fixation are 
known31,32. Even if new C fixation pathways (or variants thereof) might still be discovered 
in novel candidate divisions, their number will likely remain low. At the same time, classical 
ecologists observe functional redundancy in ecosystems33, at least at some level34. Such 
observations were long inaccessible for microbial communities but recent metagenomic 
analyses suggest that functional stability exists across various microbial communities despite 
high taxonomic variability35,36. This reinforces the idea that metabolic phenotypes are 

Gutiérrez-Preciado et al. Page 2

Nat Ecol Evol. Author manuscript; available in PMC 2019 April 08.

 Europe PM
C Funders A

uthor M
anuscripts

 Europe PM
C Funders A

uthor M
anuscripts



reliably seen at the level of ecosystems37. Consequently, using a pathway-centric approach 
opens the possibility to retrace early core metabolisms from modern microbial mats 
subjected to environmental conditions similar to those prevailing in the past.

Since we cannot directly observe historical changes in past microbial communities, applying 
a space-for-time approach might be a reasonable alternative. Space-for-time substitution 
modeling is widely used in ecology to infer past or future trajectories of ecosystems from 
contemporary spatial patterns38 and can be applied to genomic variation moving beyond 
species-level variation39. Because modern phototrophic mats are stratified following redox 
gradients where oxygen is rapidly depleted and nitrate, sulfide and methane increase with 
depth9, they might in principle be thought to represent relevant model systems to carry out 
space-for-time substitution studies of core metabolism. However, the physical separation of 
different functional mat layers is challenging and, most importantly, the presence of oxygen 
in the atmosphere and upper mat layers can significantly affect the nature and availability of 
redox pairs and organics in deeper layers. Therefore, ideally, the best-suited model systems 
would be microbial mats that are as a whole exposed to an anoxic-oxic gradient mimicking 
the evolution of the Earth’s atmosphere. With this aim, we use here metagenomic 
approaches to study the metabolic potential of several microbial mats uniquely located 
spatially close (few cm away) in a small shallow pond along a strong vertical redox gradient, 
from oxic down to oxygen-deprived waters.

Results and discussion
We studied microbial mats from a shallow pond (LLA9) located in the Salar de Llamara 
(Atacama Desert, Chile) along vertical redox, salinity (3.1-8.7%) and temperature (28-53°C) 
gradients17 (Supplementary Fig. 1). We collected mat samples (with replicates) at four 
different depths: LLA9-A and LLA9-B (oxic zone), LLA9-C (transition zone) and LLA9-D 
(anoxic zone)17. Interestingly, mat D was hot (53-54°C). Although solar irradiation and the 
absence of water mixing below the chemocline might contribute, the temperature increase 
seemed largely due to heat production by the actively growing thick mat.

We generated metagenomes for mat samples, including replicates for the most diverse 
(LLA9-C2/C3, LLA9-D1/D2; Supplementary Table 1)17. Estimates of average coverage as 
a function of sequencing effort suggested that they were rather complete (Supplementary 
Fig. 2). Average GC content appeared bimodal for LLA9-A1/B1 but tended to unimodal and 
increased in deeper mats (Supplementary Fig. 3a-b). Average GC values were higher than 
50%, consistent with the idea that more complex environments, with more competition, 
correlate with higher GC content40. Proteobacteria, Acidobacteria and PVC-supergroup 
genomes had higher GC content (Supplementary Fig. 3c). We identified clusters of 
orthologous genes (COGs), PFAMs and KEGG orthologs (KOs)(Supplementary Tables 2-4). 
To characterize mat microbial diversity, we used conserved marker genes usually present in 
single copy in sequenced genomes (universal single copy genes). Based on their 
phylogenetic affiliation (COGs and PFAMs; Supplementary Tables 5-6), we inferred a wide 
microbial diversity (Fig. 1a and Supplementary Fig. 4), as reflected by high Shannon 
(3.68-4.61) and Simpson (0.97-0.98) indices (Supplementary Table 1), confirming previous 
metabarcoding analyses17. As expected, prokaryotes largely dominated; eukaryotes, mainly 
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photosynthetic organisms (Bacillariophyta, Chlorophyta), were essentially found in the 
uppermost mats. Although bacteria dominated, archaea were abundant in the deepest layers 
representing up to ca. 20% of annotated sequences (Fig. 1a). Euryarchaeota were 
particularly profuse, followed by DPANN members and occasionally Thorarchaeota 
(Asgard), while Crenarchaeota and Thaumarchaeota had minor proportions (Supplementary 
Fig. 4b). Bacteria were highly diverse. Proteobacteria (especially Alpha-, Gamma- and 
Deltaproteobacteria), was the most abundant phylum together with Firmicutes in the deepest 
layers. Lineages of photosynthetic bacteria were abundant in mats LLA9-A1, B1 and C1. 
Although cyanobacteria were present, members of Chloroflexi, some Chlorobi and likely 
photosynthetic Alpha/Gammaproteobacteria were collectively more numerous (Fig. 1). 
These lineages, including cyanobacteria (in minor proportions), were also present in the 
photosynthetic D1 layer and in deeper, in principle not photosynthetically active (between 2 
and 10 cm depth), LLA9-C2/C3 and D2 layers. In the anoxic D1, cyanobacteria affiliated to 
Oscillatoriales, many of which can use H2S as electron donor for photosynthesis to cope 
with fluctuating redox gradients41, but Chloroflexi were relatively more abundant (most 
Bacteroidetes/Chlorobi did not affiliate to known photosynthetic lineages). The presence of 
typical photosynthetic lineages in deeper layers (carefully collected to avoid cross-
contamination and in replicates) may indicate that their decay during burial is low under the 
prevailing anoxic and salty conditions. Unlike in most classically studied ecosystems, 
candidate bacterial phyla were remarkably abundant (12-27% bacteria; Fig. 1) and diverse, 
Patescibacteria being dominant (Supplementary Fig. 4c). Many of these lineages presumably 
include parasites or episymbionts28,42,43. Patescibacteria are most likely strict fermenters, 
lacking the tricarboxylic acids (TCA) cycle and electron transport chain components44. 
Based on known functions for described phylogenetic groups27, cyanobacteria, eukaryotic 
algae and many Chloroflexi, Chlorobi and Alpha/Gammaproteobacteria lineages are likely 
responsible for most primary production in these phototrophic mats, whereas most other 
bacterial and archaeal lineages are likely heterotrophic and intervene at different steps in the 
degradation cascade of organic matter.

To compare the functional potential of metagenomes and see whether local environmental 
conditions correlate with functional shifts, we applied multivariate statistical analyses based 
on COGs and KOs. Canonical correspondence analysis (CCA) of normalized COG (4,717 
COGs; Fig. 1b and Supplementary Fig. 5a) and KO (12,082 KOs; Fig. S5c) frequencies in 
individual metagenomes recurrently grouped replicate datasets closely. Mats A1-B1-C1, 
correlating with exposure to oxic surface conditions, aligned on axis 1, which explained 
most of the variance (73.3%), although they separated on axis 2 (Fig. 1b). Mat layers LLA9-
C2-D1 and C3-D2 respectively grouped in two CCA quadrants (Fig. 1b, Supplementary Fig. 
5c). Clustering analysis of COGs and KOs yielded very similar results (Supplementary Fig. 
5b and d), which were also similar to those of 16S rDNA-based operational taxonomic unit 
frequencies17.

To further compare functional properties, we carried out co-occurrence network analyses on 
the three categories of mats grouped by CCA analyses. For simplicity, we named these 
networks Upper Mat Layers (UML; A1/B1/C1), ‘Middle’ Mat Layers (MML; C2/D1) and 
Bottom Mat Layers (BML; C3/D2). Although D1 is the upper photosynthetic layer of the 
anoxic zone mat, it clustered with the transition-zone mat middle layer based on COGs and 
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KOs (Fig. 1b; Supplementary Fig. 5), suggesting more shared metabolic traits (which 
networks might reveal). COG-based co-occurrence networks were extremely complex 
(‘hairballs’; Supplementary Fig. 6). Nonetheless, the UML network was more compact, 
MML was composed of two highly anti-correlated modules and BML exhibited an 
intermediate topology. Interestingly, many orthologous genes without known function were 
abundant and highly inter-connected in the three networks (Supplementary Fig. 6), 
suggesting important core functions. COGs involved in anoxygenic photosynthesis, sulfur 
oxidation (SOX system), fermentation and several C fixation pathways (Wood-Ljungdahl, 3-
hydroxyproprionate, 3-hydroxypropionate/4-hydroxybutyrate cycles) were also relatively 
abundant and connected in the three networks. Because global networks were complex, we 
next focused on a selection of diagnostic genes involved in primary energy, N and C fixation 
processes (Supplementary Table 7; Fig. 2).

We compared the normalized abundance of metabolic genes across the different 
metagenomes. Fermentation was the most abundant energy-generating process followed by 
sulfate reduction, aerobic respiration, sulfide/sulfur oxidation, dissimilatory nitrate reduction 
and H-dependent redox reactions (Fig. 2a). Different bacterial and archaeal phyla 
contributed to those functions (Fig. 2b). Genes for anoxygenic photosynthesis were more 
abundant than those for oxygenic photosynthesis in all mats. Cyanobacteria and 
photosynthetic eukaryotes contributed oxygenic photosynthesis-related genes, whereas 
Chloroflexi (better detected using bacteriochlorophyll synthesis genes) and diverse 
Proteobacteria accounted for anoxygenic photosynthesis-related genes (Fig. 2b). Regarding 
C fixation pathways, present in diverse (including candidate) phyla, the Wood-Ljungdahl 
(reductive acetyl-CoA) pathway and the Calvin cycle dominated, followed by the 
dicarboxylate/hydroxybutyrate (DC/HB) and 3-hydroxyproprionate/4-hydrobutyrate 
(HP/HB) cycles, and the 3-hydroxypropionate bicycle. Calvin and 3-hydroxypropionate 
cycles were most abundant in upper mats, whereas Wood-Ljungdahl and DC/HB-HP/HB 
cycles dominated in deeper mats/mat layers. Wood-Ljungdahl is considered the most 
ancestral pathway of C fixation45, sometimes together with the reverse TCA (rTCA) 
cycle31,46. ATP-dependent citrate lyase (ACL), deemed diagnostic for rTCA, is virtually 
absent from our mats. However, we cannot rule out the possibility that the core TCA cycle, 
highly represented in our mats (Supplementary Fig. 7), is operating in reverse using the 
classical citrate lyase (reverse oxidative TCA, roTCA), as recently shown for thermophilic 
sulfur-reducing bacteria47,48. Thermophilic sulfate reduction indeed occurs in mat D, 
mainly by Deltaproteobacteria, Firmicutes and Archaeoglobi (Fig. 2b). Deltaproteobacteria, 
many of which appear to fix C using the Wood-Ljungdahl pathway, seem major sulfate-
reducers in upper mats, although other phyla are also involved, including candidate phyla. 
Sulfur oxidation is largely contributed by anoxygenic photosynthetic Alphaproteobacteria 
(and little-abundant Chlorobi in A1/B1), using H2S as electron donor. Regarding the N 
cycle, dissimilatory nitrate reduction and denitrification (nitrite reduction to N2) are, like N 
fixation, important processes, especially in upper mats. By contrast, nitrification barely 
occurs (and only in mats from the oxic zone; Fig. 2a). Dominant N fixers shifted from 
Cyanobacteria and phototrophic Alpha/Gammaproteobacteria to non-phototrophic 
Deltaproteobacteria, Firmicutes and Methanomicrobia below the chemocline. We only found 
a few methanogenesis marker genes (Fig. 2b) in the deeper mats, belonging to 
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Thermoplasmatales (likely Methanomassilicoccales) and Methanomicrobia. This suggests 
that, as in other microbial mats and sediments9, methanogenesis mostly occurs deeper.

Co-occurrence networks reconstructed with core metabolic functions (KOs) reflected 
similar, albeit simplified, topologies compared with global COG networks (Fig. 3; 
Supplementary Fig. 8). The oxic UML mats (A1/B1/C1) appear more connected. By 
contrast, MML (C2/D1) comprises two anti-correlated modules plus a third module 
exhibiting less correlations (all negative) with them. BML (C3/D2) comprises two anti-
correlated modules positively connected through one fermentation-related protein (Fig. 3a). 
Although the biological interpretation of gene networks must be cautious, positively 
correlated modules might imply preference for similar local conditions or potential 
synergistic interactions between specific metabolisms (syntrophy, metabolic cascading). 
Because oxygen is a key determinant in redox gradients, we also reconstructed networks 
excluding genes involved in aerobic respiration (essentially cytochrome oxidase genes; 
Supplementary Table 7) to see whether and how this affected the observed patterns of 
potential metabolic interactions. Interestingly, these genes appear responsible for the high 
connectivity in UML. Indeed, when excluded, the UML network splits in two clearly anti-
correlated modules; one includes most genes involved in oxygenic and anoxygenic 
photosynthesis, N fixation, the Calvin cycle and sulfur oxidation whilst the other connects 
nitrate reduction, denitrification and Wood-Ljungdahl-related genes (Fig. 3b). By contrast, 
MML and BML network topologies are not significantly impacted, showing the same two 
highly anticorrelated modules (plus the small loose anticorrelated module in MML). One of 
these modules is enriched in Wood-Ljungdahl, fermentation and, sometimes, denitrification 
genes (Fig. 3). In apparent paradox, RuBisCO genes, typically involved in the Calvin cycle, 
appear in the BML module connecting Wood-Ljungdahl with many fermentative enzymes. 
This module displays a clear anaerobic core, being always strongly anti-correlated with 
oxygen-related enzymes in mats (Fig. 3). Many of these genes affiliate to candidate phyla 
and, especially in deep mats, archaea (Fig. 2). Many archaea are known to contain a 
RuBisCO form involved in nucleoside synthesis49,50. Moreover, some RuBisCO-containing 
archaea also possess phosphoribulokinase and perform the newly described reductive 
hexulose-phosphate pathway (RHP) for C fixation, which differs only in a few steps from 
the Calvin cycle32. Indeed, it has been proposed that the photosynthetic Calvin–Benson 
cycle may have originated from a primitive carbon metabolic pathway utilizing RuBisCO, 
such as the archaeal RHP pathway, by replacement of some steps without release of 
carbon32. RuBisCO might have even first worked as an oxygenase before evolving its 
carboxylase activity51. The presence of oxygen-type cytochrome oxidases in deep, anoxic 
mats/mat layers, although less abundant than in surface, seems also puzzling. They might 
result from the progressive burial of aerobic organisms before decay (LLA9-C2, C3, D2), 
from the presence of microaerophilic microbes using trace oxygen levels in LLA9-D1 
and/or, hypothetically, microbes using as final electron acceptor nitric oxide (NO) generated 
in deep mats during denitrification (Fig. 2). Cytochrome oxidases belong to the same 
superfamily as NO reductases and it has been proposed that, in the early Archaean, NO, 
instead of O2, was the terminal electron acceptor for the cytochrome oxidase/NO reductase 
family before later evolution by subfunctionalization52.
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Because i) iron is a key component of photoreaction centers and electron transporters during 
photosynthesis, ii) some anoxygenic photosynthesizers can use Fe2+ as electron donor53 and 
iii) Fe2+ was very abundant before the GOE (which also marked the transition from a ferrous 
to a sulfidic ocean)3, we also studied genes involved in iron uptake and reduction. 
Hierarchical networks showed a prominent position of iron uptake regulation in UML. Iron 
uptake positively correlated with both oxygenic and anoxygenic photosynthesis but 
negatively with sulfur oxidation. N fixation and nitrite and sulfite/sulfate reduction appeared 
also important in UML but were only indirectly connected to iron uptake (Supplementary 
Fig. 9a). Iron uptake regulation was also prominent in MML, but unrelated to photosynthesis 
(Deltaproteobacteria; Supplementary Fig. 9b). Finally, iron uptake was absent from co-
occurrence networks in BML, consistent with the decrease in photosynthesis-related 
processes in these layers. Sulfate reduction and H-related redox reactions were the more 
connected and abundant processes in BML (Supplementary Fig. 9c). Given the prevalence of 
sulfur reduction/oxidation processes, our mats appear to reflect more the conditions of early 
sulfidic environments3. Iron reduction was present in all mats at moderate levels, and 
exhibited many connections with other metabolic activities in BML.

The normalized abundance of diagnostic genes in mat metagenomes along the vertical redox 
gradient shows marked shifts (Fig. 4a). In mats/layers exposed to oxic conditions (LLA9-
A1, B1, C1), aerobic respiration, sulfur oxidation and N fixation genes were more abundant 
than in deeper, anoxic mats. Likewise, oxygenic photosynthesis genes increased in oxic mat 
layers, but were almost negligible in deeper mats. Surprisingly, anoxygenic photosyntheses-
related genes were more diverse (Fig. 2b) and relatively much more abundant in oxic than in 
anoxic layers (Fig. 4a), along with a slight fermentation rise and a strong increase in Calvin 
cycle-related enzymes. The latter likely reflects the succession from the RHP pathway 
associated to some anaerobic metabolisms to the Calvin-Benson cycle typical of oxygenic 
photosynthesizers. In addition, C fixation pathways show a remarkable inversion in the 
deepest, anoxic part of the redox gradient as compared with oxygen-exposed mats, with 
dicarboxylate/hydrobutyrate and 3-hydroxiproprionate/4-hydrobutyrate and, most 
importantly, Wood-Ljungdahl pathways becoming more abundant. These metabolic shifts 
were noticeable within mat C located at the transition zone, which could support the idea 
that functional changes within a single mat displaying an inner redox gradient might reflect 
historical metabolic transitions. However, the comparison of mat LLA9-C with mat LLA9-D 
suggests that that inference is not as straightforward. Indeed, despite LLA9-D is the thickest 
mat, apparently highly active, and exhibiting conspicuous dark green areas in the upper 
sampled layer (D1), the normalized (Fig. 4) and net (Fig. 2 and Supplementary Fig. 10) 
abundance of anoxygenic photosynthesis-related genes was very limited in comparison with 
LLA9-C and upper mats. Why? The fact that the two replicate metagenomes show very 
similar results suggests that this observation is not due to local subsampling heterogeneity. 
Because this was the more glutinous mat and high polysaccharide content usually lowers 
DNA yield during purification, DNA-extraction bias could be partially invoked. However, 
this does not really explain the selectivity against photosynthetic organisms since 
heterotrophic and fermentative organisms are intimately embedded (consuming) in the 
exopolymeric matrix. It might also be that the anoxygenic photosynthesis genes are highly 
divergent in LLA9-D or, more speculatively, that new anoxygenic photosynthesis variants 
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are at play. The most likely explanation is that mat LLA9-D is extremely phylogenetically 
(Fig. 1) and metabolically diverse, such that the relative proportion of anoxygenic 
photosynthesis genes is low in a huge (meta)genomic diversity. This suggests that, despite 
high solar irradiation, anoxygenic photosynthesis in this mat is a relatively minor process 
and that other autotrophic metabolisms operate in parallel and sustain primary production. A 
low efficiency of anoxygenic photosynthesis in this layer might partly correlate with the mat 
thermogenicity. Local heat production might come from fermentative processes54 (but these 
seem even higher in upper, non –or less– thermogenic mats), or simply be due to a partial 
uncoupling with the electron transport chain, photon-derived energy being dissipated in the 
form of heat. Applying a space-for-time logic, this could suggest that anoxygenic 
photosynthesis was less active in early Archaean phototrophic mats growing in anoxic 
atmospheric conditions, as has been previously suggested55, raising in addition the 
intriguing possibility that early microbial mats were thermogenic. Anoxygenic 
photosynthesis would have further evolved and got optimized in parallel to oxygenic 
photosynthesis. Part of this evolution might have dealt with the development of encoded 
abilities to cope with reactive oxygen species (ROS). One such mechanisms is provided by 
alternative oxidases, which are non-energy conserving terminal oxidases best studied in 
mitochondria and chloroplasts but present in many bacteria, notably cyanobacteria and 
diverse Proteobacteria, playing key roles in ROS management, thermogenesis and 
homeostasis56. Interestingly, alternative oxidase (AOX) genes are only detected in upper 
Llamara mats, associated to cyanobacteria and chloroplasts, but also to several 
Proteobacteria, including anoxygenic photosynthesizers (Supplementary Table 7 and Fig. 
11).

Taking into account the universal conservation of core metabolic functions and assuming 
that a space-for-time approach can be applied, the metabolic shifts observed in metagenomes 
of spatially close phototrophic mats across this redox gradient may well represent core 
metabolic transitions that occurred across the GOE. Our data support two major hypotheses. 
First, anoxygenic photosynthesis was relatively modestly abundant (perhaps with limited 
efficiency) in early phototrophic mats under global anoxic conditions; counterintuitively, 
anoxygenic photosynthesis diversified, appearing in various phylogenetic lineages, and 
became more prolific in parallel to oxygenic photosynthesis. This might have been partly 
due to the evolution of adaptive mechanisms to cope with reactive oxygen species. Second, 
the Wood-Ljungdahl pathway was the early dominant carbon fixation pathway, accompanied 
to a lesser extent by the dicarboxylate/hydrobutyrate and 3-hydroxiproprionate/4-
hydrobutyrate pathways; its primacy was then supplanted by the Calvin cycle as 
photosyntheses evolved, increasing their ecological success. The Calvin cycle likely evolved 
from predating variants potentially resembling the archaeal RHP pathway. Further 
comparative analyses of core metabolic pathways in phototrophic mats from similar 
contextual environments should help to validate and refine these ideas.
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Methods
Sample collection, DNA purification and sequencing

Mat samples were collected in March 2012 in a small pond (LLA9) of the Salar de Llamara, 
in the North of the Atacama Desert (21°16'7.37"S, 69°37'4.01"W), as previously 
described17. Mats were collected in pond LLA9 along a steep vertical gradient spanning ca. 
30 cm depth, with a chemocline at 25 cm, which was accompanied by salinity (3.1-8.7%) 
and temperature (28-53°C) gradients (Supplementary Fig. 1). This mat was highly 
irradiated, the Salar de Llamara being located at 750 m of altitude in one of the driest deserts 
of the planet17. We collected mat fragments (with replicates) of ca. 10 x 15 cm of surface, 
and up to 10 cm depth at four different depths: LLA9-A and LLA9-B at increasing depth in 
the oxic zone, LLA9-C in the transition zone and LLA9-D in the anoxic zone. Mats A and B 
were thinner (1-3 cm), mat A having poor consistency, and were therefore not subsampled 
(equally referred to as A1, B1). Mats C and D were much thicker (7-10 cm) and were 
subsampled in three (C1-C3) and two (D1-D2) broad sub-layers, C1 and D1 comprising all 
the observable photosynthetic layers which, in the case of D1, displayed green pinnacles of 
2-3 cm high at the surface (Supplementary Fig. 1). Mat D was hot (53-54°C within the mat). 
Temperature decreased below mat LLA9-D to 30°C (Supplementary Fig. 1). 
Physicochemical parameters (conductivity, oxygen and temperature) were measured using a 
multi-parameter probe Hanna HI9828. Mat samples were fixed in ethanol (>70%) and stored 
at -20°C until DNA extraction. DNA was extracted using the Power Biofilm™ DNA 
Isolation Kit (MoBio, Carlsbad, CA, USA) according to manufacturer’s instructions. 
Duplicate mat subsamples were collected from distant ends of each mat sample. For each 
duplicate, the collected material was thoroughly mixed prior to DNA purification; several 
independent purification reactions per duplicate were performed in parallel and then pooled 
to minimize potential biases due to sample and/or process heterogeneity. Total DNA yield 
ranged from 0.6 (LLA9-C3) to 3.1 µg (LLA9-D1). DNA libraries for Illumina paired-end 
sequencing were prepared for each sample without any amplification step. DNA from 
LLA9-D1, LLA9-D2 and LLA9-B1 metagenomic libraries were sequenced using Illumina 
HiSeq2000 v3 (2x100 bp paired-end reads) by Beckman Coulter Genomics (Danvers, MA, 
USA). DNA from LLA9-A1, LLA9-C1, LLA9-C-2, LLA9-C-3 and LLA9-D-1 
metagenomic libraries were sequenced using Illumina HiSeq2500 (2x125 bp paired-end 
reads) by Eurofins Genomics (Ebersberg, Germany). DNA from LLA9-C2, LLA9-C3, 
LLA9-D1 and LLA9-D2 duplicate samples were also sequenced in an independent run using 
Illumina HiSeq2500 (2x125 bp paired-end reads) by Eurofins Genomics (Ebersberg, 
Germany). Replicate mat samples are noted as, e.g., D1.I and D1.II. The total number of 
paired-end reads per metagenome ranged from ca. 43 to 120 million, i.e., 4.3–12.0 Gbp per 
library and orientation (forward and reverse). Various statistics of the 11 generated 
metagenomes, as well as merged replicates are given in Supplementary Table 1. Estimates of 
average coverage as a function of sequencing effort suggested that Llamara metagenomes 
were rather complete (70-92%; Supplementary Fig. 2a); merged replicate metagenomes 
exhibited a slight coverage increase as compared to individual metagenomes 
(Supplementary Fig. 2b, Supplementary Table 1).
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Prediction and affiliation of rRNA genes
The metagenomic reads were mined for 16S rRNA genes with the EMIRGE software57. 
Statistics regarding the total number of reads and paired-end sequences per sample, the 
number of predicted 16S rRNA genes and the average sequence lengths retained are 
presented in Supplementary Table 1.

Assembly and annotation
The level of coverage of the community achieved by each metagenomic dataset was 
estimated and projected using Nonpareil version 2.4 with default parameters58 and after 
preprocessing the reads with Trimmomatic and a minimum Phred quality score of 3059. For 
each metagenomic dataset, the reads were assembled into contigs using stringent criteria to 
facilitate gene prediction. Forward and reverse reads were assembled using MEGAHIT 
(version 1.3.060 with default parameters but a minimum length of 200 bp for the assembled 
contigs and a starting kmer size of 23 up to 93 with an increasing step of 10. Gene prediction 
was performed on the newly assembled contigs using Prokka61. For functional annotation 
purposes, reads from replicate metagenomes were merged for assembly with the same 
above-mentioned parameters (LLA9-C2.m, LLA9-C3.m, LLA9-D1.m and LLA9-D2.m in 
Supplementary Table 1). For taxonomic affiliation, we compared the amino acid sequence of 
our metagenome predicted genes to a home-made non-redundant protein database (RefSeq 
nr release 74; March, 2017 + a customized database of manually added Candidate Phyla) 
through the DIAMOND software (version 0.7.9.5862). For subsequent analyses, we retained 
only the best hit to represent each annotated gene, with a minimum amino acid identity of 
50% over at least 80% of the query length. For each defined best hit of an annotated gene, 
their taxid was retrieved through NCBI e-fetch via an ad hoc Perl script. Various statistics 
regarding contig assembly and annotation are provided in Supplementary Table 1. Predicted 
clusters of orthologous genes (COGs), PFAMs and KEGG orthologs (Supplementary 
Methods; Supplementary Tables 2-4) were used to characterize and compare the different 
metagenomes. COGs were assigned by profile hidden Markov model (profile HMM) 
searches using the hmmsearch program of the HMMER3 package63. For every COG, a 
multiple sequence alignment of bona fide representative sequences were generated using the 
Muscle program64 and, then, the corresponding Hidden Markov Model was built using the 
hmmerbuild program, also provided in the HMMER3 package63. The cut-off E-value in the 
hmmsearch process varies largely for every COG. For each COG, we defined a high 
confidence cut-off E-value value as the highest E-value (smallest bit score) observed for the 
members of that COG. None of the COG cut-off E- values was greater than 1e-10. 
Additionally, all PFAMs (Pfam-A) were predicted with hmmersearch tool from HMMER 
(version 3.1b165 and KEGG orthologs (KOs) were assigned via GhostKOALA web 
server66. Abundance matrices for six ribosomal protein PFAMs were used to calculate 
diversity (Shannon and Simpson), evenness (Pielou) and richness (Chao1) indices using the 
Vegan package in R. The distribution of COGs, PFAMs and KOs identified in the different 
Llamara metagenomic assemblies can be found in Supplementary Tables 2-4. COGs, 
PFAMs and KOs were given a taxonomic assignation via their best hit’s taxid. A subset of 
40 COGs corresponding to single copy gene families universally distributed in prokaryotic 
genomes67 was initially used to characterize the phylogenetic structure of the communities 
(Supplementary Table 5), which was very similar to community structure derived from 
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16S/18S rRNA gene metabarcoding analyses17. In addition, we also mined for this purpose 
237 single copy genes (PFAMs) previously used to characterize the diversity of archaea42 
and bacteria68 in the Llamara metagenomic assemblies (Supplementary Table 6). These 
yielded a comparable community structure to that observed by 16S/18S rRNA gene 
metabarcoding17 and single-copy genes (COGs; Fig. 1 and Supplementary Fig.4).

Mining of diagnostic metabolic genes
Orthologous protein-coding genes exclusively involved in one particular energy or carbon 
metabolic pathway in the KEGG database (KOs69 were considered as diagnostic for that 
pathway (Supplementary Table 7). For example, for the Calvin cycle, only the two RuBisCO 
subunits and phosphoribulokinase (PRK) were considered as diagnostic. We looked for 
diagnostic KOs involved in all known pathways for C fixation, oxygenic and anoxygenic 
photosynthesis (biosynthesis of bacteriochlorophylls and/or genes for the photosystem 
reaction centers) (Supplementary Table 7) and fermentation35. In the case of green non-
sulfur anoxygenic photosynthesis, we used as diagnostic only the genes involved in the last 
two steps of the bacteriochlorophyll a/b biosynthesis to follow KEGG annotation, although 
this bacteriochlorophyll is present in small concentrations in other anoxygenic 
photosynthetic organisms (e.g. green sulfur phototrophs). In addition, we looked for 
diagnostic genes for energy metabolism involved in N and S cycling (i.e. dissimilatory 
nitrate reduction, nitrification, denitrification, dissimilatory sulfate reduction, SOX system) 
and nitrogen fixation. Genes were assigned to major taxa as described previously and gene 
abundance was graphed in stack bars for comparison (Fig. 2). To be able to estimate the 
relative abundance of diagnostic metabolic genes within metagenomic assemblies regardless 
of the taxa involved, and to compare it across metagenomic datasets, we corrected KO 
abundances by that of single-copy genes with the program MUSiCC (Metagenomic 
Universal Single-Copy Correction)70. Total and average diagnostic gene abundances are 
used in Figs. 2 and 4.

Statistical analyses
Statistical analyses were conducted with the R software71 (http://cran.r-project.org). The 
comparison of the taxonomic distribution inferred from protein-coding marker genes with 
results obtained either by mining of 16S rRNA genes in metagenomic reads or by amplicon 
sequencing17 was done using Bray-Curtis dissimilarity distances. They were calculated on 
frequencies of high-rank bacterial and archaeal taxa using the 'Vegan' R package (version 
2.0-1072) with no prior transformation of the data. Raw counts of high-rank taxa 
corresponding to replicate samples were pooled before the computation of Bray-Curtis 
distances shown in Fig. 1 (see de-replicated frequencies in Supplementary Fig. 4a). The 
influence of the environmental conditions on the functional capacities of the different 
Llamara metagenomes was estimated by Canonical Correspondence Analysis (CCA). They 
were conducted using a Euclidean matrix containing a set of environmental factors (depth 
below water level, depth below mat surface, temperature, oxygen concentration and salinity) 
and a matrix of Bray-Curtis distances based on the normalized abundance of individual 
COGs and KOs (as corrected by MUSiCC). CCAs were carried out with the Vegan package 
in R, wherein sample ordinations were constrained and co-plotted by environmental 
parameters with significance using an Analysis of Variance (ANOVA) with 999 
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permutations (P < 0.001 for both KOs and COGs). For KOs, CCA global inertia was 
68.13%; 62.7% for axis CCA1 and 19.6% for axis CCA2. For COGs, CCA global inertia 
was 56.3%, axis CCA1, 73.3% and axis CCA2, 14.5%. Clustering of COGs and KOs was 
also performed with ad hoc scripts in R and visualized in heatmaps (Supplementary Fig. 5). 
Regardless of whether CCA or clustering for heatmaps are performed, and regardless the use 
of KOs or COGs, mat layers always showed the same broad clusters. These were noted as 
Upper Mat Layers (UML), including LLA9-A1, LLA9-B1 and LLA9-C1 (in CCA, only 
along axis CCA1); ‘Middle’ Mat Layers (MML), including LLA9-C2.I, LLA9-C2.II, LLA9-
D1.I and LLA9-D1.II; and Bottom Mat Layers (BML), including LLA9-C3.I, LLA9-C3.II, 
LLA9-D2.I and LLA9-D2.II.

Metabolic network reconstruction
Co-occurrence networks involving energy and carbon fixation pathways were performed on 
metagenomes of microbial mats that grouped according to their COG and KO metabolic 
similarity based on CCA and clustering analyses (Figs. 2 and Supplementary Fig. 5), 
namely, upper mat layers (UML, 3 metagenomes), correlating with oxygen, ‘middle’ mat 
layers (MML, four metagenomes) and bottom mat layers (BML, four metagenomes), 
correlating with depth, temperature and salinity. Initially, we reconstructed networks based 
on COGs (Supplementary Fig. 6). Given their complexity, we also reconstructed networks 
based on two different sets of diagnostic genes (105 KOs; 50 PFAMs) (Supplementary Table 
7). The abundance of these diagnostic genes was first arranged in matrices for UML, MML 
and BML groups. Low frequency genes (less than 5% for PFAMs and less than 1% for KOs) 
were removed from each matrix. The new matrices were used to reconstruct the correlation 
and p-values matrices with SparCC73. Ten iterations were used to estimate the median 
correlation of each pair and the statistical significance of the correlations was calculated by 
bootstrapping with 500 iterations. Correlations were then sorted according to their statistical 
significance; we retained only those with p < 0.001 and R > 0.7 or R < -0.7. Networks were 
built using ad hoc scripts in R and visualized with the aid of the igraph package (http://
igraph.org/) and Cytoscape74. Taxa affiliations at phylum level were assigned to each node 
(this information is collectively summarized in Fig. 2b and, for dominant groups, is 
indicated at the level of PFAMs in Supplementary Fig. 9). Network properties are given in 
Supplementary Table 8. Networks were visualized with Cytoscape either in perfused forced 
directed layout based on their correlation values (e.g. Fig. 4) or as hierarchical networks 
(e.g. Supplementary Fig. 9), where upper nodes have higher degree and betweenness.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Microbial diversity in microbial mat metagenomes along a redox gradient in a pond from the 
Salar de Llamara (Atacama Desert, Chile). (a) Overall community composition of 
metagenomic assemblies inferred from the phylogenetic assignment of PFAMs 
corresponding to 237 single copy genes. Layers LLA9-C2, C3, D1 and D2 correspond to 
merged metagenomes (see Supplementary Fig. 4a for individual replicates). Relatively 
abundant Candidatus Omnitrophica and Archaeoglobi are highlighted independently from 
their respective bacterial and archaeal clades. Detailed classification of archaea and bacterial 
candidate divisions is shown in Supplementary Fig. 4b-c. (b) Canonical correspondence 
analysis (CCA) plot based on normalized COG frequencies in individual metagenome 
datasets showing the similarity between replicate metagenomes and how the different 
metagenomes correlate with local environmental conditions (see also Supplementary Fig. 5).
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Fig. 2. 
Major energy and carbon metabolisms in Llamara microbial mats based on diagnostic genes. 
(a) Normalized abundance of diagnostic KEGG orthologs (KOs) involved N and S cycling 
(mostly dissimilatory), photosynthesis, C fixation pathways, Ni-Fe hydrogenases, oxygen 
respiration (cytochrome oxidases) and fermentation, as corrected by the presence of single-
copy genes by the MUSiCC software70. (b) Stacked bar histogram showing the abundance 
of metabolic genes corrected by the total number of diagnostic KOs selected per pathway. 
BC, bacteriochlorophylls; most of these genes corresponded to green non-sulfur bacteria 
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(Chloroflexi). PRC, photoreaction center; most of these genes affiliated to purple bacteria 
(Proteobacteria). RHP, reductive hexulose-phosphate pathway; DC/HB, dicarboxylate/
hydrobutyrate; HP/HB, 3-hydroxyproprionate/4-hydrobutyrate; rTCA, reverse tricarboxylic 
acid cycle; ACL, ATP-dependent citrate lyase.
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Fig. 3. 
Co-occurrence networks of diagnostic KOs involved in major energy and carbon fixation 
metabolic pathways in Llamara microbial mats from pond LLA9. Networks were built 
including (a) and excluding (b) cytochrome oxidase genes (O2/NO respiration). Upper Mat 
Layers (UML) networks derive from metagenomes LLA9-A1, B1 and C1. ‘Middle’ Mat 
Layers (MML) networks derive from metagenomes LLA9-C2.I, C2.II, D1.I and D1.II. 
Bottom Mat Layers (BML) networks derive from metagenomes C3.I, C3.II, D2.I and D2.II. 
Each node represents a KO; node size is proportional to abundance. Node color alludes to 
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the type of metabolic pathway (color code indicated). Edges depict KO co-occurrence in mat 
layers; reddish edges mean a negative correlation (R < -0.7) and blue edges depict positive 
correlations (R > 0.7). The distance between nodes is proportional to R values; edges shown 
in dotted lines have been shortened for visualization purposes (real size networks are shown 
in Supplementary Fig. 8). Network properties are detailed in Supplementary Table 8.
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Fig. 4. 
Distribution of key energy and carbon fixation metabolisms in microbial mats across a redox 
gradient and, likely, time. (a) Spatial distributions of diagnostic genes (KOs) for selected 
core energy and carbon fixation pathways in microbial mats across a redox gradient in the 
Salar de Llamara. Carotenoid biosynthesis genes were plotted with photosynthesis-related 
genes. Plots represent mean normalized abundances of diagnostic KOs for each kind of 
metabolism corrected by single-copy gene abundance by MUSiCC70. The Calvin-Benson 
enzymes detected in the anoxic zone likely correspond to the new reductive hexulose-
phosphate (RHP) pathway32. (b) Space-for-time metabolic transitions (indicated by 
background colors) represented on a plot of atmospheric oxygen concentrations along the 
Earth history. O2/NO respiration correspond to cytochrome oxidase genes. BC, 
bacteriochlorophylls; PRC, photoreaction center. DC/HB, dicarboxylate/hydrobutyrate; 
HP/HB, 3-hydroxyproprionate/4-hydrobutyrate; rTCA, reverse tricarboxylic acid cycle; 
ACL, ATP-dependent citrate lyase.
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