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Abstract. Nucleation of atmospheric vapours produces more
than half of global cloud condensation nuclei and so has
an important influence on climate. Recent studies show
that monoterpene (C10H16) oxidation yields highly oxy-
genated products that can nucleate with or without sulfu-
ric acid. Monoterpenes are emitted mainly by trees, fre-
quently together with isoprene (C5H8), which has the high-
est global emission of all organic vapours. Previous stud-
ies have shown that isoprene suppresses new-particle forma-
tion from monoterpenes, but the cause of this suppression
is under debate. Here, in experiments performed under at-
mospheric conditions in the CERN CLOUD chamber, we
show that isoprene reduces the yield of highly oxygenated
dimers with 19 or 20 carbon atoms – which drive particle nu-
cleation and early growth – while increasing the production
of dimers with 14 or 15 carbon atoms. The dimers (termed
C20 and C15, respectively) are produced by termination re-
actions between pairs of peroxy radicals (RO2

q) arising from
monoterpenes or isoprene. Compared with pure monoterpene
conditions, isoprene reduces nucleation rates at 1.7 nm (de-
pending on the isoprene /monoterpene ratio) and approxi-
mately halves particle growth rates between 1.3 and 3.2 nm.
However, above 3.2 nm, C15 dimers contribute to secondary
organic aerosol, and the growth rates are unaffected by iso-
prene. We further show that increased hydroxyl radical (OH q)
reduces particle formation in our chemical system rather
than enhances it as previously proposed, since it increases
isoprene-derived RO2

q radicals that reduce C20 formation.
RO2

q termination emerges as the critical step that determines
the highly oxygenated organic molecule (HOM) distribution
and the corresponding nucleation capability. Species that re-
duce the C20 yield, such as NO, HO2 and as we show iso-
prene, can thus effectively reduce biogenic nucleation and
early growth. Therefore the formation rate of organic aerosol
in a particular region of the atmosphere under study will vary
according to the precise ambient conditions.

1 Introduction

Nucleation of aerosol particles is observed in many environ-
ments, ranging from boreal forests to urban and coastal areas,
from polar to tropical regions, and from the boundary layer
to the free troposphere (Kerminen et al., 2018). Gaseous sul-
furic acid, ammonia (Kirkby et al., 2011), amines (Almeida
et al., 2013) and, in coastal regions, iodine (Sipilä et al.,
2016) were shown to contribute to nucleation. Additionally,
a small fraction of the large pool of organic molecules in the

atmosphere, namely highly oxygenated organic molecules
(HOMs), some of which possess extremely low vapour pres-
sures, nucleate together with other precursors as well as on
their own (Riccobono et al., 2014; Kirkby et al., 2016; Tröstl
et al., 2016). This means nature is nucleating particles on a
large scale without pollution, and this may have been espe-
cially pervasive in the pre-industrial atmosphere (Gordon et
al., 2016). HOMs can be formed with molar yields in the
single-digit percent range from the oxidation of monoter-
penes (C10H16) with endocyclic C=C double bonds (Kirkby
et al., 2016; Ehn et al., 2014). Monoterpenes are emitted by a
variety of trees in regions ranging from the tropics to north-
ern latitudes, often reaching mixing ratios of tens to hundreds
of parts per trillion by volume (pptv) (Jardine et al., 2015;
Guenther et al., 2012). Isoprene is a hemiterpene (C5H8)
emitted by broadleaf trees and has the highest emissions of
any biogenic organic compound, with concentrations reach-
ing several parts per billion by volume (ppbv) in the Amazon
rainforest and the southeastern United States despite high re-
activity (Guenther et al., 2012; Martin et al., 2010; Lee et al.,
2016). Numerous studies report suppression of nucleation in
isoprene-rich environments, even if sufficient monoterpenes
are present (Lee et al., 2016; Kanawade et al., 2011; Yu et
al., 2014; Kiendler-Scharr et al., 2009, 2012; Varanda Rizzo
et al., 2018; Wimmer et al., 2018). This isoprene suppression
effect has been demonstrated in carefully controlled chamber
studies (Kiendler-Scharr et al., 2009, 2012) and observed in
isoprene-rich ambient locations (Kanawade et al., 2011; Lee
et al., 2016; Yu et al., 2014). A recent study also reported a
suppression of secondary organic aerosol (SOA) formation
due to isoprene in an OH q-dominated chamber experiment
(McFiggans et al., 2019). In addition to observing suppres-
sion of particle formation by isoprene, earlier studies have
proposed mechanisms to explain it. One possibility is OH q
depletion by isoprene, which would reduce the oxidation rate
of monoterpenes and thus supersaturation driving nucleation
(Kiendler-Scharr et al., 2009, 2012; McFiggans et al., 2019).
However, OH q is observed to remain high and undisturbed
in isoprene-rich environments due to atmospheric OH q recy-
cling mechanisms triggered by isoprene (Taraborrelli et al.,
2012; Martinez et al., 2010; Fuchs et al., 2013). Further it was
shown that ozonolysis is crucial for HOM formation (Ehn et
al., 2014; Kirkby et al., 2016). Another proposed possibility
for isoprene suppression of nucleation is the deactivation of
sulfuric acid cluster growth due to the addition of isoprene
oxidation products (Lee et al., 2016). However, HOMs can
nucleate without sulfuric acid (Kirkby et al., 2016), and sup-
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pression of nucleation by isoprene is observed in pristine en-
vironments such as the Amazon (Martin et al., 2010).

Isoprene oxidation by OH q triggers complex peroxy-
radical chemistry with a variety of products such as
hydroxy-hydroperoxides (ISOPOOH), hydroperoxy-
aldehydes (HPALD) and second-generation low-volatility
compounds (Teng et al., 2017; Berndt et al., 2016). Isoprene
oxidation products with low volatility such as dihydroxye-
poxides (IEPOX) contribute to secondary organic aerosol
formation (Carlton et al., 2009; Krechmer et al., 2015;
Paulot et al., 2009; Surratt et al., 2010; Lin et al., 2011;
Budisulistiorini et al., 2013). Recently, the interaction of
isoprene and monoterpene oxidation chemistry was studied,
and it was found that isoprene-derived RO2 molecules
can reduce the formation of monoterpene-derived dimers
(Berndt et al., 2018b; McFiggans et al., 2019). However, the
effect of this interaction on nucleation and early growth of
particles under atmospherically relevant conditions remains
unclear so far. One consequence of this is an over-prediction
of cloud condensation nuclei (CCN) in the Amazon by
models that simulate pure biogenic nucleation but neglect
the role of isoprene in new-particle formation (Gordon et al.,
2016).

Here, we present experiments performed under atmospher-
ically relevant conditions at the CERN CLOUD chamber and
show on a molecular level how isoprene affects the chemistry
of monoterpene oxidation, thus reducing nucleation rates as
well as early growth rates.

2 Methods

The Cosmics Leaving Outdoor Droplets (CLOUD) chamber
at the European Center for Nuclear Research (CERN) is a
26.1 m3 stainless-steel aerosol chamber, in which a large va-
riety of atmospheric conditions can be recreated under pre-
cisely controlled conditions (Kirkby et al., 2011, 2016; Du-
plissy et al., 2016). The chamber is thermally insulated, and
its temperature can be precisely controlled in the range from
−65 to 100 ◦C. In order to reduce contaminations, air mixed
from cryogenic nitrogen and oxygen is used. Trace gases like
α-pinene and isoprene can be added and controlled via a two-
stage dilution system at the parts per trillion by volume level.
Mixing is ensured by two magnetically coupled fans. The
chamber is equipped with a UV excimer laser and Hg–Xe
UV lamps in order to trigger photochemistry. Ion-free con-
ditions can be generated by applying a high voltage elec-
tric field across the chamber that sweeps out naturally pro-
duced ions (neutral conditions). When this field is switched
off, ions produced by galactic cosmic rays (gcr’s) penetrat-
ing the chamber are allowed to stay inside the chamber, and
their effect on nucleation processes can be studied. Using the
CERN π+-beam increases the ion concentration artificially
(see Supplement for more detail).

The air inside the chamber is continuously analysed by
a variety of instruments. Organic precursors (α-pinene and
isoprene) are measured by a PTR3 instrument (Breitenlech-
ner et al., 2017). HOMs are measured by a nitrate chemical-
ionization atmospheric-pressure-interface time-of-flight (CI-
API-TOF) mass spectrometer (Kürten et al., 2011) that is
connected to the chamber via a 1′′ core sampling probe,
where only the inner part of the flow is sampled into the ion
source of the instrument in order to minimise wall losses.
Number concentration and size distribution of newly formed
particles are measured with an array of butanol-based con-
densation particle counters (CPCs), diethylene-glycol-based
particle size magnifiers (PSMs), and a differential mobility
analyser (DMA) train and a scanning mobility particle sizer
(SMPS) (see Supplement for more detail).

A typical experiment starts with the injection of α-pinene
into the particle-free chamber (see Figs. S1 and S2 in the
Supplement), while other parameters like temperature, hu-
midity and ozone levels are already stabilised. Oxidation
of α-pinene by both O3 and OH leads to the formation of
HOMs, which subsequently lead to the formation of parti-
cles. The experiment is continued without intervention until
a steady state in HOMs and nucleation rate has been estab-
lished. Once the nucleation and growth rates have been deter-
mined, the next experiment is performed under slightly dif-
ferent conditions. Parameters that were varied are α-pinene
and isoprene levels, ion concentration, UV illumination, sul-
furic acid concentration, temperature and relative humidity.

3 Results

We performed several experiments at +5 and +25 ◦C and
relative humidity (RH) ranging from 20 % to 80 % with most
of the experiments being carried out at 38 % RH. Ozone lev-
els ranged from 30 to 50 ppbv. We directly compare experi-
ments performed with α-pinene as the sole biogenic vapour
to experiments with a mixture of α-pinene and isoprene. α-
Pinene levels ranged from 0.33 to 2.5 ppbv, while isoprene
levels ranged from 2.5 to 10 ppbv. We thus could recreate
conditions similar to Kirkby et al. (2016), as well as to re-
gions like the Amazon (Martin et al., 2010; Yáñez-Serrano
et al., 2018) and southeastern parts of the United States (Lee
et al., 2016).

Ozone attack on the endocyclic α-pinene C=C double
bond leads to the well-described formation of highly oxy-
genated RO2

q radicals via intramolecular H shift and au-
toxidation (mainly C10H15O4,6,8,10, from now on referred
to as RO2(αp)) as well as a wide spectrum of closed-shell
monomers (mainly C10H14,16O5,7,9,11) and covalently bound
dimers (mainly C20H30O8−16 and C19H28O7−11; see Fig. 1a)
(Ehn et al., 2014; Kirkby et al., 2016; Rissanen et al., 2015;
Berndt et al., 2018b; Molteni et al., 2019). These highly
oxygenated organic molecules (HOMs) nucleate at atmo-
spherically relevant concentrations with the help of ions but
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Figure 1. Mass defect plots of neutral HOM molecules measured
with nitrate CI-API-TOF without isoprene (a) and with isoprene
added (b) at +25 ◦C. α-Pinene levels were 771 and 1326 pptv, re-
spectively. Ozone levels were 49 and 39 ppbv, respectively. Isoprene
was 4.9 ppbv in (b). Relative humidity was 38 % in (a) and (b). The
area of the marker points is linearly scaled with the intensity of the
HOM signals. Colour code shows the relative intensity change for
each HOM peak due to isoprene addition, i.e. the percentage inten-
sity change between (a) and (b). The colour for each peak is thus
the same in (a) and (b). HOM intensity in (a) was scaled up linearly
by 38 % to match [α-pinene] ·[O3] levels present in (b) to calculate
the intensity change.

without other species (e.g. sulfuric acid or bases) required
(Kirkby et al., 2016). Here, we group the HOMs according to
carbon atom number and define C5, C10, C15 and C20 classes
as the sum of all HOMs with 2–5, 6–10, 11–15 and 16–20
carbon atoms, respectively. This resembles the basic build-
ing block unit of a C5 isoprenoid skeleton.

An isoprene–ozone mixture in the CLOUD chamber pro-
duces C5H9O5−9 RO2

q radicals (referred to as RO2(ip))
which terminate to C5H8O5−8 and C5H10O5−9 monomers
and also some C10H18O8−10 dimers under UV-illuminated
conditions (see Fig. S5a, b). The C5H9O5−9 radicals origi-
nate presumably from an OH q addition to isoprene and sub-
sequent autoxidation. Under dark conditions, when the only
source of OH q is isoprene ozonolysis at 26 % yield (Malkin
et al., 2010), we observe only C5 monomers. None of these
molecules are able to nucleate under atmospherically rel-
evant conditions despite having an oxygen-to-carbon ratio
(O : C)≥ 1, which agrees with earlier observations that prod-
ucts from isoprene ozonolysis do not drive significant new-
particle formation (Kamens et al., 1982; Riva et al., 2017).

When isoprene is present together with α-pinene and
ozone, the HOM chemistry of α-pinene is altered. We ob-
serve the appearance of C15 and an increase in C5 class

molecules compared to α-pinene-only conditions as well
as a decrease in C20 and C10 class molecules (see Figs. 1
and S3). Without isoprene, RO2(αp) can terminate with an-
other RO2(αp), thus forming either one C20 dimer or two
C10 monomers. Monomers can also be formed by termi-
nation with HO2 or unimolecular termination (Rissanen et
al., 2015). The presence of RO2(ip) offers additional ter-
mination channels (Berndt et al., 2018a) (see Fig. 2) and
acts as an additional loss term for RO2(αp). Reactions be-
tween RO2(ip) and RO2(αp) are expected to result in C5
and C10 monomers as well as C15 dimers. Most importantly,
the reduced RO2(αp) steady-state concentrations lead to a
reduction of C20 class dimers by roughly 50 % (depending
on detailed conditions) compared to their level in the ab-
sence of isoprene for all studied α-pinene concentrations (see
Fig. S3). To our knowledge the only study that presented am-
bient measurements of HOMs for an isoprene-rich region is
from the SOAS campaign (Southern Oxidant and Aerosol
Study, Alabama, USA) (Massoli et al., 2018). When com-
paring our results with this study, we find good qualitative
agreement for the distribution of HOMs with strong contri-
butions in the C5 and C10 region and lesser contributions in
the C15 and C20 region. We have to caution however that the
C15 signal in the reported HOM distribution could also be
caused by sesquiterpene products. Additionally, the presence
of NOx affects HOM chemistry in Alabama, which also leads
to C20 reduction (Lehtipalo et al., 2018).

We measured the particle formation rate directly at a
1.7 nm cut-off diameter with a scanning particle size mag-
nifier (PSM) under neutral (high-voltage field cage switched
on; see Supplement for details) and ion conditions (high-
voltage field cage switched off, allowing for galactic cosmic
ray (gcr) ionisation in the chamber), further referred to as Jn
and Jgcr (see Supplement for detail). Figure 3a shows Jn and
Jgcr plotted against the total HOM concentration (the sum of
the C5, C10, C15 and C20 classes) for the α-pinene-only case
and α-pinene + isoprene. For +5 ◦C we find good agree-
ment with Kirkby et al. (2016). However, the presence of
isoprene and the consequent change in oxidation chemistry
reduce Jgcr by a factor of 2 to 4 and Jn even more by around
1 order of magnitude at 5 ◦C. The suppression is stronger for
lower α-pinene concentrations and thus higher values of R
(the ratio of isoprene to monoterpene carbon).

The larger gap between Jgcr and Jn with isoprene present
compared to α-pinene-only conditions is direct evidence that
isoprene oxidation products destabilise the nucleating clus-
ters, thus making cluster stabilisation through the presence
of charge more efficient. This also confirms that C20 class
molecules are mainly responsible for pure biogenic nucle-
ation (Frege et al., 2018). C15 class molecules, which tend to
counteract the losses of the C20 class, do not prevent a de-
crease in J . Earlier studies have already suggested that C10
class molecules do not possess low enough vapour pressure
to qualify as extremely low-volatility organic compounds
(Kurtén et al., 2016; Tröstl et al., 2016) and thus do not drive
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Figure 2. Proposed mechanism for the interference of isoprene in α-pinene oxidation chemistry. The pathway of HOM formation of an
α-pinene–ozone mixture alone is indicated by red arrows. When isoprene is present, the green arrows indicate the additional interference of
isoprene in α-pinene oxidation chemistry via RO2

q radicals. The oxidation of α-pinene in the conditions used in our experiments is dominated
by ozonolysis. After the initial ozone attack a C10H15O4, peroxy radical forms via a vinylhydroperoxide channel (VHP), which can undergo
various intramolecular H shifts and autoxidation steps. Thus the chain of RO2(αp) mostly consists of C10H15O4,6,8,10. These radicals can
terminate either via reaction with other RO2

q radicals, via reaction with HO2 or via unimolecular processes. The resulting closed-shell
products are then either covalently bound C20 class dimers, which are mostly responsible for nucleation, or C10 class monomers. Possible
fragmentation might also lead to a low number of C5 and C15 class molecules being formed even without isoprene present. Isoprene oxidation
is dominated by reactions with OH q in the CLOUD chamber, which produce a series of C5 RO2

q radicals (C5H9O3,6,7,8,9). These RO2(ip)
radicals can now interfere in the termination of RO2(αp). The reaction of RO2(ip) with RO2(αp) can lead to C15 class dimers, C10 class
monomers or C5 class monomers. The reaction of RO2(ip) with another RO2(ip) can lead to C10 class dimers or C5 class monomers. The
presence of RO2(ip) reduces the steady-state concentration of RO2(αp), as it acts as an additional sink for RO2(αp). This directly reduces
the formation of C20 class dimers, as two RO2(αp) radicals are needed to form one C20 class dimer. We link this reduction of C20 class
dimers to the reduction of biogenic nucleation and early growth rates in the presence of isoprene.

nucleation, leaving C20 class molecules as the most likely
nucleator molecules. At +25 ◦C and UV light illumination,
we find that nucleation rates of the pure α-pinene system are
reduced by a factor of about 2–3 compared to +5 ◦C. This is
a much smaller reduction in nucleation rate compared to, e.g.
the inorganic sulfuric acid water system, for which the same
temperature increase reduces nucleation rates by around 2
orders of magnitude (Kirkby et al., 2011) due to an increase
in vapour pressure at warmer temperatures. In our organic
system, however, accelerated oxidation chemistry counters
the effect of higher vapour pressures. This includes a higher
rate of initial oxidation of α-pinene by ozone, as well as
a faster autoxidation process, which leads to HOMs with
generally higher oxygen content. When we add isoprene at
+25 ◦C with a constant ratio of isoprene to monoterpene car-
bon (R = 2), we find a reduction in Jgcr of around a factor of
about 2. Similar to the data at+5 ◦C whereR ranges from 1.6
to 6.5, we expect a stronger decrease for higher values of R.
This can be understood as higher isoprene concentrations en-
hance RO2(ip) formation, which in turn reduces C20 produc-
tion and subsequent nucleation. R can reach levels around
15 in the Amazon (Greenberg et al., 2004) and around 26
in Michigan (Kanawade et al., 2011), where we would thus
expect an even stronger isoprene effect on nucleation.

Comparing HOM formation and nucleation for three dif-
ferent α-pinene and isoprene settings, we observe that the ad-
dition of 2.7 ppbv of isoprene to an α-pinene–ozone mixture
(770 pptv and 49 ppbv, respectively) mitigates C20 produc-
tion and reduces J1.7 from 3.2 to 0.81 cm−3 s−1 (see Fig. S6).
A rough doubling of both the α-pinene and isoprene lev-
els to 1326 pptv and 4.87 ppbv, respectively, increases over-
all HOM production; however, C20 levels and consequently
J1.7 remain lower than in the original pure α-pinene setting
without isoprene. Thus even increasing monoterpene concen-
trations can lead to lower J values when isoprene is added
as well. Additional evidence for the important role of C20
is shown in Fig. S9. Regressing each individual HOM peak
with Jgcr gives high coefficients of determination for C20
class molecules.

It has been argued that OH q depletion by isoprene is re-
sponsible for the absence of nucleation in isoprene-rich envi-
ronments (Kiendler-Scharr et al., 2009, 2012); however, un-
der atmospheric conditions, isoprene-induced OH q recycling
can lead to undisturbed high OH q levels, which might not be
true in chamber experiments (Taraborrelli et al., 2012; Mar-
tinez et al., 2010; Fuchs et al., 2013). In our study we also
see an OH q depletion effect due to isoprene addition (see
Fig. S1 and Supplement for detailed discussion). However,
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Figure 3. Pure biogenic nucleation rates at 1.7 nm diameter (a) and growth rates (b, c) against total HOM concentration with and without
isoprene added at +5 and +25 ◦C. HOM total is defined as the sum of C5, C10, C15 and C20 carbon classes. Relative humidity is 38 % for
all data points. (a) Triangles represent Jgcr and circles Jn. Small grey points were taken from Kirkby et al. (2016). Magenta edges indicate
UV-illuminated conditions at +5 ◦C; at +25 ◦C all data points are with UV light on. Colour shows isoprene-to-monoterpene carbon ratio
(R). Black solid and dashed–dotted lines are parameterisations of Jgcr and Jn from Kirkby et al. (2016). Red solid and dashed–dotted lines
are power-law fits to Jgcr and Jn in the presence of isoprene at +5 ◦C. Thick solid black and red lines represent power-law fits to +25 ◦C
data for α-pinene only and α-pinene+ isoprene systems. Bars indicate 1σ run-to-run uncertainty. The overall systematic scale uncertainty
of HOMs of +78 % and −68 % and of J for ±47 % is not shown. In (b) and (c), triangles represent α-pinene only and circles represent
α-pinene+ isoprene conditions. Marker colour indicates the size range in which growth rate was measured: dark blue 1.3–1.9 nm (measured
by scanning PSM), light blue 1.8–3.2 nm, orange 3.2–8.0 nm (both measured by DMA train) and red 5.0–15 nm (measured by nano-SMPS).
Bars indicate 1σ uncertainties in growth rate estimation. Dashed lines are linear fits to α-pinene-only data points; solid lines are linear fits to
α-pinene+ isoprene conditions.

if OH q depletion were the reason for suppression of nucle-
ation, an increase in OH q would lead to an increase in the
nucleation rate. When we increase OH q levels by switch-
ing on UV lights in the presence of isoprene, this reduces
RO2(αp) further, as well as the C20 and C10 class molecules,
while enhancing the C5 and C15 classes (see Figs. S1, S4
and S5c, d as well as the Supplement for details). Accord-
ingly, J is also reduced slightly instead of being increased.
In the atmosphere with considerable OH q recycling, this ef-
fect, and therefore the suppression of new-particle formation,
would be even stronger. We can understand this OH q effect
by comparing the reactivity of α-pinene and isoprene towards
OH q at our given concentrations. For 300 and 1200 pptv the
reactivity of α-pinene towards OH q at +5 ◦C ([αp] ·kαpOH)
is 25.1 and 6.3 times lower, respectively, than the reactiv-
ity of 4 ppbv isoprene towards OH q ([ip] ·kipOH). At +25 ◦C
these numbers are similar (25.4 and 6.3, respectively). This
implies that any additional OH q provided by UV illumina-
tion will favour the formation of additional RO2(ip) instead
of RO2(αp), thus favouring the formation of C15 over C20
and consequently reducing nucleation rates. OH q does not
enhance nucleation in this chemical system; it suppresses it.

We performed experiments at +25 ◦C with three different
levels of relative humidity (20 %, 38 % and 80 %) to probe
the effect of water on new-particle formation. Changes in
humidity do not significantly affect HOM formation and Jgcr
(see Fig. S7). Jn increased slightly with humidity, showing an
increased stabilisation of nucleating clusters by water; how-
ever, in gcr conditions, this role is fulfilled more efficiently
by ions.

We further studied the effect of sulfuric acid on nucle-
ation of an α-pinene–isoprene mixture (about 1300 pptv and
4.5 ppbv, respectively) in experiments with excess ammo-
nia (0.4–2.5 ppbv) in order to reproduce typical conditions
in the eastern parts of the United States (Lee et al., 2016).
We find that sulfuric acid does not enhance biogenic nucle-
ation up to a concentration of 5× 106 cm−3 (see Fig. S8).
This decoupling of biogenic nucleation from low sulfuric
acid levels is similar to the pure α-pinene system reported
in Kirkby et al. (2016). At sulfuric acid levels higher than
5× 106 cm−3, nucleation rates depend strongly on sulfuric
acid levels, which agrees with a wide variety of atmospheric
measurements (Kirkby et al., 2016). In the Amazon, sulfu-
ric acid levels are typically in the range of 1–5× 105 cm−3

(Kanawade et al., 2011), well below the threshold value of
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5× 106 cm−3. In Alabama this threshold was exceeded only
three times in a 45 d measurement period due to transported
sulfur plumes, which led to two events of particles grow-
ing to larger sizes (Lee et al., 2016). In Michigan, sulfuric
acid concentrations are typically in the range of 1×106 cm−3

(Kanawade et al., 2011). Sulfuric acid is thus not an impor-
tant contributor to nucleation in the Amazon as well as dif-
ferent regions of the eastern United States.

We measured the growth rates of freshly nucleated parti-
cles from 1.3 nm onwards with a scanning particle size mag-
nifier, a DMA train and a nano-SMPS (see Supplement for
details). The change in HOM chemistry caused by concur-
rent isoprene oxidation reduces the growth rates of particles
in the range of 1.3–1.9 and 1.8–3.2 nm roughly by a factor
of 2 (Fig. 3b, c). This confirms that C15 class molecules have
a higher saturation vapour pressure than C20 class molecules
and are thus less efficient than C20 class molecules at caus-
ing growth of the smallest particles. Likewise, most C10 class
molecules are too volatile to contribute significantly to the
early stages of growth (Tröstl et al., 2016). For the size range
from 3.2 to 8.0 nm and larger, we observed no suppression
effect due to isoprene, indicating that molecules smaller than
C20 are capable of condensing onto larger particles. We find a
linear relationship of growth rate vs. C20 for 1.3–1.9 and 1.8–
3.2 nm, regardless of isoprene presence. For larger sizes the
linear relationship is independent of isoprene presence, when
plotted against C15+C20; this again indicates that C15 con-
tributes to growth at larger sizes (Fig. S10). Besides C15 and
C20, however, even lighter and less oxygenated molecules
can contribute to particle growth at larger sizes (Stolzenburg
et al., 2018). Growth rates at +25 ◦C are typically halved
compared to +5 ◦C due to higher saturation vapour pressure
of the HOMs (Stolzenburg et al., 2018), which leads to a
higher chance of particles being scavenged while growing,
even more so in the presence of isoprene.

Figure 4 shows the formation rate of particles measured at
diameters of 1.7, 2.2, 2.5 and 6 nm for gcr conditions and six
concentration values (low, middle and high α-pinene mix-
ing ratios with and without isoprene) at +25 ◦C. We find
that due to the reduced growth rates in the presence of iso-
prene, a moderate reduction of formation rates at 1.7 nm be-
comes much more pronounced, while the particles grow to
larger sizes. When we compare α-pinene-only data (771 pptv
α-pinene, 49 ppbv O3) with a mixture (1320 pptv α-pinene,
39 ppbv O3 and 4.9 ppbv isoprene, orange data points in
Fig. 4), J1.7 is reduced by 45 %, while the corresponding
formation rate at 6 nm is reduced by an order of magni-
tude. The corresponding precursor concentrations are sim-
ilar to conditions found in Alabama for example (Lee et
al., 2016). Isoprene can thus drastically reduce the forma-
tion of particles larger than 6 nm even at relatively warm
temperatures like +25 ◦C. This growth-rate-driven effect be-
comes stronger when α-pinene concentrations are reduced.
Our measurements agree with observations of small clusters
that are unable to grow efficiently, as has been reported for

Figure 4. Formation rate (gcr) vs. diameter of particles at +25 ◦C
and 38 % RH. Triangles represent α-pinene only, and circles repre-
sent α-pinene+ isoprene conditions. α-Pinene levels were 456, 771
and 1442 pptv for triangles and 677, 1326 and 2636 pptv for circles.
Ozone levels were 49 ppbv for triangles and 38 to 40 ppbv for cir-
cles. Isoprene levels ranged from 2.7 to 9.8 ppbv for circles. Colour
code represents HOM concentration. Bars indicate overall scale un-
certainty for formation rates of±47 %. The uncertainty in the diam-
eters is ±0.3 nm. Dashed and solid lines are lines to guide the eye.
The steeper slope at lower-diameter values is caused by the Kelvin
effect, i.e. a smaller growth rate at small sizes that leads to higher
losses of newly formed particles. The formation rate measurements
at 2.2 and 2.5 nm for the lowest α-pinene–isoprene setting (cyan
circles) are upper limits.

Alabama (Lee et al., 2016) and the Amazon (Wimmer et al.,
2018). Increased levels of pre-existing aerosols (i.e. conden-
sation sink) can scavenge freshly nucleated particles (Dada et
al., 2017); however, due to the reduced initial growth rates,
the likelihood for that process at a given condensation sink
is increased when isoprene is present compared to α-pinene-
only conditions.

4 Discussion

Pure biogenic nucleation was first described for α-pinene ox-
idation in the CLOUD chamber (Kirkby et al., 2016). Global
evaluation of this process with the help of atmospheric mod-
elling found an over-prediction of CCN concentrations in the
Amazon, leading to speculation about an as yet unaccounted-
for chemical suppression mechanism for new-particle for-
mation involving isoprene (Gordon et al., 2016). With our
findings, we provide the molecular understanding for such
a mechanism and identify C20 class molecules as the main
drivers of biogenic nucleation and early growth. This al-
lows us to refine our understanding of biogenic nucleation
for isoprene-rich regions, while at the same time large por-
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tions of the atmosphere where biogenic nucleation is very
important remain unaffected by our findings, especially bo-
real forests (Gordon et al., 2016).

Suppression of new-particle formation by isoprene was
previously attributed to competition for OH q radicals during
the initial oxidation of volatile organic compounds (VOCs),
which was then thought to be followed by independent ox-
idation pathways (Kiendler-Scharr et al., 2009). Instead we
show that the suppression takes place via RO2

q radical inter-
actions that strongly couple the oxidation chains of monoter-
penes and isoprene.

McFiggans et al. (2019) showed that the same RO2
qmech-

anism that we describe here is also responsible for reduced
SOA formation, together with an additional OH q scavenging
effect. The oxidation chemistry in McFiggans et al. (2019)
was dominated (> 90 %) by OH q for both monoterpenes and
isoprene. In our experimental conditions, monoterpene ox-
idation was dominated by ozone, which is more common
in the atmosphere, and we demonstrate the importance of
the RO2

q mechanism directly in these conditions. Addition-
ally, while the precursor concentrations in McFiggans et
al. (2019) were much higher than typical atmospheric levels,
the precursor levels in the current study resemble the atmo-
sphere more closely. This is especially important as HOM
formation is not a linear process and can thus not be scaled
down to atmospheric levels in a straightforward manner.

All extrapolations of chamber experiments to atmospheric
conditions must be treated with care; for example, it has been
shown that isoprene OH q scavenging is stronger in common
chamber conditions than in ambient conditions, where OH q
recycling (e.g. by HPALD photolysis) counters the OH q con-
sumption by isoprene (Taraborrelli et al., 2012).

McFiggans et al. (2019) also show that OH q scavenging by
isoprene is important for reduced SOA formation. We also
find a reduction in OH q levels due to isoprene addition in
the CLOUD chamber. However, this is not the reason for
the suppression of nucleation and early growth rates in our
experiments. Quite to the contrary, the dominant effect of in-
creased OH q in our experiments is to increase RO2(ip) due to
the fast reaction between isoprene and OH q; OH q thus sup-
presses C20 dimers and nucleation rates in our chemical sys-
tem. Thus, while increased OH q levels restore SOA forma-
tion partially in the coupled monoterpene–isoprene system,
as shown by McFiggans et al. (2019), they suppress nucle-
ation in our experiments. This further highlights the impor-
tant differences between SOA formation with pre-existing
seed particles on the one hand and the nucleation of new
particles on the other hand. SOA mass production and nu-
cleation are not the same thing. SOA formation with pre-
existing particles can include molecules possessing compar-
atively high saturation vapour pressures; however, due to the
Kelvin effect (Tröstl et al., 2016), nucleation depends crit-
ically on molecules with extremely low saturation vapour
pressure. Most of the C20 and C15, many of the C10, and
some of the C5 products can form SOA mass, whereas nucle-

ation under atmospheric conditions is driven largely by the
C20 dimers. Even replacing C20 with C15 dimers suppresses
nucleation, as shown in this study.

Our findings are significant beyond the α-pinene–isoprene
system, as they indicate the interaction of a variety of at-
mospheric VOCs with monoterpene-derived HOM formation
and new-particle formation. Given that RO2(αp) and RO2
(VOC) reaction rates are competitive (see Supplement for
details), VOCs whose RO2

q radicals lead to products that are
smaller than C20 when reacting with RO2(αp) (i.e. reduce the
ELVOC (extremely low-volatility organic compounds) frac-
tion in the HOM distribution) are expected to reduce biogenic
nucleation and early growth. On the other hand, VOCs that
lead to C20 class or larger molecules are expected to acceler-
ate both processes. RO2

q termination emerges as the critical
step in ELVOC formation and subsequently biogenic new-
particle formation. The suppression of biogenic new-particle
formation by isoprene and potentially other lighter VOCs,
NOx (Lehtipalo et al., 2018) and elevated HO2 concentra-
tions proceeds along the same lines of RO2

q termination
and subsequent C20 reduction, highlighting the importance
of C20 class molecules for biogenic new-particle formation.

In summary, we find that isoprene interferes with α-pinene
HOM chemistry via RO2

q peroxy-radical termination. When
isoprene is present, fewer C20 class molecules are formed,
which directly reduces the nucleation rate. We show that C20
class molecules act as “nucleator” species. The reduction of
nucleation rate becomes stronger with higher isoprene-to-
monoterpene carbon ratio (R), consistent with earlier ob-
servations (Kiendler-Scharr et al., 2009); however, in the
monoterpene–isoprene chemical system, increased OH q does
not enhance nucleation, but, on the contrary, reduces it due
to C20 class reduction. Biogenic nucleation in the α-pinene–
isoprene system is not affected by typical concentrations of
sulfuric acid found in the Amazon or in eastern parts of
the United States. The change in monoterpene HOM chem-
istry due to isoprene reduces organic growth rates in the
1.3–3.2 nm range by around 50 %, which strongly reduces
the probability that the smallest, freshly nucleated particles
will survive scavenging as they grow to larger sizes. While
other factors can also inhibit nucleation (e.g. NOx , Wildt et
al., 2014, or a high condensation sink, Dada et al., 2017),
isoprene can make the difference between measurable new-
particle formation events and their absence under a variety of
atmospheric conditions.
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