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Abstract 16 

Genomic imprinting gives rise to parent-of-origin dependent allelic gene expression.  Most 17 

imprinted genes cluster in domains where differentially methylated regions (DMRs)—carrying 18 

CpG methylation on one parental allele—regulate their activity.  Several imprinted DMRs bind 19 

CTCF on the non-methylated allele. CTCF structures TADs (“Topologically Associating 20 

Domains”), which are structural units of transcriptional regulation.  Recent investigations show 21 

that imprinted domains are embedded within TADs that are similar on both parental 22 

chromosomes. Within these TADs, however, allelic sub-domains are structured by 23 

combinations of mono- and bi-allelic CTCF binding that guide imprinted expression.  This 24 

emerging view indicates that imprinted chromosomal domains should be considered at the 25 

overarching-TAD level, and questions how CTCF integrates with other regulatory proteins and 26 

lncRNAs to achieve imprinted transcriptional programs.  27 
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Introduction 28 

Genomic imprinting, the process whereby parental origin dictates mono-allelic gene expression 29 

in the offspring, is amongst the best-studied epigenetic phenomena in mammals [1]. It is 30 

controlled by CpG methylation marks that are inherited from the mother, via the oocyte, or 31 

from the father, via the sperm. These epigenetic “imprints”, and the associated balancing of 32 

transcriptional output, is essential for development, growth, metabolism and behavior [2]. 33 

Several hundred imprinted genes have been identified in humans and mice, which include 34 

many non-coding RNAs (ncRNAs) including several well-characterized regulatory long 35 

ncRNAs (lncRNAs) [3-5]. 36 

A majority of imprinted genes clusters in chromosomal domains of up to several mega-bases in 37 

size. Each domain contains a CpG island that is marked by a parent-of-origin DNA methylation 38 

imprint in the germline, a so-called germline “Differentially Methylated Region” (gDMR) or 39 

“Imprinting Control Region” (ICR). These gDMRs are maintained in the developing embryo 40 

where they are essential for mono-allelic gene expression in the entire domain [6]. A plethora 41 

of nuclear proteins contribute to the somatic stability of gDMRs, which shows considerable 42 

overlap with chromatin repression at endogenous retroviruses [7]. 43 

How imprinted DMRs instruct mono-allelic gene expression is less well understood. At some 44 

domains, the gDMR encompasses a gene promoter, which may directly induce allelic 45 

repression of the linked gene. At most imprinted domains however, more complex mechanisms 46 

are involved that can affect genes at considerable distances from the gDMR [3,4,6]. These 47 

observations have raised the question if methylation imprints regulate their target genes through 48 

long-range chromatin interactions. In this review, we focus on this aspect of imprinted domain 49 

organization. 50 

 51 

Binding dynamics of the CTCF insulator protein at imprinted domains 52 

A key finding after the discovery of gDMRs was the allelic recruitment of the “CCCTC-53 

binding factor” (CTCF) to a subset of gDMRs [8-10]. This zinc-finger protein, whose DNA 54 

binding is inhibited by CpG methylation, was initially recognized for its chromatin boundary 55 

function [11-13]. At the imprinted Igf2-H19 (Insulin-like growth factor-II) domain, the gDMR 56 

(“H19 ICR”) is intergenic and methylated on the paternal allele (Figure 1a). Within this 2-kb 57 

ICR, multiple CTCF sites are bound on the (non-methylated) maternal allele. Various studies 58 

have revealed that this maternal CTCF binding insulates the Igf2 gene from enhancers located 59 
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on the other side of the domain. Consequently, Igf2 is expressed from the paternal chromosome 60 

predominantly [14-17]. In mouse cells, perturbation of CTCF binding at the H19 ICR causes 61 

bi-allelic (and increased) Igf2 expression [18]. In human patients, similarly, maternally 62 

transmitted micro-deletions that affect CTCF binding increase IGF2 activity, which leads to the 63 

congenital overgrowth syndrome Beckwith-Wiedemann Syndrome (BWS) [19]. 64 

Allelic binding of CTCF has also been identified at other imprinted domains, including the 65 

growth-related Dlk1-Dio3, Kcnq1 and PEG13 domains (Figure 1b-d) [20-23]. Similar to the 66 

Igf2-H19 domain, CTCF is recruited to imprinted DMRs at these domains, where it controls the 67 

activity of distant promoters. At the Dlk1-Dio3 domain, recruitment occurs not at the gDMR 68 

though, but within a secondary DMR that is established in the pre-implantation embryo (Figure 69 

1b) [20,23]. At the Kcnq1 and PEG13 domains, CTCF recruitment occurs at the non-70 

methylated (paternal) copy of the gDMR (Figure 1c, d). Mutations in the gDMR of the human 71 

KCNQ1 domain can give rise to BWS upon paternal transmission, by affecting the distant, 72 

growth-related, CDKN1C gene [24]. 73 

A different CTCF binding dynamic has been described in a non-allelic study of the imprinted 74 

Zdbf2 domain (Figure 1e) [25]. In a model for early embryonic development, loss of CTCF 75 

binding at a single site in the domain perturbs the essential switch between two alternative 76 

promoters of the Zdbf2/Liz transcription unit. 77 

These examples highlight the importance of allelic and dynamic CTCF recruitment on 78 

imprinted gene regulation, and prompted the interest in their underlying structural mechanisms. 79 

 80 

First snapshots of CTCF-structured chromatin architecture at imprinted domains 81 

After the development of Chromosome Conformation Capture (3C) in 2002 [26], the imprinted 82 

Igf2-H19 domain proved an attractive model to explore whether allelic CTCF recruitment 83 

mediates differential chromatin organization. The paternally-expressed Igf2 is positioned about 84 

100-kb from the maternally-expressed H19 lncRNA gene. Although limited in the number of 85 

interactions that were probed, these 3C studies yielded the valuable conclusion that H19 and 86 

the nearby enhancers had a reduced propensity for contacts with Igf2 on the maternal 87 

chromosome, as compared to the paternal chromosome (Figure 1a and 2, and e.g. [16,17]). 88 

Combined, these studies suggested that the H19 ICR -bound by CTCF on the maternal 89 

chromosome- acts as a chromatin boundary that blocks interactions between regions located on 90 

opposite sides of this gDMR (further discussed in [23]). In a similar fashion, 3C detected DNA 91 
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interactions, including promoter-enhancer loops, linked to differential CTCF binding at the 92 

paternal copy of the Kcnq1 and PEG13 gDMRs (Figure 1c, d) [21,22,27,28]. 93 

Although these 3C-based studies were instrumental in instigating the first structural models of 94 

imprinted domains, their non-comprehensive nature prevented a comprehensive view of 95 

differential chromatin organization on the parental chromosomes (Figure 2). 96 

 97 

The genomics era: global views of CTCF binding, 3D chromatin architecture and 98 

imprinted gene expression  99 

The ever-expanding toolbox of genomics assays increasingly allows the study of chromatin 100 

structure and function without prior selection of genomic regions of interest. A first finding 101 

with major implications for imprinted domains was the genome-wide co-localization of the 102 

ring-shaped Cohesin complex at CTCF-bound sites during interphase [29,30]. Based on the 103 

observation that Cohesin rings keep the sister chromatids together during mitosis, the co-104 

localization with CTCF was hypothesized to anchor DNA loops. Indeed, depletion of Cohesin 105 

ablated CTCF-structured loops at the human IGF2-H19 domain [31]. 106 

The subsequent discovery of “Topologically Associating Domains” (TADs), which appear as 107 

discrete triangles in Hi-C matrixes, drastically changed models for genome structure and 108 

transcriptional regulation [32,33]. TADs are chromatin domains, generally of several hundred 109 

kb in length, with about two-fold increased interactions over surrounding regions [34]. Within 110 

TADs, genes and their associated regulatory elements cluster, whereas CTCF binding is 111 

strongly enriched at their boundaries [32,35]. Within TADs, additional DNA loops and 112 

domains may be observed, resulting in nested sub-TAD structures (e.g. [36,37]). Depletion of 113 

CTCF or Cohesin components results in the loss of domain organization, confirming their 114 

essential roles in structuring (sub-)TADs [38,39]. 115 

Genes within imprinted domains all depend on the gDMR in cis for their regulation, and thus it 116 

may be expected that these domains reside within overarching TADs. Moreover, the 117 

identification of differential CTCF binding at gDMRs may suggest the presence of allele-118 

specific (sub-)TAD structures. Intersection of the Igf2-H19, Dlk1-Dio3 and Zdbf2 domains with 119 

Hi-C data revealed that they are indeed embedded within much larger TADs. 4C-seq 120 

experiments confirm that the imprinted domains focus their contacts within the TADs, with no 121 

difference in the position of the boundaries between the parental chromosomes or during 122 

cellular development (Figure 3) [23,25,33]. 123 
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In contrast, major allelic differences in 3D contacts can be observed within the Igf2-H19 TAD 124 

(Figure 2) [23]. The CTCF-bound maternal H19 ICR interacts with four bi-allelic CTCF sites 125 

elsewhere in the locus. As a result, the domain is split into two sub-TADs that physically 126 

insulate Igf2 from the enhancers that located near the H19 gene. In contrast, the absence of 127 

CTCF binding at the paternal H19 ICR allows Igf2 to outcompete H19 for regulatory 128 

interactions (Figure 1 and 2) [23]. Interestingly, the bi-allelic CTCF sites that interact with the 129 

H19 ICR on the maternal allele extend their loops on the paternal allele towards another bi-130 

allelic site near Igf2. A first level of sub-TAD organization is therefore present on the paternal 131 

chromosome, which is further subdivided by absence of DNA methylation and CTCF binding 132 

to the H19 ICR on the maternal allele (Figure 2) [23]. 133 

A similar allele-specific sub-TAD organization was detected at the Dlk1-Dio3 domain (Figure 134 

1) [23], which precedes the activation of the protein-coding Dlk1 gene at this imprinted locus. 135 

Compartmentalization of imprinted domains by allelic binding of CTCF at DMRs may thus be 136 

a commonly employed strategy to facilitate the setting and maintenance of imprinted 137 

transcriptional programs. How other imprinted loci are embedded within TADs, and if allelic 138 

CTCF binding implements further structural differences, remains largely to be determined. 139 

In parallel, powerful transcriptome studies allowed the systematic assessment of allele-specific 140 

gene expression in embryonic and extra-embryonic tissues, and at different developmental 141 

stages [3,4]. These comprehensive data-sets identified many new imprinted genes located near 142 

known ICRs, thus providing more accurate estimates of the size of these domains. Some 143 

imprinted domains—including the Kcnq1 and Igf2r (Igf2-receptor) loci—are likely much larger 144 

than previously thought [3,4]. Intersection with TADs may be instrumental to further delineate 145 

the maximum span of imprinted domains. 146 

 147 

A mechanistic outlook: integrating the multiple levels of imprinted gene regulation  148 

Multi-omics approaches have started to reveal how allele-specific and bi-allelic chromatin 149 

features, including 3D genome organization, CTCF binding, DNA methylation and histone 150 

modifications, establish imprinted transcriptional programs (e.g. [3,6,23,25,40]). How all these 151 

mechanisms intersect with CTCF remains interesting to further explore. Moreover, little is 152 

known with which proteins CTCF interacts at imprinted domains and how CTCF itself is 153 

modified. At the H19 ICR, CTCF can acquire high levels of poly(ADP-ribosylation) through 154 
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interaction with PARP1. Like perturbation of CTCF binding at the H19 ICR, prevention of this 155 

modification of CTCF directly influences Igf2 expression [18,41]. 156 

At all DMRs where CTCF is allele-specifically recruited, a lncRNA is transcribed from the 157 

same chromosome (Figure 1). For instance at the Dlk1-Dio3 domain, the maternal CTCF 158 

binding occurs in the first intron of the lncRNA gene Meg3, whose maternal expression is 159 

essential for the imprinting of nearby protein-coding genes [20,23,40]. For now, it remains 160 

unexplored whether these lncRNAs are mechanistically linked to CTCF, or whether they 161 

contribute independently to imprinted regulation. A recently characterized RNA binding 162 

domain (RBD) within the CTCF protein controls its recruitment to many binding sites in the 163 

genome [42,43]. Moreover, at the Igf2-H19 domain, CTCF interacts with the RNA binding 164 

protein p68, which regulates boundary function [44]. The domain-structuring function of CTCF 165 

may thus directly or indirectly be guided by RNA-binding. 166 

Another major challenge will be to unravel how these mechanisms act at the individual alleles 167 

in single cells, either in isolation or within the integrated framework of regulatory mechanisms. 168 

It remains for instance to be determined if regulatory DNA interactions occur in “hubs” or 169 

rather in a pair-wise fashion. At the cell population level, the maternal H19 ICR is observed to 170 

interact with four CTCF-bound regions (Figure 2), but if these regions concurrently interact on 171 

individual chromosomes has not been established. To tackle this issue, “multi-contact” 3C 172 

approaches like Multi-contact 4C and Tri-C may be promising, as they can pinpoint 173 

simultaneous interactions between gene promoters and pairs of enhancers [45,46]. 174 

Finally, several genomics studies have shown that TADs overlap with domains of DNA 175 

replication timing, with replication early in S phase being associated with increased gene 176 

activity [47-49]. Such a link is particularly intriguing for imprinted domains, where genes are 177 

differentially expressed between the parental chromosomes. Indeed, at the Igf2-H19, Dlk1-Dio3 178 

and other imprinted domains, imaging detected differential timing of replication between the 179 

parental chromosomes [50-53]. The extent of these replication domains, and how they 180 

originate, remains undetermined. Their integration in future multi-omics studies will add an 181 

important functional component to the sub-TAD structure of imprinted domains. 182 

 183 

Conclusions 184 

At in-depth characterized imprinted domains, CTCF creates sub-domains that act as a structural 185 

framework for enhancer-promoter contacts. Allelic CTCF binding to DMRs structures sub-186 
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TADs at the Igf2-H19 and Dlk1-Dio3 domains, thus restricting enhancer-promoter contacts and 187 

modulating imprinted gene activation (Figure 1a, b and 2). Despite similar patterns of CTCF 188 

binding at other imprinted loci, additional characterization will be required to determine if 189 

CTCF structures sub-TADs here as well (Figure 1c, d). At the Zdbf2 domain, CTCF-mediated 190 

restructuration contributes to the developmental dynamics of imprinted gene expression [25] 191 

(Figure 1e). In contrast, at the Dlk1-Dio3 locus the structure precedes imprinted gene activation 192 

[23], raising the question if imprinted domains are commonly reorganized during 193 

differentiation. 194 

The underlying mechanisms that guide the CTCF-structured reorganization between alleles and 195 

cell types remain mostly to be identified. Locus-specific integration of CTCF binding with 196 

lineage-specific (transcription) factors, histone modifying complexes, lncRNAs and larger 197 

structures like replication domains may be essential. Such integration at imprinted domains 198 

may also provide new avenues for exploring gene expression defects in BWS and other human 199 

imprinting disorders. 200 
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Figure legends 408 

Figure 1: Examples of dynamic chromatin structures and domains at imprinted domains. 409 

Schematic depiction of differential chromatin organization at imprinted domains. Domain sizes 410 

and the positions of elements are not to scale. 411 

A. At the Igf2-H19 domain, CTCF binds the intergenic gDMR (“H19 ICR”) on the maternal 412 

allele, which prevents distal enhancers from activating the proximal Igf2 gene [10,16-18,23]. 413 

B. At the Dlk1-Dio3 domain, the gDMR (ICR) functions as an enhancer on the maternal allele, 414 

to activate the nearby Meg3 lncRNA polycistron (encompassing the Rian and Mirg ncRNAs as 415 

well). CTCF binds the DMR comprising the promoter of Meg3, which contributes to the 416 

imprinted expression of the Dlk1 gene [20,23,51]. The activity and DNA contacts of the Dlk1 417 

enhancer have not been determined in an allele-specific manner. 418 

C. At the Kcnq1 domain, the intragenic gDMR (ICR, acting as the promoter for the Kcnq1-ot1 419 

lncRNA) binds CTCF on its unmethylated paternal allele, which prevents activation of the 420 

Cdkn1c gene [28]. On the opposite end of the domain, a DNA loop is formed between the 421 

Kcnq1 promoter and its enhancers [22,27]. The activity and the DNA contact of the Kcnq1 422 

enhancer have not been determined in an allelic manner. 423 

D. At the PEG13-KCNK9 domain, CTCF binds to the unmethylated allele of the gDMR (ICR, 424 

acting as the promoter for the PEG13 lncRNA), which prevents activation of KCNK9 [21]. For 425 

the chromatin loop interactions, parental alleles were not told apart. 426 

E. At the developmentally regulated mouse Zdbf2 locus, CTCF binding in embryonic stem 427 

cells (mESCs) activates Liz, an extended Zdbf2-isoform that shares characteristics with 428 

lncRNAs. Upon differentiation into epiblast-like cells (mEpiLCs), loss of CTCF binding allows 429 

Zdbf2 to interact with its enhancers [25]. CTCF binding and chromatin loops were not 430 

distinguished in an allele-specific manner. 431 

 432 

Figure 2: Allelic CTCF binding to the H19 ICR structures allelic sub-TADs at the imprinted 433 

Igf2-H19 domain. 434 

A. Non-allelic Hi-C experiments revealed that the H19 and Igf2 genes are located in a TAD 435 

that spans 450 kb [33]. 436 
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B.  4C-seq interactions (H19 ICR viewpoint) and CTCF ChIP-seq signal on the maternal (red) 437 

and paternal (blue) chromosomes within the Igf2-H19 TAD. Genes and enhancers are indicated 438 

as in Figure 1. Maternal-allele CTCF binding to the H19 ICR (red arrow) coincides with the 439 

formation of four DNA loops towards four bi-allelic CTCF binding clusters at the left part of 440 

the TAD. Without CTCF binding to the ICR, on the paternal chromosome, these loops are 441 

absent. Relative to the overarching TAD structure, a single sub-TAD is present on the paternal 442 

chromosome that contains the active Igf2 gene, the inactive H19 gene and the nearby enhancers 443 

(blue ovals). CTCF binding at the maternal H19 ICR splits this organization into two sub-444 

TADs (red ovals) [23]. In-between the maternal and paternal 4C data, results from two 3C 445 

studies are plotted [16,17]. Blue arches indicate paternal-specific DNA loops and red arches 446 

maternal-specific loops. The 3C data support the notion that DNA contacts are contained within 447 

sub-TADs, but the investigated region probed in all 3C studies (white domain) was too 448 

restricted to detect this overarching organization. 449 

 450 

Figure 3: The TAD overarching the Igf2-H19 domain is similarly positioned on the maternal 451 

and paternal chromosomes. 452 

A. TAD structure surrounding the Igf2-H19 domain as identified by non-allelic Hi-C. The 453 

positions of the TAD boundaries are indicated with black dashed lines [33]. 454 

B.  4C-seq interactions of 3 viewpoints located within the Igf2-H19 TAD, with signal on the 455 

maternal chromosome in red and signal on the paternal chromosome in blue (viewpoints: 456 

arrowheads) [23]. The three viewpoints (black triangles) have different positions within the 457 

TAD and different allele-specific patterns of intra-TAD contacts. Yet, on both chromosomes 458 

they restrict their contacts within the same overarching TAD, as reflected by the strong drop of 459 

interactions outside the boundaries. 460 


