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Control of collective dynamics with time-varying weights

This paper focuses on a model for opinion dynamics, where the influence weights of agents evolve in time. We formulate a control problem of consensus type, in which the objective is to drive all agents to a final target point under suitable control constraints. Controllability is discussed for the corresponding problem with and without constraints on the total mass of the system, and control strategies are designed with the steepest descent approach. The mean-field limit is described both for the opinion dynamics and the control problem. Numerical simulations illustrate the control strategies for the finite-dimensional system.

Introduction

Social dynamics models are used to describe the complex behavior of large systems of interacting agents. Application areas include examples from biology, such as the collective behavior of animal groups [START_REF] Bellomo | On the mathematical theory of the dynamics of swarms viewed as complex systems[END_REF][START_REF] Couzin | Collective memory and spatial sorting in animal groups[END_REF][START_REF] Giardina | Collective behavior in animal groups: theoretical models and empirical studies[END_REF][START_REF] Krause | Living in groups. Oxford series in ecology and evolution[END_REF], aviation [START_REF] Tomlin | Conflict resolution for air traffic management: A study in multiagent hybrid systems[END_REF], opinion dynamics [START_REF] Hegselmann | Opinion dynamics and bounded confidence models, analysis, and simulation[END_REF] and other. In most applications, a key phenomenon observed is that of self-organization, that is the spontaneous emergence of global patterns from local interactions. Self-organization patterns include consensus, alignment, clustering, or the less studied dancing equilibrium [START_REF] Aydoğdu | Opinion dynamics on Riemannian manifolds[END_REF][START_REF] Caponigro | A nonlinear model of opinion formation on the sphere[END_REF]. In another direction, the control of such systems was addressed in the control community with a wealth of different approaches, see [START_REF] Bullo | Distributed control of robotic networks: a mathematical approach to motion coordination algorithms[END_REF][START_REF] Ew Justh | Equilibria and steering laws for planar formations[END_REF][START_REF] Hg Tanner | Flocking in Fixed and Switching Networks[END_REF].

This paper focuses on models for opinion dynamics. A long history started back in the 50's, see [START_REF] French | A formal theory of social power[END_REF][START_REF] Harary | A criterion for unanimity in french's theory of social power[END_REF], then linear models were studied by De Groot [START_REF] De Groot | Reaching a consensus[END_REF] and others, while among recent approaches we can mention the bounded-confidence model by Hegselmann and Krause of [START_REF] Hegselmann | Opinion dynamics and bounded confidence models, analysis, and simulation[END_REF], see also [START_REF] Hegselmann | Understanding complex social dynamics -a plea for cellular automata based modelling[END_REF][START_REF] Krause | A discrete nonlinear and non-autonomous model of consensus formation[END_REF]. In most of the existing models, interactions take place between pairs of individuals (typically referred to as agents) and depend only on the distance separating the two agents. More recently, a model was introduced in which the interactions are proportional to the agents' weights of influence, which can evolve over time according to their own dynamics [START_REF] Ayi | Mean-field and graphs limits for collective dynamics models with time-varying weights[END_REF][START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF][START_REF] Piccoli | Measure-theoretic models for crowd dynamics[END_REF][START_REF] Duteil | Mean-field limit of collective dynamics with time-varying weights[END_REF]. This augmented framework allows us to model opinion dynamics in which an agent's capacity to influence its neighbors depends not only on their proximity but also on an internal time-varying characteristic (such as charisma, popularity, etc.). Four models were proposed in [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF] for the time-varying weights: the first model allows agents to gain mass in pairwise interactions depending on midpoint dynamics; the second increases the weights of agents that influence the most the other agents; and the third and fourth focus on the capability to attract the most influential agents. In particular, the developed theory allows to address control problems, which is the focus of the present paper.

The main idea is that an external entity (for instance with global control) may influence the dynamics of agents by increasing the weights of some of them. We thus assume that a central controller is able to act on each agent but possibly influence just a few at a time, thus also looking for sparse control strategies. We first formulate the control problem by allowing a direct control of weights but imposing the total sum of weights to be constant, resulting in a linear constraint on allowable controls. Under natural assumptions on the interaction kernel we show that the convex hull of the agents' positions is shrinking, thus we look for control strategies stabilizing to a specific point of the initial convex hull.

The constraints on the control and given by the dynamics (shrinking convex hull) prevent a complete controllability of the system. However, we show that any target position strictly within the initial convex hull of the system can be reached given large enough bounds on the control. We then look for a greedy policy by maximizing the instantaneous decrease of the distance from the target point. This gives rise to a steepest descent algorithm which is formulated via the linear constraints of the problem. Under generic conditions, the solution is expected to be at a vertex of the convex set determined by constraints.

As customary for multi-agent and multi-particle systems, we consider the meanfield limit obtained when the number of agents tends to infinity. In classical models without mass variation, the limit measure satisfies a transport-type equation with non-local velocity. Here, due to the presence of the weight dynamics, our mean-field equation presents a non-local source term. We formulate a control problem for the mean-field limit and show how to formulate the control constraints in this setting.

In the last section we provide simulations for the finite-dimensional control algorithm and illustrate how the control strategies reach the final target in the various imposed constraints.

Control problems

We consider a collective dynamics system with time-varying weights, introduced in [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF]. Let x 0 ∈ (R d ) N represent the N agents' initial positions (or opinions) and m 0 ∈ (R + ) N represent their initial weights of influence. We denote by a ∈ C(R + , R + ) the interaction function. Lastly, let M = N i=1 m 0 i denote the initial mass of the system. In this model, the evolution of each agents' state variable x i (t) depends on its interaction with other agents through the interaction function a (as in the classical Hegselmann-Krause dynamics [START_REF] Hegselmann | Opinion dynamics and bounded confidence models, analysis, and simulation[END_REF]), weighted by the other agents' weights of influence m i (t). The weights of influence also evolve in time due to their own dynamics. More precisely, the evolution of the N positions and weights is given by the following system:

               x i (t) = 1 M N j=1 m j (t)a( x i (t) -x j (t) ) x j (t) -x i (t) , m i (t) = m i (t)ψ i (x(t), m(t)) x i (0) = x 0 i , m i (0) = m 0 i . (1) 
We have established in [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF] the well-posedness of (1) along with the following hypotheses:

Hypothesis 1 The function s → a( s )s is locally Lipschitz in R d , and the function

ψ is locally bounded in (R d ) N × R N . Hypothesis 2 For all (x, m) ∈ (R d ) N × R N , N i=1 m i ψ i (x, m) = 0. ( 2 
)
Note that Hypothesis 2 is not necessary for the well-posedness of (1). It is a modeling choice which enforces conservation of the total mass of the system, so that the weights m i are allowed to shift continuously between agents, but their sum remains constant. We refer the reader to [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF] for a detailed analysis of this system for various choices of the weight dynamics, exhibiting behaviors such as emergence of a single leader, or emergence of two co-leaders.

In the present paper, we aim to study the control of system (1) by acting only on the weights of influence. Let Ω(x) denote the convex hull of x, defined as follows.

Definition 1 Let (x i ) i ∈ {1, ••• , N } ∈ (R d ) N . Its convex hull Ω is defined by: Ω = N i=1 ξ i x i | ξ ∈ [0, 1] N and N i=1 ξ i = 1 .
It was shown in [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF] that for the dynamics (1)-(2), the convex hull Ω(x(t)) is contracting in time, i.e. for all t 2 ≥ t 1 ≥ 0, Ω(x(t 2 )) ⊆ Ω(x(t 1 )). Given α ∈ R + and A ∈ R + , we define two control sets U α ∞ and U A 1 :

U α ∞ = {u : R + → R N measurable, s.t. |u i | ≤ α} U A 1 = {u : R + → R N measurable, s.t. N i=1 |u i | ≤ A}.
We also define a set of controls that conserve the total mass M of the system:

U M = {u : R + → R N measurable, s.t. N i=1 m i u i = 0}.
From here onwards, U will stand for a general control set, equal to either

U A 1 , U α ∞ , U A 1 ∩ U M or U α ∞ ∩ U M .
We aim to solve the following control problem: Problem 1 For all x * ∈ Ω(x 0 ), find u ∈ U such that the solution to

               x i = 1 M N j=1 m j a( x i -x j ) x j -x i , m i (t) = m i (ψ i (m, x) + u i ) x i (0) = x 0 i , m i (0) = m 0 i , (3) 
satisfies:

for all i ∈ {1, • • • , N }, lim t→∞ x i (t) -x * = 0.
We also suppose that the interaction function satisfies a(s) > 0 for all s > 0. Then from [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF], if the total mass is conserved, the system converges asymptotically to consensus. Let x := 1 N i=1 m i N i=1 m i x i denote the weighted barycenter of the system. Then the control problem simplifies to:

Problem 2 Find u ∈ U such that the solution to (3) satisfies lim t→∞ x(t) -x * = 0.
We seek a control that will vary the weights of the system so that its barycenter converges to the target position x * . In (3), the control u must also compensate for the inherent mass dynamics. Here we will only consider the simpler case in which there is no inherent mass dynamics, i.e. ψ i ≡ 0 for all i ∈ {1, • • • , N }. The control problem re-writes: Problem 3 For all x * ∈ Ω(0), find u ∈ U such that the solution to

               x i = 1 M N j=1 m j a( x i -x j ) x j -x i , m i (t) = m i u i x i (0) = x 0 i , m i (0) = m 0 i , (4) 
satisfies: lim t→∞ x(t)x * = 0.

The solution to the more general Problem 2 can be recovered by the feedback transformation u i → u i -ψ i , hence without loss of generality we will focus on Problem 3. It was proven in [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF] that without control (i.e. with non-evolving weights), the weighted average x is constant. The control strategy will consist of driving x to x * .

Control with mass conservation

In this section, we explore the controllability of the system when constraining the total mass of the system N i=1 m i (t) to M, by imposing u ∈ U M . This amounts to looking for a control that will redistribute the weights of the agents while preserving their sum. It was shown in [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF] that this condition implies that the convex hull Ω(t) is contracting in time. We remind an even stronger property of the system in the case of constant total mass (see [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF], Prop. 10): Proposition 1 Let (x, m) be a solution to (1)-( 2), and let

D(t) := sup{ x i - x j (t) | (i, j) ∈ {1, • • • , N } 2 } be the diameter of the system. If inf{a(s) | s ≤ D(0)} := a min > 0 then the system (1)-(2) converges to consensus, with the rate D(t) ≤ D(0)e -a min t .
Remark 1 As a consequence, the convex hull converges to a single point

Ω ∞ := ∩ t ≥0 Ω(x(t)) = {lim t→∞ x(t}).
The properties of contraction of the convex hull and convergence to consensus imply that the target position x * is susceptible to exit the convex hull in finite time. However, we show that that given sufficiently large upper bounds on the strength of the control, the system is approximately controllable to any target position within the interior of the convex hull, that we denote by Ω. We state and demonstrate the result for the control constraints u ∈ U α ∞ ∩ U M , but the proof can be easily adapted to the case

u ∈ U A 1 ∩ U M . Theorem 1 Let (x 0 i ) i ∈ {1, ••• , N } ∈ R d N , (m 0 i ) ∈ (0, M) N such that N i=1 m 0 i = M and let x * ∈ Ω(x 0
). Then for all ε > 0, there exists α > 0, t ε ≥ 0 and u ∈ U α ∞ ∩ U M such that the solution to (4) satisfies:

x(t ε ) -x * ≤ ε. Proof First, notice that since m 0 i > 0 for all i ∈ {1, • • • , N }, x i (t) -x 0 i
> 0 for all t > 0. Notice also that since the shrinking hull is contracting, we have

x i (t)x j (t) ≤ D 0 for all (i, j) ∈ {1, • • • , N } 2 and t ≥ 0, where D 0 denotes the initial diameter of the system. Let

δ := sup s ∈[0,D 0 ] {sa(s)}. (5) 
From Hyp. 1, δ < ∞. Then for all u ∈ U M , N j=1 m j ≡ M, hence for all t > 0,

d dt x i -x 0 i = 1 x i -x 0 i x i -x 0 i , x i ≤ 1 x i -x 0 i x i -x 0 i 1 M N j=1 m j δ = δ
from which we deduce that for all t ≥ 0, x i (t)x 0 i ≤ δt. Since x * ∈ Ω(x 0 ), there exists η > 0 such that B(x * , η) ⊂ Ω(x 0 ). So for t ≤ η δ , x * ∈ Ω(x(t)) for any control u. We now look for a control strategy that can drive x to a distance ε of x * in time

t ε := η δ .
Let us compute the time derivative of the weighted barycenter. For u ∈ U M , the sum of masses is conserved and x

= 1 M N i=1 m i x i . Then d dt x = 1 M N i=1 ( m i x i + m i x i ) = 1 M N i=1 m i u i x i ,
as the second term vanishes by antisymmetry of the summed coefficient. While xx * > 0, we have

d dt x -x * = 1 M x -x * N i=1 x -x * , m i u i x i = 1 M x -x * N i=1 x -x * , x i -x * m i u i since N i=1 m i u i x * = 0. Let i -and i + be defined as follows: for all i ∈ {1, • • • , N }, m i -x -x * , x i --x * ≤ m i x -x * , x i -x * m i + x -x * , x i + -x * ≥ m i x -x * , x i -x * .
Note that i -and i + are time-dependent, but we keep the notation i -= i -(t) and

i + = i + (t) for conciseness. For all t ≤ t ε , x * ∈ Ω(x(t)) so necessarily x -x * , x i --x * ≤ 0 ≤ x -x * , x i + -x * .
Notice also that the following holds (by summing over all indices):

m i + x -x * , x i + -x * ≥ M N x -x * 2 .
Let α > 0. We now design a control u such that:

u i -= α m i + m i - ; u i + = -α; u i = 0 for all i ∈ {1, • • • , N }, i i -, i i + .
One can easily check that u ∈ U M . With this control, we compute:

d dt x -x * = 1 M x -x * [m i -x -x * , x i --x * u i -+ m i + x -x * , x i + -x * u i + ] ≤ 1 M x -x * m i + x -x * , x i + -x * (-α) ≤ - α M x -x * M N x -x * 2 ≤ -α x -x * N . Then x -x * (t) ≤ x0 -x * e -α N t . If α ≥ N t ε ln x0 -x * ε , then x -x * (t ε ) ≤ ε. It remains to show that there exists α > 0 such that u ∈ U α ∞ .
By construction of the control u, for all t ≥ 0 it holds:

m i -(t) (t) = αm i + (t) (t); m i + (t) (t) = -αm i + (t) (t); m i (t) = 0 for all i i -, i i + .
From the first equation, for all i ∈ {1, • • • , N }, m i (t) ≤ α max j {m j (t)}, which implies that for all i ∈ {1, • • • , N }, m i (t) ≤ max j {m 0 j }e αt . From the second equation, for all i ∈ {1, • • • , N }, m i (t) ≥ -αm i (t), which implies that m i (t) ≥ min j {m 0 j }e -αt . We deduce that for all t ≤ t ε ,

|u i -(t) (t)| ≤ α max j {m 0 j } min j {m 0 j } ≤ α max j {m 0 j }e αt ε min j {m 0 j }e -αt ε = α max j {m 0 j } min j {m 0 j } e 2 αt ε := α,
where α depends on δ, η, (m

0 i ) i ∈ {1, ••• , N } and t ε . Since |u i + (t) (t)| = α ≤ α and for all i i + (t), i -(t), |u i (t)| = 0, we deduce that u ∈ U α
∞ , which concludes the proof. Remark 2 The proof can be easily adapted to the case u ∈ U A 1 ∩ U M by replacing α by A/N.

We have shown that any target position strictly within the initial convex hull of the system can be reached given sufficient control strength. The converse problem of determining the set of reachable positions given a control bound is much more difficult and remains open.

We now focus on designing feedback control strategies. Let us define the functional

X : t → X(t) = x(t) -x * 2 .
We propose a gradient-descent control strategy to minimize instantaneously the time-derivative of X, i.e. we define u ∈ U such that for almost all t ∈ [0, T],

u(t) ∈ arg min v ∈U d dt X v (t). (6) 
We have

d dt X = 2 x -x * , x = 2 x -x * , 1 M N i=1 u i m i x i = 2 M N i=1 m i x -x * , x i -x * u i (7) since N i=1 u i m i x * = 0 if u ∈ U.
Hence, for all t ∈ R + , we seek min

u ∈U F t (u)
where we define the linear functional F t as

F t : u → F t (u) = N i=1 m i (t) x(t) - x * , x i (t) -x * u i .
We minimize a linear functional on a convex set U. Hence the minimum is achieved at extremal points of U. Notice that the control set U α ∞ ∩ U M is the intersection of the hypercube U α ∞ and of the hyperplane U M . Similarly, the control set U A 1 ∩ U M is the intersection of the diamond U A 1 and of the hyperplane U M . These intersections are non-empty since U α ∞ , U A 1 and U M contain the origin. The condition u ∈ U M renders even this simple instantaneous-decrease control strategy not straightforward. Notice that despite the condition u ∈ U A 1 that promotes sparse control, no control satisfying u ∈ U M can have just one active component. We will provide illustrations of this phenomenon in Section 5.

Control with mass variation

In this section, we remove the total mass conservation constraint on the control, and consider Problem 3 for

U = U α ∞ or U = U A 1 .
Remark that this problem can be solved with the controls found in Section 2 (thus satisfying the mass conservation constraint). However we purposefully look for a different solution in order to exploit the larger control possibilities that appear due to the fewer constraints.

We first point out a fundamental difference in the behavior of the system compared to that of the previous section: with a varying total mass, one can break free of the convergence property stated in Prop. 1.

Proposition 2 Let (x, m) be a solution to [START_REF] Ayi | Mean-field and graphs limits for collective dynamics models with time-varying weights[END_REF]. Then there exist mass dynamics ψ that do not satisfy Hyp. 2, such that the system does not converge to consensus.

Proof Consider the constant mass dynamics given by:

ψ i (x, m) ≡ -R for all i ∈ {1, • • • , N }. Then for all i ∈ {1, • • • , N }, m i (t) = m 0
i e -Rt and we can compute:

d( x i -x 0 i 2 ) dt = x i -x 0 i , N j=1 2m j M a( x i -x j )(x j -x i ) ≤ 2 x i -x 0 i δe -Rt ,
where δ was defined in [START_REF] Caponigro | A nonlinear model of opinion formation on the sphere[END_REF]. From this we get:

x i -x 0 i ≤ δ R (1 -e -t R
). Hence for R big enough, each x i is confined to a neighborhood of its initial position, which prevents convergence to consensus.

Remark 3 As a consequence, in such cases the convex hull tends to a limit set Ω ∞ := ∩ t ≥0 Ω(x(t)) not restricted to a single point.

The dynamics of the barycenter of the system are now less trivial than in the previous section due to the total mass variation. Nevertheless, as previously, we prove approximate controllability to any target position strictly within the initial convex hull.

Theorem 2 Let (x 0 i ) i ∈ {1, ••• , N } ∈ R d N , (m 0 i ) ∈ (0, M) N such that N i=1 m 0 i = M and let x * ∈ Ω(x 0 ). Then for all ε > 0, there exists α > 0, t ε ≥ 0 and u ∈ U α ∞ \ U M such that the solution to (4) satisfies: x(t ε ) -x * ≤ ε. Proof Let x * ∈ Ω(x 0 ) and let ε > 0. Then there exists (τ 0 i ) i ∈ {1, ••• , N } with τ 0 i ∈ [0, 1] N , N i=1 τ 0 i = 1 and τ 0 i > 0 for all i ∈ {1, • • • , N } such that x * = N i=1 τ 0 i x 0 i .
We will show that we can drive each weight m i to a multiple κτ 0 i of its target weight, while maintaining the positions withing close distance of the initial ones, ensuring that the target position remains in the shrinking convex hull. Define

       r min = min{ln m 0 i τ 0 i | i ∈ {1, • • • , N }} r max = max{ln m 0 i τ 0 i | i ∈ {1, • • • , N }}.
Let α ≥ δ ε , with δ defined in (5) and let α > α > 0. Let T := r max -r min α-α and κ := e r min -αT . Now consider the constant control defined by: for all i ∈ {1, • • • , N },

u i = - 1 T ln m 0 i κτ 0 i .
One can easily show that for all i ∈ {1, • • • , N }, -α ≤ u i ≤ -α, and furthermore, m i (T) = κτ 0 i . From the proof of Prop. 2, for all t ∈ [0, T], x i (t)x 0 i ≤ δ α , where δ was defined in [START_REF] Caponigro | A nonlinear model of opinion formation on the sphere[END_REF]. From this we compute:

x(T) -x * = N i=1 m i (T)x i (T) N i=1 m i (T) - N i=1 τ 0 i x 0 i = N i=1 τ 0 i (x i (T) -x 0 i ) ≤ N i=1 τ 0 i x i (T) -x 0 i ≤ δ α ≤ ε,
which proves the theorem.

Remark 4 As for Theorem 1, the proof can be easily adapted to the case u ∈ U A 1 by replacing α by A N . As in the previous section, we design a feedback control strategy that minimizes the time-derivative of the functional X instantaneously. With a total mass now varying in time, we have:

d dt X = 2 N i=1 m i N i=1 m i x -x * , x i -x u i . (8) 
Since we removed the constraint u ∈ U M , the control strategy minimizing dX dt is straightforward. For u ∈ U α ∞ , we have:

u i = -α if x -x * , x i -x > 0 u i = α if x -x * , x i -x < 0. ( 9 
)
For u ∈ U A 1 , we define the set I := arg max{|m i xx * , x i -x |, i ∈ {1, • • • , N }}, and we have:

u i = -A |I | sgn( x -x * , x i -x ) if i ∈ I u i = 0 otherwise, ( 10 
)
where | • | represents the cardinality of a set.

Mean-field limit 4.1 Mean-field limit of mass-varying dynamics without control

In this section, we recall the definition of mean-field limit. Consider System [START_REF] Ayi | Mean-field and graphs limits for collective dynamics models with time-varying weights[END_REF].

The goal of the mean-field limit is to describe the behavior of the system when the number of agents N tends to infinity. Instead of following the individual trajectory of each individual, we aim to describe the group by its limit density µ, which belongs to M(R d ), the set of Radon measures with finite mass. We endow M(R d ) with the topology of the weak convergence of measures, i.e.

µ i i→∞ µ ⇔ lim i→∞ ∫ f dµ i = ∫ f dµ for all f ∈ C ∞ c (R d ). Let µ 0 ∈ M(R d ).
We consider the following transport equation for µ:

∂ t µ + ∇ • (V[µ]µ) = h[µ] µ(0) = µ 0 . (11) 
We recall conditions for well-posedness of [START_REF] Harary | A criterion for unanimity in french's theory of social power[END_REF], see [START_REF] Piccoli | Measure-theoretic models for crowd dynamics[END_REF]:

Hypothesis 3 The function V[•] : M(R d ) → C 1 (R d ) ∩ L ∞ (R d ) satisfies • V[µ]
is uniformly Lipschitz and uniformly bounded • V is uniformly Lipschitz with respect to the generalized Wasserstein distance (see [START_REF] Piccoli | Measure-theoretic models for crowd dynamics[END_REF])

Hypothesis 4 The source term h[•] : M(R d ) → M(R d ) satisfies • h[µ]
has uniformly bounded mass and support • h is uniformly Lipschitz with respect to the generalized Wasserstein distance (see [START_REF] Piccoli | Measure-theoretic models for crowd dynamics[END_REF])

We now recall the definition of mean-field limit.

Definition 2 Let (x, m) ∈ R d N × (R +
) N be a solution to [START_REF] Ayi | Mean-field and graphs limits for collective dynamics models with time-varying weights[END_REF]. We denote by µ N the corresponding empirical measure defined by

µ N (t) = 1 M N i=1 m i (t)δ x i (t) .
The transport equation ( 11) is the mean-field limit of the collective dynamics (1) if

µ N (0) N →∞ µ(0) ⇒ µ N (t) N →∞ µ(t)
where µ is the solution to [START_REF] Harary | A criterion for unanimity in french's theory of social power[END_REF] with initial data µ(0).

The definition of empirical measure requires a crucial property of the finitedimensional system (1): that of indistinguishability of the agents. Indeed, notice that there isn't a one-to-one relationship between the set of empirical measures (finite sums of weighted Dirac masses) and the set of coupled positions and weights

(x, m) ∈ R d N × (R + ) N . For instance, two pairs (x(t), m(t)) ∈ R d N × (R + ) N and (y(t), q(t)) ∈ R d(N -1) × (R + ) N -1 satisfying x 0 1 = x 0 N = y 0 1 , m 0 1 + m 0 N = q 0 1 and (x 0 i , m 0 i ) = (y 0 i , q 0 i ) for all i ∈ {2, • • • , N -1} correspond
to the same empirical measure. Hence if we want the concept of mean-field limit to make sense, we must consider discrete systems that give the same dynamics to (x(t), m(t)) and (y(t), q(t)).

Definition 3 Let t → (x(t), m(t)) ∈ R d N × (R + ) N and t → (y(t), q(t)) ∈ R d(N -1) × (R + ) N -1
be two solutions to system (1). We say that indistinguishability is satisfied if

             x 0 1 = x 0 N = y 0 1 m 0 1 + m 0 N = q 0 1 x i = y i , i ∈ {2, • • • , N -1} m i = q i , i ∈ {2, • • • , N -1} ⇒              x 1 ≡ x N ≡ y 1 m 1 + m N ≡ q 1 x i ≡ y i , i ∈ {2, • • • , N -1} m i ≡ q i , i ∈ {2, • • • , N -1}.
Indistinguishability is a strong property, and it is not necessarily satisfied by the general function ψ defining the weights' dynamics in [START_REF] Ayi | Mean-field and graphs limits for collective dynamics models with time-varying weights[END_REF]. We refer the reader to [START_REF] Ayi | Mean-field and graphs limits for collective dynamics models with time-varying weights[END_REF][START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF][START_REF] Duteil | Mean-field limit of collective dynamics with time-varying weights[END_REF] for examples of mass dynamics satisfying or not the indistinguishability property. From here onward, we will focus on the following particular form of mass dynamics that does satisfy indistinguishability:

ψ i (x, m) = 1 M N j=1 m j S(x i , x j ), (12) 
with

S ∈ C(R d × R d , R) .
In order for a transport equation to be the mean-field limit of a finite-dimensional system, it is sufficient for it to satisfy the following two properties (see [START_REF] Villani | Limite de champ moyen. Cours de DEA[END_REF]):

(i) When the initial data µ 0 is an empirical measure µ 0 N associated with an initial data (x 0 , m 0 ) ∈ R d N × R N of N particles, then the dynamics (11) can be rewritten as the system of ordinary differential equations ( 1). (ii) The solution µ(t) to ( 11) is continuous with respect to the initial data µ 0 .

The following holds: Proposition 3 Consider System (1) with mass dynamics given by [START_REF] Hegselmann | Understanding complex social dynamics -a plea for cellular automata based modelling[END_REF], where S ∈ C(R d × R d , R) is skew-symmetric: S(x, y) = -S(y, x). Then its mean-field limit is the transport equation with source [START_REF] Harary | A criterion for unanimity in french's theory of social power[END_REF] with the interaction kernel

V[µ](x) = ∫ R d a( x -y )(y -x)dµ(y) (13) 
and the source term

h[µ](x) = ∫ R d S(x, y)dµ(y)µ(x). (14) 
The proof of this result should consist of proving the two properties (i) and (ii) above. Notice that well-posedness of ( 11)-( 13)-( 14) and continuity with respect to the initial data cannot be obtained by applying directly the results of [START_REF] Piccoli | Measure-theoretic models for crowd dynamics[END_REF] since h does not satisfy Hypothesis 4. Nevertheless, well-posedness and continuity can be proven, using the total conservation of mass coming from the skew-symmetric property of S, see [START_REF] Duteil | Mean-field limit of collective dynamics with time-varying weights[END_REF]. In the present paper, we focus on proving the first property (i).

Proof We prove that the transport equation [START_REF] Harary | A criterion for unanimity in french's theory of social power[END_REF] with the vector field [START_REF] Hegselmann | Opinion dynamics and bounded confidence models, analysis, and simulation[END_REF] and the source term [START_REF] Ew Justh | Equilibria and steering laws for planar formations[END_REF] satisfies the property (i) above. Let (x, m) : R + → R d N × R N be the solution to the system (1) with the weight dynamics given by ( 12) and initial data (x 0 , m 0 ) ∈ R d N × R N . We show that the empirical measure µ N (t, x)

= 1 M N i=1 m i (t)δ x i (t) (x)
is the solution to the PDE ( 11)-( 13)-( 14) with initial data

µ 0 N (x) = N i=1 m 0 i δ x 0 i (x). Let f ∈ C ∞ c (R d ). We show that d dt ∫ f dµ N - ∫ ∇ f • V[µ N ]dµ N = ∫ f dh[µ N ]. (15) 
We compute each term independently. Firstly, we have:

d dt ∫ f dµ N = d dt 1 M N i=1 m i f (x i ) = 1 M N i=1 ( m i f (x i ) + m i x i • ∇ f (x i )) = 1 M 2 N i=1 N j=1 m i m j S(x i , x j ) f (x i ) + a( x i -x j )(x j -x i ) • ∇ f (x i ) . (16) 
Secondly,

∫ ∇ f • V[µ N ]dµ N = ∫ ∇ f (x) • ∫ a( x -y )(x -y)dµ N (y)dµ N (x) = 1 M 2 N i=1 N j=1 m i m j a( x i -x j )(x j -x i ) • ∇ f (x i ). (17) 
Thirdly,

∫ f dh[µ N ] = ∫ f (x) ∫ S(x, y)dµ N (y)dµ N (x) = 1 M 2 N i=1 N j=1 m i m j f (x i )S(x i , x j ). (18) 
d dt X(t) =2 ∫ R d (x -x * )dµ(t, x), d dt ∫ R d (x -x * )dµ = 2 ∫ R d (x -x * )dµ(t, x), - ∫ R d (x -x * )d(∇ • (V[µ]µ)) + 2 ∫ R d (x -x * )dµ(t, x), ∫ R d (x -x * )u(t, x)dµ .

Numerical simulations

We now provide simulations of the evolution of System (4) with the various control strategies presented in Sections 2

(u ∈ U α ∞ ∩ U M and u ∈ U A 1 ∩ U M ) and 3 (u ∈ U α ∞ and u ∈ U A 1 )
. Four simulations were run with the same set of initial conditions x 0 ∈ R d N for d = 2, N = 10, and control bounds α = 2 and A = 10. In each simulation, the control maximizes the instantaneous decrease of the functional X, with one of the various constraints exposed in Sections 2 and 3. Figure 1 shows that in all cases, the control successfully steers the weighted barycenter x to the target position x * . The evolution of the functional t → x(t)x * (Figure 4 (right)) shows that the target is reached faster with controls that allow for mass variation than for controls constrained to the set U M . Figure 2 shows the evolution of each agent's individual weight for each of the four cases of Figure 1. Interestingly, when mass variation is allowed, we observe a general decrease in the total mass of the system in the case u ∈ U α ∞ (dotted grey line, Fig. 2 -left) and a general increase in the case u ∈ U A 1 (dotted grey line, Fig. 2 -right). Figure 3 shows the control values u i (t) for each i ∈ {1, • • • , N } and each t ∈ [0, 1]. Notice that in the case of mass-preserving control u ∈ U M (top row), the controls do not saturate the constraints u ∈ U α ∞ or u ∈ U A 1 . In the case of varying total mass, as shown in Section 3, the control strategies minimizing dX dt saturate the constraints.

Figure 4 (left) shows that the constraint u ∈ U A 1 promotes a sparse control strategy. A control is said to be sparse if it is active only on a small number of agents. As mentioned in Section 2, mass-varying controls cannot be strictly sparse, and need to have at least two non-zero components at each time. Indeed, the control strategy u ∈ U A 1 ∩ U M has either two or three active components at all time.

Conclusion

In this paper we aimed to control to a fixed consensus target a multi-agent system with time-varying influence, by acting only on each agent's weight of influence. We proved approximate controllability of the system to any target position inside the convex hull of the initial positions. We then focused on designing control strategies with various constraints on the control bounds and on the total mass of the system. We also presented the mean-field limit of the discrete model for general mass dynamics that satisfy the indistinguishability property. The population density satisfies The combination of our analysis with numerical simulations allows us to compare the control performances of the four strategies. Firstly, the control strategies allowing total mass variation are more efficient than the control strategies conserving the total mass, as the weighted barycenter reaches the target position faster.Interestingly, this is not obvious a priori from Equations ( 7) and ( 8), as the time derivatives of the functional X = xx * 2 are of the same order of magnitude in the two cases. We also remark that the controls allowing mass variation can either increase or decrease the total mass of the system.

The constraint u ∈ U A 1 is usually enforced to promote sparsity (see [START_REF] Fornasier | Mean-field sparse optimal control[END_REF][START_REF] Piccoli | Sparse control of Helgselmann-Krause models: Black hole and declusterization[END_REF]), that is the activation at any given time of as few control components as possible. However, the added constraint u ∈ U M renders strict sparsity impossible, and we already remarked that in order to preserve the total mass, the control has to be active on at least two components at any given time. Simulations shows that indeed, the control u ∈ U A 1 ∩ U M oscillates between two and three active components, whereas the control u ∈ U A 1 maintains strict sparsity. On the other hand, the controls u ∈ U α ∞ and u ∈ U α ∞ ∩ U M act simultaneously on all components at all time. Although in the illustrating simulations, all four controls manage to drive the system's weighted barycenter to the target position x * , this would not have necessarily been achievable with either a target closer to the initial convex hull boundary or with stricter control bounds α and A. The question of determining the set of achievable targets given an initial distribution of positions and weights and control bounds remains open and is an intriguing future direction of this work, as is the control of the mean-field model obtained as limit of the finite-dimensional one when the number of agents tends to infinity.

Fig. 1

 1 Fig. 1 Trajectories of the positions x i (t) in R 2 corresponding to the controlled system (4) with N = 10 and a : s → e -s 2 . The top row corresponds to controls satisfying u ∈ U M (Section 2) while the second row corresponds to controls allowing total mass variation (Section 3). In each row, the left column corresponds to u ∈ U α ∞ and the right one corresponds to u ∈ U A 1 . In each plot, different agents are represented by different colors, and the size of each dot is proportional to the weight of the corresponding agent at that time. The gray dotted trajectory represents the weighted barycenter x. The black star represents the target position, inside the convex hull of the initial positions (dashed polygon). The convex hull of the positions at final time is represented by the dot-dashed polygon.

Fig. 2

 2 Fig. 2 Evolution of the weights t → m i (t) corresponding to control strategies u ∈ U α ∞ (left) and u ∈ U A 1 (right). In each plot, the continuous lines correspond to the mass-preserving control u ∈ U M of Section 2, and the dashed lines to the controls of Section 3. Each colored line (respectively dashed or continuous) shows the evolution of the corresponding colored agent of Fig. 1, and the grey lines represent the evolution of the average weight 1N

Fig. 3

 3 Fig.3Evolution of the control functions t → u i (t) corresponding to the systems of Fig.1. The top row corresponds to controls satisfying u ∈ U M (Section 2) while the second row corresponds to controls allowing total mass variation (Section 3). In each row, the left column corresponds to u ∈ U α ∞ and the right one corresponds to u ∈ U A 1 . Each control function u i is colored according to the corresponding agent x i of Fig.1.

Fig. 4

 4 Fig. 4 Left: Evolution of the number of active components of the control with the various strategies corresponding to Fig. 1. Right: Distance of the barycenter to the target position t → x(t)x * .

Putting together [START_REF] Krause | A discrete nonlinear and non-autonomous model of consensus formation[END_REF], [START_REF] Jurdjevic | Controllability and stability[END_REF] and [START_REF] Lara | On the Hyperbox -Hyperplane Intersection Problem[END_REF] and using the fact that (x, m) satisfies ( 1)- [START_REF] Hegselmann | Understanding complex social dynamics -a plea for cellular automata based modelling[END_REF], we deduce that µ N satisfies ( 15)-( 13)- [START_REF] Ew Justh | Equilibria and steering laws for planar formations[END_REF].

The general weight dynamics [START_REF] Hegselmann | Understanding complex social dynamics -a plea for cellular automata based modelling[END_REF] include special cases studied in previous works. Indeed:

• if S(x, y) := S 0 (x), the mass dynamics can be simply written as h[µ](x) = | µ|S 0 (x)µ(x) (see [START_REF] Piccoli | Measure-theoretic models for crowd dynamics[END_REF]) • if S(x, y) := S 1 (yx), the mass dynamics can be rewritten as the convolution h[µ] = (S 1 * µ)µ (see [START_REF] Piccoli | Measure-theoretic models for crowd dynamics[END_REF])

we can show in a similar way that the mean-field limit is the PDE [START_REF] Harary | A criterion for unanimity in french's theory of social power[END_REF] with the source term

In particular, this applies to the following mass-conserving dynamics, which are a slight modification of Model 2 proposed in [START_REF] Mcquade | Social Dynamics Models with Time-Varying Influence[END_REF]:

where S(x i ,

Control problem

From the mean-field limit of the system without control, we extract a natural control problem corresponding to the mean-field limit of (3). Consider the controlled PDE:

We define the kinetic variance

We seek a control function u : R + × R d N that minimizes instantaneously d dt X(t). Similarly to Section 2, we can further restrict the set of controls to functions satisfying

We can also extend the L 1 and L ∞ bounds on the control to the mean-field setting:

We can compute: