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Control of collective dynamics with time-varying
weights

Benedetto Piccoli and Nastassia Pouradier Duteil

Abstract This paper focuses on a model for opinion dynamics, where the influence
weights of agents evolve in time. We formulate a control problem of consensus type,
in which the objective is to drive all agents to a final target point under suitable
control constraints. Controllability is discussed for the corresponding problem with
and without constraints on the total mass of the system, and control strategies are
designed with the steepest descent approach. The mean-field limit is described both
for the opinion dynamics and the control problem. Numerical simulations illustrate
the control strategies for the finite-dimensional system.

Introduction

Social dynamics models are used to describe the complex behavior of large sys-
tems of interacting agents. Application areas include examples from biology, such
as the collective behavior of animal groups [3, 6, 10, 15], aviation [27], opinion
dynamics [13] and other. In most applications, a key phenomenon observed is that
of self-organization, that is the spontaneous emergence of global patterns from lo-
cal interactions. Self-organization patterns include consensus, alignment, clustering,
or the less studied dancing equilibrium [2, 5]. In another direction, the control of
such systems was addressed in the control community with a wealth of different
approaches, see [4, 14, 26].

This paper focuses on models for opinion dynamics. A long history started back
in the 50’s, see [9, 11], then linear models were studied by De Groot [7] and others,
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while among recent approaches we can mention the bounded-confidence model by
Hegselmann and Krause of [13], see also [12, 16]. In most of the existing models,
interactions take place between pairs of individuals (typically referred to as agents)
and depend only on the distance separating the two agents. More recently, a model
was introduced in which the interactions are proportional to the agents’ weights of
influence, which can evolve over time according to their own dynamics [1, 19, 24, 25].
This augmented framework allows us to model opinion dynamics in which an agent’s
capacity to influence its neighbors depends not only on their proximity but also on an
internal time-varying characteristic (such as charisma, popularity, etc.). Four models
were proposed in [19] for the time-varying weights: the first model allows agents
to gain mass in pairwise interactions depending on midpoint dynamics; the second
increases the weights of agents that influence the most the other agents; and the third
and fourth focus on the capability to attract the most influential agents. In particular,
the developed theory allows to address control problems, which is the focus of the
present paper.

The main idea is that an external entity (for instance with global control) may
influence the dynamics of agents by increasing the weights of some of them.We thus
assume that a central controller is able to act on each agent but possibly influence
just a few at a time, thus also looking for sparse control strategies. We first formulate
the control problem by allowing a direct control of weights but imposing the total
sum of weights to be constant, resulting in a linear constraint on allowable controls.
Under natural assumptions on the interaction kernel we show that the convex hull of
the agents’ positions is shrinking, thus we look for control strategies stabilizing to a
specific point of the initial convex hull.

The constraints on the control and given by the dynamics (shrinking convex hull)
prevent a complete controllability of the system. However, we show that any target
position strictly within the initial convex hull of the system can be reached given
large enough bounds on the control.
We then look for a greedy policy by maximizing the instantaneous decrease of the
distance from the target point. This gives rise to a steepest descent algorithm which
is formulated via the linear constraints of the problem. Under generic conditions, the
solution is expected to be at a vertex of the convex set determined by constraints.

As customary for multi-agent and multi-particle systems, we consider the mean-
field limit obtained when the number of agents tends to infinity. In classical models
without mass variation, the limit measure satisfies a transport-type equation with
non-local velocity. Here, due to the presence of the weight dynamics, our mean-field
equation presents a non-local source term. We formulate a control problem for the
mean-field limit and show how to formulate the control constraints in this setting.

In the last section we provide simulations for the finite-dimensional control al-
gorithm and illustrate how the control strategies reach the final target in the various
imposed constraints.
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1 Control problems

We consider a collective dynamics system with time-varying weights, introduced
in [19]. Let x0 ∈ (Rd)N represent the N agents’ initial positions (or opinions) and
m0 ∈ (R+)N represent their initial weights of influence. We denote by a ∈ C(R+,R+)
the interaction function. Lastly, let M =

∑N
i=1 m0

i denote the initial mass of the
system. In this model, the evolution of each agents’ state variable xi(t) depends
on its interaction with other agents through the interaction function a (as in the
classical Hegselmann-Krause dynamics [13]), weighted by the other agents’ weights
of influence mi(t). The weights of influence also evolve in time due to their own
dynamics. More precisely, the evolution of the N positions and weights is given by
the following system:

Ûxi(t) =
1
M

N∑
j=1

mj(t)a(‖xi(t) − xj(t)‖)
(
xj(t) − xi(t)

)
,

Ûmi(t) = mi(t)ψi(x(t),m(t))
xi(0) = x0

i , mi(0) = m0
i .

(1)

We have established in [19] the well-posedness of (1) along with the following
hypotheses:
Hypothesis 1 The function s 7→ a(‖s‖)s is locally Lipschitz in Rd , and the function
ψ is locally bounded in (Rd)N × RN .

Hypothesis 2 For all (x,m) ∈ (Rd)N × RN ,

N∑
i=1

miψi(x,m) = 0. (2)

Note that Hypothesis 2 is not necessary for the well-posedness of (1). It is a modeling
choicewhich enforces conservation of the totalmass of the system, so that theweights
mi are allowed to shift continuously between agents, but their sum remains constant.
We refer the reader to [19] for a detailed analysis of this system for various choices
of the weight dynamics, exhibiting behaviors such as emergence of a single leader,
or emergence of two co-leaders.

In the present paper, we aim to study the control of system (1) by acting only on
the weights of influence. Let Ω(x) denote the convex hull of x, defined as follows.
Definition 1 Let (xi)i∈{1, · · · ,N } ∈ (Rd)N . Its convex hull Ω is defined by:

Ω =

{
N∑
i=1

ξi xi | ξ ∈ [0, 1]N and
N∑
i=1

ξi = 1

}
.

It was shown in [19] that for the dynamics (1)-(2), the convex hull Ω(x(t)) is con-
tracting in time, i.e. for all t2 ≥ t1 ≥ 0, Ω(x(t2)) ⊆ Ω(x(t1)).
Given α ∈ R+ and A ∈ R+, we define two control sets Uα

∞ and UA
1 :
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Uα
∞ = {u : R+ → RN measurable, s.t. |ui | ≤ α}

UA
1 = {u : R+ → RN measurable, s.t.

∑N
i=1 |ui | ≤ A}.

We also define a set of controls that conserve the total mass M of the system:
UM = {u : R+ → RN measurable, s.t.

∑N
i=1 miui = 0}. From here onwards, U will

stand for a general control set, equal to either UA
1 , Uα

∞, UA
1 ∩UM or Uα

∞ ∩UM .
We aim to solve the following control problem:

Problem 1 For all x∗ ∈ Ω(x0), find u ∈ U such that the solution to
Ûxi =

1
M

N∑
j=1

mja(‖xi − xj ‖)
(
xj − xi

)
,

Ûmi(t) = mi (ψi(m, x) + ui)
xi(0) = x0

i , mi(0) = m0
i ,

(3)

satisfies: for all i ∈ {1, · · · , N}, limt→∞ ‖xi(t) − x∗‖ = 0.

We also suppose that the interaction function satisfies a(s) > 0 for all s > 0. Then
from [19], if the total mass is conserved, the system converges asymptotically to
consensus. Let x̄ := 1∑N

i=1 mi

∑N
i=1 mi xi denote the weighted barycenter of the system.

Then the control problem simplifies to:

Problem 2 Find u ∈ U such that the solution to (3) satisfies

lim
t→∞
‖ x̄(t) − x∗‖ = 0.

We seek a control that will vary the weights of the system so that its barycenter
converges to the target position x∗. In (3), the control u must also compensate for
the inherent mass dynamics. Here we will only consider the simpler case in which
there is no inherent mass dynamics, i.e. ψi ≡ 0 for all i ∈ {1, · · · , N}. The control
problem re-writes:

Problem 3 For all x∗ ∈ Ω(0), find u ∈ U such that the solution to
Ûxi =

1
M

N∑
j=1

mja(‖xi − xj ‖)
(
xj − xi

)
,

Ûmi(t) = miui
xi(0) = x0

i , mi(0) = m0
i ,

(4)

satisfies: limt→∞ ‖ x̄(t) − x∗‖ = 0.

The solution to the more general Problem 2 can be recovered by the feedback
transformation ui 7→ ui − ψi , hence without loss of generality we will focus on
Problem 3. It was proven in [19] that without control (i.e. with non-evolvingweights),
the weighted average x̄ is constant. The control strategy will consist of driving x̄ to
x∗.
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2 Control with mass conservation

In this section, we explore the controllability of the system when constraining the
total mass of the system

∑N
i=1 mi(t) to M , by imposing u ∈ UM . This amounts to

looking for a control that will redistribute the weights of the agents while preserving
their sum. It was shown in [19] that this condition implies that the convex hull Ω(t)
is contracting in time. We remind an even stronger property of the system in the case
of constant total mass (see [19], Prop. 10):

Proposition 1 Let (x,m) be a solution to (1)-(2), and let D(t) := sup{‖xi −
xj ‖(t) | (i, j) ∈ {1, · · · , N}2} be the diameter of the system. If inf{a(s) | s ≤
D(0)} := amin > 0 then the system (1)-(2) converges to consensus, with the rate
D(t) ≤ D(0)e−amint .

Remark 1 As a consequence, the convex hull converges to a single point Ω∞ :=
∩t≥0Ω(x(t)) = {limt→∞ x̄(t}).

The properties of contraction of the convex hull and convergence to consensus imply
that the target position x∗ is susceptible to exit the convex hull in finite time. However,
we show that that given sufficiently large upper bounds on the strength of the control,
the system is approximately controllable to any target position within the interior of
the convex hull, that we denote by Ω̊. We state and demonstrate the result for the
control constraints u ∈ Uα

∞ ∩ UM , but the proof can be easily adapted to the case
u ∈ UA

1 ∩UM .

Theorem 1 Let (x0
i )i∈{1, · · · ,N } ∈ R

dN , (m0
i ) ∈ (0, M)N such that

∑N
i=1 m0

i = M and
let x∗ ∈ Ω̊(x0). Then for all ε > 0, there exists α > 0, tε ≥ 0 and u ∈ Uα

∞ ∩UM such
that the solution to (4) satisfies: ‖ x̄(tε) − x∗‖ ≤ ε.

Proof First, notice that since m0
i > 0 for all i ∈ {1, · · · , N}, ‖xi(t) − x0

i ‖ > 0
for all t > 0. Notice also that since the shrinking hull is contracting, we have
‖xi(t) − xj(t)‖ ≤ D0 for all (i, j) ∈ {1, · · · , N}2 and t ≥ 0, where D0 denotes the
initial diameter of the system. Let

δ := sup
s∈[0,D0]

{sa(s)}. (5)

From Hyp. 1, δ < ∞. Then for all u ∈ UM ,
∑N

j=1 mj ≡ M , hence for all t > 0,

d
dt
‖xi − x0

i ‖ =
1

‖xi − x0
i ‖
〈xi − x0

i , Ûxi〉 ≤
1

‖xi − x0
i ‖
‖xi − x0

i ‖
1
M

N∑
j=1

mjδ = δ

from which we deduce that for all t ≥ 0, ‖xi(t) − x0
i ‖ ≤ δt. Since x∗ ∈ Ω̊(x0), there

exists η > 0 such that B(x∗, η) ⊂ Ω̊(x0). So for t ≤ η
δ , x∗ ∈ Ω̊(x(t)) for any control

u. We now look for a control strategy that can drive x̄ to a distance ε of x∗ in time
tε := η

δ .



6 Benedetto Piccoli and Nastassia Pouradier Duteil

Let us compute the time derivative of the weighted barycenter. For u ∈ UM , the
sum of masses is conserved and x̄ = 1

M

∑N
i=1 mi xi . Then

d
dt

x̄ =
1
M

N∑
i=1
( Ûmi xi + mi Ûxi) =

1
M

N∑
i=1

miui xi,

as the second term vanishes by antisymmetry of the summed coefficient. While
‖ x̄ − x∗‖ > 0, we have

d
dt
‖ x̄−x∗‖ =

1
M ‖ x̄ − x∗‖

N∑
i=1
〈x̄−x∗,miui xi〉 =

1
M ‖ x̄ − x∗‖

N∑
i=1
〈x̄−x∗, xi−x∗〉miui

since
∑N

i=1 miui x∗ = 0. Let i− and i+ be defined as follows: for all i ∈ {1, · · · , N},{
mi− 〈x̄ − x∗, xi− − x∗〉 ≤ mi 〈x̄ − x∗, xi − x∗〉
mi+ 〈x̄ − x∗, xi+ − x∗〉 ≥ mi 〈x̄ − x∗, xi − x∗〉.

Note that i− and i+ are time-dependent, but we keep the notation i− = i−(t) and
i+ = i+(t) for conciseness. For all t ≤ tε , x∗ ∈ Ω̊(x(t)) so necessarily

〈x̄ − x∗, xi− − x∗〉 ≤ 0 ≤ 〈x̄ − x∗, xi+ − x∗〉.

Notice also that the following holds (by summing over all indices):

mi+ 〈x̄ − x∗, xi+ − x∗〉 ≥
M
N
‖ x̄ − x∗‖2.

Let α̃ > 0. We now design a control u such that:

ui− = α̃
mi+

mi−

; ui+ = −α̃; ui = 0 for all i ∈ {1, · · · , N}, i , i−, i , i+.

One can easily check that u ∈ UM . With this control, we compute:

d
dt
‖ x̄ − x∗‖ =

1
M ‖ x̄ − x∗‖

[mi− 〈x̄ − x∗, xi− − x∗〉ui− + mi+ 〈x̄ − x∗, xi+ − x∗〉ui+ ]

≤
1

M ‖ x̄ − x∗‖
mi+ 〈x̄ − x∗, xi+ − x∗〉(−α̃)

≤ −
α̃

M ‖ x̄ − x∗‖
M
N
‖ x̄ − x∗‖2 ≤ −α̃

‖ x̄ − x∗‖
N

.

Then ‖ x̄ − x∗‖(t) ≤ ‖ x̄0 − x∗‖e−
α̃
N t . If α̃ ≥ N

tε
ln

(
‖ x̄0−x∗ ‖

ε

)
, then ‖ x̄ − x∗‖(tε) ≤ ε.

It remains to show that there exists α > 0 such that u ∈ Uα
∞. By construction of

the control u, for all t ≥ 0 it holds:

Ûmi−(t)(t) = α̃mi+(t)(t); Ûmi+(t)(t) = −α̃mi+(t)(t); Ûmi(t) = 0 for all i , i−, i , i+.
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From the first equation, for all i ∈ {1, · · · , N}, Ûmi(t) ≤ α̃maxj{mj(t)}, which implies
that for all i ∈ {1, · · · , N}, mi(t) ≤ maxj{m0

j }e
α̃t .

From the second equation, for all i ∈ {1, · · · , N}, Ûmi(t) ≥ −α̃mi(t), which implies
that mi(t) ≥ minj{m0

j }e
−α̃t .

We deduce that for all t ≤ tε ,

|ui−(t)(t)| ≤ α̃
maxj{m0

j }

minj{m0
j }
≤ α̃

maxj{m0
j }e

α̃tε

minj{m0
j }e
−α̃tε

= α̃
maxj{m0

j }

minj{m0
j }

e2α̃tε := α,

where α depends on δ, η, (m0
i )i∈{1, · · · ,N } and tε . Since |ui+(t)(t)| = α ≤ α̃ and for all

i , i+(t), i−(t), |ui(t)| = 0, we deduce that u ∈ Uα
∞, which concludes the proof. �

Remark 2 The proof can be easily adapted to the case u ∈ UA
1 ∩UM by replacing α

by A/N .

We have shown that any target position strictly within the initial convex hull of
the system can be reached given sufficient control strength. The converse problem
of determining the set of reachable positions given a control bound is much more
difficult and remains open.

We now focus on designing feedback control strategies. Let us define the func-
tional

X : t 7→ X(t) = ‖ x̄(t) − x∗‖2.

We propose a gradient-descent control strategy to minimize instantaneously the
time-derivative of X , i.e. we define u ∈ U such that for almost all t ∈ [0,T],

u(t) ∈ arg min
v∈U

d
dt

Xv(t). (6)

We have

d
dt

X = 2〈x̄ − x∗, Û̄x〉 = 2〈x̄ − x∗,
1
M

N∑
i=1

uimi xi〉 =
2
M

N∑
i=1

mi 〈x̄ − x∗, xi − x∗〉ui

(7)

since
∑N

i=1 uimi x∗ = 0 if u ∈ U. Hence, for all t ∈ R+, we seek

min
u∈U

Ft (u)

where we define the linear functional Ft as Ft : u 7→ Ft (u) =
∑N

i=1 mi(t)〈x̄(t) −
x∗, xi(t) − x∗〉ui . We minimize a linear functional on a convex set U. Hence the
minimum is achieved at extremal points of U. Notice that the control set Uα

∞ ∩UM

is the intersection of the hypercube Uα
∞ and of the hyperplane UM . Similarly, the

control set UA
1 ∩ UM is the intersection of the diamond UA

1 and of the hyperplane
UM . These intersections are non-empty since Uα

∞, UA
1 and UM contain the origin.

The condition u ∈ UM renders even this simple instantaneous-decrease control
strategy not straightforward. Notice that despite the condition u ∈ UA

1 that promotes
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sparse control, no control satisfying u ∈ UM can have just one active component.
We will provide illustrations of this phenomenon in Section 5.

3 Control with mass variation

In this section, we remove the total mass conservation constraint on the control,
and consider Problem 3 for U = Uα

∞ or U = UA
1 . Remark that this problem can be

solved with the controls found in Section 2 (thus satisfying the mass conservation
constraint). However we purposefully look for a different solution in order to exploit
the larger control possibilities that appear due to the fewer constraints.

We first point out a fundamental difference in the behavior of the system compared
to that of the previous section: with a varying total mass, one can break free of the
convergence property stated in Prop. 1.

Proposition 2 Let (x,m) be a solution to (1). Then there exist mass dynamics ψ that
do not satisfy Hyp. 2, such that the system does not converge to consensus.

Proof Consider the constant mass dynamics given by: ψi(x,m) ≡ −R for all i ∈
{1, · · · , N}. Then for all i ∈ {1, · · · , N}, mi(t) = m0

i e−Rt and we can compute:

d(‖xi − x0
i ‖

2)

dt
= 〈xi − x0

i ,

N∑
j=1

2mj

M
a(‖xi − xj ‖)(xj − xi)〉 ≤ 2‖xi − x0

i ‖δe−Rt,

where δ was defined in (5). From this we get: ‖xi − x0
i ‖ ≤

δ
R (1 − e−tR). Hence for

R big enough, each xi is confined to a neighborhood of its initial position, which
prevents convergence to consensus. �

Remark 3 As a consequence, in such cases the convex hull tends to a limit set
Ω∞ := ∩t≥0Ω(x(t)) not restricted to a single point.

The dynamics of the barycenter of the system are now less trivial than in the
previous section due to the total mass variation. Nevertheless, as previously, we
prove approximate controllability to any target position strictly within the initial
convex hull.

Theorem 2 Let (x0
i )i∈{1, · · · ,N } ∈ R

dN , (m0
i ) ∈ (0, M)N such that

∑N
i=1 m0

i = M and
let x∗ ∈ Ω̊(x0). Then for all ε > 0, there exists α > 0, tε ≥ 0 and u ∈ Uα

∞ \UM such
that the solution to (4) satisfies: ‖ x̄(tε) − x∗‖ ≤ ε.

Proof Let x∗ ∈ Ω̊(x0) and let ε > 0. Then there exists (τ0
i )i∈{1, · · · ,N } with τ

0
i ∈

[0, 1]N ,
∑N

i=1 τ
0
i = 1 and τ0

i > 0 for all i ∈ {1, · · · , N} such that

x∗ =
N∑
i=1

τ0
i x0

i .
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Wewill show that we can drive each weight mi to a multiple κτ0
i of its target weight,

while maintaining the positions withing close distance of the initial ones, ensuring
that the target position remains in the shrinking convex hull. Define

rmin = min{ln
(
m0

i

τ0
i

)
| i ∈ {1, · · · , N}}

rmax = max{ln
(
m0

i

τ0
i

)
| i ∈ {1, · · · , N}}.

Let α̃ ≥ δ
ε , with δ defined in (5) and let α > α̃ > 0. Let T := rmax−rmin

α−α̃ and
κ := ermin−α̃T . Now consider the constant control defined by: for all i ∈ {1, · · · , N},

ui = −
1
T

ln

(
m0
i

κτ0
i

)
.

One can easily show that for all i ∈ {1, · · · , N}, −α ≤ ui ≤ −α̃, and furthermore,
mi(T) = κτ0

i . From the proof of Prop. 2, for all t ∈ [0,T], ‖xi(t) − x0
i ‖ ≤

δ
α̃ , where δ

was defined in (5). From this we compute:

‖ x̄(T) − x∗‖ =






∑N
i=1 mi(T)xi(T)∑N

i=1 mi(T)
−

N∑
i=1

τ0
i x0

i






 =





 N∑
i=1

τ0
i (xi(T) − x0

i )







≤

N∑
i=1

τ0
i



xi(T) − x0
i



 ≤ δ

α̃
≤ ε,

which proves the theorem. �

Remark 4 As for Theorem 1, the proof can be easily adapted to the case u ∈ UA
1 by

replacing α by A
N .

As in the previous section, we design a feedback control strategy that minimizes
the time-derivative of the functional X instantaneously.With a totalmass nowvarying
in time, we have:

d
dt

X =
2∑N

i=1 mi

N∑
i=1

mi 〈x̄ − x∗, xi − x̄〉ui . (8)

Since we removed the constraint u ∈ UM , the control strategy minimizing dX
dt is

straightforward. For u ∈ Uα
∞, we have:{

ui = −α if 〈x̄ − x∗, xi − x̄〉 > 0
ui = α if 〈x̄ − x∗, xi − x̄〉 < 0.

(9)

For u ∈ UA
1 , we define the set I := arg max{|mi 〈x̄ − x∗, xi − x̄〉|, i ∈ {1, · · · , N}},

and we have:
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ui = − A

|I | sgn(〈x̄ − x∗, xi − x̄〉) if i ∈ I

ui = 0 otherwise,
(10)

where | · | represents the cardinality of a set.

4 Mean-field limit

4.1 Mean-field limit of mass-varying dynamics without control

In this section, we recall the definition of mean-field limit. Consider System (1).
The goal of the mean-field limit is to describe the behavior of the system when the
number of agents N tends to infinity. Instead of following the individual trajectory of
each individual, we aim to describe the group by its limit density µ, which belongs
toM(Rd), the set of Radon measures with finite mass. We endowM(Rd) with the
topology of the weak convergence of measures, i.e.

µi ⇀i→∞ µ ⇔ lim
i→∞

∫
f dµi =

∫
f dµ

for all f ∈ C∞c (R
d). Let µ0 ∈ M(R

d). We consider the following transport equation
for µ: {

∂t µ + ∇ · (V[µ]µ) = h[µ]
µ(0) = µ0.

(11)

We recall conditions for well-posedness of (11), see [24]:

Hypothesis 3 The function V[·] :M(Rd) → C1(Rd) ∩ L∞(Rd) satisfies

• V[µ] is uniformly Lipschitz and uniformly bounded
• V is uniformly Lipschitz with respect to the generalizedWasserstein distance (see

[24])

Hypothesis 4 The source term h[·] :M(Rd) → M(Rd) satisfies

• h[µ] has uniformly bounded mass and support
• h is uniformly Lipschitz with respect to the generalized Wasserstein distance (see

[24])

We now recall the definition of mean-field limit.

Definition 2 Let (x,m) ∈ RdN × (R+)N be a solution to (1). We denote by µN the
corresponding empirical measure defined by

µN (t) =
1
M

N∑
i=1

mi(t)δxi (t).
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The transport equation (11) is the mean-field limit of the collective dynamics (1) if

µN (0)⇀N→∞ µ(0) ⇒ µN (t)⇀N→∞ µ(t)

where µ is the solution to (11) with initial data µ(0).
The definition of empirical measure requires a crucial property of the finite-

dimensional system (1): that of indistinguishability of the agents. Indeed, notice
that there isn’t a one-to-one relationship between the set of empirical measures
(finite sums of weighted Dirac masses) and the set of coupled positions and weights
(x,m) ∈ RdN × (R+)N . For instance, two pairs (x(t),m(t)) ∈ RdN × (R+)N and
(y(t), q(t)) ∈ Rd(N−1) × (R+)N−1 satisfying x0

1 = x0
N = y0

1 , m0
1 + m0

N = q0
1 and

(x0
i ,m

0
i ) = (y

0
i , q

0
i ) for all i ∈ {2, · · · , N − 1} correspond to the same empirical

measure. Hence if we want the concept of mean-field limit to make sense, we must
consider discrete systems that give the same dynamics to (x(t),m(t)) and (y(t), q(t)).

Definition 3 Let t 7→ (x(t),m(t)) ∈ RdN × (R+)N and t 7→ (y(t), q(t)) ∈ Rd(N−1) ×
(R+)N−1 be two solutions to system (1). We say that indistinguishability is satisfied
if 

x0
1 = x0

N = y0
1

m0
1 + m0

N = q0
1

xi = yi, i ∈ {2, · · · , N − 1}
mi = qi, i ∈ {2, · · · , N − 1}

⇒


x1 ≡ xN ≡ y1

m1 + mN ≡ q1

xi ≡ yi, i ∈ {2, · · · , N − 1}
mi ≡ qi, i ∈ {2, · · · , N − 1}.

Indistinguishability is a strong property, and it is not necessarily satisfied by the
general function ψ defining the weights’ dynamics in (1). We refer the reader to
[1, 19, 25] for examples of mass dynamics satisfying or not the indistinguishability
property. From here onward, we will focus on the following particular form of mass
dynamics that does satisfy indistinguishability:

ψi(x,m) =
1
M

N∑
j=1

mjS(xi, xj), (12)

with S ∈ C(Rd × Rd,R) .
In order for a transport equation to be the mean-field limit of a finite-dimensional

system, it is sufficient for it to satisfy the following two properties (see [28]):
(i) When the initial data µ0 is an empirical measure µ0

N associated with an initial
data (x0,m0) ∈ RdN ×RN of N particles, then the dynamics (11) can be rewritten
as the system of ordinary differential equations (1).

(ii) The solution µ(t) to (11) is continuous with respect to the initial data µ0.
The following holds:
Proposition 3 Consider System (1) with mass dynamics given by (12), where S ∈
C(Rd × Rd,R) is skew-symmetric: S(x, y) = −S(y, x). Then its mean-field limit is
the transport equation with source (11) with the interaction kernel



12 Benedetto Piccoli and Nastassia Pouradier Duteil

V[µ](x) =
∫
Rd

a(‖x − y‖)(y − x)dµ(y) (13)

and the source term
h[µ](x) =

∫
Rd

S(x, y)dµ(y)µ(x). (14)

The proof of this result should consist of proving the two properties (i) and (ii)
above. Notice that well-posedness of (11)-(13)-(14) and continuity with respect to
the initial data cannot be obtained by applying directly the results of [24] since h does
not satisfy Hypothesis 4. Nevertheless, well-posedness and continuity can be proven,
using the total conservation of mass coming from the skew-symmetric property of
S, see [25]. In the present paper, we focus on proving the first property (i).

Proof We prove that the transport equation (11) with the vector field (13) and the
source term (14) satisfies the property (i) above. Let (x,m) : R+ → RdN × RN

be the solution to the system (1) with the weight dynamics given by (12) and
initial data (x0,m0) ∈ RdN × RN . We show that the empirical measure µN (t, x) =
1
M

∑N
i=1 mi(t)δxi (t)(x) is the solution to the PDE (11)-(13)-(14) with initial data

µ0
N (x) =

∑N
i=1 m0

i δx0
i
(x). Let f ∈ C∞c (R

d). We show that

d
dt

∫
f dµN −

∫
∇ f · V[µN ]dµN =

∫
f dh[µN ]. (15)

We compute each term independently. Firstly, we have:

d
dt

∫
f dµN =

d
dt

1
M

N∑
i=1

mi f (xi) =
1
M

N∑
i=1
( Ûmi f (xi) + mi Ûxi · ∇ f (xi))

=
1

M2

N∑
i=1

N∑
j=1

mimj

[
S(xi, xj) f (xi) + a(‖xi − xj ‖)(xj − xi) · ∇ f (xi)

]
.

(16)

Secondly,∫
∇ f · V[µN ]dµN =

∫
∇ f (x) ·

∫
a(‖x − y‖)(x − y)dµN (y)dµN (x)

=
1

M2

N∑
i=1

N∑
j=1

mimja(‖xi − xj ‖)(xj − xi) · ∇ f (xi).
(17)

Thirdly,∫
f dh[µN ] =

∫
f (x)

∫
S(x, y)dµN (y)dµN (x) =

1
M2

N∑
i=1

N∑
j=1

mimj f (xi)S(xi, xj).

(18)
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Putting together (16), (17) and (18) and using the fact that (x,m) satisfies (1)-(12),
we deduce that µN satisfies (15)-(13)-(14). �

The general weight dynamics (12) include special cases studied in previousworks.
Indeed:

• if S(x, y) := S0(x), the mass dynamics can be simply written as h[µ](x) =
|µ|S0(x)µ(x) (see [24])

• if S(x, y) := S1(y − x), the mass dynamics can be rewritten as the convolution
h[µ] = (S1 ∗ µ)µ (see [24])

• if Ûmi =
1
M

∑N
j=1

∑N
k=1 mjmkS(xi, xj, xk), we can show in a similar way that the

mean-field limit is the PDE (11) with the source term

h[µ](x) =
(∫
Rd

∫
Rd

S(x, y, z)dµ(y)dµ(z)
)
µ(x).

In particular, this applies to the following mass-conserving dynamics, which are
a slight modification of Model 2 proposed in [19]:

Ûmi =
mi

M
©­«

N∑
j=1

mja(‖xi − xj ‖)‖xi − xj ‖ −
1
M

N∑
j=1

N∑
k=1

mjmka(‖xj − xk ‖)‖xj − xk ‖)
ª®¬

where S(xi, xj, xk) := 1
M (a(‖xi − xj ‖)‖xi − xj ‖ − a(‖xj − xk ‖)‖xj − xk ‖).

4.2 Control problem

From the mean-field limit of the system without control, we extract a natural control
problem corresponding to the mean-field limit of (3). Consider the controlled PDE:{

∂t µ + ∇ · (V[µ]µ) = µu
µ(0) = µ0.

(19)

We define the kinetic variance X(t) = ‖
∫
Rd
(x − x∗)dµ(t, x)‖2. We seek a control

function u : R+ × RdN that minimizes instantaneously d
dtX(t). Similarly to Section

2, we can further restrict the set of controls to functions satisfying∫
Rd

u(t, x)dµ(t, x) = 0 for a.e t ∈ R+.

We can also extend the L1 and L∞ bounds on the control to the mean-field setting:

• L∞ condition: ‖u‖L∞(R+×Rd ) ≤ α
• L1 condition: ‖u(t, ·)‖L1(Rd ) ≤ A

We can compute:
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d
dt
X(t) =2〈

∫
Rd
(x − x∗)dµ(t, x),

d
dt

∫
Rd
(x − x∗)dµ〉 = 2〈

∫
Rd
(x − x∗)dµ(t, x),−

∫
Rd
(x − x∗)d(∇ · (V[µ]µ))〉

+ 2〈
∫
Rd
(x − x∗)dµ(t, x),

∫
Rd
(x − x∗)u(t, x)dµ〉.

5 Numerical simulations

We now provide simulations of the evolution of System (4) with the various control
strategies presented in Sections 2 (u ∈ Uα

∞ ∩UM and u ∈ UA
1 ∩UM ) and 3 (u ∈ Uα

∞

and u ∈ UA
1 ).

Four simulations were run with the same set of initial conditions x0 ∈ RdN for
d = 2, N = 10, and control bounds α = 2 and A = 10. In each simulation, the control
maximizes the instantaneous decrease of the functional X , with one of the various
constraints exposed in Sections 2 and 3. Figure 1 shows that in all cases, the control
successfully steers the weighted barycenter x̄ to the target position x∗. The evolution
of the functional t 7→ ‖ x̄(t) − x∗‖ (Figure 4 (right)) shows that the target is reached
faster with controls that allow for mass variation than for controls constrained to the
set UM . Figure 2 shows the evolution of each agent’s individual weight for each of
the four cases of Figure 1. Interestingly, when mass variation is allowed, we observe
a general decrease in the total mass of the system in the case u ∈ Uα

∞ (dotted grey
line, Fig. 2 - left) and a general increase in the case u ∈ UA

1 (dotted grey line, Fig.
2 - right). Figure 3 shows the control values ui(t) for each i ∈ {1, · · · , N} and each
t ∈ [0, 1]. Notice that in the case of mass-preserving control u ∈ UM (top row), the
controls do not saturate the constraints u ∈ Uα

∞ or u ∈ UA
1 . In the case of varying

total mass, as shown in Section 3, the control strategies minimizing dX
dt saturate the

constraints.
Figure 4 (left) shows that the constraint u ∈ UA

1 promotes a sparse control strategy.
A control is said to be sparse if it is active only on a small number of agents. As
mentioned in Section 2, mass-varying controls cannot be strictly sparse, and need
to have at least two non-zero components at each time. Indeed, the control strategy
u ∈ UA

1 ∩UM has either two or three active components at all time.

Conclusion

In this paper we aimed to control to a fixed consensus target a multi-agent system
with time-varying influence, by acting only on each agent’s weight of influence. We
proved approximate controllability of the system to any target position inside the
convex hull of the initial positions. We then focused on designing control strategies
with various constraints on the control bounds and on the total mass of the system.

We also presented the mean-field limit of the discrete model for general mass dy-
namics that satisfy the indistinguishability property. The population density satisfies
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Fig. 1 Trajectories of the positions xi (t) in R2 corresponding to the controlled system (4) with
N = 10 and a : s 7→ e−s

2 . The top row corresponds to controls satisfying u ∈ UM (Section 2)
while the second row corresponds to controls allowing total mass variation (Section 3). In each
row, the left column corresponds to u ∈ Uα

∞ and the right one corresponds to u ∈ UA
1 . In each

plot, different agents are represented by different colors, and the size of each dot is proportional
to the weight of the corresponding agent at that time. The gray dotted trajectory represents the
weighted barycenter x̄. The black star represents the target position, inside the convex hull of the
initial positions (dashed polygon). The convex hull of the positions at final time is represented by
the dot-dashed polygon.

a transport equation with source, where both the source term and the velocity are
non-local.

The combination of our analysis with numerical simulations allows us to compare
the control performances of the four strategies. Firstly, the control strategies allowing
total mass variation are more efficient than the control strategies conserving the total
mass, as the weighted barycenter reaches the target position faster.Interestingly, this
is not obvious a priori from Equations (7) and (8), as the time derivatives of the
functional X = ‖ x̄ − x∗‖2 are of the same order of magnitude in the two cases. We
also remark that the controls allowing mass variation can either increase or decrease
the total mass of the system.

The constraint u ∈ UA
1 is usually enforced to promote sparsity (see [8, 23]),

that is the activation at any given time of as few control components as possible.
However, the added constraint u ∈ UM renders strict sparsity impossible, and we
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Fig. 2 Evolution of the weights t 7→ mi (t) corresponding to control strategies u ∈ Uα
∞ (left)

and u ∈ UA
1 (right). In each plot, the continuous lines correspond to the mass-preserving control

u ∈ UM of Section 2, and the dashed lines to the controls of Section 3. Each colored line
(respectively dashed or continuous) shows the evolution of the corresponding colored agent of Fig.
1, and the grey lines represent the evolution of the average weight 1

N

∑N
i=1 mi .

Fig. 3 Evolution of the control functions t 7→ ui (t) corresponding to the systems of Fig. 1. The
top row corresponds to controls satisfying u ∈ UM (Section 2) while the second row corresponds
to controls allowing total mass variation (Section 3). In each row, the left column corresponds to
u ∈ Uα

∞ and the right one corresponds to u ∈ UA
1 . Each control function ui is colored according

to the corresponding agent xi of Fig. 1.
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Fig. 4 Left: Evolution of the number of active components of the control with the various strategies
corresponding to Fig. 1. Right: Distance of the barycenter to the target position t 7→ ‖ x̄(t) − x∗ ‖.

already remarked that in order to preserve the total mass, the control has to be active
on at least two components at any given time. Simulations shows that indeed, the
control u ∈ UA

1 ∩UM oscillates between two and three active components, whereas
the control u ∈ UA

1 maintains strict sparsity. On the other hand, the controls u ∈ Uα
∞

and u ∈ Uα
∞ ∩UM act simultaneously on all components at all time.

Although in the illustrating simulations, all four controls manage to drive the
system’sweighted barycenter to the target position x∗, thiswould not have necessarily
been achievable with either a target closer to the initial convex hull boundary or with
stricter control bounds α and A. The question of determining the set of achievable
targets given an initial distribution of positions and weights and control bounds
remains open and is an intriguing future direction of this work, as is the control
of the mean-field model obtained as limit of the finite-dimensional one when the
number of agents tends to infinity.
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