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Abstract We investigate the existence of sufficient local conditions under which
poset representations decompose as direct sums of indecomposables from a given
class. In our work, the indexing poset is the product of two totally ordered sets,
corresponding to the setting of 2-parameter persistence in topological data anal-
ysis. Our indecomposables of interest belong to the so-called interval modules,
which by definition are indicator representations of intervals in the poset. While
the whole class of interval modules does not admit such a local characterization,
we show that the subclass of rectangle modules does admit one and that it is, in
some precise sense, the largest subclass to do so.
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1 Introduction

Recent work by Botnan and Crawley-Boevey [5] shows that pointwise finite-dimen-
sional (pfd) representations of posets over an arbitrary field k decompose as direct
sums of indecomposables with local endomorphism ring. Here we are interested
in posets that are finite products of totally ordered sets X1 × · · · ×Xd, equipped
with the product order. This choice is motivated by applications in topological data
analysis (TDA), where representations of such posets (typically Rd) arise naturally.
While a poset of this form is usually of wild representation type (at least when d >
1), we are only interested in a subclass of its indecomposable representations, called
interval modules, which by definition are indicator representations kI of intervals

(i.e. connected convex subsets) I of X1×· · ·×Xd. Here, connectivity and convexity
are understood in the product order; see Figure 1 for an example where d = 2.

R2

k

k

k

k k

k
0

0
id

id
id

id

id

I

Fig. 1 An interval I ⊂ R2 and its associated interval module kI .

These indecomposables play a key role in TDA. Indeed, given a pfd repre-
sentation M , the collection of the supports of the interval summands appearing
in its direct-sum decomposition can be used as a descriptor for M—called its
barcode—and thereby also as a descriptor for the data from which the represen-
tation originates. This descriptor is purely geometric by nature, therefore easy to
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interpret for practitioners, and efficient to encode and manipulate on a computer.
Furthermore, its stability properties in the 1-parameter setting [12,14] make it a
relevant choice for deriving consistent estimators in statistical analysis.

In practice, one would like to be able to determine whether a given represen-
tation M of X1 × · · · × Xd admits interval summands in its decomposition, and
if so, whether it admits only such summands—in which case it is called interval-

decomposable. The straightforward approach for this consists in decomposing M

then checking its summands one by one. In this paper, we advocate a different
approach that consists of checking local conditions, i.e., conditions involving only
restrictions of M to certain collections of subsets of X1 × · · · × Xd. Provided the
considered subsets are small enough, the restrictions of M will have a simple struc-
ture, potentially leading to algorithmic improvements and simplified mathematical
analyses.

An example of this, taken from the TDA literature, is level-set persistence [3,
9], which constructs invariants for R-valued functions f on a topological space by
looking at the pre-images through f of bounded open intervals of R. Once properly
indexed, the homology groups of these pre-images arrange themselves into a repre-
sentation of R2 that turns out to be interval-decomposable, with summands sup-
ported on a special class of intervals of R2 called blocks—specifically: upper-right
or lower-left quadrants, and horizontal or vertical infinite bands. Decomposability
into block summands in this setting is a straightforward consequence of the Mayer-
Vietoris theorem, once the following local characterization has been established: a
pfd representation M of R2 decomposes exclusively into block summands if, and
only if, all its restrictions to squares {x1, x′1} × {x2, x′2} ⊂ R2 do. This fact was
proven in [5,10], and at the time, it provided a cleaner, and more general theory
for level-set persistence than the one established previously by Bendich et al. [3],
which required an extra “Morse-type” condition on the R-valued function f under
consideration.

In this paper, we further generalize the theory by enlarging the class of in-
tervals of interest to include all the axis-aligned rectangles in R2, or more gen-
erally, all the products of 1-dimensional intervals in a product of two totally or-
dered sets X1 × X2 that admits a countable coinitial subset. The indicator rep-
resentations supported on rectangles are called rectangle modules, and an interval-
decomposable representation whose summands are supported exclusively on rect-
angles is called rectangle-decomposable. We prove (Theorem 2.9) that a pfd repre-
sentation of X1 ×X2 is rectangle-decomposable if, and only if, all its restrictions
to squares {x1, x′1} × {x2, x′2} ⊆ X1 ×X2 are. We also prove (Theorem 2.13) that
the rectangle modules are, in some precise sense, the largest subclass of interval
modules that can be characterized locally, at least as far as restrictions to squares
are concerned. These results generalize previous results obtained under the con-
straint that the sets X1, X2 be finite [7]—this constraint is lifted here and replaced
by a much milder assumption.

The interest in rectangle modules is currently ramping up among the TDA
community, with the realization of their simplicity of use and potential for general-
ization. Indeed, while they constitute only a small fraction of the indecomposables
over Rd, they can serve as a basis for encoding certain invariants of more general
classes of representations. For instance, it was proven in [8] that the so-called rank
invariant of any finitely presented representation M of Rd, i.e., the collection of
the ranks of all the internal morphisms of M , decomposes essentially uniquely as
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the difference between the rank invariants of two rectangle-decomposable repre-
sentations. Rectangle modules—or a slight generalization thereof—also appear in
projective resolutions in certain exact structures [4,8]. These facts give rise to a
notion of signed barcode for general classes of representations of Rd. While our
work is not directly related to these recent developments, it contributes to the
background knowledge on rectangle modules, and it allows us to answer practical
questions such as determining whether a representation itself—not just its rank
invariant—decomposes into rectangle summands.

The next section states our results formally, reviews the state of the art, and
provides a brief outline of the paper.

2 Main question and results

2.1 Preliminaries

Our exposition uses the language of topological data analysis to talk about repre-
sentations. Here we spend a few paragraphs defining our terms.

2.1.1 Persistence modules

A persistence module over a poset (P,4) is a functor M : (P,4) → Vec where Vec

denotes the category of vector spaces over a fixed field k. Morphisms between
persistence modules are natural transformations between functors.

As Vec is an abelian category, so is the category Per(P,4) := Fun((P,4),Vec)
of persistence modules over (P,4). More precisely, kernels, cokernels and images,
as well as products, direct sums and quotients of persistence modules are defined
pointwise at each index p ∈ P , and the category of persistence modules admits a
zero object 0, the persistence module whose spaces and internal morphisms are all
equal to 0.

For every p ∈ P , the vector space M(p) is called internal space of M at p and
denoted for short by Mp. For every p 4 q, the linear map of M(p 4 q) : Mp →Mq

is called internal morphism of M between p and q and denoted for short by ρqp. We
say that M is pointwise finite-dimensional (pfd) if for every p ∈ P , Mp is finite-
dimensional. The support of M is the set of indices p ∈ P for which Mp 6= 0. We
say that a family {Mα}α∈A of persistence modules over P is locally finite if the set
{α ∈ A | p ∈ supp (Mα)} is finite for each p ∈ P . A locally finite direct sum is the
direct sum of a locally finite family of persistence modules.

A morphism f : M → N between two persistence modules over P is a monomor-

phism (resp. epimorphism) if for every p ∈ P , fp : Mp → Np is injective (resp.
surjective). A morphism between two persistence modules is an isomorphism if is
it both a monomorphism and an epimorphism. A submodule of M is a persistence
module N together with a monomorphism N → M of persistence modules, often
denoted by N ↪→M .

2.1.2 Decomposability

A persistence module over (P,4) is said to be decomposable if it decomposes as
direct sum of at least two nontrivial persistence modules. Otherwise, it is said to
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be indecomposable. The endomorphism ring End(M) := Hom(M,M) is local if θ or
IdM −θ is invertible for all θ ∈ End(M). It is easy to see that if M has a non-trivial
decomposition then End(M) is not local. The pfd persistence modules over (P,4)
form a Krull-Schmidt subcategory of Per(P,4):

Theorem 2.1 ([5]). Every pfd persistence module M over (P,4) decomposes as a

direct sum of indecomposable modules with local endomorphism rings. By Azumaya’s

theorem [1] this decomposition is unique up to isomorphism.

2.1.3 Product posets

In the paper we focus on persistence modules over product posets. Given two
totally ordered sets (X,≤X) and (Y,≤Y ), their product (X ×Y,≤) is the Cartesian
product X × Y equipped with the product order ≤ defined by

∀s, t ∈ X × Y, s ≤ t⇐⇒ sx ≤X tx and sy ≤Y ty, (2.1)

where the coordinates of a point u ∈ X × Y are denoted by (ux, uy). Henceforth
we use the notation X × Y instead of (X × Y,≤) as the only order considered on
the Cartesian product X × Y will be the product order.

Convention 2.2. From now on and until the end of the paper, we fix two totally
ordered sets (X,≤X) and (Y,≤Y ) and consider their product (X × Y,≤).

A persistence module M over X × Y is called a 2-parameter persistence module,
or a persistence bimodule for short. Any two comparable points s ≤ t in X×Y yield
a square Qt

s := {s, (sx, ty), (tx, sy), t} and an associated commutative diagram

M(sx,ty) Mt

Ms M(tx,sy)

ρt(sx,ty)

ρ
(tx,sy)
s

ρ
(sx,ty)
s

ρt(tx,sy) (2.2)

2.1.4 Intervals, rectangles, blocks

Let P be a poset. We say that S ⊆ P is convex if, for every p 4 q ∈ S, we have
s ∈ S for all s ∈ P such that p 4 s 4 q. A convex set S is an interval if it is also
connected, i.e. for every p, q ∈ S there is a finite sequence (pi)i∈J0,nK of points of S
such that p = p0 ⊥ · · · ⊥ pn = q, where ⊥ is the binary relation defined by p ⊥ q

if and only if p and q are comparable (p 4 q or q 4 p). We write Conv(P ) (resp.
Int(P )) for the set of convex (resp. interval) subsets of P .

To any convex set S ⊆ P we associate a persistence module kS , called the
indicator module of S, defined as follows:

kS(p) =

{
k if p ∈ S,
0 else,

(2.3)
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and

kS(p ≤ q) =

{
Idk if p and q ∈ S,
0 else,

(2.4)

and by convention we set k∅ = 0. When S is an interval, kS is called an in-

terval module, and it is indecomposable because its endomorphism ring End(kS)
is isomorphic to k (by connectivity of S) and thus local. Otherwise, kS decom-
poses as the direct sum of the indicator modules of its connected components.
If M is isomorphic to a direct sum of interval modules, then we say that M is
interval-decomposable.

We call any product I × J of two intervals I ⊆ X and J ⊆ Y a rectangle, and
we write Rec(X × Y ) for the set of rectangles of X × Y . Note that rectangles are
intervals by definition, and their associated interval modules are called rectangle

modules.
A block is any rectangle B = I × J that satisfies either of the following (non-

exclusive) conditions:

– I is cofinal1 in X and J is cofinal in Y—B is then called a birth quadrant ;
– I is coinitial in X and J is coinitial in Y—B is then called a death quadrant ;
– I is both coinitial and cofinal in X—B is then called a horizontal band ;
– J is both coinitial and cofinal in Y—B is then called a vertical band.

We write Blc(X × Y ) for the set of blocks of X × Y . Blocks are rectangles by
definition, and their associated rectangle modules are called block modules.

Example 2.3. Let Q be a square of X × Y represented by the following diagram.

• •

• •

Blc(Q) is the collection of the following subposets of Q:

◦ ◦

◦ ◦

,

• •

• •

,

• •

◦ ◦

,

◦ •

◦ •

,

◦ •

◦ ◦

,

◦ ◦

• ◦

,

• ◦

• ◦

,

◦ ◦

• •

,

where • represents a point that belongs to the corresponding block and ◦ represents
a point that does not. The collection Rec(Q) consists of the above subposets and
the following two ”corners”:

• ◦

◦ ◦

,

◦ ◦

◦ •

.

Definition 2.4. A persistence bimodule M is said to be rectangle-decomposable

(block-decomposable) if it decomposes into a direct sum of interval modules sup-
ported on rectangles (blocks).

1 Given a poset (P,4), a subset Q ⊆ P is coinitial if every p ∈ P admits a q ∈ Q such that
q 4 p, and cofinal if every p ∈ P admits a q ∈ Q such that q < p.
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X × Y

S

Q

Fig. 2 An example of S ∈ S (the solid blue polygon) and Q ∈ Q (the four dots arranged in
a square) such that S ∩Q is convex but not connected in Q.

2.2 Local characterization

Our aim is to work out a local condition that characterizes the decomposability
of pfd persistence bimodules over a given class of interval modules. We specify
this class of interval modules via the set S ⊆ Int(X × Y ) of their supports, and
we write 〈S〉 for the set of all pfd persistence bimodules that are obtained (up to
isomorphism) as direct sums of such interval modules:

〈S〉 :=

{
M ∈ Per(X × Y ) |M '

⊕
S∈S

kmSS where
∑
S3t

mS <∞ for all t ∈ X × Y

}
.

Note that the class 〈S〉 is still well-defined for S ⊆ Conv(X × Y ). In that case,
however, kS need not be indecomposable.

Locality is understood as taking restrictions to a collection Q of strict subsets
of X × Y , called the test subsets. Given Q ∈ Q, let S|Q := {S ∩ Q |S ∈ S} be the
set of intervals in S restricted to Q. Note that S|Q ⊆ Conv(Q), since convexity is
preserved under taking restrictions. However, it may not be the case that S|Q ⊆
Int(Q), since connectivity is not always preserved under taking restrictions; see
Figure 2 for an example. Nevertheless, we still have2:

〈Int(X × Y )|Q〉 = 〈Int(Q)〉.

While intervals of X×Y may not restrict to intervals on product subsets (see again
Figure 2), rectangles and blocks do restrict to rectangles and blocks respectively.
This means that we for any Q ∈ PSub(X × Y ) have:

Rec(X × Y )|Q = Rec(Q),

Blc(X × Y )|Q = Blc(Q).

2 This is easily proven. Given an interval S ⊆ X×Y , the restriction S|Q is convex in Q there-
fore kS decomposes as the direct sum of the indicator modules of its connected components
in Q. Conversely, given an interval S′ of Q, the set S = {s ∈ X ×Y | p 4 s 4 q for some p, q ∈
S′} is an interval of X × Y that restricts to S′ on Q.
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2.2.1 Problem formulation

Let S be a collection of intervals in X×Y , and let Q be a collection of test subsets.
Since restriction preserves interval-decomposability, we see that if M ∈ 〈S〉, then
M ∈ 〈S|Q〉 for every Q ∈ Q. Symbolically,

M ∈ 〈S〉 =⇒ ∀Q ∈ Q, M|Q ∈ 〈S|Q〉.

In this paper we are concerned with the reverse implication.

Main question. Characterize the collections S and Q such that

M ∈ 〈S〉 ⇐= ∀Q ∈ Q, M|Q ∈ 〈S|Q〉.

Throughout the paper we focus on the setting where the test subsets Q are of
the form X ′×Y ′ ⊆ X×Y for X ′ ⊆ X and Y ′ ⊆ Y , and we denote by PSub(X×Y )
the set of such subsets. Observe that the main question is trivial if X × Y is a
member of Q.

Focusing on PSub(X × Y ) does not provide a complete picture, and there are
several natural next steps; see Section 9 for a discussion on this.

2.3 State of the art

We now review positive and negative results in the setting of our main question. To
this end we need the following notation. Let PSubm(X×Y ) denotes the collection
of all finite product subsets of X × Y of size m × m. For example, the elements
of PSub2(X × Y ) are the squares, i.e., the 2× 2 grids embedded in X × Y .

2.3.1 Positive results: S = Blc(X × Y ) and S = Rec(X × Y )

A local characterization of block-decomposable pfd bimodules was given in [10]
for X × Y = R2, and later extended to products of two totally ordered sets in [5].

Theorem 2.5 ([10,5]). Let X and Y be totally ordered sets, and M a pfd module

over X × Y . Then, M is block-decomposable if and only if the restriction of M to an

arbitrary 2× 2 grid is block-decomposable. Symbolically,

M ∈ 〈Blc(X × Y )〉 ⇐⇒ ∀Q ∈ PSub2(X × Y ),M|Q ∈ 〈Blc(Q)〉.

For X and Y finite sets, the previous theorem generalizes to rectangles.

Theorem 2.6 ([7]). Let X and Y be finite totally ordered sets, and M a pfd module

over X × Y . Then, M is rectangle-decomposable if and only if the restriction of M to

an arbitrary 2× 2 grid is rectangle-decomposable. Symbolically,

M ∈ 〈Rec(X × Y )〉 ⇐⇒ ∀Q ∈ PSub2(X × Y ),M|Q ∈ 〈Rec(Q)〉.

2.3.2 Negative result: S = Int(X × Y )

It was shown in [7] that when X × Y is finite, there is no local characterization of
interval-decomposable modules.

Theorem 2.7 ([7]). Suppose X and Y are finite with |X| ≥ 3 and |Y | ≥ 3. Then,

there exists a pfd persistence module M over X × Y that is not interval-decomposable,

but for which M |Q is interval-decomposable for all Q = X ′ × Y ′ ( X × Y .
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2.3.3 Negative result: Rec(X × Y ) ( S ( Int(X × Y )

In light of Theorem 2.7 it is natural to wonder if there is a class of intervals
more general than rectangles for which a local characterization over 2× 2 grids is
possible. That turns out not to be the case.

Theorem 2.8 ([7]). Suppose X and Y are finite with |X| ≥ 2, |Y | ≥ 2, where

(|X|, |Y |) 6= (2, 2), and let S ⊆ Int(X × Y ) be such that S|Q ) Rec(Q) for all 2 × 2
grids Q. Then, there exists a pfd persistence module M over X×Y such that M is not

in 〈S〉, but the restriction of M to Q is in 〈S|Q〉 for all 2× 2 grids Q.

2.4 Our results

The main result of this paper is a generalization of Theorem 2.6 to the product
of two totally satisfying a weak condition; we conjecture that the result holds for
arbitrary totally ordered sets but proving that seems to require a novel set of ideas.

Theorem 2.9. Suppose that any interval of X or Y admits a countable coinitial subset.

Then, any pfd persistence module M over X ×Y is rectangle-decomposable if and only

if the restriction of M to any 2× 2 grid is rectangle-decomposable. Symbolically,

M ∈ 〈Rec(X × Y )〉 ⇐⇒ ∀Q ∈ PSub2(X × Y ),M|Q ∈ 〈Rec(Q)〉.

Note that since rectangles contain blocks, this theorem also generalizes Theo-
rem 2.5.

The assumption on the posets is fairly mild. For instance, it is satisfied by
arbitrary subsets X,Y of R endowed with the canonical order. Furthermore, an
equivalent formulation of the assumption is that X and Y both admit a countable
subset which is dense in their order topology, as it is done in [11]. It can also easily
be seen to be equivalent to the hypothesis that any rectangle in X × Y admits a
countable coinitial subset, which is instrumental when considering inverse limits
of exact sequences; see Lemma 4.3.

As in the finite setting [7], our analysis uses the following local characterization
for rectangle-decomposability.

Definition 2.10 (Weak exactness). A persistence module M over X × Y is weakly

exact if, for every s ≤ t ∈ X ×Y , the following conditions hold in the commutative
diagram (2.2):

Im ρts = Im ρt(tx,sy) ∩ Im ρt(sx,ty),

Ker ρts = Ker ρ
(tx,sy)
s + Ker ρ

(sx,ty)
s .

This condition is a weakened version of the so-called strong exactness condition
that was proven to be equivalent to block-decomposability in [10]. Furthermore,
it is not hard to check that a pfd persistence module over a 2 × 2 grid is weakly
exact if and only if it is rectangle-decomposable. With this observation in mind,
we see how the following theorem is equivalent to Theorem 2.9.

Theorem 2.11. Suppose that any interval of X or Y admits a countable coinitial

subset. Then, a pfd persistence module M over X × Y is weakly exact if, and only if,

M is rectangle-decomposable.
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We also consider extensions of Theorem 2.7 and Theorem 2.8.

Theorem 2.12 (extends Theorem 2.7). Suppose X and Y are totally ordered sets

with |X| ≥ 3 and |Y | ≥ 3, and let 2 ≤ m < min(|X|, |Y |) be an integer. Then, there

exists a pfd persistence module M over X × Y that is not interval-decomposable, but

for which M |Q is interval-decomposable for all grids Q of side-lengths at most m.

Theorem 2.13 (extends Theorem 2.8). Suppose X and Y are totally ordered sets

with |X| ≥ 2, |Y | ≥ 2, and (|X|, |Y |) 6= (2, 2), and that S ⊆ Int(X × Y ) is such that

S|Q ) Rec(Q) for all 2 × 2 grids Q. Then, there exists a pfd persistence module M

over X × Y such that M is not in 〈S〉, but the restriction of M to Q is in 〈S|Q〉 for

all 2× 2 grids Q.

The proofs of these results adapt and extend the scheme used in the finite
setting [7], making use of embeddings of a certain indecomposable representation
of the quiver Dn. While the proof of Theorem 2.12 is a straightforward adaptation
of Theorem 2.7, the proof of Theorem 2.13 is more involved.

As an application of Theorem 2.11 we prove a “continuous” version of the so-
called pyramid basis theorem from level-sets persistence [3]. Here continuous refers
to the fact that the persistence modules need not be completely determined by
the restriction to a finite set of indices.

2.5 Paper outline

The proof of Theorem 2.11 is developed in Sections 3 through 6. Since it is easy
to verify that rectangle modules are weakly exact and that being weakly exact is
invariant under taking locally finite direct sums, one can easily see that any pfd
persistence module that is rectangle-decomposable is also weakly exact. We are
left with proving the converse statement.

For that, we follow the same approach as in [10] using the so-called functorial

filtrations, with some major adjustments at key steps due to the weaker notion of
exactness used in our local condition (Definition 2.10). Consequently, our approach
in this paper is entirely different from the simple rank-based approach we followed
in the finite setting [7].

Summarized, we start by defining for each rectangle R ∈ X × Y , a submodule
MR of M called the rectangle filtrate of M associated to R. This submodule is con-
structed such that MR,t contains precisely the elements of Mt whose “lifespan” is
exactly R. In particular, MR is isomorphic to a finite direct sum of copies of kR.
We then prove that the sum of these filtrates is an internal direct sum of M . The
proof concludes by showing that the resulting internal direct sum generates M .

Our proofs of Theorems 2.12 and 2.13 are given in Section 7.

In section Section 8, we discuss our results in the context of TDA.

2.6 Comparison to the work on block-decomposable modules

We now compare our approach to the one in the block-decomposable case [10].
The functorial filtration technique for weakly exact persistence bimodules already
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appeared in [10, Secs. 3,4]. However, their definition of MR as a submodule of
M [10, Prop. 5.3] does not work for weakly exact persistence bimodules. That is,
the resulting family of vector spaces does not assemble into a submodule. This
poses a serious technical challenge that we overcome by defining the rectangle fil-
trate within a carefully constructed weakly exact submodule of M (Definition 4.1).
Proving that the resulting sum of rectangle filtrates is an internal direct sum
(Proposition 5.1) can be adapted directly from the proof of the analogous result
in the block-decomposable case [10, Prop. 6.6]. Contrary to this, proving that the
rectangle filtrations generate M is considerably more involved, as the work from
[10, Sec. 7] does not carry over to our setting. Our approach includes a series of
technical lemmas that prove that it suffices to consider the restriction to a certain
finite grid (Definition 6.3). Once this is established, the result is a consequence of
the structure theorem for finite grids (Theorem 2.6).

3 Functorial filtration and the counting functor

In this section, we recall the definition of the functorial filtration that we use to
construct our rectangle filtrates in Section 4. The functorial filtration is inspired
by [16], introduced in the 1-d case by [11] and generalized for the 2-d case in [10].
We write out the definitions and results already written in [10] for completeness,
and one may also read [10, Example 3.3] for an enlightening explicit computation
of the functorial filtration.

Assumption 3.1. In Sections 3 through 6, we assume that any interval of X or Y
admits a countable coinitial subset.

Consider a persistence module N over X × Y , and denote by ρts the internal
morphism N(s ≤ t) : Ns → Nt for any s ≤ t ∈ X × Y .
Cuts. To set up the functorial filtration technique, we need a characterization of
rectangles in X × Y using the notion of cuts. A cut c of a totally ordered set X
is a partition of X into two (possibly empty) sets (c−, c+) such that x < x′ for
all x ∈ c− and x′ ∈ c+. We call c− the lower part and c+ the upper part of c. For
instance, c− = (−∞, 1] and c+ = (1,+∞) define a cut of R. The following lemma
is a direct consequence of the fact that X is totally ordered.

Lemma 3.2. In a totally ordered set, the set of all cuts c can be totally ordered in two

canonical ways: inclusion on the lower part c−, or inclusion on the upper part c+. The

two orders are opposite from each other.

One can easily see that any interval I in a totally ordered set (T,≤) can be
written as I = c+ ∩ c− for two cuts c and c of T (see [11, Sec. 3]). Then, it
follows from its definition that any rectangle R of X × Y can be written as R =
( c+ ∩ c−)× (c+ ∩ c−), with two cuts of X called the left cut c and the right cut c ,
and with two cuts of Y called the top cut c and the bottom cut c. Moreover, writing
a block B = ( c+ ∩ c−)× (c+ ∩ c−), one can directly check from the definition of a
block that:

– c+ = c+ = ∅, if B is a birth quadrant, or
– c− = c− = ∅, if B is a death quadrant, or
– c− = c+ = ∅, if B is a horizontal band, or
– c− = c+ = ∅, if B is a vertical band.
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Pointwise filtration. Consider a rectangle R = ( c+∩c−)×(c+∩c−) of X×Y and
let t ∈ R. We start by defining the following subspaces of Nt, called horizontal con-

tributions (associated to the left and the right cuts of R) and vertical contributions

(associated to the top and the bottom cuts of R) of R in N :

Im+
c,t(N) =

⋂
x∈ c+
x≤tx

Im ρt(x,ty) Im−c,t(N) =
∑

x∈ c−
Im ρt(x,ty)

Ker+c ,t(N) =
⋂

x∈c+

Ker ρ
(x,ty)
t Ker−c ,t(N) =

∑
x∈c−
x≥tx

Ker ρ
(x,ty)
t

Im+
c,t(N) =

⋂
y∈c+
y≤ty

Im ρt(tx,y) Im−c,t(N) =
∑
y∈c−

Im ρt(tx,y)

Ker+c,t(N) =
⋂

y∈c+
Ker ρ

(tx,y)
t Ker−c,t(N) =

∑
y∈c−
y≥ty

Ker ρ
(tx,y)
t

(3.1)

with the convention that Im−c,t(N) = 0 when c− = ∅ and Ker+c,t(N) = Nt

when c+ = ∅. See Figure 3 for an illustration.

Remark 3.3. In [10], the definitions and the results are stated for the poset X×Y =
R2, but all results hold verbatim (with identical proofs) for a general product X×Y
under Assumption 3.1. From now on, we will therefore cite and use the results of
[10] in our setting.

The following lemma states that when N is pfd, horizontal and vertical contri-
butions can be realized as kernels and images of its internal morphisms.

Lemma 3.4 (Realization). [10, Lemma 3.1] Assume that N is pfd. For any t ∈ R,

one has:

Im+
c,t(N) = Im ρt(x,ty) for some x ∈ c+ ∩ (−∞, tx] and any lower x ∈ c+,

Im−c,t(N) = Im ρt(x,ty) for some x ∈ c− ∪ {−∞} and any greater x ∈ c−,

Ker+c ,t(N) = Ker ρ
(x,ty)
t for some x ∈ c+ ∪ {+∞} and any lower x ∈ c+,

Ker−c ,t(N) = Ker ρ
(x,ty)
t for some x ∈ c− ∩ [tx,+∞) and any greater x ∈ c−,

with the conventions that ρt(x,ty) : 0 → Mt when x = −∞ and ρ
(x,ty)
t : Mt → 0

when x = +∞. Similar statements hold for vertical cuts.

Convention 3.5. Throughout the rest of the paper, we keep the conventions on
internal morphisms introduced in Lemma 3.4 without further reference to it.

Remark 3.6. The conventions defined in Lemma 3.4 are equivalent to considering
the extension Ñ of N to the poset X̃ × Ỹ with X̃ = X ∪{±∞} and Ỹ = Y ∪{±∞}
(and the obvious ordering) such that Ñ(±∞,·) = Ñ(·,±∞) = 0. This extension is
called extension of N at infinity in [10]. In this article, we only use the following
fact: if N is pfd and weakly exact, then so is its extension at infinity. This last fact
can be checked by a direct computation.

Remark 3.7. Let t ∈ R and consider a finite number N1, . . . , Nk of pfd persistence
modules over X×Y . Then, there exists x ∈ c+∩(−∞, tx] such that for all 1 ≤ i ≤ k,
one has

Im+
c,t(Ni) = ImNi

(
(x, ty) ≤ t

)
.

Similar remarks hold for other contributions.
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c+c−

c+

c−

Nt

∑
Im ρts

∑
Im ρts

c+c−

c+

c−

Nt
⋂
Im ρts

⋂
Im ρts

c+

c−

c+c−

Nt

∑
Ker ρut

∑
Ker ρut

c+

c−

c+c−

Nt

⋂
Ker ρut

⋂
Ker ρut

Fig. 3 From top to bottom and from left to right: the spaces Im−c,t, Im+
c,t, Ker−c,t and Ker+c,t.

We combine horizontal and vertical contributions in the following way:

Im+
R,t(N) = Im+

c,t(N) ∩ Im+
c,t(N),

Im−R,t(N) =
(

Im−c,t(N) + Im−c,t(N)
)
∩ Im+

R,t(N),

= Im−c,t(N) ∩ Im+
c,t(N) + Im−c,t(N) ∩ Im+

c,t(N),

Ker+R,t(N) =
(

Ker+c ,t(N) + Ker−c,t(N)
)
∩
(

Ker−c ,t(N) + Ker+c,t(N)
)
,

= Ker+c ,t(N) ∩Ker+c,t(N) + Ker−c ,t(N) + Ker−c,t(N),

Ker−R,t(N) = Ker−c ,t(N) + Ker−c,t(N),

(3.2)

where equalities between formulas come from the inclusions Im−c,t(N) ⊆ Im+
c,t(N),

Ker−c,t(N) ⊆ Ker+c,t(N) and the following elementary lemma.

Lemma 3.8. Let E be a k-vector space. Let A, B and C three vector subspaces of E

such that A ⊆ C. Then, (A+B) ∩ C = A ∩ C +B ∩ C.
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It is immediate from the definitions that Im−R,t(N) ⊆ Im+
R,t(N) and Ker−R,t(N) ⊆

Ker+R,t(N). This leads us to the following important family of vector spaces.

Definition 3.9. The functorial filtration of N associated to R is the following pair
of families of vector spaces indexed by t ∈ R:

V +
R,t(N) = Im+

R,t(N) ∩Ker+R,t(N),

V −R,t(N) = Im+
R,t(N) ∩Ker−R,t(N) + Im−R,t(N) ∩Ker+R,t(N).

(3.3)

Since Im−R,t(N) ⊆ Im+
R,t(N) and Ker−R,t(N) ⊆ Ker+R,t(N), we also have V −R,t(N) ⊆

V +
R,t(N). If N is interval-decomposable, then it is a small exercise to check that the

dimension of the quotient vector space V +
R,t(N)/V −R,t(N) equals the multiplicity of

the summand kR in the decomposition.
The following lemma shows that vectors spaces in (3.2) and (3.3) are preserved

by the internal morphisms of pfd and weakly exact persistence bimodules.

Lemma 3.10 (Transportation). [10, Corollary 3.5, Lemma 4.1] Assume that N is

pfd and weakly exact. For any s ≤ t in R, we have:

ρts

(
Im±R,s(N)

)
= Im±R,t(N),(

ρts

)−1 (
Ker±R,t(N)

)
= Ker±R,s(N),

ρts

(
V ±R,s(N)

)
= V ±R,t(N).

Remark 3.11. Lemma 3.10 ensures that if N is pfd and weakly exact, the fami-

lies
(
V ±R,t(N)

)
t∈R

form systems of vector spaces.

Counting functor. A key object in the “filtration technique” is the counting functor

associated to a rectangle R.

Definition 3.12. [10, Section 4] The counting functor CR associated to a rectangle R

is defined for a pfd and weakly exact persistence module N over X×Y as the inverse
limit:

CR(N) := lim←−
t∈R

V +
R,t(N)/V −R,t(N),

where the transition maps are given by the naturally defined quotient maps ρ̄ts :
V +
R,s(N)/V −R,s(N)→ V +

R,t(N)/V −R,t(N).

The counting functor owes its name to the following crucial fact.

Lemma 3.13. [10, Lemma 4.2] Assume that N is pfd and rectangle-decomposable.

For any rectangle R of X × Y , the multiplicity of the summand kR in the rectangle-

decomposition of N is given by dimCR(N).

4 Definition of the rectangle filtrates

The goal of this section is to define rectangle filtrates (Definition 4.6). In this
section and in Sections 5 and 6, we consider a pfd and weakly exact persistence
module M over X×Y , and denote by ρts the internal morphism M(s ≤ t) : Ms →Mt

for any s ≤ t ∈ X × Y . Let R = ( c+ ∩ c−)× (c+ ∩ c−) be a rectangle of X × Y .
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4.1 Elements dead above the rectangle

The rectangle filtrate associated to R will be constructed within the submodule
of M defined below (Definition 4.1). Consider R− = {t ∈ X × Y | ∃s ∈ R, t ≤ s}.
Note that R− = c− × c−, so that the contributions Ker+c ,t(M) and Ker+c,t(M) are

well-defined for any t ∈ R−.

Definition 4.1. We call submodule of M of elements dead above R, and denote by
KR(M), the submodule of M whose spaces at each t ∈ X × Y are given by:

KR,t (M) =

{
Ker+c ,t(M) ∩Ker+c,t(M) if t ∈ R−,
0 else.

The fact that KR(M) yields a well-defined persistence submodule of M is an
easy consequence of the definition of horizontal and vertical contributions (3.1).
When there is no ambiguity, the submodule KR (M) is referred to as KR for
readability.

Proposition 4.2. The persistence module KR is weakly exact.

Proof. In this proof we write ρ̃vu = ρvu|KR,u for any u ≤ v ∈ X×Y . Let s ≤ t ∈ X×Y
and denote a = (sx, ty) and b = (tx, sy). Let us first prove the equality:

Ker ρ̃ts = Ker ρ̃as + Ker ρ̃bs. (4.1)

Suppose that t /∈ R−. Then Ker ρ̃ts = KR,s. Moreover, a /∈ R− or b /∈ R−, so

Ker ρ̃as = KR,s or Ker ρ̃bs = KR,s. Hence (4.1) in that case. Now suppose that
t ∈ R−. Then s ∈ R−, a ∈ R− and b ∈ R−. Therefore, one has Ker ρas ⊆ Ker+c,s(M)

and Ker ρbs ⊆ Ker+c ,s(M). Using the weak exactness of M and Lemma 3.8 twice,
we get:

Ker ρ̃ts =
(

Ker ρts

)
∩KR,s

=
(

Ker ρas + Ker ρbs

)
∩Ker+c ,s(M) ∩Ker+c,s(M)

=
(

Ker ρas ∩Ker+c ,s(M) + Ker ρbs ∩Ker+c ,s(M)
)
∩Ker+c,s(M)

=
(

Ker ρas

)
∩KR,s +

(
Ker ρbs

)
∩KR,s

= Ker ρ̃as + Ker ρ̃bs.

Let us now prove the equality Im ρ̃ts = Im ρ̃ta ∩ Im ρ̃tb, i.e.

ρts
(
KR,s

)
= ρta

(
KR,a

)
∩ ρtb

(
KR,b

)
. (4.2)

The inclusion ρts
(
KR,s

)
⊆ ρta

(
KR,a

)
∩ ρtb

(
KR,b

)
is clear. Let us show the con-

verse. Applying Lemma 3.4 at the point s and at the point a, one can choose low
enough y ∈ c+ ∪ {+∞} such that:

Ker+c,s(M) = Ker ρ
(sx,y)
s ,

Ker+c,a(M) = Ker ρ
(sx,y)
a .
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Similarly, there exists x ∈ c+ ∪ {+∞} such that:

Ker+c ,b(M) = Ker ρ
(x,sy)
b , and Ker+c ,s(M) = Ker ρ

(x,sy)
s .

The result will follow from repeated use of the weak exactness property of M
(and Remark 3.6). The following diagram will help picturing the various spaces
involved in this proof. Denote c = (sx, y), d = (x, sy), e = (tx, y) and f = (x, ty).

Mc Me

Ma Mt Mf

Ms Mb Md

Let z ∈ KR,t be such that there are za ∈ KR,a and zb ∈ KR,b such that z =
ρta(za) = ρtb(zb). Since M is weakly exact, there exists zs ∈Ms such that z = ρts(zs).

We claim that zs ∈ Ker ρes. Indeed, using that za ∈ Ker+c,a(M) = Ker ρca, we

get ρes(zs) = ρet (z) = ρea(za) = ρec ◦ ρca(za) = 0.
Thus, by weak exactness of M and Remark 3.6, there exist z′ ∈ Ker ρbs and

z′′ ∈ Ker ρcs such that zs = z′ + z′′. This yields that z = ρts(zs) = ρts(z
′′).

We claim now that z′′ ∈ Ker ρfs . Indeed, using that zb ∈ Ker+c ,b(M) = Ker ρdb ,

we get ρfs (z′′) = ρft (z) = ρfb (zb) = ρfd ◦ ρ
d
b (zb) = 0.

Thus, by weak exactness of M and Remark 3.6, there exist z̃′ ∈ Ker ρas and
z̃′′ ∈ Ker ρds such that z′′ = z̃′ + z̃′′. This yields that z = ρts(z

′′) = ρts(z̃
′′).

We now claim that z̃′′ ∈ KR,s, which completes the proof. Indeed, on the one

hand z̃′′ ∈ Ker ρds = Ker+c ,s(M). On the other, one has z̃′′ = z′′ − z̃′ ∈ Ker ρcs =

Ker+c,s(M). Hence the result.
ut

4.2 Rectangle filtrate

Let N be a pfd and weakly exact persistence module over X × Y . Recall the
definition of the functorial filtration (Definition 3.9) and the systems of vector
spaces they form (Remark 3.11). As in [11] and [10], we consider the following
inverse limits:

V±R (N) = lim←−
t∈R

V ±R,t(N). (4.3)

Note that, denoting πt : V+R (N) → V +
R,t(N) the natural map given by the limit,

one has the following identification:

V−R (N) =
⋂
t∈R

π−1
t

(
V −R,t(N)

)
⊆ V+R (N). (4.4)

This implies that for any t ∈ R, the morphism πt induces a morphism:

π̄t : V+R (N)/V−R (N) −→ V +
R,t(N)/V −R,t(N).
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Lemma 4.3 ([10, Lem. 5.2]). Recall that N is pfd and weakly exact. For t ∈ R, the

map π̄t : V+R (N)/V−R (N) −→ V +
R,t(N)/V −R,t(N) is an isomorphism.

The rectangle filtrate of M associated to R will be defined as the submodule
of M given by the following proposition (Definition 4.6).

Proposition 4.4. Let MR be a vector space complement of V−R (KR) in V+R (KR).

For t ∈ X × Y , consider the vector subspace of KR,t given by:

MR,t :=

{
πt(MR) if t ∈ R,
0 else,

where πt : V+R (KR) −→ V +
R,t(KR) is the natural maps given by the limit for t ∈ R.

Then, the family (MR,t)t∈X×Y forms a submodule of KR (hence of M).

Proof. Let s ≤ t in X×Y . Suppose that s 6∈ R. Then, one has ρts(MR,s) = 0 ⊆MR,t.
Now, suppose that s and t both lie in R. By definition of π, one has ρts ◦ πs = πt.
Thus, one has ρts(MR,s) = ρts(πs(MR)) = πt(MR) = MR,t.

Finally, suppose that s ∈ R and t 6∈ R. We show that ρts(MR,s) = 0. One has
πs(MR) ⊆ Ker+c ,s ∩Ker+c,s, for every s ∈ R. Moreover, for every t ≥ s with s ∈ R
and t 6∈ R, we have tx ∈ c+ or ty ∈ c+, so that ρts(Ker+c ,s ∩Ker+c,s) = 0. Hence:

ρts
(
MR,s

)
= ρts(πs(MR)) ⊆ ρts(Ker+c ,s ∩Ker+c,s) = 0.

ut

Remark 4.5. Since we have chosen MR such that V+R (KR) = MR ⊕ V−R (KR), for
every t ∈ R we have V +

R,t(KR) = MR,t ⊕ V −R,t(KR) by Lemma 4.3.

Definition 4.6 (Rectangle filtrate). Let MR be a vector space complement of
V−R (KR) in V+R (KR). The submodule of M defined in Proposition 4.4 is called a
rectangle filtrate of M associated to R and denoted by MR.

Our work on rectangle filtrates will rely on Proposition 4.4 and Remark 4.5 and
thus will not depend on the choice of vector space complement MR of V−R (KR) in
V+R (KR). The following convention will therefore be used.

Convention 4.7. For each rectangle R′ of X×Y , choose a vector space complement
MR′ of V−R′(KR) in V+R′(KR). From now on, the rectangle filtrate MR′ will refer
to the one associated to this choice of MR′ .

Note that the axiom of choice is used in the above convention. This is inevitable
in order to consider infinite families of rectangle filtrates in Sections 5 and 6. The
following lemma shows that MR is rectangle-decomposable.

Lemma 4.8. The persistence module MR is isomorphic to a direct sum of dimCR(KR)
copies of the rectangle module kR.

Proof. The proof is a carbon copy of the one of [10, Lemma 5.5] and is included
here for completeness. Since KR is pfd and weakly exact (Proposition 4.2), we
know from Lemma 4.3 that the morphism π̄t is an isomorphism for any t ∈ R.

Let Γ be a (finite) basis of MR. For any γ ∈ Γ , the elements of πt(γ) for t ∈
R are non-zero and they satisfy ρts(πs(γ)) = πt(γ) for all s ≤ t in R, so they
span a submodule N(γ) of MR that is isomorphic to kR. Now, for all t ∈ R the
family {ρt(γ)}γ∈Γ is a basis of MR,t, so MR '

⊕
γ∈Γ N(γ). Finally, the size of the

basis Γ is dimMR = dimCR(KR).
ut
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4.3 Description of rectangle filtrates in the finitely rectangle-decomposable case

We prove the following lemma showing that rectangle filtrates capture rectan-
gle summands in the particular case of finite rectangle-decompositions. It will be
crucial in the proof of Proposition 6.1 in Section 6.

Lemma 4.9. If M '
⊕
i∈I kmiRi where I is a finite set, the Ri’s are pairwise distinct

rectangles of X × Y and the mi’s are positive integers, then one has MRi ' kmiRi , for

any i ∈ I.

In fact, this lemma also holds when the rectangle decomposition is only locally
finite but we do not use such a general statement in the paper. The proof of
Lemma 4.9 is postponed to the end of this section. It uses the following lemma
that gives an expression of KR (M) when M is decomposable as a finite direct sum
of rectangle modules. Recall the definition of R− from Section 4.1.

Lemma 4.10. Suppose that M '
⊕
i∈I kRi where I is a finite set and the Ri’s are

rectangles of X × Y . Then, one has:

KR (M) '
⊕
i∈I

Ri⊆R−

kRi .

Lemma 4.10 is a direct consequence of Lemmas 4.11 to 4.13 below. The first
lemma is elementary. It is used in the proof of Lemma 4.12.

Lemma 4.11. Let E be a k-vector space and E1, E2 be two subspaces of E such

that E = E1 ⊕ E2. Let A1, B1 two subspaces of E1, and A2, B2 two subspaces of E2.

Then,

(A1 ⊕A2) ∩ (B1 ⊕B2) = (A1 ∩B1)⊕ (A2 ∩B2).

Lemma 4.12. Let N1 and N2 be two pfd and weakly exact persistence modules over X×
Y . One has KR(N1 ⊕N2) = KR(N1)⊕KR(N2).

Proof. The module N1 can naturally be seen as a submodule of N1 ⊕N2 by iden-
tification with N1 ⊕ 0. Similarly, any submodule of N2 can naturally be seen as a
submodule of N1 ⊕ N2. Therefore, KR(N1) and KR(N2) can as well be naturally
seen as submodules of N1 ⊕ N2. We implicitly make these identifications in the
rest of the proof. To prove the result, it is thus sufficient to prove the equality
KR(N1⊕N2) = KR(N1)⊕KR(N2) of persistence submodules of N1⊕N2. In other
words, it is sufficient to prove that for any t ∈ X × Y , one has:

KR,t(N1 ⊕N2) = KR,t(N1)⊕KR,t(N2).

Let t ∈ X × Y . For t /∈ R−, both sides of the equality vanish, so let us assume
that t ∈ R−. Denote by ρ the internal morphisms of N1 and by η the internal
morphisms of N2. The internal morphisms of N1 ⊕N2 are then given by ρ⊕ η. By
Remark 3.7, there exists x ∈ c+ ∪ {+∞} such that:

Ker+c ,t(N1) = Ker ρ
(x,ty)
t ,

Ker+c ,t(N2) = Ker η
(x,ty)
t ,

Ker+c ,t(N1 ⊕N2) = Ker
(
ρ
(x,ty)
t ⊕ η(x,ty)t

)
=
(

Ker ρ
(x,ty)
t

)
⊕
(

Ker η
(x,ty)
t

)
.
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Hence, one has Ker+c ,t(N1 ⊕ N2) = Ker+c ,t(N1) ⊕ Ker+c ,t(N2). Similarly, one can

prove that Ker+c,t(N1 ⊕N2) = Ker+c,t(N1)⊕Ker+c,t(N2). This implies:

KR,t(N1 ⊕N2) = Ker+c ,t(N1 ⊕N2) ∩Ker+c,t(N1 ⊕N2)

=
(
Ker+c ,t(N1)⊕Ker+c ,t(N2)

)
∩
(

Ker+c,t(N1)⊕Ker+c,t(N2)
)

(Lem. 4.11)
=

(
Ker+c ,t(N1) ∩Ker+c,t(N1)

)
⊕
(

Ker+c ,t(N2) ∩Ker+c,t(N2)
)

= KR,t(N1)⊕KR,t(N2).

ut

Lemma 4.13. Let R and R′ be two rectangles of X × Y . Then,

KR (kR′) =

{
kR′ if R′ ⊆ R−,
0 else.

Proof. Write R = ( c+ ∩ c−) × (c+ ∩ c−) and R′ = (d+ ∩ d−) × (d+ ∩ d−). The
persistence module KR (kR′) is a submodule of kR′ , so we only have to check that
for any t ∈ X×Y , one has KR,t (kR′) = k if t ∈ R′ and R′ ⊆ R−, and KR,t (kR′) = 0
otherwise. Let t ∈ X × Y . One has KR,t (kR′) ⊆ kR′,t = 0 for any t 6∈ R′, so let us
suppose that t ∈ R′.

Suppose that R′ ⊆ R−. For any x ∈ c+, one has x ∈ d+, so (x, ty) 6∈ R′

and kR′(t ≤ (x, ty)) = 0. Thus, one has Ker+c ,t(kR′) = kR′,t. Similarly, one has

Ker+c,t(kR′) = kR′,t, and hence KR,t (kR′) = kR′,t = k.

Now, suppose that R′ 6⊆ R−. There exists x ∈ d− \ c− or y ∈ d
− \ c−. Say

there exists x ∈ d− \ c−, the other case being similar. Suppose first that t 6∈ R−.
Then, one has KR,t (kR′) = 0 by definition of KR. Now, suppose that t ∈ R−.
Since x 6∈ c−, one has x ≥ tx. Moreover, since t ∈ R′, one has tx ∈ d+, thus x ∈
d+. Therefore, one has x ∈ d+ ∩ d− and (x, ty) ∈ R′. Hence kR′(t ≤ (x, ty))
is an isomorphism and Ker+c ,t(kR′) ⊆ Ker kR′(t ≤ (x, ty)) = 0. Therefore, one
has KR,t (kR′) = 0.

ut

Remark 4.14. Consider the setting of Lemma 4.10. Since R ⊆ R−, Lemma 4.10
implies that the multiplicities of the summand kR in the rectangle-decompositions
of KR(M) and of M are the same.

Proof of Lemma 4.9. Let i ∈ I. Lemma 4.8 yields:

MRi ' k
dimCRi(KRi (M))
Ri

.

Moreover, Lemma 4.10 ensures that KRi (M) is rectangle-decomposable. Then,
Lemma 3.13 ensures that dimCRi (KRi (M)) is equal to the multiplicity of the
summand kRi in the rectangle-decomposition of KRi (M). In fact, Remark 4.14
implies that this multiplicity is the same as the multiplicity of kRi in the rectangle-
decomposition of M , which is mi. Hence the result.

ut
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5 The sum of rectangle filtrates is a direct sum

Recall that M is a pfd and weakly exact persistence bimodule and that its internal
morphisms are denoted by ρts : Ms → Mt for any s ≤ t ∈ X × Y . Recall also our
choice of rectangle filtrates; Convention 4.7. In this section, we prove that the sum
of MR for R ranging over all rectangles in X × Y , is an internal direct sum of M .

Proposition 5.1. The sum of (MR)R: rectangle is a direct sum.

The proof of the above result is a straightforward adaptation of the proof of
[10, Proposition 6.6]. As in [10], we first prove the result when all the rectangles
share the same upper right corner, then that we can always reduce to this specific
case. The following lemma will be instrumental in the proof.

Lemma 5.2. Let N be a pfd and weakly exact persistence module over X × Y . Let

R1 = ( c+1 ∩ c
−
1 ) × (c+1 ∩ c

−
1 ) and R2 = ( c+2 ∩ c

−
2 ) × (c+2 ∩ c

−
2 ) be two rectangles of

X × Y such that (c 1, c1) = (c 2, c2) and R1 is a strict subset of R2. For any t ∈ R,

one has Im+
R2,t

(N) ⊆ Im−R1,t
(N).

Proof. Elementary geometric considerations show that c+2 ⊇ c+1 and c+2 ⊇ c
+
1 , and

that one of the two inclusions must be strict, i.e. c+2 ) c+1 or c+2 ) c+1 . From the
first two inclusions and the definition of horizontal and vertical contributions (3.1),
it follows that:

Im+
c2,t (N) ⊆ Im+

c1,t (N) and Im+
c2,t

(N) ⊆ Im+
c1,t

(N) . (5.1)

From the second two inclusions and the definition of horizontal and vertical con-
tributions, it follows that:

Im+
c2,t (N) ⊆ Im−c1,t (N) or Im+

c2,t
(N) ⊆ Im−c1,t (N) . (5.2)

From (5.1) and (5.2), we finally deduce:

Im+
R2,t

(N) = Im+
c2,t (N) ∩ Im+

c2,t
(N)

⊆ Im+
c1,t (N) ∩ Im−c1,t (N) + Im−c1,t (N) ∩ Im+

c1,t
(N)

= Im−R1,t
(N) .

ut

Proof of Proposition 5.1. Let (Ri)i∈J1,nK be a finite family of pairwise distinct rect-

angles, and write Ri = ( c+i ∩ ci
−) × (ci

+ ∩ ci−). We show that the sum of the
submodules (MRi)i∈J1,nK is an internal direct sum of M , i.e that for any t ∈ X×Y ,
the sum of the subspaces (MRi,t)i∈J1,nK is an internal direct sum of Mt.

Case where all rectangles have the same upper right corner. Suppose that
the set {(c1 , c1), · · · , (cn , cn)} of upper right corners is a singleton. The proof of
[10, Proposition 6.6] can be adapted in a straightforward way, replacing the words
“birth quadrants” by “rectangles with the same upper right corner”. We write the
proof here for the sake of completeness.

First, note the equality KRi(M) = KRj (M) of submodules of M for all 1 ≤
i, j ≤ n. Therefore, we denote this submodule of M simply by K.
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It suffices to prove is that there is at least one of the Ri’s (say R1) such that the
(binary) sum of MR1

and
∑
i6=1MRi is a direct sum. Then the result follows from

an induction on the size n of the family. Hence, we prove that for any t ∈ X × Y ,
we have:

MR1,t ∩

∑
i 6=1

MRi,t

 = 0.

Let t ∈ X × Y . Since MRi,t = 0 for every i such that t /∈ Ri, we can assume
without loss of generality that t ∈ Ri for every i ∈ J1, nK.

Up to reordering, we can assume that R1 has the rightmost left cut and,
in case of ties, that it also has the topmost bottom cut among the rectangles
with the same left cut. Formally, R1 is the rectangle whose bottom left corner
is maximal in the lexicographical order on the multiset of bottom left corners
{( c1, c1), · · · , ( cn, cn)} induced by the total order on cuts given by inclusion on
their lower parts (Lemma 3.2). It follows that R1 contains none of the other rect-
angles. Those can be partitioned into two subfamilies: the ones (say R2, · · · , Rk)
contain R1 strictly, while the others (Rk+1, · · · , Rn) neither contain R1 nor are
contained in R1. See Figure 4 for an illustration.

Rk+1

R1

Rk

R3

Rn

R2

MtR̃

R

Fig. 4 Rectangles partitioned into two subfamilies.

For any rectangle R′ of X ×Y , we denote Im+
R′,t (K) by Im+

R′,t until the end of

the proof. For every i ∈ J2, kK, Lemma 5.2 implies Im+
Ri,t
⊆ Im−R1,t

. Therefore, we
obtain:

k∑
i=2

Im+
Ri,t
⊆ Im−R1,t

. (5.3)

For every i ∈ Jk + 1, nK, we have c+i ) c+1 and c+i ( c+1 . Let R̃ =
⋂n
i=k+1Ri —

this rectangle neither contains R1 nor is contained in it. Let now R be the smallest
rectangle containing both R1 and R̃. We have:

Im+
R1,t
∩

 n∑
i=k+1

Im+
Ri,t

 ⊆ Im+
R1,t
∩ Im+

R̃,t
= Im+

R,t ⊆ Im−R1,t
, (5.4)
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where the last inclusion follows from Lemma 5.2 and the fact that R strictly
contains R1. Combining (5.3) and (5.4), we obtain:

MR1,t ∩

 k∑
i=2

MRi,t +
n∑

i=k+1

MRi,t

 ⊆ Im+
R1,t
∩

 k∑
i=2

Im+
Ri,t

+
n∑

i=k+1

Im+
Ri,t


=

k∑
i=2

Im+
Ri,t

+ Im+
R1,t
∩

 n∑
i=k+1

Im+
Ri,t


⊆ Im−R1,t

.

Meanwhile, Remark 4.5 implies that MR1,t ∩ V
−
R1,t

(K) = 0. Thus,

Im−R1,t
∩MR1,t = Im−R1,t

∩V +
R1,t

(K) ∩MR1,t ⊆ V
−
R1,t

(K) ∩MR1,t = 0.

Since MR1,t ∩ (
∑n
i=2MRi,t) is contained in both MR1,t and Im−R1,t

, one has:

MR1,t ∩

(
n∑
i=2

MRi,t

)
⊆MR1,t ∩ Im−R1,t

= 0.

General case. Let t ∈ X×Y . For each i ∈ J1, nK, let zi ∈MRi,t. Denote z =
∑n
i=1 zi

and suppose that z = 0. Let us show that zi = 0 for all i ∈ J1, nK. Again, since
zi = 0 for every i such that t /∈ Ri, we can assume without loss of generality that
t ∈ Ri for every i ∈ J1, nK.

Order the collection (c1 , c1) � · · · � (cn , cn) of upper right corners by the
lexicographical order � induced by the total order on cuts given by inclusion
on their lower parts (Lemma 3.2). Let (d1 , d1) ≺ · · · ≺ (dk , dk) be the distinct
elements in the ordered sequence. In particular, (dk , dk) is the upper right corner
of rectangles with the rightmost right cut and, in case of ties, the topmost top cut.
Let J = {i ∈ J1, nK, (ci , ci) = (dk , dk)} and let us show that for all j ∈ J , zj = 0.
A direct recursion will then yield zi = 0, for all i ∈ J1, nK.

By maximality of (dk , dk) in the lexicographical order on upper right corners,

there exists u ∈ dk −×dk
−\(

⋃
l 6=k(dl

−×dl
−

). Therefore, for j /∈ J , we have u /∈ Rj ,
so MRj ,u = 0, and thus ρut (zj) = 0. Hence,

0 = ρut (z) =
n∑
i=1

ρut (zi) =
∑
j∈J

ρut (zj). (5.5)

Moreover, for all j ∈ J , we have t ∈ Rj and u ∈ Rj , thus ρut restricted to MRj ,t

is injective by Lemma 4.8. Therefore, it only remains to show that, for all j ∈ J ,
one has ρut (zj) = 0.

Since the rectangles of the family (Rj)j∈J all have same upper right corner, the
first case ensures that the sum of (MRj )j∈J is a direct sum. Yet, the element ρut (zj)
belong to MRj ,u for any j ∈ J , so equation (5.5) implies ρut (zj) = 0 for all j ∈ J ,
which concludes the proof.

ut



Local characterizations for decomposability of 2-parameter persistence modules 23

6 Rectangle filtrates cover M

Recall that M is a pfd and weakly exact persistence bimodule and that its internal
morphisms are denoted by ρts : Ms →Mt for any s ≤ t ∈ X × Y . Again, recall our
choice of rectangle filtrates; Convention 4.7. The goal of this section is to prove
the following.

Proposition 6.1. The (direct) sum of submodules (MR)R: rectangle generates M , i.e.

M =
⊕

R: rectangle

MR.

To prove the above proposition, we first consider the restriction of M to a
specifically constructed finite grid; see Definition 6.3. This restriction captures
all the information on kernels and images of internal morphisms of M accessible
from a fixed index t ∈ X × Y ; see Lemma 6.2. Then, Lemma 6.6 explains how
the rectangle filtrates of the restriction relates to the rectangle filtration of M .
These two lemmas, in conjunction with Theorem 2.6 and Lemma 4.9, will prove
Proposition 6.1. Theorem 2.11 then follows as a corollary of Proposition 6.1 and
Lemma 4.8. The proofs of Lemmas 6.2 and 6.6 have been postponed to Sections 6.1
and 6.2, respectively.

Lemma 6.2. Let t ∈ X×Y . There exist natural numbers Lh, Kh, Lv, Kv and a finite

grid

G = (xi, yj)(i,j)∈J−Lh,KhK×J−Lv,KvK ⊆ X × Y

such that:

(i) t = (x0, y0),

(ii) for all i ∈ J0,KhK, we have Ker ρ
(xi,ty)
t ( Ker ρ

(xi+1,ty)
t and same for vertical

kernels where xi = +∞ for i = Kh+1 and yj = +∞ for j = Kv+1 by convention

(recall also Convention 3.5),

(iii) for all i ∈ J−Lh, 0K, we have Im ρt(xi−1,ty)
( Im ρt(xi,ty) and same for vertical

images where xi = −∞ for i = −Lh − 1 and yj = −∞ for j = −Lv − 1 by

convention,

(iv) for all x ∈ [tx,+∞], there exists i ∈ J0,Kh+1K such that Ker ρ
(x,ty)
t = Ker ρ

(xi,ty)
t

and same for vertical kernels.

(v) for all x ∈ [−∞, tx], there exists i ∈ J−Lh−1, 0K such that Im ρt(x,ty) = Im ρt(xi,ty)
and same for vertical images.

Definition 6.3. Let t ∈ X × Y . Any finite grid G ⊆ X × Y given by Lemma 6.2 is
called t-skeleton of M .

Remark 6.4. Note that the statements (ii) and (iii) ensure that the indices i given
in (iv) and (v) – realizing kernels and images of the base module inside the grid –
are unique.

Example 6.5. Figure 5 illustrates a t-skeleton when M is the direct sum of rect-
angle modules associated to rectangles R1, R2 and R3.

Lemma 6.6. Let t ∈ X × Y , let G be a t-skeleton of M and denote MG := M|G. To

any rectangle R̃ = ( c̃+ ∩ c̃−) × (c̃+ ∩ c̃−) of G such that t ∈ R̃, one can associate a

rectangle R = ( c+ ∩ c−)× (c+ ∩ c−) of X × Y , such that:
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t = (x0, y0)

(tx, y1)

(tx, y2)

(tx, y3)

(tx, y−1)

(tx, y−2)

(x1, ty) (x2, ty)(x−3, ty) (x−2, ty) (x−1, ty)

R1

R2

R3

(x2, ty)(x1, ty)

Fig. 5 Example of a choice of a grid construction as in Lemma 6.2. Dashed lines denote open
boundaries and dashed rectangles denote infinite sides. The initial point t is denoted by a dot,
while crosses denote points on the constructed grid.

(i) t ∈ R,

(ii) one has:

Ker±c̃ ,t(M
G) = Ker±c ,t(M),

Im±c̃,t(M
G) = Im±c,t(M),

and similarly for vertical cuts,

(iii) the map R̃ 7→ R is injective.

In particular,

dimMR,t = dimMG
R̃,t
.

We can now prove Proposition 6.1.

Proof of Proposition 6.1. Let t ∈ X × Y and let us show that

Mt =
⊕

R: rectangle

MR,t. (6.1)

Take a t-skeleton G of M given by Lemma 6.2, and denote MG := M|G. Notice
that, since t ∈ G by (i) of Lemma 6.2, we have

Mt = MG
t . (6.2)
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Moreover, since MG is still pfd and weakly exact, it decomposes as a direct sum
of rectangle modules by Theorem 2.6:

MG '
⊕
j∈J̃

(
kG
R̃j

)mR̃j , (6.3)

where the rectangles R̃j are pairwise distinct rectangles of the grid G, and where
the integers m

R̃j
> 0 are the multiplicities of the rectangle modules kG

R̃j
in the

decomposition. Since G is finite and MG is pfd, the set J̃ appearing in the decom-
position (6.3) is finite. Therefore, Lemma 4.9 implies that for each j ∈ J̃ ,

dim
(
MG
R̃j ,t

)
= m

R̃j
. (6.4)

Besides, since t ∈ G, we can consider the subset J := {j ∈ J̃ | t ∈ R̃j}, so that:

dim
(
MG
t

)
=
∑
j∈J

mR̃j
. (6.5)

Meanwhile, writing {Ri}i∈I the set of rectangles of X×Y containing t, Lemma 6.6
yields an injection ι : J ↪→ I, such that

dimMRι(j),t = dimMG
R̃j ,t

. (6.6)

We can compute the finite dimensions:

dim(Mt)
(6.2)
= dim

(
MG
t

)
(6.5)
=
∑
j∈J

mR̃j

(6.4)
=
∑
j∈J

dim
(
MG
R̃j ,t

)
(6.6)
=
∑
j∈J

dim
(
MRι(j),t

)

= dim

⊕
j∈J

MRι(j),t

 ,

and conclude by the inclusion
⊕
j∈J MRι(j),t ⊆ Mt that

⊕
j∈J MRι(j),t = Mt.

Finally, we have

Mt =
⊕
j∈J

MRι(j),t ⊆
⊕

R: rectangle

MR,t ⊆Mt,

which concludes the proof of equation (6.1). Hence the result. ut
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6.1 Proof of Lemma 6.2

Lemma 6.2 is a direct consequence of finite dimensionality, as was Lemma 3.4. We
write its proof here for completeness. Since M is pfd, the function x ∈ [tx,+∞] 7→
dim Ker ρ

(x,ty)
t takes a finite number of values 0 = n0 < n1 < · · · < nKh < nKh+1 =

dimMt. This function is also increasing, so fixing x0 = tx and xKh+1 = +∞, we

can find real numbers x0 < x1 < · · · < xKh < xKh+1 such that dim Ker ρ
(xi,ty)
t = ni

for all 0 ≤ i ≤ Kh + 1. We can define similar real numbers for vertical kernels:

ty = y0 < y1 < · · · < yKv < yKv+1 = +∞ such that dim Ker ρ
(tx,yj)
t = ñj where

(ñj)j∈J0,Kv+1K are the distinct dimensions of vertical kernels.

Similarly, since M is pfd, x ∈ [−∞, tx] 7→ dim Im ρt(x,ty) takes a finite number
of values 0 = m−Lh−1 < m−Lh < · · · < m−1 < m0 = dimMt. This function is also
increasing, so fixing x−Lh−1 = −∞ we can find real numbers x−Lh−1 < x−Lh <
· · · < x−1 < x0 = tx such that dim Im ρt(xi,ty) = mi for all i ∈ J−Lh − 1, 0K. We
can define similar real numbers for vertical images: −∞ = y−Lv−1 < y−Lv < · · · <
y−1 < ty such that dim Im ρt(tx,yj) = m̃j where (m̃j)j∈J−Lv−1,0K are the distinct
dimensions of vertical images.

Define finally the finite grid G := {(xi, yj), (i, j) ∈ J−Lh,KhK × J−Lv,KvK}. It
remains to show that this grid satisfies the required properties.

First, (i) comes from x0 = tx and y0 = ty.
Second, (ii) and (iii) are clear from the construction of the grid: spaces associ-

ated to indices are ordered by inclusion and they are distinct if indices are distinct
because then their dimensions are distinct.

Third, (iv) and (v) are also clear from the construction of the grid: every
possible horizontal or vertical kernel and image has been represented by an index
in the grid.

6.2 Proof of Lemma 6.6

Let t ∈ X × Y , let G = (xi, yj)(i,j)∈J−Lh,KhK×J−Lv,KvK be a t-skeleton of M and

denote MG := M|G. The proof of Lemma 6.6 is postponed to the end of this
section. It uses the following three lemmas.

Lemma 6.7. To any cut c̃ of (xi)i∈J−Lh,KhK such that tx ∈ c̃−, one can associate a

cut c of X such that:

(i) tx ∈ c−,

(ii) Ker±c̃ ,t(M
G) = Ker±c ,t(M),

(iii) the map c̃ 7→ c is injective.

A similar result holds for vertical cuts and vertical kernels.

Proof. Any cut c̃ of (xi)i∈J−Lh,KhK such that tx ∈ c̃− can be denoted by c̃− =
(xi)i∈J−Lh,khK with kh ∈ J0,KhK. This implies

Ker−c̃ ,t(M
G) = Ker ρ

(xkh ,ty)
t , (6.7)

Ker+c̃ ,t(M
G) = Ker ρ

(xkh+1,ty)
t (6.8)
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with possibly xkh+1 = +∞. Now, define the cut c of X by

c− := (−∞, xkh ] ∪
{
x ∈ [xkh , xkh+1), Ker ρ

(x,ty)
t = Ker ρ

(xkh ,ty)
t

}
,

c+ := X \ c−,
(6.9)

and notice that tx ∈ c−, hence (i).
Let us show (ii). By Lemma 3.4 applied to M , we can find x ∈ c− such that

Ker−c ,t(M) = Ker ρ
(x,ty)
t . Since xkh ∈ c

−, we can even choose x in c− ∩ [xkh ,+∞),

which implies by definition of c that Ker ρ
(x,ty)
t = Ker ρ

(xkh ,ty)
t . Hence,

Ker−c ,t(M) = Ker ρ
(x,ty)
t = Ker ρ

(xkh ,ty)
t = Ker−c̃ ,t(M

G).

Similarly, by Lemma 3.4 we can find x ∈ c+ ∪ {+∞} such that Ker+c ,t(M) =

Ker ρ
(x,ty)
t . Since x ∈ c+ ∪ {+∞} and tx ≤ xkh ∈ c

−, we have:

Ker ρ
(xkh ,ty)
t ( Ker ρ

(x,ty)
t . (6.10)

Moreover, since xkh+1 ∈ c+ ∪ {+∞}, we can lower x if necessary to choose x ∈
c+ ∩ (−∞, xkh+1], and then

Ker ρ
(x,ty)
t ⊆ Ker ρ

(xkh+1,ty)
t . (6.11)

By definition of a t-skeleton (Lemma 6.2 (iv)), there exists i ∈ J0,Kh + 1K such

that Ker ρ
(x,ty)
t = Ker ρ

(xi,ty)
t . Therefore, Lemma 6.2 (ii) combined with equations

(6.10) and (6.11) implies:

Ker ρ
(x,ty)
t = Ker ρ

(xkh+1,ty)
t , (6.12)

and it finally follows by (6.8) and (6.12) that

Ker+c ,t(M) = Ker ρ
(x,ty)
t = Ker ρ

(xkh+1,ty)
t = Ker+c̃ ,t(M

G).

Let us now show (iii). Let c̃ 6= c̃′ be two cuts of G with tx ∈ c̃ and tx ∈ c̃′ .
Write

c̃− = (xi)i∈J−Lh,khK,

c̃′ − = (xi)i∈J−Lh,k′hK.

Write also c and c′ the respective cuts associated to c̃ and c̃′ by the previous
construction. Since c̃ 6= c̃′ , the indices delimiting the cuts must differ: say for
instance kh < k′h, the other case being similar. Then, it is clear from the defini-
tion (6.9) that xk′h ∈ c

′ − \ c−, and therefore c 6= c′ .
ut

A similar result holds for images, as shown by the following lemma:

Lemma 6.8. To any cut c̃ of (xi)i∈J−Lh,KhK such that tx ∈ c̃+ one can associate a

cut c of X such that:
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(i) tx ∈ c+,

(ii) Im±c̃,t(M
G) = Im±c,t(M),

(iii) the map c̃ 7→ c is injective.

A similar result holds for vertical cuts and vertical images.

Proof. Let c̃ be a cut of (xi)i∈J−Lh,KhK such that tx ∈ c̃+. Write c̃+ = (xi)i∈J−lh,KhK
with −lh ∈ J−Lh, 0K. This implies

Im+
c̃,t(M

G) = Im ρt(x−lh ,ty)
,

Im−c̃,t(M
G) = Im ρt(x−lh−1,ty).

with possibly x−lh−1 = −∞. We can now define the cut c of X by

c+ :=
{
x ∈ (x−lh−1, x−lh ], Im ρt(x,ty) = Im ρt(x−lh ,ty)

}
∪ [x−lh ,+∞),

c− := X \ c+,

and notice that tx ∈ c+. The rest of the proof is symmetric to the one for kernels
(Lemma 6.7).

ut

Finally, we describe the horizontal and vertical contributions associated to the
rectangle R in KR(M). Recall that we refer to KR(M) simply as KR.

Lemma 6.9. For t ∈ R, we have:

(i) Im±c,t(KR) = Im±c,t(M) ∩KR,t,
(ii) Ker±c ,t(KR) = Ker±c ,t(M) ∩KR,t,

and similar statements for vertical contributions.

Proof. In this proof we write ρ̃vu = ρvu|KR,u for any u ≤ v ∈ X × Y . Let us first

show (i). We prove the result on Im−c,t(KR), the other one is similar. By Re-

mark 3.7, one can find x ∈ c− ∪ {−∞} such that:

Im−c,t (M) = Im ρt(x,ty),

Im−c,t (KR) = Im ρ̃t(x,ty) = ρt(x,ty)
(
KR,(x,ty)

)
.

Denote a = (x, ty). Then, one has:

Im−c,t (KR) = ρta
(
KR,a

)
⊆ Im ρta = Im−c,t (M) .

Since also ρta
(
KR,a

)
⊆ KR,t, one has Im−c,t(KR) ⊆ Im−c,t(M) ∩KR,t.

Now, let z ∈ Im−c,t (M) ∩KR,t = Im ρta ∩KR,t. There is za ∈Ma such that z =

ρta(za). Applying Lemma 3.4 at the point t and at the point a, one can choose low
enough x′ ∈ c+ ∪ {+∞} and y ∈ c+ ∪ {+∞} such that:

KR,t = Ker ρ
(tx,y)
t ∩Ker ρ

(x′,ty)
t ,

KR,a = Ker ρ
(x,y)
a ∩Ker ρ

(x′,ty)
a .
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Denote c = (tx, y), d = (x′, ty), and b = (x, y). The following diagram will help
picturing the various spaces involved in this proof.

Mb Mc

Ma Mt Md

Since z ∈ KR,t ⊆ Ker ρct , one has ρca(za) = ρct(z) = 0, i.e. za ∈ Ker ρca. Thus, by

weak exactness of M and Remark 3.6, there exist z′ ∈ Ker ρba and z′′ ∈ Ker ρta such
that za = z′ + z′′. Moreover, since z ∈ KR,t ⊆ Ker ρdt , one has ρda(za) = ρdt (z) = 0,

i.e. za ∈ Ker ρda. Then also z′ = za − z′′ ∈ Ker ρda. Hence z′ ∈ KR,a and

z = ρta(za) = ρta(z′) ∈ ρta
(
KR,a

)
.

Let us now show (ii). By Remark 3.7, there are x± ∈ c+ ∪ {+∞} such that:

Ker±c ,t (M) = Ker ρ
(x±,ty)
t ,

Ker±c ,t (KR) = Ker ρ̃
(x±,ty)
t .

Hence, we get:

Ker±c ,t (KR) = Ker ρ
(x±,ty)
t ∩KR,t = Ker±c ,t (M) ∩KR,t.

ut

Proof of Lemma 6.6.. For each cut composing R̃ (namely c̃, c̃ , c̃ and c̃), we can
apply Lemma 6.7 and Lemma 6.8 to find a cut (respectively c, c , c and c) satisfying
the corresponding wanted equality on kernels or images. Considering the rectangle
R = ( c+ ∩ c−) × (c+ ∩ c−) of X × Y yields (i), (ii) and (iii). For the equality of
dimensions of the rectangle filtrates, note that:

K
R̃,t

(
MG

)
= KR,t(M).

Moreover, the computations of the filtrations ofK
R̃

(MG) andKR(M) (Lemma 6.9)
combined with (ii) implies:

V ±
R̃,t

(
K
R̃

(
MG

))
= V ±R,t (KR(M)) .

Hence dimMR = dimMG
R̃

.

ut



30 Magnus B. Botnan et al.

7 Negative results

7.1 Proof of Theorem 2.12.

Given an integer m ≥ 2, consider the following persistence module over the poset
J1,m+ 1K2, where ιi : k ↪→ km denotes the injection into the i-th axis of km, and
δm : t ∈ k 7→ (t, . . . , t) ∈ km denotes the injection into the diagonal:

Nm :=

k km km km km

0 k km km km

. . . km km

0 0 k km

0 0 0 k

ι1

ι2

ι2

ιm

ιm

δm

(7.1)

This persistence module was proven in [7] to have the following properties:

Proposition 7.1 ([7]). For m ≥ 2, the persistence module Nm satisfies:

(i) Nm is indecomposable with local endomorphism ring, in particular it is not interval-

decomposable;

(ii) for any strict subgrid X ′ × Y ′ ( J1,m + 1K2, the restriction Nm
|X′×Y ′ belongs

to 〈Int(X ′ × Y ′)〉.

These two properties follow intuitively from the fact that Nm is the embedded
image of the following indecomposable representation of the quiver Dm into the
grid J1,m+ 1K2:

k km

k

. . .

k

k

ι1

ι2

ιm

δm

Suppose now that X×Y is a product of two totally ordered sets such that |X| ≥
3 and |Y | ≥ 3, and let m be an integer such that 2 ≤ m < min(|X|, |Y |). Note
that PSubm(X ×Y ), the set of grids of size at most m×m included in X ×Y , is a
subset of PSub(X×Y )\{X×Y }. In this setting, there are poset inclusions J1,m+
1K ↪→ X and J1,m+ 1K ↪→ Y , and we can consider their product ψ : J1,m+ 1K2 ↪→
X × Y . We extend the indecomposable module Nm from (7.1) to a persistence
module over X × Y by taking its left Kan extension M along ψ. The resulting
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persistence module is simply a “ceiling” modules [6, Sec. 2.5]. Specifically, for
all t ∈ X × Y we have:

Mt = lim−→Nm
|ψ≤t '

N
m
max(ψ≤t)

if ψ≤t 6= ∅,

0 otherwise,
(7.2)

where ψ≤t denotes the downset {u ∈ J1,m+1K2 | ψ(u) ≤ t}. Similarly, the internal
morphisms of m are either trivial, or they correspond to internal morphisms Nm.

From Proposition 7.1 (i) it follows that M is not interval-decomposable. Indeed,
if it were interval-decomposable, then its restriction to J1,m+1K2 would be as well.
However, this restriction is precisely Nm, contradicting that Nm is not interval-
decomposable. It is not hard to check that M|X′×Y ′ ∈ 〈Int(X ′ × Y ′)〉 for any

grid X ′ × Y ′ ∈ PSubm(X × Y ).

7.2 Proof of Theorem 2.13

We will identify an interval in S that is not a rectangle (Section 7.2.2), then con-
struct a persistence module M over X × Y from this interval (Section 7.2.3), and
finally prove in Section 7.3 that M is not interval-decomposable despite satisfy-
ing M|Q ∈ 〈S|Q〉 for every square Q ∈ PSub2(X × Y ).

7.2.1 Intervals of a square

For s ≤ t in X × Y , let a := s, b := (sx, ty), c := (tx, sy) and d := t. In other words,
Qt
s is precisely the square {a, b, c, d} of X × Y . The set of intervals of Qt

s is then:

Int(Qt
s) = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, c}, {b, c, d}, {a, b, c, d}}.

Of these intervals, two are not rectangles: the bottom hook and top hook :

h1(Qt
s) = {a, b, c}, h2(Qt

s) = {b, c, d}.

Hence, for a square Q of X × Y , the condition S|Q ) Rec(Q) says precisely
that h1(Q) ∈ S|Q or h2(Q) ∈ S|Q.

7.2.2 An interval in S that is not a rectangle

Assume that |X| ≥ 2 and |Y | ≥ 2, and that (|X|, |Y |) 6= (2, 2). Without loss of
generality, one can assume that |X| ≥ 3 and |Y | ≥ 2. In that case, there exists x1 <
x2 < x3 in X and y1 < y2 in Y such that:

G := {(xi, yj)}(i,j)∈{1,2,3}×{1,2} ⊆ X × Y.

Let S ⊆ Int(X×Y ) be such that S|Q ) Rec(Q) for all Q ∈ PSub2(X×Y ). Denot-

ing Q0 := Q
(x3,y2)
(x1,y1)

the outermost square of G, we have S|Q0
) Rec(Q0). Therefore,

either h1(Q0) ∈ S|Q0
or h2(Q0) ∈ S|Q0

. One can assume without loss of generality
that h2(Q0) ∈ S|Q0

, the other case being dual. By definition of S|Q0
, there is some

interval S ∈ S such that h2(Q0) = S ∩ Q0. In particular, we have (x1, y1) /∈ S

while (x1, y2), (x3, y1) and (x3, y2) are in S, thus S is not a rectangle.
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k k2 k

k0 k

( 11 ) ( 1 0 )

Idk

Idk( 10 )

P1

P0

P4
P3

P2

Fig. 6 A graphical representation of the partition of the convex hull conv(G) (left), superim-
posed with its associated module M (right). The regions P0, P1, P2, P3, P4 of conv(G) are
represented respectively by the black dashed line segment, the blue segment, the red region
(including the bottom red segment), the orange region and the green segment. The nodes of
the grid G are represented as gray crosses.

s ∈
t ∈

P0 P1 P2 P3 P4

P0 ≤ ≤ � � �
P1 ≤ � �
P2 � � �
P3 � �
P4 ≤

Table 1 Summary of the comparability of the sets partitioning conv(G) defined in (7.3).
For 0 ≤ i, j ≤ 4, an empty cell indicates that there is no s ∈ Pi and t ∈ Pj such that s ≤ t. On
the contrary, a symbol ≤ indicates that there is such s and t, and a symbol � refines this last
case by indicating that such s and t can in addition (though it is not necessary) satisfy sx < tx
and sy < ty , or in other words that there exists a non-degenerate square of X × Y with
bottom-left corner in Pi and top-right corner in Pj . The correctness of this table is clear.

7.2.3 Building the counter-example

Consider the following partition of conv(G), which is the convex hull of G in X×Y
(i.e. the set of points z ∈ X × Y such that (x1, y1) ≤ z ≤ (x3, y2)):

P1 := ({x1} × [y1, y2]) ∩ S,
P0 := ({x1} × [y1, y2]) \ P1,

P3 := ((x1, x3)× (y1, y2]) ∩ S,
P2 := ((x1, x3)× [y1, y2]) \ P3,

P4 := {x3} × [y1, y2].

(7.3)

See Figure 6 (left) for a graphical representation of this partition, and Table 1
for a summary of the comparability of the various sets in the partition. Consider
the subposet P of X × Y defined as follows:

P := {(x1, y1), (x1, y2), (x2, y1), (x2, y2), (x3, y2)} = G \ {(x3, y1)}, (7.4)

whose Hasse diagram is:

(x1, y2) (x2, y2) (x3, y2)

(x1, y1) (x2, y1)

,
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and define a persistence module M̃ over P by the following diagram:

k k2 k

0 k

( 1
1 ) ( 1 0 )

( 1
0 ) .

For any t ∈ conv(G), call π(t) the unique i ∈ J0, 4K such that t ∈ Pi. A direct
inspection — eased by Table 1 — yields that π : conv(G)→ P is a poset morphism.
Therefore, one can define the persistence module M over conv(G) as the pullback

of M̃ along π. In other words, for any s ≤ t in conv(G), one has:

Mt := M̃π(t),

M(s ≤ t) := M̃(π(s) ≤ π(t)).
(7.5)

We consider in fact the extension of M to X×Y , still denoted by M , with internal
spaces set to be zero outside conv(G) and its internal morphisms to be the obvious
ones. See Figure 6 (right) for a graphical representation of M . Theorem 2.13 follows
from the next proposition:

Proposition 7.2. The persistence module M satisfies:

(i) M is not interval-decomposable;

(ii) M|Q ∈ 〈S|Q〉 for any square Q ∈ PSub2(X × Y ).

7.3 Proof of Proposition 7.2

We first show that M is not interval-decomposable. Let θ ∈ End(M). For s ≤ t

in conv(G) such that π(s) = π(t), i.e located in the same set Pi, we have that
M(s ≤ t) = IdMt

by definition, so the naturality of θ yields a commutative square:

Ms Mt

Ms Mt

Id

θs θt

Id

,

and θs = θt in that case. Moreover, since M vanishes outside conv(G), so does θ.
Thus, any θ ∈ End(M) is entirely determined by its values on the subposet P of X×
Y defined by (7.4). Since M|P is isomorphic to M̃ , which has an endomorphism
ring isomorphic to k by a direct verification, the persistence bimodule M itself has
endomorphism ring isomorphic to k, which is local, hence M is indecomposable.
Since it is not of pointwise dimension 0 or 1 either, it is not interval-decomposable.

We now prove that the restriction M|Q to any square Q of X × Y belongs
to 〈S|Q〉. By hypothesis, we have S|Q ⊇ Rec(Q), so for M|Q to belong to 〈S|Q〉
it is sufficient (though not necessary) that M|Q be rectangle-decomposable. Note

also that Q can be written as Q = Qt
s, for two points s and t in X × Y . Since

degenerate squares yield 1-parameter persistence modules, which are known to be
interval-decomposable, we are left with the case where sx < tx and sy < ty.
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Assume first that s 6∈ conv(G) or t 6∈ conv(G). We claim that M|Qts is rectangle-
decomposable in this case. Indeed, as any other pfd representation of the square,
M|Qts is interval-decomposable, and it is then sufficient to prove that the inter-
val summands of M|Qts cannot be hooks. Assuming without loss of generality
that t 6∈ conv(G) (the other case being similar), we have that at least one point
among (sx, ty) and (tx, sy) does not belong to conv(G), for otherwise we would
have x1 ≤ tx ≤ x3 and y1 ≤ ty ≤ y2 hence t ∈ conv(G). Thus, M|Qts has at
least two zero internal spaces, which implies that its interval summands cannot be
hooks. This proves our claim, and so M|Qts ∈ 〈S|Qts〉.

Assume now that both s and t are in conv(G). Several cases are to be consid-
ered, corresponding to the cells containing the symbol � in Table 1:

Case s ∈ P0.

– If (sx, ty) ∈ P0, then Ms = M(sx,ty) = 0 and no hooks can appear in the
interval-decomposition of M|Qts , which is therefore rectangle-decomposable.

– If (sx, ty) ∈ P1, then M|Qts is of one of the three forms:

k k2

0 k

( 1
1 )

( 1
0 )

k k2

0 k2

( 1
1 )

Idk2

k k

0 k

Idk

Idk

which happen when t ∈ P3 for the first two with (tx, sy) ∈ P2 for the first
and (tx, sy) ∈ P3 for the second, and when t ∈ P4 for the last one. The first
one is rectangle-decomposable. For the last two, we have s 6∈ S (since s ∈ P0)
while the points (sx, ty), (tx, sy) and t are in S, hence h2(Qt

s) ∈ S|Qts . Since
the modules are clearly interval-decomposable with interval summands being
rectangles or top hooks, we do have that M|Qts belongs to 〈S|Qts〉.

Case s ∈ P1. The restriction M|Qts is then of one of the following forms:

k k2

k k2

( 1
1 )

( 1
1 )

Idk
Idk2

k k

k k

Idk

Idk

Idk Idk

which happen respectively when t ∈ P3 for the first and t ∈ P4 for the second.
They are both clearly rectangle-decomposable.

Case s ∈ P2.

– If t ∈ P2, then M|Qts is of the form:

k k

k k

Idk

Idk

Idk Idk
,
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which is clearly rectangle-decomposable.
– If t ∈ P3, then M|Qts is of one of the following forms:

(tx, sy) ∈ P2 (tx, sy) ∈ P3

(sx, ty) ∈ P2

k k2

k k

( 1
0 )

Idk

Idk ( 1
0 )

k k2

k k2

( 1
0 )

( 1
0 )

Idk
Idk2

(sx, ty) ∈ P3

k2 k2

k k

Idk2

Idk

( 1
0 ) ( 1

0 )

k2 k2

k k2

Idk2

( 1
0 )

( 1
0 ) Idk2

which are all rectangle-decomposable except when (sx, ty) and (tx, sy) are both
in P3 where a top hook summand appears. In that case, s 6∈ S. In fact, s ∈ P2

with sy 6= y1 since (tx, sy) ∈ P3. Meanwhile, the points (sx, ty), (tx, sy) and t

are in S. Hence, h2(Qt
s) ∈ S|Qts and we do have MQts

∈ 〈S|Qts〉.
– If t ∈ P4, then M|Qts is of one of the following forms:

k k

k k

Idk

Idk

Idk Idk

k2 k

k k

( 1 0 )

Idk

( 1
0 ) Idk

which happen respectively when (sx, ty) ∈ P2 and (sx, ty) ∈ P3 and are both
rectangle-decomposable.

Case s ∈ P3. Then M|Qts is of one of the following forms:

k2 k2

k2 k2

Idk2

Idk2

Idk2 Idk2

k2 k

k2 k

( 1 0 )

( 1 0 )

Idk2 Idk

which happen respectively when t ∈ P3 and t ∈ P4 and are both rectangle-
decomposable.

Thus, we have shown that M is indecomposable, while M|Q ∈ 〈S|Q〉 for every
square Q of X × Y . This concludes the proof.
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8 Homology pyramids and the strip

In this section we shall extend Theorem 2.5 to persistence modules that are
strongly exact on certain “strip” subsets of the plane. As we shall see, such per-
sistence modules arise naturally in the context of TDA.

First we recall the algebraic formulation of strong exactness.

Definition 8.1 (Strong exactness). A persistence module M over a subset Q ⊆ R2

is strongly exact if for any s ≤ t in Q, such that (sx, ty) and (tx, sy) are also in Q,
the following sequence is exact:

Ms
ρ
(tx,sy)
s ⊕ρ(sx,ty)

s−−−−−−−−−−−−→M(sx,ty) ⊕M(tx,sy)

ρt(sx,ty)−ρ
t
(tx,sy)

−−−−−−−−−−−−→Mt.

Define the strip to be the subposet St ⊂ R2 given by

St = {(x, y) | y ≤ x+ 1 and y ≥ x− 1},

or equivalently, all points situated on and between the two lines y = x + 1 and
y = x− 1. Of importance is the pyramid subposet P defined by

P =
{

(x, y) ∈ (−1, 1)2, |x|+ |y| ≤ 1
}
\
{

(x, y) ∈ (−1, 1)2, x+ y = −1
}
. (8.1)

See Figure 7 for an illustration of P. Concatenating translations of pyramids
we obtain our main object of study. Specifically, for a non-negative integer k, let
P(k) = {p ∈ R2 | p+ (k, k) ∈ P}, and for 0 ≤ m ≤ ∞,

Stm =

{⋃
0≤k≤m P(k) if m <∞,⋃
0≤k<∞ P(k) if m =∞.

Figure 9 illustrates the process of constructing St∞.

In Section 8.2 we prove the following.

Theorem 8.2. Let M ∈ Per(Stm) be pfd, strongly exact and trivial when restricted to

indices on the boundary components y = x + 1 and y = x − 1. Then M is interval-

decomposable where each interval I is of the form I = R ∩ Stm, where R is a maximal

rectangle supported on the interior of St.

Here maximality is meant in the following sense: if R ⊆ S ⊂ R2 where S is a
rectangle supported in the interior of St, then R = S.

Remark 8.3. A proof of Theorem 8.2 for m = 0, under the assumption that the
persistence modules are determined by a finite subset of P, first appeared in work
by Bendich et al. [3], following ideas from Carlsson et al. [9]. An alternative proof
in that setting was given by the authors of this paper in [7] using Theorem 2.6.

A proof of Theorem 8.2 for m =∞, under the assumption that M is sequentially

continuous, can be found in recent work by Bauer et al. [2].
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8.1 Motivation from TDA

The interest in block-decomposable modules originated in the study of levelset per-
sistent homology. Specifically, for a continuous function f : X → R one constructs
the persistence module M(f) : {(x, y) ∈ Rop ×R, x < y} → Vec,

M(f)(x,y) = Hi ({p ∈ X,x < f(p) < y}) .

It follows immediately from a simple Mayer–Vietoris calculation that M(f) is
strongly exact; see e.g., [10]. Furthermore, assuming that M(f) is pfd, it is interval-
decomposable where each interval I is of the form I = B∩{(x, y) ∈ Rop×R, x < y},
and where B is a block in Rop×R [5,10]; see Figure 8 for an example of a real-valued
function and the associated intervals.

The domain of M(f) can be extended by considering relative homology. To see
this, consider the poset consisting of all pairs of open sets (u, v) of the form,

((x, y), ∅) ((x,∞), (y,∞)) ((−∞, y), (−∞, x)) (R, (−∞, x) ∪ (y,∞)),

(8.2)

where −∞ ≤ x ≤ y ≤ ∞ are chosen such that u 6= ∅. The persistence module
M(f) is extended by defining M(f)(u,v) = Hi(f

−1(u), f−1(v)). Moreover, and as
suggested in Figure 7, M(f) can be seen as a persistence module over P after re-
scaling, and reversing the horizontal arrow (see also Remark 8.6). We shall refer to
the resulting persistence module M(f) ∈ Per (P) as the (continuous) homology pyra-

mid (in dimension i). Note that the homology pyramid is trivial on the boundaries
y = x+1 and y = x−1, as the corresponding vector spaces are given by the relative
homology of preimages of pairs of the form ((x,∞), (x,∞)) and ((−∞, x), (−∞, x)),
respectively. In particular, Theorem 8.2 for m = 0 gives a structure theorem for
pfd homology pyramids.

As was first noted by Carlsson et al. [9], the boundary maps in the relative
Mayer–Vietoris sequence can be used to connect homology pyramids of consecu-
tive dimensions if one flips every other pyramid. In particular, m+ 1 consecutive
homology pyramids assemble into a persistence module over Stm. Figure 9 illus-
trates this procedure and shows the interval-decomposition of M(f) ∈ Per (St∞)
associated to the function f from Figure 8.

Remark 8.1 We remark that care must be taken in verifying that the resulting
persistence module M(f) over St∞ is well-defined. The reader should consult [2]
for a careful construction of M(f), and a direct proof of an associated structure
theorem.

8.2 Proof of Theorem 8.2

We now return to the proof of Theorem 8.2. This lemma is fundamental.

Lemma 8.4. Let M be a strongly exact and pfd persistence module over St, such that

M is trivial when restricted to the boundary components y = x+1 and y = x−1. Then

M is interval-decomposable and each interval is a maximal rectangle on the interior of

St.
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a3

a2

a1

−∞

−∞

+∞+∞

Hi

(
X, f−1(−∞, a1) ∪ f−1(a3,+∞)

)

a3

a2

a1

Hi

(
f−1(a1,+∞), f−1(a3,+∞)

)

a3 a3

a2 a2

a1a1

Hi

(
f−1(−∞, a3), f

−1(−∞, a1)
)

Hi

(
f−1(a1, a3), ∅

)
Fig. 7 In dark grey, the homology pyramid of [3, p. 6,7] (up to rotation). Up to rescaling and
reversing the horizontal axis, the underlying poset corresponds to the pyramid poset P.

a1

a2

a3

a4

a5

a6

H0

a1
a2

a3
a4

a5
a6

a1
a2

a3
a4

a5

a6

H1

Fig. 8 A function f on a topological space (left) and the associated interval-decompositions
in levelset persistent homology in dimensions 0 and 1 (right).

Proof. Since M is trivial on the boundary components, we may extend M to a
persistence module over R2 by defining Mp = 0 for all p not contained in St. By
virtue of Theorem 2.9, it suffices to show that the extension to R2 is weakly exact.
This is not hard to see: consider s and t as in Definition 2.10. Then, by assumption,
M can only fail to be weakly exact if (sx, ty) or (tx, sy) is not contained in St.
However, in that case,

0 = Im ρts = Im ρt(tx,sy) ∩ Im ρt(sx,ty),

Ms = Ker ρts = Ker ρ
(tx,sy)
s + Ker ρ

(sx,ty)
s .

Hence, M is weakly exact. Furthermore, since the extension of M is trivial outside
of St, any rectangle R in the decomposition of M must be necessarily be supported
on a subset of St.
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a1

a1
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a1
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a4
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a6

H0

H1

M(f)

a6

a5
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a3

a2
a1

a6

a5

a4
a3

a2
a1

Fig. 9 The homology pyramids and the corresponding M(f) ∈ Per (St∞) of the function in
Figure 8.

We now show that R is maximal. Write R = 〈a, b〉×〈c, d〉 where 〈a, b〉 denotes an
interval in R with left and right endpoints given by a and b, respectively, e.g., [a, b)
or (a, b). Assume that the point (a, c) ∈ R2 is not on the boundary of St. Then, we
can choose s and t such that the square A = {sx, tx} × {sy, ty} is contained in the
interior of St and R ∩ A = {(sx, ty)}. In particular, the sequence in Definition 8.1
associated to A has a summand of the form 0 → k → 0, contradicting that the
sequence is exact. Symmetrically, the point (b, d) ∈ R2 must be contained in the
other boundary component.

ut

We now describe a procedure to extend M ∈ Per (Stm) to a persistence module
over St by means of left and right Kan extensions. In order to ensure that the
extension is trivial on the boundary components we shall consider the poset Stbm
given by the union of Stm with the two boundary components of St. The extension
works as follows:

1. Extend M ∈ Per (Stm) to M ∈ Per
(
Stbm

)
by defining the module to be trivial

on the boundary components.

2. Extend to Ranϕ(M) ∈ Per
(
Stb∞

)
by a right Kan Extension along the inclusion

ϕ : Stbm ↪→ Stb∞.
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3. Extend to M̃ := Lanψ(Ranϕ(M)) ∈ Per (St) by means of a left Kan extension

along ψ : Stb∞ ↪→ St.

The fact that M̃ |Stm ∼= M follows from [15, Corollary 3.6.9] as both of the Kan
extensions are computed pointwise along a full functor.

The outline for proving Theorem 8.2 is as follows. First, we show in Lemmas
8.9 and 8.10 that M decomposes as M ∼= N ⊕ N1 ⊕ N2, where Ñ is pfd and
strongly-exact, and N1 and N2 decompose as stated in Theorem 8.2. Then, we
apply Lemma 8.4 to Ñ . The result then follows from restricting to Stm and using
the observation that N ∼= Ñ |Stm .

In the proofs, we shall make use of the following notation,

:=
{

(x, y) ∈ (0, 1)2, x+ y ≤ 1
}
,

:=
{

(x, y) ∈ (−m− 1,−m)2, x+ y > −1− 2m
}
,

and we shall denote the union of each of these subsets with the boundary
components of St by b and b, respectively.

Remark 8.5. Dualizing each internal space and each internal morphism of a per-
sistence module M over P yields a persistence module DM over Pop, the opposite
category of P. Dualization defines a contravariant functor D : Per(P) → Per(Pop)
which sends strongly exact modules to strongly exact modules, and which satisfies
DDM 'M for any pfd persistence module M .

Remark 8.6. In the following we shall make use of results from [5] and [10]. The re-
sults were originally formulated for persistence modules over R2, over T := {(x, y) ∈
R2, x + y > 0} and over T := {(x, y) ∈ R2, x + y ≥ 0}. These results do however
apply verbatim in the settings of and , as can be seen from the following two
poset isomorphisms and Remark 8.5,

(x, y) ∈ 7→
(

tan
(
π

2
(x+ 1 +m)

)
, tan

(
π

2
(y + 1 +m)

))
∈ T

(x, y) ∈ op 7→
(

tan
(
π

2
(−x+ 1)

)
, tan

(
π

2
(−y + 1)

))
∈ T

The following is a slight reformulation of two results from [5, Sec. 5.2].

Theorem 8.1 Let M be a strongly exact and pfd persistence module over or .

Then M is interval-decomposable, and each interval B is of the form B = R ∩ or

I = R ∩ , respectively, where R is a maximal rectangle in the interior of St.

We shall refer to such intervals as blocks. If B = R∩ , and there exists a p ∈
such that p < q for all q ∈ B, then B is a birth quadrant. Dually, if B = R ∩ and
there exists q ∈ B such that p < q for all q ∈ B, then B is a death quadrant. For
instance, the triangular shaped blocks in the homology pyramids in dimension 0
and 1 shown in Figure 9 are death and birth quadrants, respectively. The following
is an immediate corollary of Theorem 8.1.

Corollary 8.7. Let M ∈ Per (Stm) be as in the statement of Theorem 8.2. Then the

restriction of M to , denoted by M | , decomposes as

M| '
⊕
B∈B1

kB , (8.3)
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where B1 is a multiset of blocks in . Dually, the restriction of M to decomposes

as

M| '
⊕
B∈B2

kB , (8.4)

where B2 is a multiset of blocks in .

Remark 8.8. Let ϕ : Stbm ↪→ Stb∞, and ψ : Stb∞ ↪→ St denote the inclusions in-
troduced above. The inclusion of posets b ↪→ Stbm is initial in the sense of [13,
Sec. IX.3], and therefore [13, Sec. IX.3, Thm. 1], we have the following natural
isomorphism for all p ∈ Stb∞ − (Stbm − b),

(RanϕM)p '
(

Ranϕ| b
M | b

)
p

Similarly, one has:

M̃p '
(
Lanψ(RanϕM)

)
p
'
(

Lanψ| b
(RanϕM)| b

)
p

,

for all p ∈ St− (Stb∞ − b).

Lemma 8.9. Let M ∈ Per (Stm) be as in the statement of Theorem 8.2, and let B1

and B2 be as in Corollary 8.7.

1. M̃ is strongly exact.

2. If B1 contains no death quadrant, and B2 contains no birth quadrant, then M̃ is

pfd.

Proof. First we prove (1). Following the first step in the extension procedure out-

lined above, we obtain M ∈ Per
(
Stbm

)
by adding 0 vector spaces. To simplify nota-

tion, we shall let D and U denote the sets D = St∞−(Stm− ), U = (St−(St∞− ))
and N = M | b . Then

N '
⊕
B∈B1

kB .

where each block B ∈ B1 is of the form B = R∩ where R is a maximal rectangle
in the interior of St. It is not hard to see that extending kB “to the left” using a
right Kan extension will recover kR on St∞ − Stm. That is, we have the following
natural isomorphism

Ranϕ| b
(kB)p ∼= (kR)p,

for all p ∈ D. In particular, since kR is strongly exact on St (and therefore on D),
it follows that Ranϕ| b

(kB) is strongly exact on D. Hence,

(RanϕM)|D '
(

Ranϕ| b
N
)
|D '

 ⊕
B∈B1

Ranϕ| b
kB

 |D
is strongly exact on D. Here the first isomorphism follows from Remark 8.8, and

the second isomorphism follows from the fact that right Kan extensions commute
with direct products, and that direct products and direct sums coincide when
working in the pfd setting; see e.g. [6, Rk. 2.16] for more details.



42 Magnus B. Botnan et al.

Let N ′ denote the restriction of RanϕM to b. From Corollary 8.7 we now
have that

N ′ '
⊕
B′∈B2

kB′ .

where B2 is a multiset of blocks of . It follows from the second part of Remark 8.8,
that M̃ |U ∼= (Lanψ| b

N ′)|U . Showing that the latter is strongly exact is dual to

the first part of this proof. In conclusion, we have that M̃ is strongly exact when
restricted to D, Stm and U . To see that this implies strong exactness on the whole
of St, let s and t be as in Definition 8.1, and assume that s ∈ D − D ∩ Stm and
t ∈ Stm −D ∩ Stm. Then we can find p ∈ D ∩ Stm = , such that s ≤ p ≤ t, and
such that each of the smaller squares in the following diagram is strongly exact,

M̃(sx,ty) M̃(px,ty) M̃t

M̃(sx,py) M̃p M̃(tx,py)

M̃s M̃(px,sy) M̃(tx,sy)

. (8.5)

A simple diagram chase shows that the outer square is strongly exact. Hence, M̃
is strongly exact on St∞ = D ∪ Stm. A similar argument shows that M̃ is strongly
exact on St∞ ∪ U = St.

Now we prove (2). Since M̃ |Stm ∼= M |Stm , it suffices to prove that M̃ is pfd over
D −D ∩ Stm and U − U ∩ Stm. We prove the former, the second is dual. Assume
that Ranϕ b N is not pfd at p ∈ D −D ∩ Stm. Then, there must exist an infinite

family of blocks {Bλ = Rλ ∩ } ⊂ B1 such that p ∈ Rλ for all λ. However, by
assumption, Rλ is not bounded from above in . In other words, Rλ and thus Bλ
must contain at least one of the two line segments

([px,−m)× {py}) ∩ and ({px} × [py,−m)) ∩ .

Hence, either there exists an infinite number of blocks Bλ ∈ B1 such that

([px,−m)× {py}) ∩ ⊆ Bλ,

or there exists an infinite number of blocks Bλ ∈ B1 such that

({px} × [py, 0)) ∩ ⊆ Bλ.

We conclude that dimNq =∞ for all q ∈ ([px,−m)× {py})∩ or dimNq =∞ for
all q ∈ ({px} × [py,−m)) ∩ . This contradicts the assumption that N is pfd. ut

Lemma 8.10. Let M ∈ Per (Stm) be as in the statement of Theorem 8.2, and let B1

and B2 be as in Corollary 8.7. Then,

M ' N ⊕
⊕
B∈bb

kB ⊕
⊕
B∈db

kB ,

where bb ⊆ B1 is the collection of all birth quadrants, and db ⊆ B2 is the collection

of all death quadrants, and N contains no summand of the form kB where B is a birth

quadrant in or a death quadrant in .
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Proof. Recall that B is a death quadrant in if and only if its support is bounded
from above by some x ∈ . Dually, a birth quadrant B in is a birth quadrant if
and only if it is bounded from below by some x ∈ . In either case, there is enough
space around their supports to extend them to summands of M . In particular, if
B ∈ db, then the inclusions and projection maps

kB
i1−→M|

j1−→ kB

such that j1 ◦ i1 = idkB , extend to

kB
i−→M |Stm

j−→ kB

such that j ◦ i = idkB (here the interval B is considered as a subset of Stm). Doing
this for every death quadrant yields,

M ' N ′ ⊕
⊕
B∈db

kB .

Iterating the above argument in the dual setting of birth quadrants in gives,

M ' N ⊕
⊕
B∈bb

kB ⊕
⊕
B∈db

kB .

ut

Proof of Theorem 8.2. By Lemma 8.10 we may assume that B1 and B2 contain no
death and birth quadrants, respectively. Hence M̃ is strongly exact and pfd by
Lemma 8.9. The result now follows from Lemma 8.4. ut

9 Conclusion

In this paper we have provided a local characterization of pfd rectangle-decomposa-
ble modules in the plane. We have also shown that it is not possible to move
beyond intervals of rectangular shape when considering square “test subsets”. The
following questions are natural to consider:

1. Allowing for test subsets of other shapes than squares, is it possible to locally
characterize interval-decomposability beyond rectangles?

2. Do the results generalize to persistence modules over Rn? The injective and
projective persistence modules can be characterized locally by considering
the multi-graded betti numbers. Is there a more general class of interval-
decomposable modules which can be locally characaterized?

3. Is it possible to move beyond indecomposables which are pointwise 0- or 1-
dimensional? Can one determine “locally” if M decomposes into a direct sum
of indecomposables belonging to a certain predefined class of indecomposables?

4. Does Theorem 2.11 hold without the assumption that X and Y both admit a
countable coinitial subset? That is indeed the case in the block-decomposable
case[5, Thm. 1.3]. We state this as a conjecture

Conjecture 9.1. Theorem 2.11 holds verbatim for all totally ordered sets X and Y .
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