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ABSTRACT
This study aimed to understand whether or not computer mod-
els of saliency could explain landmark saliency. An online survey 
was conducted and participants were asked to watch videos 
from a spatial navigation video game (Sea Hero Quest). 
Participants were asked to pay attention to the environments 
within which the boat was moving and to rate the perceived 
saliency of each landmark. In addition, state-of-the-art computer 
saliency models were used to objectively quantify landmark 
saliency. No significant relationship was found between objec-
tive and subjective saliency measures. This indicates that during 
passive observation of an environment while being navigated, 
current automated models of saliency fail to predict subjective 
reports of visual attention to landmarks.
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1. Introduction

It has been shown that landmarks play an important role in spatial knowledge. 
Siegel and White (1975) defined route, survey and landmark knowledge and 
they argued that spatial knowledge starts with learning landmarks and the 
routes consecutively, and finally it is completed with the survey knowledge. In 
a recent study, Montello (1998) mentioned that there is no stage at which only 
pure landmark or route knowledge exists. He stated that as familiarity 
increases, the quantity and completeness of spatial knowledge also increase. 
Hence, he focused on the idea that most of the steps within spatial acquisition 
process occur in parallel, rather than sequentially. In another study, research-
ers found that people can acquire route or survey knowledge as soon as they 
explore an environment (Ishikawa & Montello, 2006). Therefore, landmarks 
are important components of spatial knowledge. Knowing the exact locations 
of landmarks help people orient themselves in an environment and under-
stand whether the followed path is correct (Michon & Denis, 2001; Philbeck & 
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O’Leary, 2005). Hence, landmarks are important for effective route learning 
(Taluka & Wilson, 1994) and decision-making (Golledge, 1999).

The location of landmarks has been discussed by various studies using 
landmarks at decision points, on route or off route(Cliburn, Winlock, Rilea 
& Van Donsel, 2007; Klippel & Winter, 2005; Lovelace, Hegarty & Montello, 
1999; Miller & Carlson, 2011; Schwering, Li & Anacta, 2013) whereas the 
visibility of landmarks has been discussed considering “global” and “local” 
landmarks (Castelli, Latini Corazzini & Geminiani, 2008; Evans, Skorpanich, 
Bryant & Bresolin, 1984; Kaplan, 1976; Meilinger, Schulte-Pelkum, 
Frankenstein, Berger & Bülthoff, 2015; Ruddle, Volkova, Mohler & Bülthoff, 
2011; Steck & Mallot, 2000). Similarly, saliency of landmarks has also been 
investigated by various studies (Caduff & Timpf, 2008; Klippel & Winter, 2005; 
Richter & Winter, 2014; Sorrows & Hirtle, 1999). The current study aims to 
understand what makes a landmark visually salient for people and whether or 
not the predictions of saliency models correlate with people’s saliency 
evaluations.

2. Background

2.1. Landmark saliency

Winter, Tomko, Elias and Sester (2008) stated that salient features are defined 
as landmarks. This indicates that if an object is more salient than others, it is 
more likely to be remembered (Cenani, Arentze & Timmermans, 2017) or 
used by people for navigation, orientation, and learning purposes. One of the 
most significant saliency categorization was developed by Sorrows and Hirtle 
(1999): they described three types of landmarks: visual, cognitive and struc-
tural landmarks. Visual landmarks can be distinguished based on their physi-
cal characteristics such as size, shape or color. Cognitive landmarks are more 
personal; they have a cultural or historical meaning so that even if an object 
does not have any visual attractiveness it can still be used by an observer to 
define a destination or to way-find. A structural landmark is about the location 
of objects in an environment. Various studies argue that if an object is highly 
accessible (for instance if an object is located at a decision point (Burnett, 
Smith & May, 2001; Cenani et al., 2017; Evans, Smith & Pezdek, 1982; Lynch, 
1960; Miller & Carlson, 2011)), then the object is more likely to be used as 
a landmark. For instance, Burnett et al. (2001) defined characteristics of 
preferred landmarks for navigation and they mentioned that landmarks 
would be more useful if they are located close to decision points. In another 
study, researchers used en-route landmarks, off-route landmarks, decision- 
point landmarks and street facades and they observed that landmarks located 
at a decision point are more likely to be recognized (Cenani et al., 2017). The 
saliency definition was improved by Caduff and Timpf (2008) as they 
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mentioned that Sorrows and Hirtle’s method was unable to characterize land-
marks quantitatively. They defined perceptual, cognitive and contextual sal-
ience and offered measures to analyze them. Nothegger, Winter and Raubal 
(2004) added the concept of visibility to this definition and more recently Von 
Stülpnagel and Frankenstein (2015) referred to configurational salience, which 
is related to Space Syntax1 visibility graph analysis (VGA).

The effect of different saliency measures on wayfinding was also discussed 
in previous papers. Several studies discussed the visual characteristics of land-
marks (Miller & Carlson, 2011; Quesnot & Roche, 2015; Winter, Raubal & 
Nothegger, 2005). Miller and Carlson (2011), for example, focused on the 
perceptual and spatial characteristics of landmarks. They defined perceptually 
salient objects based on the size and color of the landmarks. To understand 
structural characteristics of landmarks, they used objects at decision points 
(with or without a turn). To explore the impact of landmarks, they asked 
people to learn a route and memorize identities and locations of objects. 
Researchers concluded their study by arguing that perceptual salience as well 
as the demands of the task (contextual salience) is critical to landmark selec-
tion. In order to measure visual saliency, other researchers developed detailed 
measures including façade area, shape, color and visibility (Nothegger et al., 
2004; Winter et al., 2005). Winter et al. (2005) asked people to rank multiple 
façades with regard to prominence. They discovered that as well as other visual 
cues visibility and color were significant characteristics of landmarks. On the 
other hand, the impact of structural salience on wayfinding was also consid-
ered through various studies. Stankiewicz and Kalia (2007) described struc-
tural landmarks, in a corridor environment, as specific hallway configurations 
and object landmarks as the pictures on the walls in the corridors. They 
designed three experiments and found that people have a natural bias toward 
remembering structural landmarks over object landmarks. In another study, 
researchers wanted to understand the interaction between two types of sal-
iency, visual and structural characteristics, since research on the combined 
effect of different saliency criteria is quite limited (Albrecht & Von Stülpnagel, 
2018). The authors hypothesized that visually salient landmarks would get 
more attention if they were also structurally salient. Researchers discovered 
that if visually salient landmarks are located in the turning direction, then 
response accuracy increases in familiar environments. They could not find the 
same result for unfamiliar environments. Finally, Michon and Denis (2001) 
argued that visual landmarks are more effective when they are located at 
reorientation points and that landmarks help people both to construct 

1Space Syntax is a technique used to analyze environments quantitatively and to understand the human and space 
relations (Hillier & Hanson, 1984). By using Space Syntax line based and visibility based analysis, it is possible to 
measure the environments objectively and compare different results to understand the most accessible-visible 
points. By using visibility graph analysis, researchers defined all accessible places with grids and they measured 
landmark size – number of grids/cells they occupy-, visibility of landmarks – number of grids/cells they are visible 
from- and integration – the average visual distance to all grids/cells.
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a mental image of an unfamiliar environment and to react appropriately when 
a decision should be made.

2.2. Saliency models

Different models were proposed to measure the saliency of landmarks auto-
matically (Elias, 2003; Nothegger et al., 2004; Winter et al., 2008). Elias 
(2003), for example, concentrated on a building database and used multiple 
factors to automatically define landmarks, such as the geometry of buildings 
(with an attribute table that contains information about land use, building 
label, building use and special building parts), as well as location and 
visibility of buildings. Winter et al. (2008) evaluated the hierarchy of land-
marks by using rankings (cognitive ranking – prominence, uniqueness and 
salience related) to automatically identify landmarks. These models focused 
on landmarks and their visual, structural or cognitive characteristics while 
explaining saliency.

On the other side, general saliency models were also released to measure 
visual saliency in natural scenes (Harel, Koch & Perona, 2007; Itti, Koch & 
Niebur, 1998; Judd, Ehinger, Durand & Torralba, 2009; Kümmerer, Wallis & 
Bethge, 2016; Kümmerer, Wallis, Gatys & Bethge, 2017). Previous research 
discovered that people tend to look more at salient objects (Itti, 2005; Zetzsche 
et al., 1998) as these objects draw attention to themselves (Land & Tatler, 2009). 
Zetzsche et al. (1998), for instance, found out that the eyes fixated on regions 
with multiple superimposed locations such as line endings or corner points. 
Moreover, Krukar mentioned that the more people process (or fixate on) an 
object, the better they remember it (Krukar, 2015). Hence, many automated 
saliency simulations have built up this relationship between eye-fixations and 
saliency. One of the earliest computational models was developed by Itti et al. 
(1998). In this model, researchers developed a visual attention system based on 
the color, intensity and orientation of objects. Since then, many other 
approaches have been proposed (Borji & Itti, 2013). Among them Graph 
Based Visual Saliency (Gbvs, Harel et al., 2007), which is a standardized version 
of Itti’s model, was shown to be more predictive in explaining human fixations 
than the Itti et al model. Recently, saliency models based on deep learning have 
been shown to significantly outperform most previous shallow models. One of 
the most accurate ones is DeepGaze II (Kümmerer et al., 2016). VGG deep 
neural network features (VGG-19) were used to train this model (Simonyan & 
Zisserman, 2014) to predict saliency, and the model was pretrained with 
SALICON dataset (Jiang, Huang, Duan & Zhao, 2015). The great advantage of 
deep saliency models is that they do not only model low-level visual features 
such as orientation, contrast or luminosity, but also take into account higher 
level features such as whole objects, or even faces, which are known to strongly 
attract attention.
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Many models mentioned above aimed to predict where people look at by 
considering some visual characteristics of the scenes. Thus, the models are 
essential for studies on spatial knowledge and route learning (Grzeschik, 
Conroy Dalton, Innes, Shanker & Wiener, 2019). Earlier studies focused on 
estimating the contribution of saliency models to eye-movements by using 
dynamic scenes and found no significant relationships between model- 
predicted saliency and duration-of-fixations (Itti, 2005). Even though the 
number of studies on navigation and saliency is high, the number of studies 
on the effect of salient objects on navigation is still limited. To the best of the 
authors’ knowledge, there is one more study that aimed to compare naviga-
tional behavior with different saliency models (Psarras, Fatah, Zarkali & 
Hanna, 2019) in addition to the previously mentioned study (Grzeschik 
et al., 2019). Grzeschik et al. (2019) designed a virtual environment and placed 
landmarks at intersections. At each intersection there was a unique landmark 
(that appears once along a route) and a non-unique landmark (that appears at 
two of the intersections along a route). Saliency of landmarks also varied. 
Participants’ eye movements were captured and saliency was assessed using an 
online survey as well as saliency algorithms. Researchers discovered that the 
results of the survey and algorithms pointed to salient landmarks. Psarras et al. 
(2019), on the other hand, followed a different approach and recorded pedes-
trians’ routes in a real environment. The paths people used were then con-
verted to 3D models and virtual cameras were used to capture people’s fields of 
view. Saliency algorithms were implemented to these fields of view. 
Researchers stated that visual saliency was correlated with observed naviga-
tional behavior. They concluded the study by mentioning that saliency can be 
used in predicting navigational behavior.

2.3. Problem statement and hypothesis

Even though there are a great number of studies on landmarks, comparative 
studies on saliency of landmarks and saliency algorithms are still limited. As 
mentioned above, saliency models are typically trained with eye-tracking data. 
But is it possible to confirm that they really correlate with what people find 
salient? This study aims to understand whether or not saliency algorithms are 
sufficient in explaining people’s saliency evaluations. Saliency models and 
a survey are used to explore visual saliency and the association between 
these two approaches is investigated. Literature points to the impact of visual 
and structural landmarks or the combined effects of different saliency mea-
sures on landmark selection. However, this topic is still debateable. Therefore, 
this study also aims to understand the factors that make landmarks salient.

It is hypothesized that landmarks, which are objectively salient according to 
the models, are also described as subjectively salient by participants. Therefore, 
it is expected that the results of the saliency models are highly correlated with 

SPATIAL COGNITION & COMPUTATION 5

antoine



the results of subjective ratings. Similar to the findings of recent literature 
(Miller & Carlson, 2011; Von Stülpnagel & Frankenstein, 2015; Winter et al., 
2005), it is also hypothesized that saliency of landmarks are strongly related to 
the visual characteristics of objects such as their size or/and color. In addition, 
structural salience is expected to have an effect on the results.

3. Method and analysis

An online game, Sea Hero Quest (SHQ), was used in this study (Coutrot et al., 
2018). SHQ was used to predict real-world navigation performance (Coutrot 
et al., 2018) or to explore the genetic risk status for Alzheimer’s dementia 
(Coughlan et al., 2019). Hence, the game has an ecological validity, which 
makes it worthy to be used as a platform in this study. In a previous research, 
30 participants were asked to complete specific levels of SHQ and then the 
same participants were tested on an analogous, real-world task in the Covent 
Garden neighborhood of London. The findings of this research showed that 
there was a significant correlation between virtual and the real-world environ-
ment navigation performance (Coutrot et al., 2018). This finding is promising, 
since it shows that the results highlighted in this study can potentially be 
adapted to real-world environments.

SHQ consists of 75 levels with different spatial layouts. While the first levels 
are relatively simple and easy to navigate, later levels get progressively more 
complex and harder to way-find. During the design phase of the game it was 
hypothesized that landmarks play a role in navigational performances (sub-
sequent work by the authors evidence this (Emo, Hölscher, Wiener & Conroy 
Dalton, 2012; Grzeschik et al., 2019)). Therefore, the original game was 
designed using controlled landmark conditions in order to facilitate further 
exploration of the roles of landmarks in navigation. Hence, not only the spatial 
layouts of levels, but also landmarks were deliberately designed to understand 
how people find their way through complex environments. The landmarks 
were defined and created by the game company Glitchers Ltd. with input from 
the research team. Both global landmarks (those visible from larger distances 
and multiple viewpoints) and local landmarks (those only visible from close 
range) as well as salient and less salient landmarks were defined by the 
researchers. Therefore, the game is valid for use in this study.

Two different levels of SHQ, which have different landmark conditions (as 
defined by the research team behind the game), were selected. ‘Easy land-
marks’ are both visually and structurally salient landmarks. As Sorrows and 
Hirtle defined (Sorrows & Hirtle, 1999), they differentiate from their sur-
roundings with their visual characteristics, such as their color, shape or size, 
and they are placed at integrated locations (at intersections, for instance). 
‘Hard landmarks’ are visually salient or less salient landmarks at segregated 
places (e.g. dead-ends). The easy and hard landmark categories were defined 
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by the designers (Ruth Conroy Dalton, Christoph Hölscher, Jan Wiener and 
Hugo Spiers) and the different landmarks were designed and placed according 
to these categories through the development process of the game -see the 
paper by Conroy Dalton for a fuller explanation of the design process (Conroy 
Dalton, 2016)-.

3.1. Selection of stimuli

In the wayfinding levels of SHQ, players of the game (more than 4 million 
people) are asked to view a map that shows the environment where they will 
navigate in and the goal locations that they should reach. When they close the 
map, the game starts, and they navigate a boat in a river/canal environment. 
Since the survey asks participants to focus on environments and does not 
consider their spatial performance, one video was recorded for each level by 
the first author (DY) (video length was between 60 and 90 seconds) in which 
all goal locations were found respectively with an optimal path taken.

To compare objects’ saliency levels, levels with the same conditions (i.e. 
weather/map) were chosen and environmental measures were kept as similar 
as possible. As there were 75 levels in the game, clustering analysis was 
conducted based on spatial measures. Space Syntax measures included axial 
and segment-based integration and choice (r: n, 3), axial-based intelligibility, 
VGA (visual connectivity, visual integration, intelligibility), and connectivity 
(directional reach based on 10° for 0 and 2 direction changes, metric reach for 
10 m and 100 m). Complexity measures included number of decision points 
and destinations, total segment length, and shortest route. Based on the results 
of the clustering analysis, similar layouts were selected (for more information 
about the measures and the clustering see Yesiltepe et al., 2019). Therefore, 
levels with similar spatial values were grouped together to enable comparable 
environments to be selected. Additional conditions that might affect partici-
pants’ choices, such as the existence of global landmarks (some levels include 
global landmarks while others do not), map condition (in some levels maps are 
obscured while in others they are clear), weather condition (in some levels the 
weather is clear while in others it is foggy), theme (five different themes were 
used in the game and components of environments vary in different themes), 
were also kept the same (for more information see Coutrot et al., 2018). Hence, 
levels 31 and 32 were selected in this study (Figure 1) as they have the same 
theme, same global landmark condition, weather and map conditions.

3.2. Survey design

Visual saliency was first analyzed with a survey study. Survey results could be 
closely related with cognitive salience as well; however, cognitive salience was 
beyond the scope of this study. Participants were asked questions to identify 
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visual saliency only. Previous literature argued that people’s attention level is 
lower when they complete a passive wayfinding task (Afrooz, White & Parolin, 
2018). However, another research pointed that no differences were observed 
between active and passive navigators (Wilson, Foreman, Gillett & Stanton, 
1997). Based on the findings of the latter research, we also asked people to pay 
attention to the environment without completing any navigation task. For the 
survey study, a video was recorded (750x1334-pixel resolution, screen size: 
5.44” (138.3 mm) height and 2.64” (67.1 mm) width) for each level in which 

Figure 1. Layout of levels 31 and 32 and position of landmarks: screenshots were taken from the 
start points of level 31 (above) and 32 (below) and the start points, checkpoints, and final 
checkpoints were shown on the maps.
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the boat was navigated through the environments. The video’s sound track was 
removed as it was assumed that the noise might distract attention. When the 
task was completed, the video stopped and participants were asked to view the 
images (image size = 550 x 680 pixel) that were extracted from the video 
(Figure 2).

All previously designated landmarks in each level were used in this study 
since any of these could help people navigate themselves within the environ-
ment. Visual characteristics of landmarks included color, size, shape, and 
material. Structural characteristics, on the other hand, included the location 
or visibility of landmarks (i.e. landmarks seen clearly from a shorter distance 
versus those that fail to be recognized clearly due to increased distance). Two 
images for each object were shown to the participants. In the first one, 
transparency of the background was increased so that the landmarks could 
be seen clearly, and in the second image, participants viewed the image exactly 
as it appeared in the video. All images belonging to the same level were 
positioned in one page (center-aligned), and the order of images was rando-
mized. For level 31, 9 landmarks and for level 32, 7 landmarks were shown. In 

Figure 2. A landmark image is extracted from the video of level 31. While ranking for the 
landmarks, participants viewed objects both with a transparent background (on left) and as 
they were seen in the video (on right).
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order to create the online survey, Google Forms was chosen among other 
online survey pages, as it allowed us to randomize questions, upload videos 
and images for free.

3.2.1. Procedure
Before the online survey was released, a laboratory survey was held with 25 
architecture students at Northumbria University.2 The purpose of this study 
was to control the online survey and to better understand whether or not 
participants might be distracted during the online survey. Sample size was 
limited to 25 students (it represents 10% of the total number of participants).

Participants were invited to the lab-room one by one and were asked to sign 
in to their e-mail accounts, through which they started the survey. Before 
starting the survey study, they were provided with project information and 
informed consent. The consent form and the procedure were approved by 
Northumbria University Ethics Committee (Submission ID: 7939). 
Participants were asked to answer questions about their demographics (age 
and gender). As participants answered the questions and moved to the next 
page, they were able to view the videos by using the “play” button. Information 
about the video, which mentioned that participants should view the video in 
order to answer the questions, was inserted on the top of the video. It read: “In 
this study, you will be asked to watch two videos that have been recorded in 
a virtual environment. In these environments, you will see a boat navigating 
through a canal/river. The boat will travel to a series of destinations. Please 
watch these videos and pay attention to the landscape through which the boat 
is moving”. During the video, all checkpoint destinations were found, respec-
tively, and when the task was completed, the video stopped. When participants 
watched the video and moved to the next page, they saw all the landmarks 
related to the relevant level. The order of the pictures was randomized across 
participants, and participants were asked to rank the landmarks on a 5-Likert 
scale, from highly noticeable (5) to unnoticeable3 (1).

As participants completed the questions for the first video (level 31), they 
followed the same procedure for the second video (level 32) and for the images 
related to it. The video order was not counter-balanced to match to the game 
experience. When participants completed the questions for the two levels, they 
viewed a page, which notified them that the survey was completed, and they 
submitted their results by using the “submit” button. None of the questions, 

2Previous studies showed that educational level has a significant impact on people’s navigation performances (Erkan, 
2018). However, in this study, the laboratory study was conducted with architecture students, and results of the 
t-test showed that there was no significant change between online survey (unknown educational levels) and the 
laboratory survey (tertiary education). Therefore, it can be assumed that people who attended the online survey 
study included people with similar educational background (degree level). Alternatively, it might be considered 
that education level does not have a significant impact on landmark evaluations.

34. Rather than using “saliency” term, authors preferred “noticeability” to make it easier for participants to understand 
and answer the questions.
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except the ones about their agreement on data protection and the procedure, 
were mandatory.

After completing the laboratory survey, participants were recruited online 
via a range of social media channels for the online survey. The procedures and 
format of the latter were the same as the former. A t-test was used to 
investigate the significance of the difference within the groups of both type 
of surveys. The average score of each participant was calculated for each level 
for both laboratory and online survey results, and a t-test was implemented to 
the average values (Table 1). Levene’s test showed a homogeneity of variance 
for level 31 (F = 0.275, p =.601) and for level 32 it showed that homogeneity of 
variance cannot be assumed (F = 7.891, p = .005). The p-value was >0.05 in all 
cases. In other words, no significant changes were present between online and 
the laboratory surveys for two levels. Therefore, the results of both surveys 
were used in this study.

3.2.2. Participants
A total of 254 participants, 25 of which completed the lab-based survey, 
attended the survey. The results of 4 participants, who were older than 
50 years old, were excluded based on the findings of an earlier research on 
the effects of age on attention levels (Lufi & Haimov, 2019). Additionally, one 
participant who answered only questions of the first level (level 31) was also 
excluded (N = 249). Eventually 164 female, 83 male and 2 other (preferred not 
to say) participants aged between 18 and 50 took part in this study.

3.3. Objective saliency analysis

Both Harel et al.’s method (Harel et al., 2007), namely Gbvs, and DeepGaze II 
(Kümmerer et al., 2016) were used to measure the impact of saliency objec-
tively. To compare saliency of objects, regions of interest (ROI)4 was used. In 
this study, boundaries of landmarks were used to define the regions (with 
rectangles). However, as the size of objects varied, size of the regions of interest 
also varied. Hence, the mean values inside the regions were calculated to 
compare the saliency values.

In order to test whether there is a correlation between survey analysis and 
objective saliency measures, the exact same images used in the survey study 
were used in models (Figure 3). The objects were aimed to be kept in the same 
distance for the screenshots and all objects were included in each level similar 
to the survey study. Figure 4 shows (a) a screenshot with the boat from the 
game, (b) an image in which the boat is excluded, (c) Gbvs analysis, and (d) 

4Region of interest means a selected area within a dataset that is identified for a purpose. So different rectangular 
areas were defined for each landmark, which is why the average values were calculated for each ROI. Where the ROI 
included large amount of background image, multiple, contiguous ROIs were used and the values produced were 
averaged. In most cases, the area included hardly any background information.
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DeepGaze II analysis. The boat as well as the top part of the images, where 
participants’ navigation performance could be seen, was cropped so that these 
did not impact the saliency scores. For DeepGaze II analysis images were 
rotated 90 degrees clockwise to provide a landscape image as DeepGaze-II 
algorithm is trained with landscape images. However, Gbvs analysis was 

Figure 3. Screenshots from level 31 show landmarks in context and consist of all landmarks that 
were used for the survey study. To make landmarks clearer, the transparency of the background is 
increased in the images.

Figure 4. Objective measurement of saliency for level 31. (a) a screenshot with the boat from the 
game, (b) an image in which the boat is excluded, (c) Gbvs analysis, and (d) DeepGaze II analysis.
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impervious to orientational effects. As DeepGaze II was trained with 
1024 × 786 sized images (Kümmerer et al., 2016), images in this study were 
resized with the same ratio. In Figure 14-c, warm colors around the castle and 
toadstools indicate areas of high saliency, while in Figure 14-d, dark blue 
colors around the castle and trees indicate areas of high saliency.

4. Results

4.1. Survey results

The survey suggests a number of distinctions (Tables 2 and 3). The first 
indicates that the castle was the most outstanding object among all others in 
both levels. This could be anticipated intuitively, because the castle was 
differentiated with respect to its size and color. Moreover, in level 31 the castle 
was located at a decision point, where the boat made a turn. This can partly be 
the reason why the castle was rated as the most noticeable object. This was 
followed by trees, grass, and the arch for level 31, whereas it was followed by 
grass, trees and toadstools for level 32. Arch and trees were also notable objects 
as they were also different with respect to their height and color.

Surprisingly, grass was ranked top with other objects for both levels. This 
may be due to the fact that during the video the boat moved through the grass 
(Figure 5), so grass appeared quite close to the camera viewpoint at times. 
Thus, even though the object would not be easily noticeable in terms of its low 
contrast with the background or shape, it was still noticed by participants. The 
number of participants who found grass highly noticeable decreased from 140 
to 124 in level 32 as compared to level 31. This decrease can be explained with 
the decrease in the amount of grass in level 32.

Table 2. Survey results of level 31 showing the number of survey ratings.
Arch Stone Trees Castle Grass T. stump Toadstool Stone(s) Plant

Highly noticeable 137 24 140 144 140 22 68 13 23
Noticeable 60 60 88 67 75 24 68 23 35
Neither noticeable nor unnoticeable 17 65 12 15 15 21 38 24 26
Fairly unnoticeable 12 47 4 10 10 48 34 74 64
Unnoticeable 23 53 5 13 6 134 40 115 101

249 249 249 249 246 249 248 249 249

Table 3. Survey results of level 32 showing the number of survey ratings (even though there were 
no arch and tree stump in level 32, these objects were added to have a comparable image).

Arch Stone Tree Castle Grass T.stump Toadstool Stone(s) Plant

Highly noticeable 17 105 139 124 94 8 23
Noticeable 15 105 90 91 105 9 29
Neither noticeable nor unnoticeable 15 29 13 22 18 17 21
Fairly unnoticeable 48 4 4 10 19 37 45
Unnoticeable 153 4 3 1 11 176 130

248 247 249 248 247 247 248
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Toadstools were also considered as notable objects by participants despite 
their size and shape. This outcome likely relates to the red color of toadstools, 
which was unique in the environment (which has a very uniform palette of 
browns, blues and greens) and contrasted with the background. This idea was 
also supported by participants in the discussions after the lab study. In level 32, 
the number of people who found the toadstools noticeable or highly noticeable 
increased from 68 to 105 and from 68 to as compared to level 31. When the 
videos were played again, it was seen that the boat moved quite close to the 
toadstools. Hence, participants could have a chance to see this landmark closer, 
which can account for this increased rating. Plant was unremarkable for parti-
cipants, which was again not surprising, as it did not have any strong visual 
characteristics. Moreover, people did not notice both types of stones as well, 
even though one type differentiated from the background with respect to its size.

4.2. Objective saliency measurement

The saliency map of the image of each landmark was computed with two 
saliency models. Maps for DeepGaze II were prepared by using a webpage 
(https://deepgaze.bethgelab.org/), and Gbvs model was computed in Matlab 
(Mathworks, Natick, USA). Having run the analysis and examined the results 
of Gbvs and DeepGaze II both sets of results seemed to intuitively capture 
some aspects of what constitutes a salient landmark. Once the saliency maps 
were conducted, the saliency scores could be computed for each object. The 
regions of interest were used to find an average saliency value for each land-
mark and each level. To normalize the results, a z-score was applied to each 
saliency map. Accordingly, toadstool, castle and small stone were detected as 
the most salient objects in level 31 while tree, castle and toadstool were 

Figure 5. Screenshots are taken from the video of levels 31 and 32 showing how the grass is seen 
at different times.
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detected as the most salient objects in level 32 through Gbvs analysis. Results 
of DeepGaze II analysis showed that plant, tree stump and castle were the most 
salient objects in level 31, whereas stone, castle and toadstool were the most 
salient objects in level 32 (Table 4).

As a second step, the relationship between the survey and the models was 
explored in detail. The results of both the survey and the models were kept as 
continuous data. A regression analysis was calculated to predict the survey 
results based on Gbvs and DeepGaze II. No significant relationship was found 
(p > .05, R2 = 0.268 and 0.254 for levels 31 and 32, respectively) between the 
models and the survey results (Table 5).

5. Discussion and conclusion

One of the goals of this study was to assess what features of objects make them 
more likely to be selected as landmarks. Analysis of the subjective ratings 
support the view that landmark saliency is predicted by the size of the object 
and its visual distinctiveness, such as color contrast to its background (Miller 
& Carlson, 2011; Quesnot & Roche, 2015; Winter et al., 2005). In this experi-
ment, participants chose castle, trees, grass and arch as salient objects. All 
selected objects (except grass) differentiated from their surroundings with 
respect to their height (i.e. they are relatively taller than their surroundings). 
In addition, trees and arch are also distinguished from their surroundings with 
respect to their color (i.e. they have contrasting color with the surrounding 
objects). Hence, both height and color can be considered as determinants of 
visual saliency.

Table 4. Results of the objective saliency measures (z-scored).
Landmarks_level 31 Gbvs DG II Landmarks_ level 32 Gbvs DG II

Arch 0.133 0.189
Stone 0.868 0.904 Stone 0.909 1.757
Tree 0.661 0.634 Tree 1.499 0.922
Castle 1.103 1.402 Castle 1.213 1.594
Grass 0.029 0.009 Grass 0.055 0.016
Treestump −0.206 1.438
Toadstool 1.366 0.956 Toadstool 1.084 1.141
Sstone 0.946 0.520 Sstone −1.213 0.326
Plant −0.978 1.661 Plant 1.026 −1.324

Table 5. Results of the regression analysis between model prediction and survey data.
Levels R² Term Estimate Std Error t Ratio Prob>|t| Lower 95% Upper 95% Std Beta

31 0.268 Inter. 3.876 0.729 5.320 0.002 2.093 5.659 0.000
Gbvs 0.260 0.500 0.520 0.622 −0.964 1.484 0.185
DG II −0.819 0.654 −1.250 0.257 −2.418 0.781 −0.447

32 0.254 Inter. 2.660 0.713 3.730 0.020 0.681 4.638 0.000
Gbvs 0.624 0.636 0.980 0.382 −1.141 2.388 0.438
DG II 0.204 0.558 0.370 0.733 −1.344 1.753 0.163
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In addition, our data also provide support for the importance of spatial 
position of landmarks in determining landmark salience in navigation 
(Michon & Denis, 2001); objects encountered in close proximity to the 
navigator when traveling were judged highly salient despite their low visual 
saliency. For instance, grass was visible at different points and multiple times 
within the environment. Even though it was not particularly differentiated 
from its surrounding due to its shape and color, grass was still selected as 
a salient object as it could be easily seen by participants from a relatively close 
distance. Similarly, changing the location of the toadstools in level 32 had, 
presumably, an impact on people’s ratings since more people rated them as 
noticeable or highly noticeable when they were closer to the participants. This 
points to the idea that not only the visual characteristics of landmarks but also 
their structural characteristics are important for landmarks to become salient. 
These findings suggest that objects with a contrasting color or size (compared 
to their surroundings) are recognized and remembered as salient landmarks; 
therefore they have higher potential to be used for wayfinding tasks such as 
route descriptions or orientation. If these landmarks are also located on route 
and close to the way-finder (so that they are visible from close up), then they 
would be highly preferred. This study supports the findings of previous 
research on the combined impact of visual and structural saliency, which 
suggest that visual landmarks can be more effective when they are also 
structurally salient (Albrecht & Von Stülpnagel, 2018; Michon & Denis, 2001).

This study also examined the extent to which computational models of 
saliency (Gbvs and DeepGaze II) would predict the subjective ratings of land-
mark saliency when watching the navigation of cue-rich virtual environments. It 
was found that there was no significant relationship between the saliency model 
predictions and the subjective ratings. Hence, contrary to our hypothesis, 
saliency models alone were insufficient to predict subjective ratings.

5.1. Model-based limitations

One of the model-based limitations is due to the relative position of individual 
objects. For instance, if an object is close to another salient landmark, this could 
affect the saliency scores of the first object and turn it into a salient landmark as 
well. However, contrarily, previous studies argued that the existence of a salient 
landmark may make another one less salient (so it decreases the possibility for 
other objects to be selected as a point-of-reference (Raubal & Winter, 2002; 
Sadeghian & Kantardzic, 2008)). Therefore, the saliency regions that are 
described through the use of models may be misleading, especially when the 
objects are quite close to each other or when one of them is on the top of another 
one (Figure 6(c-d)). Similarly, the background of objects was also influential in 
our analysis as it affected the saliency of objects. For example, the trees located 
further away in the game, which merged into a group with a smooth color that 
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blended with the background, were detected as salient objects in some of the 
images and they had an impact on the results (Please see Figure 6(a-b)). Hence, 
future models can be more sensitive to objects that are overlapped or they can 
consider the locational relationships. As such, the relationship between saliency 
models and people’s evaluations can become significant.

Second, saliency models were tested with only static images rather than 
moveable, dynamic scenes depending on the nature of the algorithms. 
Even though the models were sufficient in explaining an image and the 
saliency of objects in this image, they can be insufficient in explaining 
people’s choices in dynamic scenes. Hence, new models can be developed 
where people could upload a video rather than an image to better under-
stand and measure saliency of objects. Recently video saliency detection 
attracted attention of researchers, since image based detection depends on 
the calculation of low-level features, which change dramatically in video 
scenes and as videos need more attention to extract of saliency informa-
tion between consecutive frames (Bi, Lu, Li, Yang & Guan, 2019). Hence, 
video saliency detection (Bi et al., 2019; Leifman, Rudoy, Swedish, Bayro- 
Corrochano & Raskar, 2017; Li, Chen, Li & Yu, 2019) as well as saliency 
in virtual reality (Sitzmann et al., 2018) was studied by different research-
ers . More research is needed to detect salient objects and as a next step, 
one of the video-based saliency detection models can be used to see if 
they suffice to explain people’s choices.

Figure 6. An example of the anomalous results from the saliency software (Images from left to 
right: (a) the image used to measure saliency of the plant that is shown within a white circle; (b) 
the impact of the background on Gbvs model. Due to the trees on the background, the plant is also 
detected as a salient object. (c) the image used to measure saliency of toadstools, and (d) the 
impact of the castle on DeepGaze II model. Objects around the castle, toadstools and stones, are 
also detected as salient).
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5.2. Limitations of the current study

There are numerous context-related limitations to this study. The first 
limitation is due to the fact that the number of landmarks was limited to 9 
and 7 for levels 31 and 32, respectively, which made it hard to find statisti-
cally significant relationships. Further research can be undertaken by using 
a higher number of landmarks to explore the relationship between saliency 
algorithmic models and the subjective evaluations. In addition, our partici-
pants were asked to watch the prerecorded videos, instead of actively navi-
gating themselves within the environments. We opted for this method to 
allow participants the opportunity to solely focus on the environment and 
observe landmarks more easily. Previous research on active and passive 
learning found no significant differences between active and passive learning 
(Gaunet, Vidal, Kemeny & Berthoz, 2001; Wilson et al., 1997). However, 
changes in the performance depending on a given task were also discussed 
and researchers claimed that people might have better wayfinding perfor-
mance and produce detailed maps when they actively explore an environ-
ment (Carassa, Geminiani, Morganti & Varotto, 2002). Future work might 
benefit from exploring whether results observed here extent to tasks in which 
the participants actively navigate themselves. Moreover, we are aware that 
the conditions of the game environment are more limited compared to real 
environments. However, we used game environments that have been tested 
and compared with real environments (Coutrot et al., 2018). The results of 
this comparison showed that there was a significant relationship between the 
navigational performances within the real-world and those within virtual 
environments. Hence, it was assumed that the results of this study could be 
predictive for real-world environments. Finally, while conducting objective 
saliency analysis, similar procedural steps were followed for different images: 
landmarks were aimed to be kept within the same distance for the screen-
shots, the analyses were run in landscape orientation since DeepGaze-II was 
trained with landscape images, regions of interest (ROI) was used and the 
mean values inside the regions were calculated to have comparable results. 
However, future research can be conducted by using the edges of actual 
landmarks, rather than using ROI.

Nevertheless, this study contributed to the existing literature in different 
ways. First, we focused on visual and spatial characteristics of landmarks that 
make them salient. Second, saliency models were used and the results were 
compared with the survey results, which is quite limited in the literature. 
Alternatives that the model developers can consider in developing their 
models further to obtain better predictions were suggested. Accordingly, 
more sensitive models that can detect boundaries of each object are suggested 
so that the saliency score of each region can be calculated for different 
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landmarks. This will allow high-scored objects not to affect low-scored objects, 
or vice-versa. In addition, models that can support video-based analysis are 
also suggested. Our results showed that DeepGaze II and Gbvs models are 
insufficient to explain people’s choices in static scenes. Hence, new models, in 
which people could upload a video rather than an image, to better understand 
and measure saliency of objects need to be developed. This can improve results 
of the models in explaining people’s saliency evaluations.
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Appendix A. Saliency maps for level 31 and 32

Next four figures (Figures A1–A4) show the results of the saliency models. Figure A1 and A2 
show the saliency maps of level 31 and the original images that are used in the study as well as 
the results of Gbvs and DeepGaze II models. Figure A3 shows the rest of the saliency maps 
from level 31 and the results of level 32 for three landmarks. It is followed by the fourth image, 
A4, which shows the rest of the landmarks in level 32.

Figure A1. The maps that are produced from saliency models (Gbvs and DeepGaze II) for level 31.
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Figure A2. The maps that are produced from saliency models (Gbvs and DeepGaze II) for level 31.
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Figure A3. The maps that are produced from saliency models (Gbvs and DeepGaze II) for level 31 
(plant) and level 32.
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Figure A4. The maps that are produced from saliency models (Gbvs and DeepGaze II) for level 32.
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