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Résumé. Nous présentons un modèle de régression pénalisée et dé-biaisée pour
l’estimation, en grande dimension, d’un modèle linéaire parcimonieux avec interactions.
L’objectif est d’estimer conjointement le support et les coefficients dé-biaisés associés,
en partant d’un estimateur de type Elastic Net. On utilise pour cela un algorithme de
descente par coordonnée, qui ne nécessite pas de construire la matrice des interactions.
Cette propriété est cruciale sur données réelles sachant que cette matrice peut facile-
ment dépasser les capacités mémoires. Enfin, nous adaptons une méthode de dérivation
automatique qui permet d’obtenir simultanément la solution des moindres carrés sur le
support, sans avoir à résoudre a posteriori un problème de moindres carrés.

Mots-clés. Lasso, Elastic Net, Interactions, Dé-biasage, Descente par Coordonnée.

Abstract. We present a penalized and de-biased regression model to estimate, in
high dimension, sparse linear models with interactions. Our aim is to jointly estimate
the support and the associated de-biased coefficients, starting from an Elastic Net type
estimator. The main idea is to use a coordinate descent algorithm, which does not require
building the interaction matrix. This property is crucial on real data since the design
matrix modeling interactions can quickly exceed memory capacities. In addition, we
adapt an automatic differentiation method which allows to obtain simultaneously the
least squares solution on the support, without having to solve, a posteriori, a least squares
problem.

Keywords. Lasso, Elastic Net, Interaction, De-biasing, Coordinate Descent.

1 Introduction
Thanks to their interpretability, linear models are popular for many statistics tasks. Un-
fortunately, it turns out that the number of variables is frequently larger than the number
of samples, so regularization is often required. Sparse regularization techniques leverag-
ing the `1-norm have led to various popular estimators in the last two decades, including
Lasso [Tibshirani, 1996] and Elastic Net [Zou and Hastie, 2005] among the most popular.
When targeting feature interactions, such estimator become crucial: even when limited
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to quadratic interactions, the number of variables is already (almost) squared, and the
number of variables hence created can easily overload computers’ memory.

Due to highly correlated variables, we estimate the coefficients using Elastic Net [Zou
and Hastie, 2005], which allows to reduce the number of variables thanks to the `1 penalty,
while taking into account the correlation thanks to the `2 penalty [Tikhonov, 1943, Hoerl
and Kennard, 1970]. We adapt a coordinate descent algorithm (popularized by glmnet
[Friedman et al., 2007, 2010]) so the interaction matrix does not need to be stored.

Finally, it is known that both Lasso and Elastic Net tend to be biased as they shrink
large coefficients aggressively. To alleviate this issue, we suggest to compute a de-biased
version of the coefficients along with the original coefficients [Deledalle et al., 2017]. We
propose an algorithm approaching the LS Elastic Net (Elastic Net followed by a Least
Squares step on the support), though in a more stable way as the naive implementation.

2 Elastic Net for interactions

2.1 Model and estimator

In the following, p is the number of features, n the number of samples, and q “ p pp` 1q{2
(or p pp´ 1q{2 depending whether we include or not the pure quadratic terms) the number
of interaction features. The response vector is denoted by y P Rn. The Elastic Net model
now reads :

pPq min
βPRp,ΘPRq

1

2n
‖y ´Xβ ´ ZΘ‖2

2 ` α1 ‖β‖1 ` α2 ‖Θ‖1 `
α3

2
‖β‖2

2 `
α4

2
‖Θ‖2

2 . (1)

where α1 ą 0, . . . , α4 ą 0 are tunning parameters. The parameters α1 and α2 control
the level of `1 penalization (resp. for the quadratic features), and the sparsity of β and
Θ, while α3 and α4 control the level of `2 penalization and how spread out the signal is
among active features.

As previously explained, we can not always handle in memory the design matrix Z
(Figure 2), which leads us to reformulate the classical coordinate descent algorithm in
this context. Let us remind1 the main step in the coordinate descent algorithm to solve
the Elastic Net problem is the coordinates updates for βj0 and Θj10

(for j0 P J1, pK and
j10 P J1, qK). This requires solving one dimensional problems of the form:

arg min
βj0PR

1

2n

´

y ´
p
ÿ

j“1

βjxj ´
q
ÿ

j“1

Θjzj

¯2

` α1|βj0 | `
α3

2
β2
j0
, (2)

arg min
Θj10

PR

1

2n

´

y ´
p
ÿ

j“1

βjxj ´
q
ÿ

j“1

Θjzj

¯2

` α2|Θj10
| `

α4

2
Θ2
j10
. (3)

1See [Friedman et al., 2010] for details.
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Proposition 2.1. We write pβk and pΘk for the coefficients computed at the k-th pass over
the data by the coordinate descent algorithm, and rk “ y ´X pβk ´ Z pΘk is the associated
residuals. The coordinate update rules for the jth0 and j1th0 coordinate reads

pβk`1
j0

“ 1
‖xj0‖2`nα3

ST
´

xJj0

´

rk ` pβkj0xj0

¯

, nα1

¯

. (4)

pΘk`1
j10

“ 1
‖zj10

‖2`nα4
ST

´

zJj10

´

rk ` pΘk
j10
zj10

¯

, nα2

¯

. (5)

and ST representing the soft-thresholding, defined for any x P R by:

STpx, αq “ p|x| ´ αq
`

signpxq . (6)

In the previous proposition, we need to compute the zj10 column of Z, which is made
possible by a coordinate descent algorithm (Line 6 of Algorithm 2). Thanks to that, we
can handle interactions without explicitly storing the interaction (design) matrix.

2.2 De-biasing

Unfortunately, the Lasso and the Elastic Net coefficients are biased (see [Salmon, 2017]):
large coefficients are shrunk toward zero. To reduce this effect, one can perform an Least
Squares step on the non-zero coefficients obtain by Elastic Net (Naive-LSEnet). Yet, this
approach is limited: the interaction design matrix on the support is needed, which for
large datasets could not be stored.

2.2.1 Sequentially de-biasing Elastic Net

Algorithm 1: Naive-LSEnet
Input : rX,Zs, y, α

1 pβ, pΘ Ð Enet([X, Z], y, α)
// supp. estimat.

2 supp
pβ
Ð where (pβ ‰ 0)

3 supp
pΘ
Ð where(pΘ ‰ 0)

4 rβ, rΘ Ð LS([X, Z], y, supp
pβ
, supp

pΘ
)

Output : rβ, rΘ

To cope with interactions, we instantiate Covari-
ant LEAst-square Refitting (CLEAR) [Deledalle
et al., 2017], a framework to simultaneously de-
bias the coefficients along with the algorithm
(here, coordinate descent) computing the Elastic
Net solution.

Proposition 2.2. Let us suppose that the co-
efficients pβk and pΘk are iteratively updated ac-
cording to Equation (4) and Equation (5). We
define the Jacobian of pβk (resp. pΘk) applied to

the residuals as J
pβk`1
j
rk (resp. J

pΘk`1
jj
rk) and ej the canonical basis vector :

J
pβk`1
j
rk`1

“

`

ej ‖xj‖2
2 ´X

Jxj
˘J
J
pβkr

k ´
`

xJj Z
˘J
J
pΘkr

k ` xJj r
k

‖xj‖2
` nα3

1t|xJj prk`pβkj xjq|ěnα1u

J
pΘk`1
jj
rk`1

“

`

ejj ‖zjj‖2
2 ´ Z

Jzjj
˘J
J
pΘkr

k `
`

XJzjj
˘J
J
pβkr

k ` zJjjr
k

‖zjj‖2
` nα4

1t|zJjjprk`pΘkjjzjjq|ěnα2u
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These updates leads to compute ρk`1 “

@

rX,ZsrJ
pβk`1r

k`1, J
pΘk`1r

k`1sJ;rk`1
D

‖rX,ZsrJ
pβk`1rk`1, J

pΘk`1rk`1sJ‖2

2

.

Considering the problem Equation (1), the CLEAR approach reads :

rβk`1
“ pβk`1

` ρk`1J
pβk`1r

k`1 , (7)
rΘk`1

“ pΘk`1
` ρk`1J

pΘk`1r
k`1 . (8)

This leads to Algorithm 2 where Lines 4, 8 and 10 are evaluated on the fly without
Z being built. We call this method CLEAR Least Squares Elastic Net (CLEAR-Enet).
Setting ρ “ 1 in Lines 11 and 12 recovers the Ridge estimator associated with the Elastic
Net support, instead of a Least Squares version, as in Theorem 2.2.
Algorithm 2: Coordinate Descent Epoch for CLEAR-Enet

input : X P Rnˆp, y P Rn, α “ pα1, . . . , α4q
J, . . .

param. : pβp“ 0pq, pΘp“ 0qq, J
pβ
rp“ 0pq, J

pΘ
rp“ 0qq

1 jj “ 0; q “ ppp` 1q{2 or ppp´ 1q{2
2 for j1 “ 1, . . . , p do
3 pβk`1

j1
“ 1

‖xj1‖2`nα3
STpxJj1py ´ r

k ` pβkj1xj1q, nα1q // β Elastic Net update

4 J
pβk`1
j1

rk`1 “

´

ej1‖xj1‖
2

2
´XJxj1

¯J

J
pβk
rk´

´

xJj1
Z
¯J

J
pΘk
rk`xJj1

rk

‖xj1‖2`nα3
1
t|xJj1

prk`pβkj1
xj1 q|ěnα1u

5 for j2 “ 1, . . . , q do
6 zjj “ xj1 d xj2 // point-wise multiplication

7 pΘk`1
jj “ 1

‖zjj‖2`nα4
STpzJjjpy ´ r

k ` pΘk
jjzjjq, nα2q // Θ Elastic Net update

8 J
pΘk`1
jj

rk`1 “
pejj‖zjj‖2

2´Z
Jzjjq

J
J
pΘk
rk`pXJzjjq

J
J
pβk
rk`zJjjr

k

‖zjj‖2`nα4
1
t|zJjjpr

k`pΘkjjzjjq|ěnα2u

9 jj `“ 1

10 ρk`1 “
xrX,ZsrJ

pβk`1r
k`1, J

pΘk`1r
k`1sJ | rk`1y

‖rX,ZsrJ
pβk`1rk`1, J

pΘk`1rk`1sJ‖2
2

11 rβk`1 “ pβk`1 ` ρk`1J
pβk`1r

k`1 // β CLEAR-Enet update

12 rΘk`1 “ pΘk`1 ` ρk`1J
pΘk`1r

k`1 // Θ CLEAR-Enet update

output : pβk`1, pΘk`1
rβk`1, rΘk`1

3 Numerical experiments
For the Naive-LSEnet, we use the Least Squares solver from sklearn [Pedregosa et al.,
2011] on the support obtained by Elastic Net. For Figures 1 and 2, we use duality gap as
stopping criterion, fixed at 10´4 and we set α3 “ α4 “ 0.001.

3.1 Artificial datasets

To compare Elastic Net, Naive-LSEnet and CLEAR-Enet, we build an artificial dataset,
for which X of size pn, pq “ p60, 10q is drawn according to a standard Gaussian distribu-
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(a) CV : α1 “ α2 « 0.21581. (b) CV (2D grid) : α1 « 0.159, α2 « 0.267.

Figure 1: Comparison between Elastic Net, CLEAR-Enet and Naive-LSEnet, with cross-
validation (condensed CV) on the CLEAR-Enet result.

tion, and we set X such that the column x1, x2 and x3 are correlated (we draw x3 from a
Gaussian distribution adding 1

2
px1 ` x2q). We include the pure quadratic features leading

to 55 interactions features. The true underlying signal has only five non-zero coefficients
for the β and five more non-zero coefficients for Θ. Finally, we draw the noise ε from
a Gaussian distribution with zero mean and a variance 1/2. Hence, the response vector
y P Rn is : y “ Xβ ` ZΘ` ε .

In Figure 1, we observe that both CLEAR-Enet and Naive-LSEnet estimator recover
better coefficients than the Elastic Net. Indeed, both yield coefficients from the true signal
than the Elastic Net on the true support. Outside the true support, CLEAR-Enet and
Naive-LSEnet tends to give a larger coefficients than Elastic Net.

3.2 Real datasets

(a) Boston dataset
size of Z : 368, 4 Kb

(b) Diabetes dataset
size of Z : 194, 5 Kb

(c) Leukemia dataset
size of Z : 14,68 Gb

Figure 2: Mean time comparisons : Naive-LSEnet and CLEAR-Enet on real-datasets
from sklearn. Here, α1 and α2 are equal.

We see Figure 2, that CLEAR-Enet is the same order than Naive-LSEnet. We notice
that we can do Naive-LSEnet on Leukemia datasets because for those α1 and α2, the
support is small, so we can build Z on the support. We must note that Elastic Net from
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sklearn can handle interactions, but it requires to create and store Z, which is not always
feasible. For instance with the Leukemia dataset, Z is almost 14Gb, (and possibly does
not fit in memory), whereas our method can handle interactions easily here.

4 Conclusion
We presented a penalized and de-biased regression model able handle quadratic interac-
tions in high-dimension. Future work include sensitivity analysis of the tuning parameters
and algorithmic speed up, e.g., following the work by Le Morvan and Vert [2018].
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