Florent Bascou 
email: florent.bascou@umontpellier.fr
  
Sophie Lèbre 
email: sophie.lebre@umontpellier.fr
  
Joseph Salmon 
email: joseph.salmon@umontpellier.fr
  
Debiasing the Elastic Net for models with interactions

Keywords: Lasso, Elastic Net, Interactions, Dé-biasage, Descente par Coordonnée Lasso, Elastic Net, Interaction, De-biasing, Coordinate Descent

Nous présentons un modèle de régression pénalisée et dé-biaisée pour l'estimation, en grande dimension, d'un modèle linéaire parcimonieux avec interactions. L'objectif est d'estimer conjointement le support et les coefficients dé-biaisés associés, en partant d'un estimateur de type Elastic Net. On utilise pour cela un algorithme de descente par coordonnée, qui ne nécessite pas de construire la matrice des interactions. Cette propriété est cruciale sur données réelles sachant que cette matrice peut facilement dépasser les capacités mémoires. Enfin, nous adaptons une méthode de dérivation automatique qui permet d'obtenir simultanément la solution des moindres carrés sur le support, sans avoir à résoudre a posteriori un problème de moindres carrés.

Introduction

Thanks to their interpretability, linear models are popular for many statistics tasks. Unfortunately, it turns out that the number of variables is frequently larger than the number of samples, so regularization is often required. Sparse regularization techniques leveraging the 1 -norm have led to various popular estimators in the last two decades, including Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] among the most popular. When targeting feature interactions, such estimator become crucial: even when limited to quadratic interactions, the number of variables is already (almost) squared, and the number of variables hence created can easily overload computers' memory.

Due to highly correlated variables, we estimate the coefficients using Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], which allows to reduce the number of variables thanks to the 1 penalty, while taking into account the correlation thanks to the 2 penalty [Tikhonov, 1943, Hoerl and[START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF]. We adapt a coordinate descent algorithm (popularized by glmnet [START_REF] Friedman | Pathwise coordinate optimization[END_REF][START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]) so the interaction matrix does not need to be stored.

Finally, it is known that both Lasso and Elastic Net tend to be biased as they shrink large coefficients aggressively. To alleviate this issue, we suggest to compute a de-biased version of the coefficients along with the original coefficients [START_REF] Deledalle | CLEAR: Covariant LEAstsquare Re-fitting with applications to image restoration[END_REF]. We propose an algorithm approaching the LS Elastic Net (Elastic Net followed by a Least Squares step on the support), though in a more stable way as the naive implementation.

Elastic Net for interactions

Model and estimator

In the following, p is the number of features, n the number of samples, and q " p pp `1q{2 (or p pp ´1q{2 depending whether we include or not the pure quadratic terms) the number of interaction features. The response vector is denoted by y P R n . The Elastic Net model now reads :

pPq min βPR p ,ΘPR q 1 2n y ´Xβ ´ZΘ 2 2 `α1 β 1 `α2 Θ 1 `α3 2 β 2 2 `α4 2 Θ 2 2 . (1)
where α 1 ą 0, . . . , α 4 ą 0 are tunning parameters. The parameters α 1 and α 2 control the level of 1 penalization (resp. for the quadratic features), and the sparsity of β and Θ, while α 3 and α 4 control the level of 2 penalization and how spread out the signal is among active features.

As previously explained, we can not always handle in memory the design matrix Z (Figure 2), which leads us to reformulate the classical coordinate descent algorithm in this context. Let us remind 1 the main step in the coordinate descent algorithm to solve the Elastic Net problem is the coordinates updates for β j 0 and Θ j 1 0 (for j 0 P 1, p and j 1 0 P 1, q ). This requires solving one dimensional problems of the form:

arg min

β j 0 PR 1 2n ´y ´p ÿ j"1 β j x j ´q ÿ j"1 Θ j z j ¯2 `α1 |β j 0 | `α3 2 β 2 j 0 , (2) 
arg min

Θ j 1 0 PR 1 2n ´y ´p ÿ j"1 β j x j ´q ÿ j"1 Θ j z j ¯2 `α2 |Θ j 1 0 | `α4 2 Θ 2 j 1 0 .
(3)

1 See [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for details.
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Proposition 2.1. We write p β k and p Θ k for the coefficients computed at the k-th pass over the data by the coordinate descent algorithm, and r k " y ´X p β k ´Z p Θ k is the associated residuals. The coordinate update rules for the j th 0 and j 1th 0 coordinate reads

p β k`1 j 0 " 1 x j 0 2 `nα 3 ST ´xJ j 0 ´rk `p β k j 0 x j 0 ¯, nα 1 ¯. (4) p Θ k`1 j 1 0 " 1 z j 1 0 2 `nα 4 ST ´zJ j 1 0 ´rk `p Θ k j 1 0 z j 1 0 ¯, nα 2 ¯. ( 5 
)
and ST representing the soft-thresholding, defined for any x P R by:

STpx, αq " p|x| ´αq `signpxq . (6) 
In the previous proposition, we need to compute the z j 1 0 column of Z, which is made possible by a coordinate descent algorithm (Line 6 of Algorithm 2). Thanks to that, we can handle interactions without explicitly storing the interaction (design) matrix.

De-biasing

Unfortunately, the Lasso and the Elastic Net coefficients are biased (see [START_REF] Salmon | On high dimensional regression: computational and statistical perspectives[END_REF]): large coefficients are shrunk toward zero. To reduce this effect, one can perform an Least Squares step on the non-zero coefficients obtain by Elastic Net (Naive-LSEnet). Yet, this approach is limited: the interaction design matrix on the support is needed, which for large datasets could not be stored.

Sequentially de-biasing Elastic Net

Algorithm 1: Naive-LSEnet

Input : rX, Zs, y, α 1 p β, p Θ Ð Enet([X, Z], y, α) // supp. estimat. 2 supp p β Ð where ( p β ‰ 0) 3 supp p Θ Ð where( p Θ ‰ 0) 4 r β, r Θ Ð LS([X, Z], y, supp p β , supp p Θ ) Output : r β, r Θ
To cope with interactions, we instantiate Covariant LEAst-square Refitting (CLEAR) [START_REF] Deledalle | CLEAR: Covariant LEAstsquare Re-fitting with applications to image restoration[END_REF], a framework to simultaneously debias the coefficients along with the algorithm (here, coordinate descent) computing the Elastic Net solution.

Proposition 2.2. Let us suppose that the coefficients p β k and p Θ k are iteratively updated according to Equation (4) and Equation (5). We define the Jacobian of p β k (resp. p Θ k ) applied to the residuals as

J p β k`1 j r k (resp. J p Θ k`1 jj r k
) and e j the canonical basis vector :

J p β k`1 j r k`1 " `ej x j 2 2 ´XJ x j ˘J J p β k r k ´`x J j Z ˘J J p Θ k r k `xJ j r k x j 2 `nα 3 1 t|x J j pr k `p β k j x j q|ěnα1u J p Θ k`1 jj r k`1 " `ejj z jj 2 2 ´ZJ z jj ˘J J p Θ k r k ``X J z jj ˘J J p β k r k `zJ jj r k z jj 2 `nα 4 1 t|z J jj pr k `p Θ k jj z jj q|ěnα2u
These updates leads to compute ρ k`1 " @ rX,ZsrJ

p β k`1 r k`1 , J p Θ k`1 r k`1 s J ;r k`1 D rX,ZsrJ p β k`1 r k`1 , J p Θ k`1 r k`1 s J 2 2 .
Considering the problem Equation (1), the CLEAR approach reads :

r β k`1 " p β k`1 `ρk`1 J p β k`1 r k`1 , (7) r Θ k`1 " p Θ k`1 `ρk`1 J p Θ k`1 r k`1 . ( 8 
)
This leads to Algorithm 2 where Lines 4, 8 and 10 are evaluated on the fly without Z being built. We call this method CLEAR Least Squares Elastic Net (CLEAR-Enet). Setting ρ " 1 in Lines 11 and 12 recovers the Ridge estimator associated with the Elastic Net support, instead of a Least Squares version, as in Theorem 2.2.

Algorithm 2: Coordinate Descent Epoch for CLEAR-Enet input : X P R nˆp , y P R n , α " pα 1 , . . . , α 4 q J , . . . param. : p βp" 0 p q, p Θp" 0 q q, J p β rp" 0 p q, J p Θ rp" 0 q q 1 jj " 0; q " ppp `1q{2 or ppp ´1q{2 2 for j 1 " 1, . . . , p do

3 p β k`1 j 1 " 1 x j 1 2 `nα 3 STpx J j 1 py ´rk `p β k j 1 x j 1 q, nα 1 q // β Elastic Net update 4 J p β k`1 j 1 r k`1 " ´ej 1 x j 1 2 2 ´XJ x j 1 ¯JJ p β k r k ´´x J j 1 Z ¯JJ p Θ k r k `xJ j 1 r k x j 1 2 `nα 3 1 t|x J j 1 pr k `p β k j 1
x j 1 q|ěnα 1 u 5 for j 2 " 1, . . . , q do 6 z jj " x j 1 d x j 2 // point-wise multiplication

7 p Θ k`1 jj " 1 z jj 2 `nα 4 STpz J jj py ´rk `p Θ k jj z jj q, nα 2 q // Θ Elastic Net update 8 J p Θ k`1 jj r k`1 " pejj z jj 2 2 ´ZJ z jj q J J p Θ k r k `pX J z jj q J J p β k r k `zJ jj r k z jj 2 `nα 4 1 t|z J jj pr k `p Θ k jj z jj q|ěnα 2 u 9 jj `" 1 10 ρ k`1 " xrX,ZsrJ p β k`1 r k`1 , J p Θ k`1 r k`1 s J | r k`1 y rX,ZsrJ p β k`1 r k`1 , J p Θ k`1 r k`1 s J 2 2 11 r β k`1 " p β k`1 `ρk`1 J p β k`1 r k`1 // β CLEAR-Enet update 12 r Θ k`1 " p Θ k`1 `ρk`1 J p Θ k`1 r k`1 // Θ CLEAR-Enet update output : p β k`1 , p Θ k`1 r β k`1 , r Θ k`1

Numerical experiments

For the Naive-LSEnet, we use the Least Squares solver from sklearn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] on the support obtained by Elastic Net. For Figures 1 and2, we use duality gap as stopping criterion, fixed at 10 ´4 and we set α 3 " α 4 " 0.001.

Artificial datasets

To compare Elastic Net, Naive-LSEnet and CLEAR-Enet, we build an artificial dataset, for which X of size pn, pq " p60, 10q is drawn according to a standard Gaussian distribu- tion, and we set X such that the column x 1 , x 2 and x 3 are correlated (we draw x 3 from a Gaussian distribution adding 1 2 px 1 `x2 q). We include the pure quadratic features leading to 55 interactions features. The true underlying signal has only five non-zero coefficients for the β and five more non-zero coefficients for Θ. Finally, we draw the noise ε from a Gaussian distribution with zero mean and a variance 1/2. Hence, the response vector y P R n is : y " Xβ `ZΘ `ε .

In Figure 1, we observe that both CLEAR-Enet and Naive-LSEnet estimator recover better coefficients than the Elastic Net. Indeed, both yield coefficients from the true signal than the Elastic Net on the true support. Outside the true support, CLEAR-Enet and Naive-LSEnet tends to give a larger coefficients than Elastic Net. We see Figure 2, that CLEAR-Enet is the same order than Naive-LSEnet. We notice that we can do Naive-LSEnet on Leukemia datasets because for those α 1 and α 2 , the support is small, so we can build Z on the support. We must note that Elastic Net from sklearn can handle interactions, but it requires to create and store Z, which is not always feasible. For instance with the Leukemia dataset, Z is almost 14Gb, (and possibly does not fit in memory), whereas our method can handle interactions easily here.

Real datasets

Conclusion

We presented a penalized and de-biased regression model able handle quadratic interactions in high-dimension. Future work include sensitivity analysis of the tuning parameters and algorithmic speed up, e.g., following the work by Le Morvan and Vert [2018].

  (a) CV : α 1 " α 2 « 0.21581.(b) CV (2D grid) : α 1 « 0.159, α 2 « 0.267.
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 1 Figure 1: Comparison between Elastic Net, CLEAR-Enet and Naive-LSEnet, with crossvalidation (condensed CV) on the CLEAR-Enet result.

Figure 2 :

 2 Figure 2: Mean time comparisons : Naive-LSEnet and CLEAR-Enet on real-datasets from sklearn. Here, α 1 and α 2 are equal.