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IDENTIFIABILITY AND OBSERVABILITY IN EPIDEMIOLOGICAL
MODELS – A SURVEY ∗

F. HAMELIN† , A. IGGIDR‡ , A. RAPAPORT§ , AND G. SALLET¶

Abstract. In this review, we recall the concepts of Identifiability and Observability of dynamical
systems, and analyze them in the framework of Mathematical Epidemiology. We show that, even for
simple and well known models of the literature, these properties are not always fulfilled. We then
consider the problem of practical identifiability and observability, which are connected to sensitivity
and numerical condition numbers. We also recall the concept of observers to reconstruct state variable
of the model which are not observed, and show how it can used with epidemiological models.

Key words. Dynamical systems, Identifiability, Observability, Mathematical Epidemiology,
Sensitivity Analysis.
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1. Introduction.

1.1. Prologue. Many papers in Mathematical Epidemiology have the following
structure:

- a model is proposed,
- some parameters are given, extracted from literature,
- then the remaining unknown parameters are estimated by fitting the model

to some observed data.
Fitting is done usually by using an optimization algorithm with the use for example
of a least square method or a maximum likelihood estimation. To validate the param-
eters estimation, one can use noisy synthetic simulated data obtained from the model
for given values of the parameters, to check that the algorithm is able to reconstruct
from the data the values of these parameters with accuracy.

One objective of this paper is to show that this procedure is not always safe
and that an examination of the identifiability of parameters is a prerequisite before
a numerical determination of parameters. We will review different methods to study
identifiability and observability and then consider the problem of numerical identifia-
bility. Our touchstone will be the most famous, however simple, model in Mathemat-
ical Epidemiology, the SIR model of Kermack and Mckendrick [112]. This model get
a renewed attention with the COVID-19 pandemic [72, 163]. Parameter identifiabil-
ity analysis addresses the problem of which unknown parameters of an ODE model
can uniquely recovered from observed data. We will show that, even for very simple
models, identifiability is far from being guaranteed.

The problem of identifiability for epidemiological models is relatively rarely ad-
dressed. For instance, a research in the Mathematical Reviews of the American
Mathematical Society1 with epid* AND identifiability gives only 4 papers, while
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§MISTEA, Université Montpellier, INRAE, Institut Agro, 34060 Montpellier, France

(alain.rapaport@inrae.fr).
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epidem* AND parameter returns 68 publications. Only a small part of the later pub-
lications address the problem of identifiability. The following publications consider
the problem of identifiability in epidemiological models: [10, 13, 24, 40, 41, 73, 77,
103, 119, 134, 140, 149, 167, 166, 187, 188, 189, 194, 204, 206]. However the majority
of these papers is published elsewhere than in Biomathematics journals.

The question of observability, i.e. the ability to reconstruct state variables of
the model from measurements, is often considered separately from the problem of
identifiability. Either model parameters are known, or the identifiability analysis is
performed prior to the study of observability. Indeed, the concepts of identifiability
and observability are closely related, as we recall below. However, we shall show that
for certain models, it is possible to reconstruct state variables with observers, while
the model is not identifiable. In other situations, we show that considering jointly
identifiability and observability with observers can be a way to solve the identifiability
problem. This is another illustration of the interest of observers. This is why we shall
dedicate a fair part of this review to the concept of observers and their practical
constructions.

1.2. Definitions. The question of parameter identifiability originates from con-
trol theory and is related to observability and controllability [174]. The first ap-
pearance is in Kalman [109] and is now sixty years old. Identifiability is related to
observability: the observability of a model is the ability to reconstruct the state of a
system from the observation. In the language of dynamical systems with inputs and
outputs, which is the standard paradigm in control systems theory, an input-output
relation is defined. The inputs, which are also called the control, are considered as
known. We will only consider systems without control, which is a peculiar case where
the control is a singleton. When controls are known, with more information, observ-
ability/identifiability is sometimes easier. These problems have rarely been considered
for uncontrolled systems whereas many methods have been developed for controlled
systems. To be more precise, let us consider the following system in Rn

(1.1) Σ :


ẋ(t) = f(x(t)),

x(0) = x0,

y(t) = h(x(t)),

where we have denoted ẋ(t) =
dx

dt
(t). The ordinary differential equation (ODE)

ẋ = f(x) is the dynamics and x is called the state of the system. To avoid technical
details we will assume that for any initial condition x0, there exists an unique solution
denoted x(t, x0) such that x(0, x0) = x0 and

d

dt
x(t, x0) = f(x(t, x0)).

We will assume that this solution x(t, x0) is defined for any time t ≥ 0. This is often
the case with epidemiological models for which the state space is a positively compact
invariant set. Then we will assume that the system is defined on a positively invariant
compact set Ω, which means that any solution starting in Ω stays in the compact and
this implies that the solution is defined for any t ≥ 0. This situation is also often
encountered in biological systems.
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The output (or “observation”) of the system is given by h(x) where h is a differ-
entiable function h : x ∈ Rn 7→ h(x) ∈ Rm . The set Rm is the observation space. We
will denote by h(t, x0) or y(t, x0) the observation at time t for an initial condition x0.

Definition 1.1 (Observability). The system (1.1) is observable if for two distinct
initial conditions x1 6= x2 there exists a time t ≥ 0 such that

h(x(t, x1)) 6= h(x(t, x2))

Two states are called indistinguishable if for any t ≥ 0 we have

h(x(t, x1)) = h(x(t, x2)).

Indistinguishability means that it is impossible to differentiate the evolution of the
system, from two distinct initial conditions, by considering only the observation.

Now we consider a system depending on a parameter θ ∈ Rp

(1.2)


ẋ(t) = f(x(t), θ),

x(0) = x0,

y(t) = h(x(t, θ)).

Identifiability is the ability to recover the unknown parameter from the observation.
We denote by x(t, x0, θ) the solution of (1.2) for an initial condition x0.

Definition 1.2 (Identifiability). System (1.2) is said to be identifiable if for any
distinct parameters θ1 6= θ2, there exists t ≥ 0 such that

h(x(t, x0, θ1)) 6= h(x(t, x0, θ2)).

There is an obvious similarity between observability and identifiability. Actually
we will say that (1.2) is observable and identifiable if the augmented system

(1.3)


ẋ(t) = f(x(t), θ),

θ̇ = 0,

y(t) = h(x(t, θ)),

is observable.

Actually, for an epidemiological model it is unlikely to know the initial condition
and it has long been recognized that initial conditions play a role in identifying the
parameters [67, 121, 186, 206, 169].

What we have called identifiability is also known as structural identifiability. This
expression has been coined by Bellman and K.J. Åström [23] in 1970. This is to stress
that identifiability depends only on the dynamics and the observation, under ideal
conditions of noise-free observations and error-free model. This is a mathematical
and a priori problem [103].
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1.3. History. The observability concept has been introduced by Kalman [109]
in the sixties for linear systems. For nonlinear systems, observability has been char-
acterized circa the seventies [90, 94]. The definition is given by Hermann and Krener
in the framework of differential geometry. Identifiability and structural identifiability
has been introduced in compartmental analysis in 1970 by Bellman and Åström [23]
in a paper that appeared in a bio-mathematics journal. The problem of identifiability
is now addressed in text-books [120, 200, 198, 197]. Numerical identifiability of linear
control system is implemented in softwares such as Matlab and Scilab.

Identifiability of nonlinear systems has been addressed in different context and
the first systematic approach is by Tunali and Tarn in 1987 [186] in the differen-
tial geometry framework. The introduction of the concepts of differential algebra in
control theory is due to Fliess around 1990 [67, 68, 79] followed by Glad [81, 121].
Identifiability is a general problem which has received different names depending on
the community:

- observation, identification,
- data assimilation,
- inverse problem,
- parameters estimation.

“Data assimilation” is mainly used in en meteorology and oceanography [115, 181].
A direct (as opposed to inverse) problem is considering a model which, when intro-
ducing an input, gives an observed output. The parameters are considered as known.
Conversely the “inverse problem” is to reconstruct the parameters from the knowledge
of the output [183]. Finally, “parameters estimation” is used in the probability and
statistics domains [4, 27, 116, 117, 144, 162].

1.4. Identifiability in mathematical epidemiology. Identifiability is well
known in bio-mathematics from the seventies, as already mentioned with the paper
of Bellman and Åström [23]. However, considering identifiability in mathematical
epidemiology is relatively recent [187, 149, 206, 167, 134, 73, 77].
The first paper, to our knowledge, considering identifiability of an intra-host model
of HIV is by Xia and Moog [206], and has been published in 2003 in a journal of
automatic control.

1.5. The concept of observers. The construction of an observer is based on
an estimation approach different from statistical methods: it consists of determining
a dynamical system (called an “observer”) whose input is the vector y(·) of measures
acquired over time, and whose state is an estimate x̂(t) of the (unknown) true state
x(t) of the system at time t.

An observer estimates x(t) continuously over time and without anticipation, in
the sense that the estimate x̂(t) is updated at each instant t through its dynamics as
measurement y(t) is available, without requiring the knowledge of any future measure-
ment. This is why an observer is sometimes also called a “software sensor”. Since the
estimate x̂(t) is given by the solution of a system of differential equations, the main
idea behind an observer is the paradigm of integrating instead of differentiating the
signal y(·). Note that although an observer is primarily devoted to state estimation,
an observer can also aim to reconstructing simultaneously state and parameters, when
some parameters are unknown (in this case a parameter vector p is simply considered
a part of the system dynamics with ṗ = 0).

The most well-known observer is the so-called Luenberger observer [122] that is
recalled in Section 4, and that has inspired most of the existing observers (several
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ones are discussed in Section 4). However, observers are yet relatively unpopular
in Mathematical Epidemiology, comparatively to other application domains (such as
mechanics, aeronautics, automobile, etc.). The aim of the present review is also to
promote the development and use of observers for epidemiological models.

Section 4 presents the theoretical background of observers construction and their
convergence as estimators based on the model equations, independently of the quality
of real data. In a complementary way, Section 5 discusses some implementation issues
when observers are used with real world data that could be corrupted with noise.

2. Mathematical foundations.

2.1. Observability. We consider the following system

(2.1) Σ


ẋ = f(x)

y = h(x)

x ∈ Rn, y ∈ Rm
,

where we assume, to avoid technical details, that f and h are C∞ functions. The
function f : Rn −→ Rn is called a vector field.
The classical definition of Lie derivative of a C∞ function g : Rn −→ R with respect
to the vector field f is given by

Lf (g) =
d

dt
g(x(t, t0, x0))

∣∣∣∣
t=0

= 〈∇g(x)|f(x)〉,

where ∇g is the gradient of g and 〈 | 〉 the inner product of Rn.

2.1.1. Observability with Differential Geometry. The components of the
observation map h are denoted by h = (h1, · · · , hm). Each hi is a C∞ function from
the state space Rn to R.

Definition 2.1 ([94]). The observation space O of (2.1) is the subspace of the
vector space C∞(Rn,R) containing hi and invariant by the Lie derivative Lf .

The observation space is generated by the different Lie derivatives of the hi:

O = span
(
{hi, . . . ,Lf hi, . . . ,Lkfhi, . . . }{i=1,...,m}

)
.

We have the following result

Theorem 2.2. For an analytic system (i.e., f and h are analytic functions) the
observability is equivalent to the separation of the points of the state space Rn by O
i.e., if x1 6= x2 there exists g ∈ O such that g(x1) 6= g(x2).

Proof. By analyticity we have

y(t, x0) = h(x(t, x0)) =
∑
n≥0

tn

n!

dn

dtn
h(x(t, x0))

∣∣∣∣
t=0

,

but, by induction we have the following relation

dn

dtn
h(x(t, x0))

∣∣∣∣
t=0

= Lnf .h (x0).
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Then a necessary and sufficient condition to distinguish x1 6= x2 is that there exists
n such that

Lnf .h (x1) 6= Lnf .h (x2).

We have defined a global observability concept, but it might be necessary to travel a
considerable distance or for a long time to distinguish between points of Rn. Therefore
a local concept of observability is introduced [94].

Definition 2.3. The system (2.1) Σ is said locally observable if, for any x0, for
any open set U containing x0, x0 is distinguishable from all the points of U for the
restricted system Σ|U .
The system (2.1) Σ is locally weakly observable if for any x0 there exists an open
set U containing x0, such that for any neighborhood V with x0 ∈ V ⊂ U , x0 is
distinguishable for Σ|V from all the points of V .

Intuitively, a system is locally weakly observable if one can instantaneously distinguish
each point from its neighbors.
The local weak observability can be characterized as follows

Definition 2.4. [179] Let

dO = {dψ | ψ ∈ O}

where dψ(x) is the differential of ψ at x.

Definition 2.5. A system Σ is said to satisfy the observability rank condition in
x if the dimension of dO in x satisfies

dim (dO(x)) = n

where dO is generated by the gradients of the Lkfh.

Theorem 2.6 (Hermann-Krener [94]). If Σ satisfies the observability rank condi-
tion (ORC) at x0 then Σ is locally weakly observable at x0.

Proof. Since dim (dO(x)) = n, there exists n functions ϕ1, · · · , ϕn ∈ O such that
the gradients dϕ1, · · · , dϕn are linearly independent.
Therefore the function Φ : x 7→ (ϕ1(x), · · · , ϕn(x)) has a non-singular Jacobian in x0.
As a consequence there exists an open set U containing x0 where Ψ is a bijection.
On any open set V ⊂ U assume that we have h(x(t, x0)) = h(x(t, x1)) for x0 6= x1

and t > 0 sufficiently small. Then by derivation we have Lkf (x0) = Lkf (x1) for any k
therefore ϕi(x0) = ϕi(x1) which is a contradiction.

Proposition 2.7. For an analytic system if the observability rank condition is
satisfied everywhere the system is locally observable, hence observable.

Proof. It is due to the fact that h(x(t, x0)) is sum of its Taylor series. The rank
condition implies, for the same reason as before, that the coefficients of the Taylor
series separate points.

Exemple 2.8. We consider the SIR model of Kermack-McKendrick [112] for which
the parameters β, γ are assumed to be known:
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(2.2)



Ṡ = −β S

N
I

İ = β
S

N
I − γ I

Ṙ = γ I

y = γ I

,

with N = S+I+R. We have ẏ = γ

(
β
S I

N
− γ I

)
. A generating set of O contains I

and β
S I

N
. These two functions, when I 6= 0, separate points (using R = N − S − I).

The system is observable on R3 \ R× {0}.

With the gradients, the matrix
0 γ β

I

N

γ γ

(
β
S

N
− γ
)


is non singular if I 6= 0. The rank condition is satisfied on R2 \ R× {0}.

2.1.2. Observability and differential algebra. From 1970 differential geom-
etry was the tool for studying nonlinear systems in control theory. Circa 1985 Fliess
proposed to use Differential Algebra for the analysis of nonlinear systems.

Intuitively, observability for system (2.1) is when the state x can be expressed as an
algebraic expression of y and its time derivatives y(k) [68, 67].

Definition 2.9. [68, 67] A system is said to be algebraically observable if the
states can be reconstructed by solving algebraic equations depending only of the obser-
vation and its time derivatives.

Note that the systems under consideration are rational systems, i.e., the functions
f and h are rational functions [67, 68]. A more precise definition can be given us-
ing the formalism of Differential Algebra. Differential Algebra can be considered as
a generalization of the concepts of commutative algebra and algebraic geometry to
differential equations. This theory, founded by Ritt, is an appropriate framework for
defining algebraic observability. The interested reader can consult Fliess’ publications
for more details [78, 80].

Exemple 2.10. Consider the SIR model (2.2). This system evolves in the posi-
tively invariant set (which makes biological sense)

K = {(S, I,R) | S > 0, I > 0, R > 0, S + I +R = N = constant}

which implies y 6= 0.
Then we have the relations (we can divide by y)

S

N
=

1

β

ẏ + γ y

y
,

S

N2
=

1

β2

ẏ2 − y ÿ
y3

.
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We recover N as a rational expression of y, ẏ, ÿ, then also for S and R. The system
is algebraically observable in K.

2.1.3. A Link between the two definitions. Consider a state-output system

(2.3) Σ

 ẋ = f(x)

y = h(x)
,

where f and h are polynomial or rational functions in x.

We have two rational relations ẋ− f(x) = 0 and y − h(x) = 0. The last relation can

be differentiated as ẏ − ∂

∂x
h ẋ = ẏ − ∂

∂x
(h) f(x) = 0. By induction we will obtain a

sequence of rational relations Qj(x, y) = 0.

It can be shown [10, 68, 171] that to obtain algebraic observability it is sufficient to
consider the matrix 

h1
∂

∂x1
Lf (h1) · · · ∂

∂xn
Lf (h1)

...
...

. . .
...

hn
∂

∂x1
Ln−1
f (hn) · · · ∂

∂xn
Ln−1
f (hn)

 ,
and to check that its rank is n the dimension of the state space.

This is the Herman-Krener criterion for local weak observability.
The number of Lie derivatives is bounded. Specifically, it is proved that it is sufficient
compute no more than n− 1 derivatives [10, 68, 171].

Theorem 2.11. [68, 179] Consider (2.3) where f and h are rational functions.
To check the observability rank condition, computing (n − 1) Lie derivatives is suffi-
cient.

Proof. A detailed proof is given in the cited references. However an outline goes
like this: assume that k is the first integer such that {dh, dLfh, · · · , dLkfh} are linearly
dependent with rational coefficients. Then there exists k+1 rational functions gi, not
all of them null, such that

k∑
i=0

gi .dLifh = 0 .

Thanks to the definition of k, we have gk 6= 0. We will apply Lf to this relation

k∑
i=0

Lfgi. dLifh+ gi.Lf dLifh = 0.

It is well known that d and Lf commute. Therefore Lf dLifh = dLi+1
f h. Because the

system is rational, Lfgi is a rational function. Since gk 6= 0 this prove that dLk+1
f is

a linear combination of the previous Lie derivatives. This ends the proof.

The advantage of the Differential Algebra method promoted by Fliess and others is the
possibility to be implemented inside a computer algebra software. Actually as soon as
the system is in high dimension, the computations get rapidly involved. There is now
software for local or global observability [171, 24, 40, 110, 194, 131, 97, 157, 15, 16].
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Remark 2.12. For linear systems ẋ = Ax, y = Cx, all the definitions of observ-
ability are equivalent to having the observability matrix

(2.4) O =


C
CA

...

CAn−1


full rank. This result can be extended to observation vector y ∈ Rp with m > 1 (see
for instance [108]).

The observability analysis can also be a way to choose the right sensor, as illus-
trated on the following example.

Exemple 2.13. Consider a population model structured in five age classes, whose
population sizes are

x1 for juveniles,
x2 for subadults capable of reproduction when adults,
x3 for subadults not capable of reproduction when adults,
x4 for adults capable of reproduction,
x5 for adults not capable of reproduction,

and the dynamics is 
ẋ1 = −αx1 + βx4

ẋ2 = α
2 x1 − αx2 −m1x2

ẋ3 = α
2 x1 − αx3 −m1x3

ẋ4 = αx2 −m2x4

ẋ5 = αx3 −m2x5

(where α is an aging rate, m1, m2 are mortality rates, and β is a fecundity rate). If
only one sub-population xi can be targeted for measurement, one can easily check
that the only possibility for the system to be observable is to measure the variable
y = x5.

2.2. Identifiability. Since very often the initial conditions are not known, or
partially known, we will consider in the following the problem of identifiability and
observability, considering the augmented system (1.3). Note that identifiability-only
problems are a special case in which y = x.

2.2.1. Characteristic set. We consider a polynomial system

(2.5)


ẋ(t) = f(x(t), θ)

x(0) = x0

y(t) = h(x(t), θ)

,

with x ∈ Rn, θ ∈ Rp and y ∈ Rm. We will consider differential polynomials, i.e.,
polynomial in n+m variables and their derivatives, with coefficients in R. For example
ẋ− f(x, θ) and ẏ−h(x, θ) are differential polynomials belonging to R[x, y] (the set of
polynomials in (x, y) with real coefficients). We consider the parameter θ ∈ Rp as a
constant, i.e., θ̇ = 0.
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We have n+m differential polynomial equations, n states and m observations. Intu-
itively we can obtain, by differentiating-multiplying by any differential polynomial, an
infinity of new equations. In other words the n+m equations generate a differential
ideal I. Any x, y satisfying (2.5) will satisfy these equations in the ideal I.

The idea behind the differential algebra techniques is to get a finite set of differen-
tial polynomials which describes and summarizes all the information in the generated
ideal. Such a set C is called a characteristic set. The details of the complete algo-
rithm for constructing a characteristic set is rather involved and can be found in the
references [113, 121, 159].

Among all the polynomials in I we can consider the set Ic of differential polynomials
with only the observation y. Since Ic = R[y] ∩ I this set is an ideal. It is possible
to obtain a characteristic set for Ic, namely C ∩ R[θ][x, y]. This set is obtained by
eliminating the state variables from the equations [63]. Actually, since we have no
input, this characteristic set is the differential polynomial in y with the lower order
[106]. This set is also called, in the literature, the input-output relation of the system
[13, 24, 130, 105].
Making the polynomials monic in the input-output relations gives a set of coefficients
ci(θ) and a map c : Rp −→ Rν (for some ν) which is called the exhaustive summary
of the model [142, 166, 169, 13].

The injectivity of c from the parameter space is only a necessary condition for
identifiability [169]. Indeed, the input-output relations do not depend on the initial
conditions and since the identifiability is dependent on the initial conditions it can
happen that, with c injective, the system is not identifiable. Some authors [132,
187, 73] use the injectivity of c to ascertain the identifiability for almost all initial
conditions. The following example shows that the injectivity of c is not sufficient for
all initial conditions [169, Section 3.3].

Exemple 2.14 (input-output relation is not sufficient).
Consider the following compartmental system

(2.6)


ẋ1 = −a21 x1 + a12 x2

ẋ2 = −a12 x2

y = x1.

.

We have

ẏ = −a21 x1 + a12 x2 , ÿ = −a21 ẏ − a2
12 x2 = −a21 ẏ − a12 (ẏ + a21 y) .

The input-output relation is

ÿ + (a12 + a21) ẏ + a12 a21 y = 0.

Clearly the application (a21, a12) 7→ (a12 + a21, a12 a21) is injective and however the
system is not identifiable if x2 = 0.
This can be seen in two ways :

1. It is easy to see that

ÿ2 − ẏ ÿ = (ẏ2 − y ÿ) a21 a12,

ẏ ÿ − y y(3) = −(ẏ2 − y ÿ) (a12 + a21).



IDENTIFIABILITY AND OBSERVABILITY IN EPIDEMIOLOGICAL MODELS 11

So we need to have (ẏ2 − y ÿ) 6= 0 to recover the parameters. Since

(y ÿ − ẏ2) = a12 x2 [(a21 − a12)x1 − a12 x2] ,

we therefore need x2 6= 0. We also need a12 6= 0 for observability, since
a12 x2 = ẏ + a21 x1.

2. The second way is to compute the Jacobian of [y, ẏ, ÿ, y(3)] for local identifi-
ability and observability. We have easily

det
[
Jac [y, ẏ, ÿ, y(3)]

]
= −a2

12 (a12 − a21) [(a21 − a12)x1 − a12 x2] x2 .

In the case of analytic systems an answer has been given by par D. Aeyels [3, 2]
and E. Sontag [177]: for an analytic system with r parameters it is sufficient to
randomly choose 2 r+1 measures to distinguish two different states. This means that
generically (hence the term randomly) 2 r + 1 measures are sufficient. Let us stress
that the whole state vector x(·) is assumed to be measured and therefore the initial
state x(0) is known.

2.3. Identifiability does not require observability. It can happen that a
system is identifiable and however not observable.

Exemple 2.15. The following academic model is identifiable but not observable.

(2.7)



ẋ1 = −α (x1 + x2)

ẋ2 = α (x1 − x2)

y =
1

2
(x2

1 + x2
2)

We have ẏ = −α y, ÿ = α2 y and y(p) = (−1)p αp y. The Jacobian

Jac [h,Lf h,L2
f h] =

x1 −αx1 α2 x1

x2 −αx2 α2 x2

0 α y α2 y

 ,
is clearly of rank 2. The parameter α is differentially algebraic on the field R〈y〉.
Identifiability in R2 \ {0} is immediate with α = −ẏ/y.

2.4. Identifiability via change of coordinates. We show here that a change
of variables can help to show the identifiability of a model. Let us consider a system
in Rn parameterized by θ ∈ Θ ⊂ Rp

(2.8)

{
ẋ = f(x, θ), x(0) = x0 ∈ X
y = h(x)

where X ⊂ Rn is positively invariant for any θ ∈ Θ.

Proposition 2.16. Assume that the following properties hold.
1. The map f verifies

(2.9) ∀θ1, θ2 ∈ Θ, ∀x ∈ X, θ1 6= θ2 =⇒ f(x, θ1) 6= f(x, θ2)
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2. There exist smooth maps g, g̃, l such that
(a) for any solution x(·) of (2.8) in X, w(t) := g(x(t), y(t)) ∈ W ⊂ Rm

verifies

(2.10) ẇ(t) = l(w(t), y(t)), t ≥ 0

(b) for any x ∈ X, one has w = g(x, h(x)))⇐⇒ x = g̃(w, h(x))
Then the system (1.1) is identifiable over Θ for any initial condition in X.

Proof. Let x0 ∈ X and denote by xθ(·) the solution of (2.8) for the parameter
θ ∈ Θ. Let θ1, θ2 be in Θ. If one has h(xθ1(t)) = h(xθ2(t)) = y(t) for any t ≥ 0, then
the solution w(·) of ẇ = l(w, y(t)) for the initial condition w(0) = g(x0, y(0)) verifies

g̃(w(t), y(t)) = xθi(t) t ≥ 0, i = 1, 2,

that is xθ1(t) = xθ2(t) for any t > 0. From hypothesis (2.9), we deduce that one has
necessarily θ1 = θ2, which shows the identifiability of the system.

Let us illustrate this result on an intra-host model for malaria infection [25].

Exemple 2.17. The state vector is x = (S, I1, . . . , I5 ,M) in R7
+, where S is

the concentration of uninfected erythrocytes in the blood, Ii are the concentrations
of infected erythrocytes in different age classes, and M is the concentration of free
merozoites. The dynamics is given by the following system

(2.11)



Ṡ = Λ− µS S − β SM,

İ1 = β SM − (γ1 + µ1) I1,

İ2 = γ1 I1 − (γ2 + µ2) I2,

...

İ5 = γ4 I4 − (γ5 + µ5) I5,

Ṁ = r γ5 I5 − µM M − β SM,

where the different parameters are
Λ: recruitment of the healthy red blood cells (RBC).
β: rate of infection of RBC by merozoites.
µS : natural death rate of healthy cells.
µi: natural death rate of i-th stage of infected cells.
γi: transition rate from i-th stage to (i+ 1)-th stage of infected cells.
r : number of merozoites released by the late stage of infected cells.
µM : natural death rate of merozoites.

The two first stages of infected erythrocytes (I1 and I2) correspond to the concen-
tration of free circulating parasitized erythrocytes than can be observed (seen on
peripheral blood smears) i.e. the quantity I1(t) + I2(t) is measured at time t. The
model (2.11) takes the form

(2.12)

{
ẋ = Ax+ β SM E + Λ e1,
y = C x
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with

A =



−µS 0 0 0 0 0 0
0 −γ1 − µ1 0 0 0 0 0
0 γ1 −γ2 − µ2 0 0 0 0
0 0 γ2 −γ3 − µ3 0 0 0
0 0 0 γ3 −γ4 − µ4 0 0
0 0 0 0 γ4 −γ5 − µ5 0
0 0 0 0 0 rγ5 −µM


,

E =



−1
1
0
0
0
0
−1


, e1 =



1
0
0
0
0
0
0


, C =

[
0 1 1 0 0 0 0

]

Among parameters in (2.11), some of them (µi, γi, and r) are known or at least
widely accepted by the community, but the infection rate β is unknown and cannot
be estimated by biological considerations. Note that one has ECE = E. Therefore
one can consider the variable w = x−Ey = (I−EC)x whose dynamics is independent
of the non-linear term βSM :

ẇ = Āw + ĀEy + Λ e1

where we posit Ā = A− ECA. The state x is then given by x = w + Ey. So we are
exactly in the conditions of Proposition 2.16 for θ = β if one considersX = (R+\{0})7.
We immediately deduce that the parameter β is identifiable.

This example illustrates the interest of exploiting conjointly identifiability and
observability to solve the identifiability problem.

3. Analysis of the classical SIR model of Kermack-McKendrik. The SIR
model of Kermack and McKendrick [112] is certainly one of the most famous model
in Epidemiology. It is given and studied in all of the classic books of Mathematical
Epidemiology. This model appears in the book of Bailey, which is probably the first
book in Mathematical Epidemiology. Some examples can be found in [6, 30, 31, 32,
54, 118, 127, 137]. The figure, in the original paper, fitting the model to plague data
in Bombay during the 1906 year, is one of the most famous picture in Epidemiology.
A research with SIR in MathScinet returns 11 106 articles.

In the quoted books the SIR model is fitted to data in the following ways:
• in [30, 31, 32] the model is fitted to the plague in Eyam (in the year 1666);
• in [54] the model is fitted to an influenza epidemic in England and Wales;
• in [118] a fitting is done with simulated noisy data;
• in [127, 30], in a chapter devoted to fitting epidemiological models to data, a

SIR model is fitted to an influenza outbreak in an English boarding school.

More recently two publications [14, 124] revisit the fit of the Kermack-McKendrick
SIR model to the plague in Bombay.

As already mentioned, before attempting to adjust parameters, an identifiability
analysis should be performed.
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3.1. The different forms of the SIR model. The original model [112] is

(3.1)


Ṡ = −β̃ S I

İ = β̃ S I − γ I

Ṙ = γ I

,

where S, I,R represent respectively the numbers of susceptible, infectious and removed
individuals.
This model can also be found in a slightly different form

(3.2)



Ṡ = −β S

N
I

İ = β
S

N
I − γ I

Ṙ = γ I

,

where N = S+I+R is the total population. Obviously, one can pass from one model
to the other though β̃ = β/N . Both models are mathematically equivalent as long as
N is a constant. However, we stress that identifying β̃ does not allow one to estimate
the parameters β and N separately. For instance, estimating β̃ and γ only (without
knowing N or β) does not allow one to estimate the basic reproduction number:

R0 =
β̃ N

γ
=
β

γ
.

3.2. Observability-identifiability of the SIR model. Quite surprisingly, the
observability and identifiability of the original Kermack-Mckendrick SIR model has
not been studied much, although this model is commonly used to model epidemics.

Interestingly, the observability and identifiability of the SIR model with births
and deaths, constant population, and an observation y = k I, has been first studied
in 2005 [77]:

(3.3)



Ṡ = µN − β S

N
I − µS

İ = β
S

N
I − (γ + µ) I

Ṙ = γ I − µR

,

where µ is the renewal rate of the population. The article [77] concludes that the
system is neither observable nor identifiable.

In [188] the identifiability of (3.2) is addressed assuming (i) that the initial conditions
(and therefore N = S(0) + I(0) +R(0)) are known, (ii) observing y = kI with k = 1,
and using only the input-output relation to conclude. Under assumptions (i) and (ii),
the identifiability is quite immediate, as we shall see, but of limited interest.
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Consider the SIR model

(3.4)



Ṡ = −β S

N
I

İ = β
S

N
I − γ I

y = k I

.

The last equation has been omitted since R = N −S− I . The observation is y = k I,
in other words only a fraction of the infectious individuals are observed. This situation
is used for example in [124, 163].

Theorem 3.1. The variables and parameters to be estimated are S, I, N , β, γ,
and k.
System (3.4) is neither observable, nor identifiable.

The functions k I,
β

k N
,
β S

N
, γ are identifiable, equivalently k S, k I, γ,

β

k N
are identi-

fiable.
Particularly if N is known and if k = 1 or k = γ the system is identifiable and
observable.

If k = γ then S, I, γ,
β

N
are identifiable.

Remark 3.2. One could believe that if k = γ, with N unknown, then (3.1) is
observable. This is wrong. Certainly S, I are observable, but not R. Therefore
N = S + I +R is inaccessible. As a consequence, R0 = β̃N/γ is not identifiable.

Theorem 3.1 can be obtained from [77] by setting µ = 0. However we provide a short
and elementary proof.

Proof. We will show that the parameters and the state can be expressed with the
observation and their derivatives [68, 67]. Otherwise the identifiability will not be
obtained. We consider the system on

U = {(S, I) | S > 0, I > 0, S + I < N}.

This open set U is positively invariant. At any equilibrium point (S0, 0) the system
is not observable. Therefore we assume y 6= 0 and also, for the same reason, S 6= 0.
We have (with S 6= 0 and I 6= 0)

y = k I ,
ẏ

y
=
β S

N
− γ = h1 , − ḣ1

y
=

β2

kN2
S = h2 ,

− ḣ2

y
=

β3

k2N3
S = h3 ,

h3

h2
=

β

kN
,

h2
2

h3
=
β S

N
,

h1 −
h2

2

h3
= γ.

All the derivatives of y can be expressed as rational expressions of k I,
β

k N
,
β S

N
, γ.

Therefore the only information obtained will be k I,
β

k N
,
β S

N
, γ which are identifiable

functions.
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Now if N is known with k = 1 or k = γ, the parameters β, γ, S, I, R are polynomial
functions of (y, ẏ, ÿ), hence the system is observable and identifiable.

Equivalently the variables k S, k I, γ,
β

k N
are identifiable.

3.2.1. Using input-output relations. We proceed by elimination:

ẏ =
β S

N
y − γ y , which gives

β S

N
=
ẏ + γ y

y
,

ÿ = − β
2 S

kN2
y2 +

β S

N
ẏ − γ ẏ , which gives ÿ = − β

kN
y (ẏ + γ y) +

ẏ + γ y

y
ẏ − γ ẏ .

Equivalently, one has

ẏ ÿ +
β

kN
y2 ẏ +

β

kN
γ y3 − ẏ2 = 0 .

We have already seen, with the notation of the previous proof, that

β S

N
= γ + h1.

This shows that k I,
β

k N
,
β S

N
, γ are identifiable.

3.2.2. Using ORC Herman-Krener condition. Consider the application

Φ : (S, I, β, γ, k) −→ (y, y(1), y(2), y(3), y(4))

and denote by

JacΦ =
∂Φ

∂(S, I, β, γ, k)

the Jacobian of Φ. Then det(JacΦ) = 0 proves that the system is neither identifiable
nor observable.
On the other hand with

Ψ : (S, I, β, γ) −→ (y, y(1), y(2), y(3))

and denoting by

JacΨ =
∂Ψ

∂(S, I, β, γ)

the Jacobian of Ψ, we have det(JacΨ) = −k
4 β4 S I6

N5
6= 0.

This proves, with N and k known, the local observability and identifiability.

3.2.3. SIR with cumulative incidence. Very often, the observation are the
cumulative numbers of infectious individuals. We study how this change the observ-
ability and identifiability of the SIR model.
We consider the system where the observation is given by

(3.5) y(t) = k

∫ t

0

β
S(τ) I(τ)

N
dτ.

This problem has been addressed for the SIR model with demography for constant
population in [77]. Identifiability with known initial conditions for (3.4) is also con-
sidered in [188] using input-output relations.
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Theorem 3.3. The system (3.4) with cumulative incidence observation is neither
observable, nor identifiable.

The parameters k S, k I, γ,
β

k N
are identifiable.

When N is known and when k = 1 or k = γ the system is observable and identifiable.

Proof. A straightforward computation gives:

ẏ = k
β S I

N
, h2 =

ÿ

ẏ
=
β S

N
− β I

N
− γ ,

h3 =
ḣ2

ẏ
=

β

N
γ I − 2

β

kN
y , h4 = ḣ3 = − β

N
γ2 I +

β

kN
γ y − 2

β

kN
ẏ .

Finally
β

kN
γ y + 2

β

kN
ẏ + γ h3 + h4 = 0.

Differentiating this relation, if ẏ2 − y ÿ 6= 0, gives

2
β

kN
=

(γ ḣ3 + ḣ4)− (γ h3 + h4)

ẏ2 − y ÿ
.

Since the zeroes of an analytic function are isolated we have to prove that ẏ2−y ÿ 6≡ 0.

If this is the case, this implies that
d

dt

(
ẏ

y

)
= 0. Hence y = C eλ t, therefore h2 = λ,

which implies S − I = constant, a contradiction.
We have

k S − k I =
γ + h2

β

kN

, k S k I =
ẏ

β

k N

.

which proves our claim.

4. Observers synthesis. So far we have studied observability as a property
such that a measured “signal” y(·) allows to reconstruct the state of the system
univoquely, by studying the information provided by the successive derivatives of y(·).
Formally, when the system is observable and we know (perfectly) enough derivatives
of y(·) at a given time t, we just have to invert the map φ 7→ (h(x),Lfh(x), · · · ) at
(y(t), ẏ(t), ÿ(t), · · · ) to reconstruct the state variable x(t). In practice, it is known that
numerically calculating derivatives on the raw signal data is imprecise and sensitive to
measurement noise, especially if several successive derivatives have to be determined.
It is generally preferable to use a “filter” to smooth the data, for example using
polynomial functions or splines that approach with more regularity the measurements
obtained over time, on which the derivative calculations can be performed before the
inversion operation.

In this section, we study the construction of observers and their theoretical conver-
gence, without considering their practical performances in presence of measurements
noise. This point will be addressed in the more practical Section 5.

Observers for dynamics ẋ = f(x) with observation y = h(x) of the form

˙̂x = f(x̂) +G((h(x̂)− y(t))

where G is a constant matrix, are called Luenberger observers [122]. Note that this
construction consists in a copy of the original dynamics f plus a correcting term
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which depends on an innovation term, that is the difference between the expected
output ŷ = h(x̂(t))) if the true state was x̂(t) and the effective measured output y(t).
Therefore, if x̂(t) and x(t) are equal at a certain time t, it will remain identical at
any future time. The main point is that the matrix G has to be chosen such that
the estimation error x̂(t)− x(t) does converge to 0. When f and h are linear and the
system is observable, the theory of linear automatic control teaches that there always
exists G such that the convergence speed of the estimator can be chosen arbitrarily fast
(see e.g. [8]). Obviously epidemiological models are rarely linear. However, looking
for an Luenberger observer is often a first trial before considering more sophisticated
estimators. Indeed, we shall see that for certain nonlinear dynamics, such observers
do the job and in other cases, observers can be inspired from this form.

Let us begin by some simple cases of observers for particular dynamics, and then
we shall present a more general framework.

4.1. Observers with linear error dynamics. Consider systems of the form

(4.1)

{
ẋ = Ax+ Φ(t, y)
y = Cx

where x ∈ Rn and y ∈ R. Then, observers of the form

(4.2) ˙̂x = Ax̂+ Φ(t, y(t)) +G(Cx̂− y(t))

are such that the error vector e(t) = x̂(t)− x(t) is solution of the linear dynamics

(4.3) ė = (A+GC)e

The choice of the gains vector G providing a convergence of e(t) to 0 comes directly
from the poles placement technique of the theory of linear systems that we recall
below.

The following lemma is well-known and often used in automatic control.

Lemma 4.1. Let A be a square matrix of size n and C be a line vector of length
n. If the observability matrix O defined in (2.4) is of full rank, then for any set
Λ = {λ1, · · · , λn} of n real or complex two-by-two conjugate numbers, there is a G
vector of size n such that

Sp(A+GC) = Λ .

Specifically, if
πA(ξ) = ξn + a1ξ

n−1 + · · ·+ an−1ξ + an

is the characteristic polynomial of A, then one has

G = P
[
an+1−i + (−1)n−iσn+1−i(Λ)

]n
i=1

where

P = O−1


0
...
...
1

 [I A . . . An−1]

and the σk designate the symmetric functions of the roots

(4.4) σk(Λ) =
∑

1≤i1≤···≤ik≤n

λi1λi2 · · ·λik
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A proof of Lemma 4.1 is given in Appendix A.

Remark. This result can be generalized to vectorial observations, i.e. for matrices C
with m > 1 rows and n columns.

Finally, by choosing numbers λi with negative real parts, one can make the con-
vergence of the error given by the exponentially decreasing dynamics (4.3) as fast
as desired. The observer (4.2) is thus adjustable. It should be noted that when the
difference ẑ1(t) − y(t) (usually called ”innovation”) becomes and remains close to 0,
the trajectories of the observer follow those of the system: we can then consider that
the observer has practically converged. The innovation is thus very useful in practice
because it provides information on the current stage of convergence of the estimate.

We illustrate this technique on a population model with age classes.

Exemple 4.2. Let us consider a population structured in three stages: young,
subadult and adult, of stocks x1, x2, x3 respectively. It is assumed that only adults
x3 can reproduce, giving birth to young x1:

(4.5)


ẋ1 = −a1x1 −m1x1 + r(t, x3)
ẋ2 = a1x1 − a2x2 −m2x2

ẋ3 = a2x2 −m3x3

y = x3

.

The coefficients ai are the transition rates between age classes, mi are the mortal-
ity rates of each class, and r(·) is the reproductive function (usually non-linear and
seasonally dependent), for example

r(t, x3) =
r̄(t)x3

k + x3
, r̄(t) ∈ [r̄min, r̄max] .

Here, it is assumed that only the size of the adult class is measured over time. The
aim is to estimate the stocks of larvae and subadults over time. The model (4.5) is of
the form (4.1), where we posed

A =

 −(a1 +m1) 0 0
a1 −(a2 +m2) 0
0 a2 −m3 + 0

 , C = [0 0 0 1]

and

Φ(t, x3) =

[
0

r(t, x3)

]
One can check that the observability matrix O si full rank, or alternatively directly
check that the system is observable. Indeed, we obtain by using the expression ẋ3:

x2 =
ẏ +m3y

a2
,

then with the expression ẋ2:

x1 =
ẋ2 + (a2 +m2)x2

m1
=
ÿ + (a2 +m2)m3y

a2m2
.
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Therefore, the following system

(4.6)


˙̂x1 = −a1x̂1 −m1x̂1 + r(t, y(t)) +G1(x̂3 − y(t))
˙̂x2 = a1x̂1 − a2x̂2 −m2x̂2 +G2(x̂3 − y(t))
˙̂x3 = a2x̂2 −m3x̂3 +G3(x̂3 − y(t))

with well chosen G1, G2, G3 numbers is an observer for the dynamics (4.5), with an
exponential convergence.

It may also happen that the estimation error of an observer is only partially
assignable, as we shall see in the next example.

4.2. Observers via change of coordinates. Consider, as in Section 2.4, sys-
tems {

ẋ = f(x)
y = h(x)

for which there exists a change of coordinates x 7→ w = g(x, h(x)) such that one has

ẇ(t) = l(w(t), h(x(t))), t ≥ 0

for any solution x(·), with the properties
1. w = g(x, h(x))⇐⇒ x = g̃(w, h(x))
2. w = g(x, h(x)) =⇒ h(x) = k(w)

where g, g̃, l and k are smooth maps.
Then, one can look for an observer ŵ(·) of the system{

ẇ = l(w, h(x))
y = k(w)

and take, as an estimator of x(·)

(4.7) x̂(t) = g̃(ŵ(t), y(t)) .

There is an advantage of considering such a change of coordinates when the maps
g, g̃, l and k are independent of a parameter θ present in the expression of f , as
in Proposition 2.16 of Section 2.4. However, the estimator (4.7) does not filter the
measurement y(·) and might be sensitive to noise.

Let us illustrate this approach on the malaria model (Example 2.17).

Exemple 4.3. Consider the model (2.11) of Example 2.17. With the variable
w = x − Ey = (I − EC)x, the dynamics (2.12) is independent of the unknown non-
linear term βSM : {

ẇ = Āw + ĀEy + Λ e1

y = Cx = Cw

and one can consider the following observer for system (2.12)

(4.8)


˙̂w = (Ā− LC) ŵ +

(
L+ (Ā− LC)E

)
y(t) + Λ e1,

x̂(t) = ŵ(t) + E y(t).

where L is a vector in R7 to be chosen. The dynamics of the error e(t) = x̂(t)− x(t)
is given by

ė = (Ā− LC)e
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Note that one has CĀ = 0. Therefore the rank of the observability matrix of the
pair (Ā, C) is equal to one, and 0 is an eigenvalue of Ā. The choice of L allows then
to assign only one eigenvalue of Ā− LC, equal to −(L2 + L3), the other eigenvalues
remaining negative. Therefore (4.8) is an observer for system (2.12) with exponential
convergence, that does not use the unknown parameter β.

Remark 4.4. Differently to observers of Section 4.1, one cannot expect a conver-
gence speed of the observer (4.8) faster than the dynamics (2.11), because the error
dynamics is not completely assignable. However, the convergence is exponential. This
is illustrated with numerical simulations in Section 5.2.2.

4.3. Reduced-order observers. A typical situation is when one can operate a
state decomposition as follows

1. decompose the state vector x (may be at the price of a change of variables)
as

x =

[
y
xu

]
where xu represent the unmeasured variables,

2. look for an auxiliary variable (that we called z) whose dynamics is indepen-
dent of xu

ż = g(z, y)

and asymptotically stable, and such that xu can be globally expressed as

xu = l(z, y)

where l is a smooth map (say C1).

Then, the dynamics {
˙̂z = g(ẑ, y(t))
x̂u = l(ẑ, y(t))

is an asymptotic observer, whose error convergence x̂u− xu is simply provided by the
asymptotic convergence of ẑz to 0, whatever is the initial condition ẑ(0). When the
convergence speed of an estimator cannot be adjusted, it is usually called an asymp-
totic observer, differently to the previous section for which the error convergence can
be made arbitrarily fast.Note that differently to the previous section, these observers
have no tuning parameters and are not driven by innovation terms. These estimators
are reduced-order observers when the variable z is of lower dimension than x. An
interest for such observers is that it can possess robustness features when the maps g
and l are independent of some terms or parameters of the dynamics ẋ = f(x). Let us
illustrate this feature on the Kermack-McKendrik model with fluctuating rates.

Exemple 4.5. We consider the SIR model with birth and death terms

(4.9)


Ṡ = −β(t)SI + νN − µS
İ = β(t)SI − ρ(t)I − µI
Ṙ = ρ(t)I − µR

where parameters β and ρ fluctuate unpredictably over time. We assume, for sim-
plicity, that the birth rate ν is equal to the death rate µ, so that the total population
remains constant of size N = S + I +R (assumed to be known). Let us suppose that
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the size of the infected population is monitored over time as well as the number of
new cured individuals, which amounts considering that the observation vector at time
t is

y(t) =

[
y1(t)
y2(t)

]
=

[
I(t)

ρ(t)I(t)

]
.

Stocks of classes S and R are not initially known. Then, the system

(4.10)


Ż = νN − y2(t)− µZ
Ŝ = Z − y1(t)

R̂ = N − Z

is an observer allowing to estimate S and R without knowing β(·) and ρ(·). Indeed,
the dynamics of the estimators is

d

dt
(Ŝ − S) = Ż − ẏ1 − Ṡ = −µ(Z − S − I) = −µ(Ŝ − S)

d

dt
(R̂−R) = −Ż − Ṙ = −νN + µ(Z +R) = −µ(R̂−R)

which ensures the convergence of the Ŝ and R̂ estimates. Note that the internal
dynamics of the observer is here of smaller dimension than the system, and that the
estimate of the unmeasured state variable S is a function of the internal state Z of
the observer and the observation y1. The speed of convergence of this observer is
not adjustable, but it has the advantage of being perfectly robust to any (unknown)
variations of the terms β(·) and ρ(·). This is illustrated with numerical simulations
in Section 5.2.3.

4.4. A general non-linear framework. In a general way, we will retain that
an observer for a system {

ẋ = f(t, x)
y = h(t, x)

is an input-output system (input: y, output: x̂) of the form{
ξ̇ = g(t, ξ, y(t))
x̂ = l(t, ξ, y(t))

such as the coupled system {
ẋ = f(t, x)

ξ̇ = g(t, ξ, h(t, x))

verifies the property

lim
t→+∞

l(t, ξ(t), h(t, x))− x(t) = 0

for any initial condition x(0), ξ(0).

In the two previous examples, the dynamics of the estimation error was linear.
For an observable non-linear system, the existence of an observer whose estimation
error is linear is not guaranteed. This is a difficult problem. However, one can consider
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the (nonlinear) observability canonical form [85] (given here for a scalar output)

ż = F (z) :=



0 1 0 · · ·
0 0 1 0 · · ·

. . .
. . .

. . .
. . .

0 1
0


︸ ︷︷ ︸

A

z + ψ(z)



0
...

0
1


︸ ︷︷ ︸

B

(4.11)

y = [1 0 · · · · · · 0]︸ ︷︷ ︸
C

z(4.12)

where the map ψ is Lipschitz on Rn. Then, one can show that there exists an observer
of the Luenberger form

(4.13) ˙̂z = F (ẑ) +G(Cẑ − y(t))

with exponential convergence when G is a well-chosen gains vector. When an observ-
able system {

ẋ = f(x), x ∈ Rn
y = h(x), y ∈ R

is not in normal form, but the application

φ(x) =


h(x)
Lfh(x)

...
Ln−1
f h(x)


is a diffeomorphism from Rn into Rn and the map

ψ(z) := Lmf h ◦ φ−1(z)

is Lipschitz on Rn, then the observer (4.13) can be written in the x coordinates as
follows

˙̂x = f(x̂) + [Jφ(x̂)]−1G(h(x̂)− y(t))

where Jφ(x) denotes the Jacobian matrix of φ at x. The observer preserves the
Luenberger structure but with variable gains.

Let us first note that the pair (A,C) as defined in (4.11)-(4.12) is observable.
Indeed, we have O = Id. Thus, according to the Lemma 4.1, one can freely assign
the spectrum of A+GC by choosing the vector G. We show now how to choose the
eigenvalues of A+GC to ensure the convergence of the non-linear observer 4.13. To
do this, we begin by giving some properties of the Vandermonde matrices

Vλ1,··· ,λn :=


λn−1

1 λn−2
1 · · · λ1 1

λn−1
2 λn−2

2 · · · λ2 1
...

...
...

...
λn−1
n λn−2

n · · · λn 1


related to the normal form.
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Lemma 4.6. Let Λ = {λ1, · · · , λn} be a set of n distinct real numbers and G a
vector such that

Sp(A+GC) = Λ := {λ1, · · · , λn}

Then

Vλ1,··· ,λn(A+GC)V −1
λ1,··· ,λn

=


λ1

λ2

. . .

λn


Moreover, for any C > 0 and θ > 0, there exist λn < λn−1 < · · · < λ1 < 0 such that

λ1 + C||V −1
λ1(θ),··· ,λn(θ)||∞ = −θ

The proof of Lemma 4.6 is given in Appendix B.

We are now ready to show the convergence of the observer (4.13) in coordinates
z, for a gains vector G such that A + GC has n distinct eigenvalues λ1, ..., λn of
negative real values. Denote the error e = ẑ − z. We have

ė = (A+GC)e+B(ψ(ẑ)− ψ(z))

Let ξ = V e where V designates the Vandermonde matrix Vλ1,··· ,λn
. Thanks to Lemma

4.6, we obtain
ξ̇ = ∆ξ + V B(ψ(ẑ)− ψ(z))

where ∆ is the diagonal matrix diag(λ1, · · · , λn). By multiplying on the left by ξ>,
one obtains

ξ>ξ̇ = ξ>∆ξ + ξ>V B(ψ(ẑ)− ψ(z))
≤ λ1||ξ||2 + ||ξ||

√
n|ψ(ẑ)− ψ(z)|

≤ λ1||ξ||2 + ||ξ||
√
nL||e||

≤
(
λ1 +

√
nL||V −1||∞

)
||ξ||2

where L is the Lipschitz constant of ψ. Thus the norm of ξ verifies

||ξ(t)|| ≤ ||ξ(0)||+
∫ t

0

(
λ1 +

√
nL||V −1||∞

)
||ξ(τ)||dτ

and by Gronwall’s Lemma, we obtain

||ξ(t)|| ≤ ||ξ(0)||e
(
λ1+
√
nL||V −1||∞

)
t

Finally, for any θ >0, Lemma 4.6 gives the existence of numbers λn < λn−1 < · · · <
λ1 < 0 such that ||ξ(t)|| ≤ ||ξ(0)||e−θt for any t > 0, which guarantees the exponential
convergence of the error e to 0.

The observer (4.13) with the gains vector Gθ is called high gain observer [85],
because the value of θ must be ”sufficiently” large, and its successive powers might
take large values.

Remark 4.7. In practice, the map ψ is not necessarily globally Lipschitz on Rn.
Nevertheless, if there exists a compact sub-set K of Rn that is forwardly invariant by
the dynamics (4.11), one can consider an extension of ψ outside K that is globally
Lipschitz on Rn and define then the observer on whole Rn (see [152]).
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Let us now illustrate this construction on the Kermack-McKendrik model model.

Exemple 4.8. We consider the classical SIR model

(4.14)


Ṡ = −βSI
İ = βSI − ρI
Ṙ = ρI

where the parameters β and ρ are known, and suppose that the only observation is
the cumulative number of recovered individuals since a time t0

y(t) =

∫ t

t0

ρI(τ)dτ .

It is also assumed that the size of the total population N = S + I + R is known. To
put the system in canonical form, we write

z1 = y
z2 = ż1 = ρI
z3 = ż2 = (βS − ρ)z2

and

ż3 = (βS − ρ)z3 − β(βSI)z2 = ψ(z) :=
z2

3

z2
− β

ρ

(
z3

z2
+ ρ

)
z2

2 .

We can then reconstruct the I, S and R stocks from the variables z as follows

S =
1

β

(
z3

z2
+ ρ

)
I =

z2

ρ

R = N − 1

β

(
z3

z2
+ ρ

)
− z2

ρ

Note that ψ is not globally Lipschitz on R3, and has a singularity at z2 = 0. Never-
theless, we notice that the term z3/z2 can be framed as follows

z3

z2
= βS − ρ ∈ [−ρ, β − ρ]

and that one has
ż3 ∈ [−ρ3N − ρβ2N3, ρ(β − ρ)N ] .

We can therefore consider the expression

ψ̃(z) = sat[−ρ3N−ρβ2N3,ρ(β−ρ)N ]

(
sat[−ρ,β−ρ]

(
z3

z2

)
z3 −

β

ρ
z3z2 − βz2

2)

)
instead of ψ(z), where sat[ ] denotes the saturation function

sat[a,b](x) = max(a,min(b, x)) .

Finally, we choose the gains Gi of the observer such that Sp(A+GC) = {λ1, · · · , λn}
with λn < λn−1 < · · · < λ1 < 0 and λ1 enough negative. This amounts to take
Gi = σi({λ1, · · · , λn}). One thus obtains the internal dynamics of the observer

(4.15)


˙̂z1 = ẑ2 + (λ1 + λ2 + λ3)(ẑ1 − y(t))
˙̂z2 = ẑ3 + (λ1λ2 + λ1λ3 + λ2λ3)(ẑ1 − y(t))
˙̂z3 = ψ̃(ẑ) + λ1λ2λ3(ẑ1 − y(t))



26 F. HAMELIN, A. IGGIDR, A. RAPAPORT, G. SALLET

and the estimators

(4.16)


Ŝ = 1

β

(
sat[−ρ,β−ρ]

(
ẑ3
ẑ2

)
+ ρ
)

Î = ẑ2
ρ

R̂ = N − Ŝ − Î

.

4.5. Discussion. The construction of an observer can avoid in certain situations
to study the identifiability. For instance, in Sections 4.2 and 4.3, the observers do
not require the knowledge of all the parameters of the model, and even of some
functions involved in the model. This is why such observers are also called unknown-
inputs observers. The theory of unknown-inputs observers has been mainly studied
for linear systems [99, 39, 139]. Very few general results are available for nonlinear
systems (this research field is today largely open).

The existence of observers without the possibility of fixing arbitrarily the speed of
convergence, as in Examples 4.3 and 4.5, is connected to the property of detectability
(see for instance [135, 9]), which is a weaker than observability: a system

(S) :

{
ẋ = f(x)
y = h(x)

is detectable if for any pair of solutions xa(·), xb(·) of (S), one has{
h(xa(t)) = h(xb(t)), t ≥ 0

}
⇒ lim

t→+∞
xa(t)− xb(t) = 0 .

For linear dynamics ẋ = Ax, y = Cx that are not observable, there exists a
Kalman decomposition [109] i.e. an invertible matrix P such that

PAP−1 =

[
A11 0
A21 A22

]
, CP−1 =

[
C1 0

]
with A11 ∈ Ml×l, C1 ∈ M1×l where l < n is the rank of the observability matrix O
recalled in (2.4), such that the subsystem ż = A11z, y = C1z is observable. Then,
the system is detectable when the matrix A22 is Hurwitz. This is exactly the case of
Example 4.3 with l = 1.

5. Practical and numerical considerations.

5.1. Practical identifiability. Till now we have studied structural identifiabili-
ty/observability . While structural identifiability is a property of the model structure,
given a set of outputs, practical identifiability is related to the actual data. In partic-
ular, it is a measure of the amount of information contained in those data.

A model can be structurally identifiable, but still be practically unidentifiable due
to poor data quality, e.g., bad signal-to-noise ratio, errors in measurement or sparse
sampling [155]. Structural identifiability means that parameters are identifiable with
ideal (continuous, noise-free) data. While structural identifiability is a prerequisite
for parameter identification, it does not guarantee that parameters are practically
identifiable with a finite number of noisy data points.
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Moreover, parameter estimation requires using numerical optimization algorithms.
The distance, for the problem considered, to the nearest ill-posed problem, [60, 96],
i.e., the conditioning of the problem, can challenge the convergence of algorithms.
Another source of practical unidentifiability is the lack of information from the data,
i.e., the signal from the data does not satisfy the persistence of excitation [121]. This
is the case when the observation is near an equilibrium [19].

In this section we use sensitivity analysis and results from asymptotic statistical theory
to study practical identifiability. We refer to previous surveys and papers on the topic
[45, 17, 18, 55, 20]. Our purpose here is to give an intuitive account of these techniques.

5.1.1. Rationale for using sensitivity analysis. Practical identifiability is
often assessed in terms of confidence intervals on parameters [203]. Confidence inter-
vals can be derived from the Fisher Information Matrix (FIM) [27]. More specifically,
the covariance matrix (Σ) of the estimated parameters may be approximated as the
inverse of the FIM. The diagonal elements of Σ ≈ FIM−1 correspond to the variance of
the parameter estimates. Their square-roots (the standard deviations) give confidence
intervals on the parameters, thus providing information on practical identifiability.

In the least-squares framework, the Fisher Information Matrix can be expressed
in terms of sensitivity matrices, that we define below.

5.1.2. Observed system. We consider that the initial condition x0 is unknown.
Unless otherwise specified, the term “parameter” now refers to both the parameter θ
and the initial condition x0, i.e. Θ = (θ, x0). We make explicit the dependence of the
state variables x and y on Θ to clarify the following derivations.

(5.1)


ẋ(t,Θ) = f(x(t,Θ), θ), x(0,Θ) = x0,

θ̇(t) = 0, θ(0) = θ,

y(t,Θ) = h(x(t,Θ), θ).

with x ∈ Rn, y ∈ Rm and θ ∈ Rp.

5.1.3. Sensitivity analysis. We wish to quantify how the observed variable
y(t,Θ) changes for a small parameter variation ∆Θ.

We denote the Jacobian of the observation y(t,Θ) with respect to the parameter
Θ as

χ(t,Θ) =
∂y

∂Θ
(t,Θ) .

This m× (n+ p) matrix is called the sensitivity matrix.
By linearization (first-order Taylor approximation), one can write

∆y(t,Θ) = χ(t,Θ) ∆Θ.

Side remarks. Reid [158] defined a parameter vector as “sensitivity identifiable”
if the above equation can be solved uniquely for ∆Θ. This linear problem is well
known: if χ has maximal rank then the solution is given by means of the Moore-
Penrose pseudo-inverse χ+ = (χT χ)−1χT :

∆Θ = χ+(t,Θ) ∆y(t,Θ).

It is also well known [86] that the sensitivity of this solution is ruled by the condition
number κ2(χ) = σmax/σmin with σmax and σmin respectively the greatest and smallest
singular value of χ (which are the corresponding eigenvalues of χTχ).
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5.1.4. Ordinary Least Squares. Now we consider a set of M observations Yi,
i = 1, . . . ,M , that have been obtained at times ti. We assume that the observation
is given by

Yi = y(ti,Θ) + Ei,

with the error Ei assumed to be a random variable satisfying the following assump-
tions:

• the errors Ei have mean zero E[Ei] = 0;
• the errors have a constant variance var(Ei) = σ2;
• the errors are independent and identically distributed.

The Fisher Information Matrix, for the preceding defined observations, is defined as

(5.2) FIM(Θ, σ) =
1

σ2

M∑
i=1

χ(ti,Θ)T χ(ti,Θ).

Solving the ordinary least square (OLS) equations gives an estimator Θ̂OLS of the
parameter Θ:

(5.3) Θ̂OLS = arg min
Θ

M∑
i=1

[Yi − y(ti,Θ)]
2

Even though the error’s distribution is not specified, asymptotic statistical theory can
be used to approximate the mean and variance of the estimated Θ (a random variable)
[170, 20]: the bias-adjusted approximation for σ2 (with n+ p “parameters”) is

(5.4) σ̂2
OLS =

1

M − (n+ p)

M∑
i=1

[
Yi − y

(
ti, Θ̂OLS

)]2
.

5.1.5. Confidence intervals. The above approximation of the error variance
can be used to further approximate the parameter covariance matrix Σ:

(5.5) Σ̂ :=
[
FIM

(
Θ̂, σ̂2

OLS

)]−1

.

The standard error (SE) for Θ̂OLS can be approximated by taking the square roots of
the diagonal elements of the covariance matrix Σ: for all k = 1, . . . , n+ p,

(5.6) SE
(

Θ̂OLS(k)
)

=

√
Σ̂kk .

Finally, to compute the 95% confidence interval for the k-th component of the param-
eter vector Θ̂OLS with n+ p “parameters”, one may use the Student’s t−distribution
with M − (n+ p) degrees of freedom: letting

ζ(k) = t
M−(n+p)
0.025 × SE

(
Θ̂OLS(k)

)
,

the confidence interval is defined as

Θ̂OLS(k)− ζ(k) < Θ̂OLS(k) < Θ̂OLS(k) + ζ(k) .

From these formulas it appears that the conditioning of the Fisher Information
Matrix plays an essential role. Huge confidence intervals give indications about the
practicality of the identification.



IDENTIFIABILITY AND OBSERVABILITY IN EPIDEMIOLOGICAL MODELS 29

5.1.6. Computing the sensitivity matrix. The sensitivity matrix χ(t,Θ),
with Θ = (θ, x0), is obtained by integrating an ODE. The components of the ODE to
be integrated depend on whether one differentiates with respect to θ or x0.

Differentiating with respect to θ. The first part of the ODE is given by

∂y

∂θ
(t, θ, x0) =

d

dθ
h(x(t, θ, x0), θ) =

∂h

∂x

∂x

∂θ
(t, x0, θ) +

∂h

∂θ
(x(t, θ, x0), θ).

The Jacobian
∂h

∂x
is a m× n matrix while

∂h

∂θ
is a m× p matrix.

We then have to compute the n× p matrix

z(t,Θ) :=
∂x

∂θ
(t, θ, x0) =

∂x

∂θ
(t,Θ) .

Let A(t,Θ) and B(t,Θ) be the following time-dependent n × n and n × p matrices,
respectively:

A(t,Θ) :=
∂f

∂x
(x(t,Θ), θ) ,

and

B(t,Θ) :=
∂f

∂θ
(x(t,Θ), θ) .

It is well known [93] that z(t) is the solution of the linear matrix equation:

ż(t,Θ) = A(t,Θ) z(t,Θ) +B(t,Θ),

with the initial condition z(0,Θ) = 0n×p (a zero matrix of size n× p).
Differentiating with respect to x0. The second part of the ODE is given by

∂y

∂x0
(t, θ, x0) =

∂

∂x0
h(x(t, θ, x0), θ) =

∂h

∂x

∂x

∂x0
(t, θ, x0).

Let

w(t,Θ) :=
∂x

∂x0
(t, θ, x0) =

∂x

∂x0
(t,Θ) .

Based on the same reference [93], w(t,Θ) is solution of the linear matrix ODE

ẇ(t,Θ) = A(t,Θ)w(t,Θ),

with the initial condition w(0,Θ) = Idn×n (the identity matrix of size n).
Full system. To summarize, one has to solve the following system in dimension

n2 + np+ n

(5.7)


ẋ(t,Θ) = f(x(t,Θ), θ), x(0,Θ) = x0,

ż(t,Θ) = A(t,Θ) z(t,Θ) +B(t,Θ), z(0,Θ) = 0n×p,

ẇ(t,Θ) = A(t,Θ)w(t,Θ), w(0,Θ) = Idn×n,

with A(t,Θ) =
∂f

∂x
(x(t,Θ), θ) and B(t,Θ) =

∂f

∂θ
(x(t,Θ), θ) .

For large systems, the computation of the different Jacobians can be prohibitive, in
this case automatic differentiation software has to be used.
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5.1.7. Some case studies. In this section, we consider two classical examples
as case studies. These examples have been used in many books of mathematical
epidemiology, e.g. [137].

Case 1. Influenza in a boarding school. Our first example is an outbreak of
influenza in a United Kingdom boarding school which occurred in 1978 [38]. In [137]
the parameters β, γ are identified by an unspecified “best-fit” algorithm. A more
complete analysis is done in [30], where the analysis is done using sensitivity analysis
and asymptotic statistical theory. In [127] the same example is considered. Different
sources exist for the data [31, 30, 59] with small differences.

Using the figure in [38] and the Plot Digitizer software, we got an approximation
of the data. It was reported that N = 763, and the conditions at the start of this
outbreak were S0 = 762 and I0 = 1. We used the following data, in which time t is
in day and i(t) denotes the number of infectious people at time t.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13
i(t) 1 6 26 73 222 293 258 237 191 124 68 26 10 3

Specifically, we considered model (3.4) with k = 1 (all infectious are assumed to
be observed). We obtained the following OLS estimation, as given by the Scilab

software:
β ≈ 1.9605032, γ ≈ 0.4751562

(see the numerical code in Appendix C). The fit is shown in Figure 1.

Figure 1. Boarding School example.

We computed the 95% confidence intervals using the formulas given in the preceding
section: (5.2), (5.3), (5.4), (5.5), (5.6), up to a few changes due to the fact that
the initial conditions x0 = (S0, I0) are assumed to be known in this example (see
Appendix C). We find:

β ≈ 1.9605032± 0.0731602 ,

γ ≈ 0.4751562± 0.0408077 .
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One can obtain approximately the same results using the likelihood profile method
to compute confidence intervals [27], assuming normally distributed errors. However,
it is well known that the profile method quickly becomes impractical for model with
more than two parameters [27], which is the rule rather than the exception, as will be
the case in the following example. This is why we stick to the FIM method. Lastly,
we note that the condition number of the FIM is approximately equal to 3.80 in this
example.

Case 2. Plague in Bombay. Our second example is the Bombay Plague of 1905–
1906 [112]. We collected the data from [53, Table IX], over the same period as [112]
(Dec. 17 to Jul. 21). The form of the data is presented in the following table, in
which time t is in week, and ṙ(t) denotes the number of death per week at time t.

t 0 1 2 3 4 5 6 · · · 24 25 26 27 28 29 30
ṙ(t) 8 10 12 16 24 48 51 · · · 106 64 46 35 27 28 24

We consider that the number of death per week is the same as Ṙ(t) = γI(t),
meaning that all infections lead to death, which is a reasonable assumption in this
context [14]. Therefore, we consider model (3.4) with k = γ. In this example, not only
the parameters β and γ, but also the size of the population, N , as well as the initial
conditions, S0 and I0, are unknown [14]. According to Theorem 3.1 (and Remark
3.2), the model is neither observable nor identifiable. However, the model is partly
identifiable in the sense that S0, I0, γ and β̃ = β/N are structurally identifiable.
Starting from an arbitrary initial guess, we obtained the following OLS estimation,
as given by the Scilab software:

β̃ ≈ 0.0000855 , γ ≈ 3.7161743 , S0 ≈ 48113.13 , I0 ≈ 1.4213612 ,

(see the numerical code in Appendix D). The fit is shown in Figure 2.

Figure 2. Plague in Bombay example.

Proceeding as in the previous example, we obtained the following 95%-confidence
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intervals:

β̃ ≈ 0.0000855± 0.0015784,

γ ≈ 3.7161743± 25.255243 ,

S0 ≈ 48113.13± 593794.26,

I0 ≈ 1.4213612± 34.439929 .

The confidence intervals are huge, which means that we can have absolutely no
confidence in the estimated values of the parameters, even though the fit looks good
and these parameters are structurally identifiable in principle. In practice, one can
show that many other and very different combinations of the parameters can yield
approximately the same fit. Note that if we did as if the initial conditions were known,
the confidence intervals on β̃ and γ would be reasonable, as in the previous example.
In this example, the condition number of the FIM is approximately 9.14 × 1024,
meaning that the problem is “sloppy” [42]; note however that while it is usual that a
model is both sloppy and practically non-identifiable, this is not always the case [52].
Altogether, we can conclude that there is a severe practical identifiability issue in this
classical example.

5.1.8. Discussion. The SIR model of Kermack-McKendrik has been studied in
a series of papers [46, 45, 47, 35] where the problem of observability/identifiability
is approached from the statistical point view: addressing parameter identifiability by
exploiting properties of both the sensitivity matrix and uncertainty quantification in
the form of standard errors. In this series of papers, structural observability and
identifiability were not explicitly addressed. For example in [47] the authors identify
(S0, I0, β/N, γ) based on incidence observations - akin to equation (3.5) with k = 1 -
which we have proved to be structurally identifiable (see Theorem 3.3). Similarly in
[35] the authors seek to identify (S0, I0, β, γ) which, with N known, are structurally
identifiable in principle. However the authors encounter practical identifiability is-
sues. This is a typical example of strictly practical unidentifiability (as in our second
example, the Plague in Bombay).

Although a structural observability and identifiability analysis should be done as
a prerequisite to a practical identifiability analysis, it does not suffice. Moreover,
when doing practical identifiability analyses, the error structure of the data should be
considered. For instance, sensitivity analyses can be extended to non-constant error
variance through Generalized Least Squares (GLS), which makes it possible to test
different ways of weighting errors [46]. An additional issue may occur when the output
signal is not sufficiently informative (i.e., not persistently exciting [121]). For example
when the data correspond to states near unobservability, e.g., near an equilibrium. In
those cases, one has to wait to have data sufficiently far from equilibrium.

To conclude, the problem of observability and identifiability, either structural or
practical, is far from being simple, even in relatively simple SIR models with seemingly
good quality data [46]. Of course, the more complex the model, the more parameters
there are to identify, the more serious the problem of identifiability.

5.2. Observers in practice. In this section, we show how the various observers
presented in Section 4 behave in practice, and the role of the tuning parameters. Up
to know, we have assumed the measurements to be perfect i.e. not tainted with any
noise. Since integration has good “averaging” properties, an observer is expected
to filter noise or inaccuracies in the measurements. However, we will see that the
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filtering capacity of an observer is related to his convergence speed, which often leads
to a “precision-speed” dilemma in the choice of the observer or his settings.

Let us underline that when identifiability/observability cannot be proved theo-
retically or is too difficult to be proven analytically, one can still look for an observer
and study its asymptotic convergence, theoretically or numerically.

5.2.1. Observers with linear assignable error dynamics. We illustrate the
observer (4.6) of the age-structured model (4.5) on simulations, for the following values
of the parameters.

a1 a2 m1 m2 m3 k r̄min r̄max

0.1 0.1 0.05 0.07 0.07 1 0.9 1.1

The following code is used to compute the gain vector G for a set of desired
eigenvalues.

a1=0.1;a2=0.1;m1=0.05;m2=0.07;m3=0.07;

Sp=0.3*[-0.3,-0.33,-0.36];

A=[-a1-m1,0,0;

a1,-a2-m2,0;

0,a2,-m3];

C=[0,0,1];

B=[0;0;1];

Obs=[C;C*A;C*A*A];

L=inv(Obs)*B;

P=[L,A*L,A*A*L];

Abar=inv(P)*A*P;

sigma=coeff(poly(Sp,’x’));

G=P*(-sigma(1:3)’-Abar(:,3));

Figure 3 shows convergence for a moderately negative spectrum, while Figure 4
shows the acceleration of convergence obtained for a spectrum located further to the
left in the complex plane. For the same choice of gains, Figures 5 and 6 show the
effect of noise on the y(·) measurements. It can be seen that a faster convergence
is more sensitive to noise and loses accuracy. In practice, one often has to make a
compromise for the choice of the observer’s setting.
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Figure 3. Sp(A+GC) = {−0.3,−0.33,−0.36} without measurement noise

Figure 4. Sp(A+GC) = {−0.6,−0.66,−0.72} without measurement noise
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Figure 5. Sp(A+GC) = {−0.3,−0.33,−0.36} with measurement noise

Figure 6. Sp(A+GC) = {−0.6,−0.66,−0.72} with measurement noise

5.2.2. Observers with partially assignable error dynamics. The observer
given in (4.8) for the intra-host malaria model (2.11) is illustrated here on real data,
as one can see for instance on Figure 7.

As already mentioned in Remark 4.4, the speed of convergence of this observer
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Figure 7. Example of patient S1204: Measures (data) of peripheral parasitaemia are plotted
with red solid line, The estimations delivered by the observer (4.8) are plotted with blue dashed
line for the estimated sequestered parasitaemia, and with black dotted line for the estimated total
parasitaemia. The gain used is L = (0, 5, 5, 0, 0, 0, 0)T . Sp(Ā − LC) = {−10,−µS ,−µM ,−µ5 −
γ5,−µ4 − γ4,−µ3 − γ3,−µ2 − γ2 − γ1}.

cannot be tuned as fast as desired. However, this is quite satisfactory in practice.
Let us also underline that the observer does not require the reconstruction of the
parameter β, although this parameter is identifiable (see Section 2.4). This is a
strength of this observer, because the parameter β could switch or fluctuate with
time.

5.2.3. Observers with asymptotic convergence. We illustrate on simula-
tions the behavior of the asymptotic observer (4.10) of the SIR model with fluctuating
rates (4.9), for the following values of the parameters.

β ρ ν µ N

0.4±0.08 0.2±0.04 0.05 0.05 1000

Here β and ρ are functions of time chosen randomly in between the bounds given
in the table. Figures 8 and 9 show that the observer has a convergence relatively
insensitive to measurement noise, but the speed of convergence is slow because the
exponential decay of the error is equal to µ, which is not adjustable.
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Figure 8. without measurement noise

Figure 9. with measurement noise

Unlike the observers in previous sections, let us underline that the present observer
is not based on a ŷ−y innovation. Therefore, one is not informed of the quality of the
estimate over time, which is a price to pay to have a observer insensitive to unknown
variations of the epidemic parameters β, ρ.

5.2.4. High gain observer. The non-linear observer (4.15)-(4.15) of the clas-
sical SIR model (4.14) is illustrated on simulations for the following values

β ρ N

0.4 0.1 10000

where the y cumulative measures were made discretely every day (rounded to the
nearest integer). In order to obtain a time-continuous y(·) signal, we performed an
interpolation by cubic splines. Figure 10 shows the convergence of the observer for
the eigenvalues {−2,−2.2,−2.4}.



38 F. HAMELIN, A. IGGIDR, A. RAPAPORT, G. SALLET

Figure 10. Observer simulations (top: variables S, I, R and their estimates; bottom: coordi-
nates zi with measurements points on the left)

.

We also simulated the observer when the measurements are corrupted by random
counting errors up to ±5 individuals per day (see Figure 11).

Figure 11. Observer simulations with noisy measurements

As for the adjustable observer in Section 5.2.1, these simulations show the dilemma
accuracy versus speed of the estimation in presence of measurement noise.

Appendix A. Proof of Lemma 4.1.

The proof is adapted from [8].
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Let us first consider pairs (Ā, C̄) of the canonical form known as Brunovsky’s
form

Ā =



0 · · · · · · · · · 0 −an
1 0 · · · · · · 0 −an−1

·
. . .

. . . · · ·

· ·
. . .

. . . · ·
· · · 1 0 −a2

0 · · · · · · 0 1 −a1


, C̄ =

[
0 · · · 0 1

]

where the ai are any numbers. Their observability matrices are lower triangular:

Ō =


1

0 ...

... ?
1


therefore invertible. It is easy to see that the characteristic polynomial of the matrix
Ā is given by

πĀ(ξ) = ξn + a1ξ
n−1 + · · ·+ an−1ξ + an

Indeed, ifX is a left eigenvector of Ā for an eigenvalue λ (possibly complex), XĀ = λX
gives

X2 = λX1,
X3 = λX2 = λ2X1,
...
Xn = λXn−1 = λn−1X1,
−anX1 − an−1X2 − · · · − a1Xn = λXn.

Thus the line vector X is of the form

X =
[

1 λ λ2 · · · λn−1
]
X1 with X1 6= 0

and λ verifies (
λn + a1λ

n−1 + a2λ
n−2 + · · ·+ an−1λ+ an

)
X1 = 0 .

Since X1 is non-zero, we deduce that the eigenvalues are roots of the polynomial

λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an = 0

which is of degree n and whose coefficient of λn is equal to 1.

The characteristic polynomial of the matrix Ā + ḠC̄, where Ḡ is a vector of Rn
with elements denoted ḡi, is written as follows

πĀ+ḠC̄(ξ) = ξn + (a1 − ḡn)ξn−1 + · · ·+ (an−1 − ḡ2)ξ + (an − ḡ1)

Thus, one can arbitrarily choose the n coefficients of this polynomial by choosing the
n elements of Ḡ, and thus freely assign the spectrum of the matrix Ā+ ḠC̄. For any
set Λ = {λ1, · · · , λn} of n real or complex numbers two by two conjugates, one has
just to identify the coefficients of the polynomial πĀ+ḠC̄ with those of

n∏
i=1

(ξ − λi) = ξn +

n∑
k=1

(−1)kσk(Λ)ξn−k
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Thus, we obtain

ḡi = an+1−i + (−1)n−iσn+1−i(Λ), i = 1 · · ·n

Let us now show that for any pair (A,C) such that O is full rank, there is an
invertible P matrix such that P−1AP = Ā and CP = C̄, where the pair (Ā, C̄) is in
the Brunovsky’s form. Consider the vector

L = O−1


0
...
...
1

 ⇒
{
CAkL = 0, k = 0 · · ·n− 2
CAn−1L = 1

and the matrix consisting of the concatenation of the columns

P = [L AL · · · An−1L]

We have

OL =



0
...
...
...
1


, OAL =


CAL
CA2L

...
CAn−1L
CAnL

 =



0
...
...
1
?

 , OA
2L =


0
...
1
?
?

 , · · ·

up to

OAn−1L =



1
?
...
...
...


Thus the OP matrix is of the form

OP =


1

0 ...

... ?
1


which shows that P is indeed an invertible matrix. Finally, the columns of the AP
matrix are

AP = [AL A2L · · · An−1L AnL]

Its first n− 1 columns are written as follows

[AL A2L · · · An−1L] = P



0 · · ·
1 0 · · ·

0
. . .

. . .
... 1 0
0 · · · 0 1





IDENTIFIABILITY AND OBSERVABILITY IN EPIDEMIOLOGICAL MODELS 41

By Cayley-Hamilton’s Theorem, we have πA(A) = 0, which allows us to write the last
column of AP as

AnL = −anL− an−1AL− · · · − a1A
n−1L = P


−an
−an−1

...
−a1


which shows that we have PA = ĀP . Finally, one gets

CP = [CL CAL · · · CAn−] = [0 · · · 0 1] = C̄

Then, for a vector Ḡ such that Sp(Ā+ ḠC̄) = Λ, we have Sp(P−1(Ā+ ḠC̄)P ) = Λ,
where P−1(Ā + ḠC̄)P = A + PḠC. We conclude that for the gain vector G = PḠ,
we have Sp(A+GC) = Λ.

Appendix B. Proof of Lemma 4.6.

The proof is adapted from [76].

Let X be a left eigenvector of A + GC for the eigenvalue λi. By writing X(A +
GC) = λiX, we obtain the n− 1 inequalities.

X1 = λiX2

X2 = λiX3

...
Xn−1 = λiXn

Thus Xn is necessarily non-zero and can be taken equal to 1, which gives

X =
[
λn−1
i λn−2

i · · · λi 1
]

We then obtain the n rows of the matrix Vλ1,··· ,λn
, which defines a matrix of change

of basis that diagonalizes the matrix A+GC.

Now let’s show how to determine the inverse of Vλ1,··· ,λn
. Let wij be the coeffi-

cients of V −1
λ1,··· ,λn

. The equality (V −1
λ1,··· ,λn

)(Vλ1,··· ,λn) = Id gives

(B.1)

n∑
k=1

wkjλ
nk
i = δij :=

∣∣∣∣ 0 si i 6= j
1 si i = j

For each j in {1, · · · , n}, let’s consider the polynomial

(B.2) Pj(X) =

n∑
k=1

wkjX
n−k

The conditions (B.1) amount to write Pj(λi) = δij , i.e. the polynomial Pj has n− 1
roots λi for i 6= j and Pj(λj) is equal to 1. So it has the following expression

Pj(X) =
∏
k 6=j

X − λk
λj − λk
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By identifying its coefficients with those of the expression (B.2), we obtain

(B.3) wij = (−1)i−1σi−1(Λ \ {λj})∏
k 6=j λj − λk

where the σk are the symmetric functions defined in (4.4).

Let
ϕ(λ1, · · · , λn) = λ1 + C||V −1

λ1,··· ,λn
||∞ + θ

The expression (B.3) shows that the norm ||V −1
λ1,··· ,λn

||∞ becomes arbitrarily large
when λi − λj approaches 0 (for i 6= j), which ensures the existence of numbers λn <
λn−1 < · · · < λ1 < 0 such as ϕ(λ1, · · · , λn) > 0. For λi = −αi (i = 1, · · · , n), we
obtain, for any j

lim
α→+∞

wij =

∣∣∣∣ 0 i < n
1 i = n

and ||V −1
−α,−α2,··· ,−αn |||∞ thus tends towards 1 when α tends towards +∞, which shows

the existence of numbers λn < λn−1 < · · · < λ1 < 0 such that ϕ(λ1, · · · , λn) < 0.
Finally, by continuity of ϕ, we deduce the existence of λn < λn−1 < · · · < λ1 < 0
such that ϕ(λ1, · · · , λn) = 0.

Appendix C. Implementation of the “Boarding School” example.

C.1. Derivation of the Fisher Information Matrix. In this example, we
consider x ∈ Rn with n = 2, y ∈ Rm with m = 1, i.e.,

x(t) =

(
S(t)
I(t)

)
, y(t) = I(t) ,

and θ ∈ Rp with p = 2, i.e.,

θ =

(
β
γ

)
.

We consider the following model, equivalent to model (3.4) with k = 1:

ẋ = f(x, θ) =

(
Ṡ

İ

)
=

(
fS(S, I, θ)
fI(S, I, θ)

)
=

(
−βSI/N

βSI/N − γI

)
, x(0) = x0 =

(
S0

I0

)
,

y = h(x, θ) = I .

We disregard Θ = (θ, x0) since the initial conditions are assumed to be known in this
example. The Jacobian of the observation with respect to the parameter θ is:

χ(t, θ) =
∂y

∂θ
(t) =

∂h

∂x

∂x

∂θ
(t) ,

since in this example,
∂h

∂θ
(t) = 0 .

This Jacobian has dimension m× p = 1× 2. We have

∂h

∂x
=
(

∂h
∂S

∂h
∂I

)
=
(

0 1
)
,
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and

z =
∂x

∂θ
=

(
∂S
∂β

∂S
∂γ

∂I
∂β

∂I
∂γ

)
.

This yields

χ =
∂h

∂x

∂x

∂θ
=
(

∂I
∂β

∂I
∂γ

)
.

Let {ti}, i = 0, 1, 2, . . . ,M , be the sampling times. Fisher’s Information Matrix is
defined as:

FIM(θ, σ) =
1

σ2

M∑
i=1

χ(ti, θ)
Tχ(ti, θ) ,

where σ2 is defined as the sum of the squared error (SSE) divided with M −p instead
of M − (n + p) as in equation (5.4), since the initial conditions are assumed to be
known in this example.

Computing Fisher’s Information Matrix. Let

A(t) =
∂f

∂x
=

(
∂fS
∂S

∂fS
∂I

∂fI
∂S

∂fI
∂I

)
=

(
−βI/N −βS/N
βI/N βS/N − γ

)
,

and

B(t) =
∂f

∂θ
=

(
∂fS
∂β

∂fS
∂γ

∂fI
∂β

∂fI
∂γ

)
=

(
−SI/N 0
SI/N −I

)
.

The matrix z can be computed by numerically solving the following system of ODE’s:

ẋ = f(x, θ) , x(0) = x0 ,

ż = Az +B , z(0) = 0n×p ,

which is a subsystem of (5.7) since the initial conditions are assumed to be known in
this example (i.e., we disregard w). In the following code, the entries of x and z are
indexed in this way:

x =

(
x1

x2

)
, z =

(
z3 z5

z4 z6

)
,

leading to
χ =

(
z4 z6

)
.

C.2. Numerical implementation. The code has been written with the Scilab
language and executed under SCILAB 6.0.02. It consists in a function for identifying
β and γ and using the lsqrsolve function which implements the Levenberg-Marquard
algorithm to perform ordinary least squares. We could have chosen the fminsearch

function which is an implementation of the Nelder-Mead algorithm, but this gives
exactly the same results. For solving ODE’s, Scilab uses the lsoda solver of ODEPACK.
It automatically selects between non-stiff predictor-corrector Adams method and stiff
Backward Differentiation Formula (BDF) method. It uses non-stiff method initially
and dynamically monitors data in order to decide which method to use.

We define the following functions in the Scilab environment:

2https://www.scilab.org/
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function [kguess_n,SSE]=identifKMK(OBS,T,kguess,N)

// kguess_n = [BETA;GAMMA]

t0=T(1);m=length(T);

[x,SSE]=lsqrsolve(kguess,errorKmcK,m,[1.d-8,1.d-8,1.d-5,1d9,0,100]);

nbparam=length(kguess)

kguess_n=x;

x0=[N-OBS(1);OBS(1)];

sol=ode(x0,t0,T,list(KmcK,x(1),x(2)));

kguess_n=kguess_n(:);

SSE=sum(SSE.^2)

xset("window",1)

sol1=ode(x0,t0,T(1):0.01:T($),list(KmcK,x(1),x(2)));

clf

plot((T(1):0.01:T($))’,sol1(2,:)’)

plot(T’,OBS,’ro’)

endfunction

function y=errorKmcK(k,m)

x0=[N-OBS(1);OBS(1)];x0=x0(:);

BETA=k(1);GAMMA=k(2);

sol=ode(x0,t0,T,list(KmcK,BETA,GAMMA));

predic=sol(2,:);

predic=predic(:);

OBS=OBS(:);

y=OBS-predic;

endfunction

function xdot=KmcK(t,x,BETA,GAMMA,N)

xdot=[-BETA/N*x(2),0;BETA/N*x(2),-GAMMA]*x

endfunction

Then, the Scilab session goes like this

--> load(’databoarding’)

ans =

T

--> OBS=dataBSFlu

OBS =

column 1 to 8

1. 6. 26. 73. 222. 293. 258. 237.

column 9 to 14

191. 124. 68. 26. 10. 3.

--> M=length(OBS);
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--> T=0:M-1;

--> N=763;

--> beta0=2;gamma0=0.5;param=[beta0,gamma0];

--> p=length(param);

--> [param,SSE]=identifKMK(OBS,T,param,N)

SSE =

4892.6472

param =

1.9605032

0.4751562

--> sigma2=SSE/(M-p)

sigma2 =

407.72060

--> BETA=param(1);GAMMA=param(2);

We then compute confidence intervals using the formulas (5.2), (5.3), (5.4), (5.5),
(5.6).

function FIM=fimKmcK(x0,T,BETA,GAMMA,sigma2)

// Compute the sensitivity matrix

x0=x0(:);t0=T(1);

X0=[x0;0;0;0;0]

sol=ode(X0,t0,T,list(JKmcK,BETA,GAMMA));

M=sol([4,6],:);

FIM=M*M’./sigma2;

endfunction

function xdot=JKmcK(t,x,BETA,GAMMA)

xdot(1)=-BETA*x(1)*x(2)/N

xdot(2)=BETA*x(1)*x(2)/N-GAMMA*x(2)

xdot(3)=-BETA*x(2)*x(3)/N-BETA*x(1)*x(4)/N-x(1)*x(2)/N

xdot(4)=BETA*x(2)*x(3)/N+(BETA*x(1)/N-GAMMA )*x(4)+x(1)*x(2)/N

xdot(5)=-BETA*x(2)*x(5)/N-BETA*x(1)*x(6)/N

xdot(6)=BETA*x(2)*x(5)/N+(BETA*x(1)/N-GAMMA)*x(6)-x(2)

endfunction

Then the Scilab session is

--> x0=[N-OBS(1); OBS(1)];
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--> FIM=fimKmcK(x0,T,BETA,GAMMA)

FIM =

974.5073 -523.73985

-523.73985 3132.2047

--> cond(FIM)

ans =

3.8082403

--> CovMAT=inv(FIM)

CovMAT =

0.0011275 0.0001885

0.0001885 0.0003508

--> t=cdft("T",M-p,0.975,0.025)

t =

2.1788128

--> confBETA=t*sqrt(CovMAT(1,1))

confBETA =

0.0731602

--> confGAMMA=t*sqrt(CovMAT(2,2))

confGAMMA =

0.0408077

Appendix D. Implementation of the “Plague in Bombay” example.

D.1. Derivation of the Fisher Information Matrix. In this example, we
consider x ∈ Rn with n = 2, y ∈ Rm with m = 1, i.e.,

x(t) =

(
S(t)
I(t)

)
, y(t) = I(t) ,

and θ ∈ Rp with p = 2, i.e.,

β̃ =
β

N
, θ =

(
β̃
γ

)
.

We consider the following model, equivalent to model (3.4) with k = γ:

ẋ = f(x, θ) =

(
Ṡ

İ

)
=

(
fS(S, I, θ)
fI(S, I, θ)

)
=

(
−β̃SI

β̃SI − γI

)
, x(0) = x0 =

(
S0

I0

)
,

y = h(x, θ) = γI .
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We consider Θ = (θ, x0) since the initial conditions are assumed to be unknown in
this example. The Jacobian of the observation with respect to the parameter Θ is:

χ(t,Θ) =
∂y

∂Θ
(t) =

∂h

∂x

∂x

∂Θ
(t) +

∂h

∂Θ
(t) ,

This Jacobian has dimension m× (p+ n) = 1× 4. We have

∂h

∂x
=
(

∂h
∂S

∂h
∂I

)
=
(

0 γ
)
,

∂h

∂Θ
=
(

∂h
∂β̃

∂h
∂γ

∂h
∂S0

∂h
∂I0

)
=
(

0 I 0 0
)
,

and

∂x

∂Θ
=

( ∂S
∂β̃

∂S
∂γ

∂S
∂S0

∂S
∂I0

∂I
∂β̃

∂I
∂γ

∂I
∂S0

∂I
∂I0

)
.

This yields
∂h

∂x

∂x

∂θ̃
= γ

(
∂I
∂β̃

∂I
∂γ

∂I
∂S0

∂I
∂I0

)
.

Therefore,

χ = γ
(

∂I
∂β̃

∂I
∂γ + I ∂I

∂S0

∂I
∂I0

)
.

Let {ti}, i = 0, 1, 2, . . . ,M , be the sampling times. Fisher’s Information Matrix is
defined as:

FIM(Θ, σ) =
1

σ2

M∑
i=1

χ(ti,Θ)Tχ(ti,Θ) ,

where σ2 is defined as in equation (5.4), since the initial conditions are unknown in
this example.

Computing Computing Fisher’s Information Matrix. We make the following de-
composition:

∂x

∂Θ
=
(

∂x
∂θ

∂x
∂x0

)
=
(
z w

)
,

with

z =
∂x

∂θ
=

( ∂S
∂β̃

∂S
∂γ

∂I
∂β̃

∂I
∂γ

)
, and w =

∂x

∂x0
=

(
∂S
∂S0

∂S
∂I0

∂I
∂S0

∂I
∂I0

)
.

Letting

A(t) =
∂f

∂x
=

(
∂fS
∂S

∂fS
∂I

∂fI
∂S

∂fI
∂I

)
=

(
−β̃I −β̃S
β̃I β̃S − γ

)
,

and

B(t) =
∂f

∂θ
=

 ∂fS
∂β̃

∂fS
∂γ

∂fI
∂β̃

∂fI
∂γ

 =

(
−SI 0
SI −I

)
.

The FIM can be computed via numerically solving the following system of ODE’s:

ẋ = f(x, θ) , x(0) = x0 ,

ż = Az +B , z(0) = 0n×p ,

ẇ = Aw , w(0) = Idn×n ,
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which repeats equation (5.7). In the following code, the entries of x, z, and w are
indexed in this way:

x =

(
x1

x2

)
, z =

(
z3 z5

z4 z6

)
, w =

(
w7 w9

w8 w10

)
,

leading to

χ = γ
(
z4 z6 + x2 w8 w10

)
.

D.2. Numerical implementation. Although the code is very similar the one
provided in the previous example (Appendix C), we provide it for convenience, as it
required a number of small changes.
We define the following functions in the Scilab environment:

function [kguess_n ,SSE]=identifKMK(OBS,T,kguess)

t0=T(1);m=length(T);

[x,SSE]=lsqrsolve(kguess,errorKmcK,m,[1.d-8,1.d-8,1.d-5,1d9,0,100]);

nbparam=length(kguess);

kguess_n=x;

x0=[kguess_n(3);kguess_n(4)];

sol=ode(x0,t0,T,list(KmcK,x(1),x(2)));

kguess_n=kguess_n(:);

SSE=sum(SSE.^2);

xset("window",1);

sol1=ode(x0,t0,T(1):0.01:T($),list(KmcK ,x(1),x(2)));

clf;

plot((T(1):0.01:T($))’,kguess_n(2)*sol1(2,:)’,’k’);

plot(T’,OBS ,’ko’)

legend(["$\Large \gamma I(t)$", "$\Large\mbox{Data}$"])

ylabel("$\Large \mbox{number of deaths per week}$","fontsize",3);

xlabel("$\Large \mbox{time }t\mbox{ (in week)}$","fontsize",3);

endfunction

function y=errorKmcK(k,m)

x0=[k(3);k(4)];

x0=x0(:);

B=k(1);

GAMMA=k(2);

sol=ode(x0,t0,T,list(KmcK,B,GAMMA));

predic=GAMMA*sol(2,:);

predic=predic(:);

OBS=OBS(:);

y=OBS-predic;

endfunction

function xdot=KmcK(t,x,B,GAMMA)

xdot=[-B*x(2),0; B*x(2),-GAMMA]*x

endfunction

Then, the Scilab session goes like this
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--> load(’databombay’)

ans =

T

--> OBS=dataBSFlu

OBS =

column 1 to 9

8. 10. 12. 16. 24. 48. 51. 92. 124.

column 10 to 16

178. 280. 387. 442. 644. 779. 702.

column 17 to 23

695. 870. 925. 802. 578. 404. 296.

column 24 to 31

162. 106. 64. 46. 35. 27. 28. 24.

--> M=length(OBS);

--> T=0:M-1;

--> S0=15000;I0=7;gamma0=0.6;b0=8e-5;//Initial guesses

--> param=[b0,gamma0,S0,I0];//With b=beta/N

--> p=length(param);

--> [param,SSE]=identifKMK(OBS,T,param,N)

SSE =

106336.49

param =

0.0000855

3.7161743

48113.13

1.4213612

--> n=2;sigma2=SSE/(M-(n+p))

sigma2 =
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4253.4597

--> B=param(1);GAMMA=param(2);

We then compute confidence intervals using the formulas (5.2), (5.3), (5.4), (5.5),
(5.6).

function FIM=fimKmcK(x0,T,B,GAMMA,sigma2)

// Compute the sensitivity matrix

x0=x0(:);t0=T(1);

X0=[x0;zeros(4,1);eye(2,2)(:)];

sol=ode(X0,t0,T,list(JKmcK,B,GAMMA));

M=GAMMA*sol([4,6,8,10],:);

M(2,:)=M(2,:)+GAMMA*sol(2,:);

FIM=M*M’./sigma2;

endfunction

function xdot=JKmcK(t,x,B,GAMMA)

xdot (1)=-B*x(1)*x(2);

xdot (2)=B*x(1)*x(2)-GAMMA*x(2);

xdot (3)=-B*x(2)*x(3)-B*x(1)*x(4)-x(1)*x(2);

xdot (4)=B*x(2)*x(3)+(B*x(1)-GAMMA)*x(4)+x(1)*x(2);

xdot (5)=-B*x(2)*x(5)-B*x(1)*x(6);

xdot (6)=B*x(2)*x(5)+(B*x(1)-GAMMA)*x(6)-x(2);

xdot (7)=-B*x(2)*x(7)-B*x(1)*x(8);

xdot (8)=B*x(2)*x(7)+(B*x(1)-GAMMA)*x(8);

xdot (9)=-B*x(2)*x(9)-B*x(1)*x(10);

xdot (10)=B*x(2)*x(9)+(B*x(1)-GAMMA)*x(10);

endfunction

Then the Scilab session is

--> x0=[param(3);param(4)];

--> FIM=fimKmcK(x0,T,B,GAMMA)

FIM =

1.100D+14 -2.117D+09 196924.7 92108921.

-2.117D+09 40885.251 -3.7835134 -1826.2845

196924.7 -3.7835134 0.0003533 0.1603199

92108921. -1826.2845 0.1603199 118.22324

--> cond(FIM)

ans =

9.141D+24

--> CovMAT=inv(FIM)

Warning: Matrix is close to singular or badly scaled.
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CovMAT =

0.0000006 0.0093978 -220.96547 -0.0128142

0.0093978 150.37071 -3535242.5 -204.997

-220.96547 -3535242.5 8.313D+10 4820745.

-0.0128142 -204.997 4820745. 279.63056

--> t=cdft("T",M-(n+p),0.975,0.025)

t =

2.0595386

--> confB=t*sqrt(CovMAT(1,1))

confB =

0.0015784

--> confGAMMA=t*sqrt(CovMAT(2,2))

confGAMMA =

25.255243

--> confS0=t*sqrt(CovMAT(3,3))

confS0 =

593794.26

--> confI0=t*sqrt(CovMAT(4,4))

confI0 =

34.439929
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