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Abstract

In this document we introduce the concepts of Observability and Iden-

tifiability in Mathematical Epidemiology. We show that, even for sim-

ple and well known models, these properties are not always fulfilled.

We also consider the problem of practical observability and identi-

fiability which are connected to sensitivity and numerical condition

numbers.

1 Introduction

1.1 Prologue

Many papers in Epidemiology have the following structure :

• A model is proposed,

• some parameters are given, extracted from literature,

• then the remaining unknown parameters are estimated by fitting the
model to some observed data.

Fitting is done usually by using an optimisation algorithm and use for exam-
ple a least square method or a maximum likelihood estimation.
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To validate the parameters estimation, the algorithm is used to recover the
parameters from noisy simulated data obtained from the model with some
values given to the parameters.

The objective of this paper is to show that this procedure does not prove
anything and that an examination of the identifiability of parameters is a
prerequisite before a numerical determination of parameters. We will review
different methods to study identifiability and observability and then consider
the problem of numerical identifiability. Our touchstone will be the most
famous, however simple, model in Mathematical Epidemiology, SIR model of
Kermack and Mckendrick [44]
Parameter identifiability analysis addresses the problem of which unknown
parameters of an ODE model can uniquely recovered from observed data. We
will show that, even for very simple models, identifiability is not automatic.

The problem of identifiability for Epidemiological models is rarely addressed:
A research in MathScinet with

• EPID* AND IDENTIFIABILITY gives only 4 papers,

• biolog* AND epid* shows 30 papers,

• on the other hand epidem* AND parameter returns 68 publications.

Only a small part of all these publications address the problem of identifiabil-
ity. Usually the paper proposes an algorithm and very often the identifiability
is not tackled.
The following publications consider the problem of identifiability in Epidemi-
ological models. However the majority is published outside biomathematics
journals.

[4, 5, 11, 17, 16, 28, 29, 39, 48, 56, 58, 60, 65, 64, 75, 76, 77, 78, 82, 83]

1.2 Definitions

The question of parameter identifiability originates from control theory and
is related to observability and controllability [69]. The first appearance is in
Kalman [42] and is now sixty years old. Identifiability is related to observ-
ability : observability of a model is the ability to reconstruct the state of a
system from the observation. In the language of dynamical systems with in-
puts and outputs, which is the standard paradigm in control systems theory,
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an input-output relation is defined. The inputs, are also called the control,
are considered as known. We will only consider system without control, which
is a peculiar case where the control is a singleton. When controls are known,
with more information observability/identifiability is sometimes more easy.
These problems has been rarely considered for uncontrolled systems whereas
many methods have been developed for controlled systems.
To be more precise, let consider the following system in R

n

Σ























ẋ(t) = f(x(t))

x(0) = x0

y(t) = h(x(t)),

(1)

where we have denoted ẋ(t) =
d

dt
x.

The ODE ẋ = f(x) is the dynamics of the system and x is called the state.of
the system. To avoid technical details we will assume that for any ini-
tial condition x0, there exists an unique solution denoted x(t, x0) such that
x(0, x0) = x0 and

d

dt
x(t, x0) = f(x(t, x0)).

We will assume that this solution x(t, x0) is defined for any time t ≥ 0,
which is often the case in epidemiological models. This often the case with
epidemiological models for which state space is a positively compact invariant
set. Then we will assume that the system is defined on a positively invariant
compact set Ω, which means that any solution starting in Ω stays in the
compact and this implies that the solution is defined for ant t ≥ 0. This
situation is also often encountered in biological systems.
The output (or observation) of the system is given by h(x) where h is a
differentiable function h : x ∈ R

n 7→ h(x) ∈ R
m . The set R

m is the
observation space. We will denote by h(t, x0) or y(t, x0) the observation at
time t.

Definition 1.1 (Observability)
The system (1) is observable if for two distincts initial condition x1 6= x2
there exists a time t ≥ 0 such that
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h(x(t, x1)) 6= h(x(t, x2))

Two states are called indistinguishable if for any t ≥ 0 we have

h(x(t, x1)) = h(x(t, x2)).

Indistinguishability means that it is impossible to differentiate the evolution
of the system, from to distincts initial conditions, by considering only with
the observation.
Now we consider a system depending on a parameter θ ∈ R

p























ẋ(t) = f(x(t), θ)

x(0) = x0

y(t) = h(x(t, θ)).

(2)

Identifiability is the ability to recover the unknown parameters from the ob-
servation. We denote by x(t, x0, θ) the solution of (2) for an intiial condition
x0.

Definition 1.2
System (2) is sais to be identifiable if for any distincts parameters θ1 6= θ2,
there exists t ≥ 0 such that

h(x(t, x0, θ1) 6= x(t, x0, θ2).

There is an obvious similarity between observability and identifiability. Ac-
tually we will say that (2) is observable and identifiable if the augmented
system























ẋ(t) = f(x(t), θ)

θ̇ = 0

y(t) = h(x(t, θ)).

(3)

is observable.
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Actually for an epidemiological model it is unlikely to know the initial con-
ditions and it has long been recognized that initial conditions play a role in
identifying the parameters [26, 50, 74, 83, 66].

What we have called identifiability is also known as structural identifiability.
This expression has been coined by Bellman and K.J. Åström [10] in 1970.
This is to stress that identifiability depends only on the dynamics and the
observation, under ideal conditions of noise-free observations and error-free
model. This is a mathematical and a priori problem [39].

1.3 History

The observability concept has been introduced by Kalman [42] in 1960 for
linear systems.
For nonlinear systems, observability has been characterized circa 1970 [35,
37]. The definition is given by Hermann and Krener in the framework of
differential geometry.

Identifiability and structural identifiability was introduced in compartmental
analysis in 1970 by Richard Bellman and K.J. Åström [10] in a paper in
Mathematical Biosciences.
The problem of identifiability is now addressed in books [49, 81, 80, 79]. Nu-
merical identifiability of linear control system is implemented in MATLAB,
SCILAB.

Identifiability of nonlinear systems has been addressed in different context
and the first systematic approach is by Tunali and Tarn [74] in the differential
geometry framework.

The introduction of the concepts of differential algebra in control theory is
due to Michel Fliess around 1990 [26, 27, 31] followed by Torkel Glad [33, 50].

Identifiability is a general problem which has received different names de-
pending on the community :

• observation, identification;

• data assimilation ;

• inverse problems;

• parameters estimation.
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Data assimilation is used in en meteorology and oceanography. [46, 72].
A direct problem is considering a model which, when introducing an in-
put, gives an observed output. The parameters are considered as known.
Conversely the inverse problem is to reconstruct the parameters from the
knowledge of the output [73].
Finally expression of parameters estimation is currently used in the proba-
bility and statistics domain.

1.4 Identifiability in Mathematical Epidemiology

Identifiability is well known in Biomathematics from 1970, as we have already
said, with the paper of Bellman and Åström.
In the other hand, considering identifiability in Mathematical Epididemiolgy
is relatively recent [75, 60, 83, 65, 56, 28, 29].
The first paper, to our knowledge, considering identifiability of an intra-host
model of HIV is by X. Xia et C.F. Moog [83], and has been published in 2003
in the control journal IEEE Trans. Automat. Control.

2 Observability and Identifiability

We consider the following system (1)

Σ







ẋ = f(x)

y = h(x),
(4)

Where we assume again to avoid technical details that f and g are C∞ func-
tions. The function f : Rn −→ R

n is called a vector field.
The classical definition of Lie derivative of a C∞ function g : Rn −→ R with
respect to the vector field f is given by

Lf(g) =
d

dt
g(x(t, t0, x0))

∣

∣

∣

∣

t=0

= 〈∇g(x)|f(x)〉,

with ∇g is the gradient of g and 〈 | 〉 the inner product of Rn.
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2.1 Observability

2.1.1 Observability with Differential Geometry

We denote by h = (h1, · · · , hm) the components of the observation function
h.
Each function hi is a function C∞ from the state space R

n to R.

Definition 2.1 ([37])
The observation space O of (4) is the subspace of the vector space C∞(Rn,R)
containing hi and invariant by the Lie derivative Lf of the dynamics

The observation space is generated by the different Lie derivatives of the hi :

O = {hi, · · · ,Lf hi, . . . ,L
k
f , hi . . . }{span,i=1,··· ,m}

We have the following result

Theorem 2.1 For an analytic system (i.e., f and h are analytics functions)
the observability is equivalent to the separation of the points of the state space
R

n by O i.e., if x1 6= x2 there exists g ∈ O such that g(x1) 6= g(x2).

Proof
By analyticity we have

y(t, x0) = h(x(t, x0)) =
∑

n≥0

tn

n!

dn

dtn
h(x(t, x0))

∣

∣

∣

∣

t=0

.

but, by induction we have the following relation

dn

dtn
h(x(t, x0))

∣

∣

∣

∣

t=0

= Ln
f .h (x0).

Then a necessary and sufficient condition to distinguish x1 6= x2 is that there
exists n such that

Ln
f .h (x1) 6= Ln

f .h (x2).

�

We have defined a global observability concept, but it might be necessary
to travel a considerable distance or for a long time to distinguish between
points of Rn. Therefore a local concept of observability is introduced [37].
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Definition 2.2
The system (4) Σ is said locally observable if, for any x0, for any open set U
containing x0, x0 is distinguishable from all the points of U for the restricted
system Σ|U .
The system (4) Σ is locally weakly observable if for any x0 there exists an
open set U containing x0, such that for any neighborhood V with x0 ∈ V ⊂ U ,
x0 is distinguishable for Σ|V from all the points of V .
Intuitively a system is locally weakly observable if one can instantaneously
distinguish each point from its neighbors.

The local weak observability can be characterized

Definition 2.3 [71]
We define

dO = {dψ | ψ ∈ O}

Definition 2.4
A system Σ is said to satisfy the observability rank condition in x if the
dimension of dO in x satisfies

dim (dO(x)) = n

dO is generated by the gradients of the Lk
fh.

Theorem 2.2 (Hermann-Krener [37])
If Σ satisfies the observability rank condition (ORC) at x0 then Σ is locally
weakly observable at x0.

Proof
Since dim (dO(x)) = n, there exists n functions ϕ1, · · · , ϕn ∈ O such that
the gradients dϕ1, · · · , dϕn are linearly independant.
Therefore the function Φ : x 7→ (ϕ1(x), · · · , ϕn(x)) has a nonsingular Jaco-
bian in x0.
As a consequence there exists an open set U containing x0 where Ψ is a
bijection . (t)=
On any open set V ⊂ U assume that we have h(x(t, x0)) = h(x(t, x1)) for
x0 6= x1 and t > 0 sufficiently small. Then by derivation we have Lk

f(x0) =

Lk
f(x1) for any k therefore ϕi(x0) = ϕi(x1) which is a contradiction.

�
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Proposition 2.1
For an analytic system if the observability rank condition is satisfied every-
where the system is locally observable, hence observable

Proof
This is due to the fact that h(x(t, x0)) is sum of his Taylor sequence . The
rank condition implies, by the same reason as before, that the coefficients of
the Taylor sequence separates points. �

Exemple 2.1
We consider the SIR model of Kermack-McKendrick [44] for which the pa-
rameters β, γ are assumed to be known :



















































Ṡ = −β
S

N
I

İ = β
S

N
I − γ I

Ṙ = γ I

y = γ I,

(5)

with N = S + I + R We have ẏ = γ (β
S I

N
− γ I). A generating set of

O contain I and β
S I

N
. These two functions, when I 6= 0, separates points

(using R = N − S − I). The system is observable on R
3 \ R× {0}.

With the gradients the matrix











0 β
I

N

1
S

N











is non singular if I 6= 0. The rank condition is satisfied on R
2 \R× {0}.
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2.1.2 Observability and Differential algebra

From 1970 differential geometry was the tool for studying nonlinear systems
in control theory. Circa 1985 Michel Fliess propose to use Differential Algebra
for the analysis of nonlinear systems.

Intuitively observability for system (4) is that the state x can be expressed
as an algebraic expression of y and his derivatives y(k) [27, 26].

Definition 2.5 [27, 26]
A system is said to be algebraically observable if the states can be recon-
structed by solving algebraic equations depending only of the observation and
his derivatives.

Note that the systems under consideration are rational systems, i.e., the
functions f and h are rational functions [26, 27]. A more precise definition
can be given using the formalism of Differential Algebra. Differential Algebra
can be considered as a generalization to differential equations of the concepts
of commutative algebra and algebraic geometry.
This theory, founded by Ritt, is an appropriate framework fo definition of
algebraic observability. We will not go in further details and the interested
reader can consult Michel Fliess publications [30, 32].

Exemple 2.2
Consider the SIR model (5).
This system evolves in the positively invariant set (which makes biological
sense)

K = {(S, I, R) | S > 0 , I > 0 , N = S + I +R}

which implies y 6= 0.
Then we have the relations (we can divide by y)

S

N
=

1

β

ẏ + γ y

y
,

S

N2
=

1

β2

ẏ2 − y ÿ

y3
.

We recover N as a rational expression of y, ẏ, ÿ, then also for S and R. The
system is algebraically observable in K.
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2.1.3 A Link between the two definitions

Consider a state-output system

Σ







ẋ = f(x)

y = h(x),
(6)

where f and h are polynomial or rational functions in x.

We have two rational relations x − f(x) = 0 and y − h(x) = 0. The last

relation can be derived ẏ −
∂

∂x
h ẋ = ẏ −

∂

∂x
(h) f(x) = 0. By induction we

will obtain a sequence of rational relations Qj(x, y) = 0.

It can be shown [4, 27, 68] that to obtain algebraic observability it is sufficient
to consider the matrix













h1
∂

∂x1
Lf(h1) · · ·

∂

∂xn
Lf(h1)

...
...

. . .
...

hn
∂

∂x1
Ln−1

f (h1) · · ·
∂

∂xn
Ln−1

f (h1)













and to check that his rank is n the dimension of the state space.

This is the Herman-Krener criterion for local weak observability. But the
system is analytic.
Is the number of Lie derivative bounded ? It is proved that it is sufficient
compute no more than n− 1 derivatives [4, 27, 68].

Theorem 2.3 [27, 71]
Consider (6) where f and g are rational functions. To check the observability
rank condition (n− 1) Lie derivatives are sufficient.

Proof
A detailed proof is given in cited references. However an outline goes like
this :
Assume that k is the first integer such that {dh, dLfh, · · · , dL

k
fh} are linearly

dependent with rational coefficients
Then there exists k + 1 functions, not all of them zero, gi ∈ Rx such that
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k
∑

i=0

gi .dL
i
fh = 0

Particularly, with k definition, we have gk 6= 0. We will apply Lf to this
relation

k
∑

i=0

Lfgi. dL
i
fh+ gi.Lf dL

i
fh = 0.

It is well known that d and Lf commute. Therefore Lf dL
i
fh = dLi+1

f h.

Because the system is rational Lfgi ∈ Rx. Since gk 6= 0 this prove that dLk+1
f

is a linear combination of the previous Lie derivatives
This ends the proof.

�

The method of Differential Algebra promoted by Fliess et al. has the advan-
tage to be implemented inside a computer algebra software. Actually as soon
as the system is in high dimension, the computations get rapidly involved.
There exists now some software [68, 11, 17, 43].

2.2 Identifiability

It can happen that a system is identifiable and however not observable

Exemple 2.3
The following academic systems is identifiable and however not observable



























ẋ1 = −α (x1 + x2)

ẋ2 = α (x1 − x2)

y =
1

2
(x21 + x22)

(7)

We have ẏ = −α y, ÿ = α2 y and y(p) = (−1)p αp y. The Jacobian

Jac [h,Lf h,L
2
f h] =





x1 −α x1 α2 x1
x2 −α x2 α2 x2
0 α y α2 y



 ,
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is clearly of rank 2.
α is differentially algebraic on the field R〈y〉. Identifiability is in R

2 \ {0},
this is immediate with α = −ẏ/y.

2.2.1 Identifiability and observability

Since very often the initial conditions are not known, or partially known, we
will consider in the remaining, the problem of identifiability and observability.
Then we will consider the augmented system (3).

2.2.2 Characteristic set

We consider a polynomial system























ẋ(t) = f(x(t), θ)

x(0) = x0

y(t) = h(x(t, θ)),

(8)

with x ∈ R
n, θ ∈ R

p and y ∈ R
m. We will consider differential polynomi-

als, i.e., polynomial in n+m variables and their derivatives, with coefficients
in R. For example ẋ− f(x, θ) and ẏ = h(x, θ) are differential polynomials in
R〈x, y〉. We consider the parameter θ ∈ R

p as a constant, i.e., θ̇ = 0.
We have n+m differential polynomial equations, n states andm observations.
Intuitively we can obtain, by differentiating-multiplying by any differential
polynomial-adding, an infinity of new equations. In other words the n +m
equations generate a differential ideal I. Any x, y satisfying (6) will satisfy
these equations in the ideal I.

The idea behind the differential algebra techniques is to get a finite set of
differential polynomials which describes and summarizes all the information
in the generated ideal. Such a set C is called a characteristic set. The
details of the complete algorithm for constructing a characteristic set is rather
involved and can be found in the references [45, 50, 62].

Among all the polynomials in I we can consider the set Ic of differential
polynomials with only the observation y. Since Ic = R[y] ∩ I this set is an
ideal. It is possible to obtain a characteristic set for Ic, namely C∩R[θ]〈x, y〉.
This set is obtained by eliminating the state variables from the equations [25].
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Actually, since we have no input, this characteristic set is the differential
polynomial in y with the lower order [41].
This set is also called, in the literature the input-output relation of the system
[5, 11, 54, 40].
Making the polynomials monic in the input-output relations give a set of
coefficients ci(θ) and a map c : Rp −→ R

ν which is called the exhaustive
summary of the model [59, 64, 66, 5]. The injectivity of c from the parameter
space is only a necessary condition for identifiability [66].

However the input-output relations do not depend of the initial conditions
and since the identifiability is dependent of these initial conditions it can
happen that, with c injective, the system is not identifiable.
Some authors [55, 75, 28] use the injectivity of c to ascertain the identifiability,
which is false [66] section 3.3. A theorem is even given (Th 3.1 [28]). The
following example shows the injectivity of c is not sufficient.

Exemple 2.4 ( input-output relation is not sufficient)
consider the following compartmental system























ẋ1 = −a21 x1 + a12 x2

ẋ2 = −a12 x2

y = x1.

(9)

We have

ẏ = −a21 x1 + a12 x2 ÿ = −a21 ẏ − a212 x2 ÿ = −a21 ẏ − a12 (ẏ + a21 y)

The input-output relation is

ÿ + (a12 + a21) ẏ + a12 a21 y = 0.

Clearly the application (a21, a12 7→ ((a12+a21, a12 a21) is injective and however
the system is not identifiable if x2 = 0.
This can be seen in two ways :

• it is easy to see that
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ÿ2 − ẏ ÿ = (ẏ2 − y ÿ) a21 a12,

ẏ ÿ − y y(3) = −(ẏ2 − y ÿ) (a12 + a21).

Then we need to have (ẏ2 − y ÿ) 6= 0 to recover the parameters.

(y ÿ − ẏ2) = a12 x2 [(a21 − a12) x1 − a12 x2] .

Clearly we need x2 6= 0. We need also a12 6= 0 for observability, since
a12 x2 = ẏ + a21 x1.

• The second way is to compute the Jacobian of [y, ẏ, ÿ, y(3)] for local
identifiability and observability.

We have easily

det
[

Jac [y, ẏ, ÿ, y(3)]
]

= −a212 (a12 − a21) [(a21 − a12) x1 − a12 x2] x2

2.3 How many measures to identify ?

In the case of analytic systems an answer has been given by par D. Aeyels
[2, 1] and E. Sontag [70]:
For an analytic system with r parameters it is sufficient to randomly choose
2 r + 1 measures to distinguish two different states..
This means that generically ( hence the term randomly ) 2 r + 1 measures
are sufficient.

3 The classical SIR model of Kermack-Mckendrik

The SIR model of Kermack et McKendrick [44] is certainly one of the most
famous model in Epidemiology. It is given and studied in all of the classic
books of Mathematical Epidemiology. This model appears in the book of
Bailey, which is probably the first book in Mathematical Epidemiology. Some
examples can be found in [3, 12, 13, 14, 21, 47, 52, 57].
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The figure, in the original paper, fitting the model to plague data in Bombay
during the 1906 year, is one of the most famous picture in Epidemiology.
A research with SIR in MathScinet returns 11 106 articles.

In the quoted books the SIR model is fitted to data :

• In [12, 13, 14] the model is fitted with the Great Plague in Eyam on
the year 1666;

• in [21] Influenza in England and Wales;

• in [47] a fitting is done with simulated noisy data;

• in [52, 12] where a chapter is devoted to fitting epidemiological models
to data, a SIR model is used to represent an influenza outbreak in an
English boarding school.

More recently two publications [6, 51] try to fit the Kermack-McKendrick
model to the plague in Bombay.

As already said, before entering in algorithms to adjust parameters, an iden-
tifiabilty analysis must be done.

3.1 The different forms of the SIR model

The original model [44] is






















Ṡ = −β̃ S I

İ = β̃ S I − γ I

Ṙ = γ I

(10)

Where S, I, R represent respectively the number of susceptibles, infectious
and removed individuals.
This model can also be found in another form



































Ṡ = −β
S

N
I

İ = β
S

N
I − γ I

Ṙ = γ I

(11)
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Where N = S + I +R is the total population.

One can pass from the first model to the other with β̃ =
β

N
. This is not

harmless since N , which is a parameter, is hidden in β̃.
For the basic reproduction ratio, N intervenes

R0 =
β̃ N

γ
=
β

γ

One of the greatest sources of confusion is the introduction of the term pseudo
mass action by de Jong, Diekmann et Heesterbeek [23]. They correctly
pointed out that β S I represents the true mass action if S and I repre-
sent densities of hosts (numbers per unit area). This was the case for the
original paper, for which the system was intended to model the plague in
Bombay, which is an island. Several laboratory studies have found that the

β S I model is inadequate for describing pathogen [53]. The term β
S

N
I is

often called frequency-dependent or density dependent transmission.

3.2 Observability-Identifiability of the SIR model

It is surprising that the observability and identifiability of the original Kermack-
Mckendrick model has not been more studied, since this system has been used
may times to model an outbreak of infection. The observability and iden-
tifiability of the model SIR, with demography and constant population, has
been first studied in 2005 [29] :



































Ṡ = µN − β
S

N
I − µS

İ = β
S

N
I − (γ + µ) I

Ṙ = (γ + µ) I

(12)

This model has 7 parameters, including one for the observation k I. The
result in [29] is that the system is neither observable nor identifiable.

In [76] the identifiability of (11) is addressed assuming that that the initial
conditions are known, and use only the input-output relation to conclude.
This is incorrect, as we have seen, and moreover the input-output relation has
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an error, as we will see later. With the initial conditions the identifiability is
quite immediate if I or γ I is observed, as we shall see but of dubious interest.

Consider the SIR model



































Ṡ = −β
S

N
I

İ = β
S

N
I − γ I

y = k I

(13)

The last equation has been omitted since R = N −S− I .Observation is k I,
in other words only a percentage of infectious individuals are observed. This
situation is used for example in [51, 63].

Theorem 3.1
The parameters of the system are S, I, N, β, γ, k.
The system (13) is neither observable, nor identifiable.

The functions k I,
β

k N
,
β S

N
, γ are identifiable, equivalently (k S, k I, γ,

β

k N
)

are identifiable.

Particularly if N is known and if k = 1 or k = γ the system is identifiable
and observable.

If k = γ then S, I, γ,
β

N
are identifiables.

Remarque 3.1
We could believe that if k = γ, with N unknown, then (10) is observable.
This is wrong because we reduce the system with Ṙ = γ I. Certainly S, I are
observable, but not R. Moreover R0 is not observable.

Proof
We will show that the parameters and the state can be expressed with the
observation and their derivatives [27, 26]. Otherwise the identifiability will
not be obtained
We consider the system on

I = {(s, I) | S > 0, I > 0, S + I < N}
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This open set I is positively invariant. In any equilibrium point (S0, 0) the
system is not observable. Therefore we assume y 6= 0 and also, for the same
reason, S 6= 0.
We have (with S 6= 0 and I 6= 0)

y = k I
ẏ

y
=
β S

N
− γ = h1 −

ḣ1
y

=
β2

kN2
S = h2

−
ḣ2
y

=
β3

k2N3
S = h3

h3
h2

=
β

k N
=
β̃

k

h22
h3

=
β S

N
= β̃ S

h1 −
h22
h3

= γ.

All the derivative of y can be expressed as rational expressions of k I,
β

k N
,
β S

N
, γ.

Therefore the only informations obtained will be k I,
β

k N
,
β S

N
, γ which are

identifiable functions.

Now if N is known with k = 1 or k = γ, the parameters β, γ, S, I, R are poly-
nomial functions of (y, ẏ, ÿ), hence the system is observable and identifiable.

Equivalently the variables (k S, k I, γ,
β

k N
) are identifiable.

�

3.2.1 Using input-output relations

We use elimination

ẏ =
β S

N
y − γ y which gives

β S

N
=
ẏ + γ y

y

ÿ = −
β2 S

k N2
y2 +

β S

N
ẏ − γ ẏ which gives ÿ = −

β

k N
y (ẏ + γ y) +

ẏ + γ y

y
ẏ − γ ẏ

Equivalently

ẏ ÿ +
β

k N
y2 ẏ +

β

kN
γ y3 − ẏ2 = 0

We have already seen, with the notation in the preceding proof, that
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β S

N
= γ + h1.

This shows that k I,
β

k N
,
β S

N
, γ are identifiable.

3.2.2 Using ORC Herman-Krener condition

Consider the application Φ : (S, I, β, γ, k) −→ (y, y(1), y(2), y(3), y(4)). We

denote by JacΦ =
∂Φ

∂(S, I, β, γ, k)
the Jacobian of Φ. Then det(JacΦ) = 0

which proves that the system in not identifiable neither observable.
On the other hand with Ψ : (S, I, β, γ) −→ (y, y(1), y(2), y(3)), denoting by

JacΨ =
∂Ψ

∂(S, I, β, γ)
the Jacobian of Ψ,

we have det(JacΨ) = −
k4 β4 S I6

N5
6= 0.

This proves, with N and k known the local observability and identifiability.

3.2.3 SIR with cumulative incidence

Very often the observation are the cumulative numbers of infectious individ-
uals. Is the SIR model still observable ?
Then we consider the system where the observation is given by

y(t) = k

∫ t

0

S(τ) I(τ)

N
dτ. (14)

This problem has been addressed for the SIR model with demography with
constant population in [29]. Also is considered the identifiability with known
initial conditions for (13) in [76] using input-output relations.

Theorem 3.2
The system (13) with cumulative incidence observation is neither observable,
nor identifiable.

The parameters (k S, k I, γ,
β

k N
) are identifiable.

When N is known and when k = 1 or k = γ the system is observable and
identifiable.
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Proof
A straighforward computation gives

ẏ = k
β S I

N
h2 =

ÿ

ẏ
=
β S

N
−
β I

N
− γ

h3 =
ḣ2
ẏ

=
β

N
γ I − 2

β

kN
y h4 = ḣ3 = −

β

N
γ2 I +

β

k N
γ y − 2

β

k N
ẏ

Finally

β

k N
γ y + 2

β

k N
ẏ + γ h3 + h4 = 0.

Differentiating this relation, if ẏ2 − y ÿ 6= 0, gives

2
β

k N
=

(γ ḣ3 + ḣ4)− (γ h3 + h4)

ẏ2 − y ÿ
.

Since the zeroes of an analytic function are isolated we have to prove that

ẏ2 − y ÿ 6≡ 0. If this is the case, this implies that
d

dt

(

ẏ

y

)

= 0. Hence

y = C eλ t, therefore h2 = λ, which implies S−I = constant, a contradiction.
Since we have

k S − k I =
γ + h2

(
β

k N
)

k S k I =
ẏ

(
β

k N
)

.

this proves our claim.
�

4 Practical observability and identifiability

Till now we have studied structural observability/identifiability.While struc-
tural identifiability is a property of the model structure, given a set of out-
puts, practical identifiability is related to the experimental data. In particu-
lar, it is a measure of the amount of information contained in these data.

A model can be structurally identifiable, but still be practically unidentifiable
due to poor data quality, e.g., bad signal-to-noise ratio, errors in measure-
ment or sparse sampling [61]. If structural identifiability is a prerequisite for
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parameter identification, however this means that, if parameters are identifi-
able with ideal data (continuous, noise-free data ) it does not guarantee that
they will be practically identifiable with a finite number of noisy data points.
Moreover estimation of parameters will use numerical algorithm and the the
distance, for the problem considered, to the nearest ill-posed problem, [24, 38]
i.e., conditioning of the problem will have an important role in the conver-
gence of the algorithm.

In this section we will use sensitivity analysis and asymptotic statistical the-
ory to study the practical identifiability. There are many good surveys and
papers on this question [18, 7, 8, 22, 9].

We will begin by an intuitive introduction. As usual we consider the observed
system























ẋ(t) = f(x(t), θ)

θ̇ = 0

y(t) = h(x(t, θ)).

(15)

with x ∈ R
n, y ∈ R

m and θ ∈ R
p.

We want to see what happens to the output for a small variation of the
parameters (including the initial condition, considered as a peculiar case of
parameter). By Linearization of the first order of the Taylor approximation,
for a ∆θ we can write

∆y(t, θ) =
∂y

∂θ
(t, θ)∆θ,

where
∂y

∂θ
(t, θ) is the Jacobian of the observation with respect of the

parameters (including the initial conditions). This Jacobian is a m× (2n+p)
matrix and is called the sensitivity matrix
Reid introduces the notion of sensitivity identifiability if this relation can be
solved uniquely in ∆θ. This linear problem is well known and if we denote

by A =
∂y

∂θ
and if rank(A) = 2n + p then the solution is given by means of

the pseudo-inverse A+ = (AT A)−1AT

∆θ = A+∆y = (AT A)−1AT ∆y.

22



It is also well known [34] that the sensitivity of this solution is ruled by the

condition number κ2(A) =
σmax

σmin

with σmax and σmin respectively the greatest

and smallest singular value of A (which are the corresponding eigenvalues of
ATA).

4.1 With Ordinary Least Squares

Now we assume that N observations has been obtained : Yi i = 1, · · · , N at
times ti. We assume that the obsevation is given by

Yi = y(ti, x0, θ) + Ei,

with the error Ei assumed to be a random variable satisfying the following
assumptions

• The errors Ei have mean zero E[Ei] = 0;

• the errors have a common variance var(Ei)σ
2;

• The error are i.i.d (independant and identically distributed)

The Fisher information matrix, for the preceding defined observations, is
given by

FIM(θ) =

N
∑

i=1

∂y

∂θ
(ti, θ)

T ∂y

∂θ
(ti, θ).

Solving the ordinary least square equations (OLS) gives an estimator θ̂OLS of
the parameter θ (to simplify the notations, it is implied that we incorporate
in θ the initial conditions) :

θ̂OLS = argmin
θ

N
∑

i=1

[Yi − y(ti, x0, θ)]
2

Even though the error’s distribution is not specified asymptotic statistical
theory can be used to approximate the mean and variance of the random
variable θ [67, 9] :

The bias adjusted approximation for σ2 (with p parameters) is given by
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σ̂2
OLS =

1

N − p

N
∑

i=1

[

Yi − y(ti, x̂0, θ̂OLS)
]2

.

This approximation of the variance is used to approximate the covariance
matrix Σ

Σ = σ̂2
OLS [FIM(θ)]−1 .

The standard error for θ̂OLS can be approximated by taking the square roots
of the diagonal elements of the approximation of the covariance matrix Σ

SE(θ̂OLS(k)) =
√

Σkk

For example the 95% confidence interval for the k-th component of the pa-
rameter θ̂OLS(k) for p parameters, we use the Student’s distribution with
N − p degrees of freedom

θ̂OLS(k)− tN−p
0.025 × SE(θ̂OLS(k)) < θ̂OLS(k) < θ̂OLS(k) + tN−p

0.025 × SE(θ̂OLS(k))

From these formulas it appears that the conditioning of the Fisher Informa-
tion Matrix plays an essential role. Huge confidence intervals give indications
about the practicality of the identification.
The sensitivity matrix is obtained integrating an ODE.

∂y

∂θ
(t, x0, θ) =

∂

∂θ
h(x(t, x0, θ) =

∂h

∂x

∂x

∂θ
(t, x0, θ).

The matrix Jacobian
∂h

∂x
is a m × n matrix. Now we have to evaluate the

n× p matrix
∂x

∂θ
(t, x0, θ).

It is well known [36] that
∂x

∂θ
(t, x0, θ) is the solution of the linear equation

d

dt

(

∂x

∂θ
(t, x0, θ)

)

=
∂f

∂x
(x(t, x0, θ))

(

∂x

∂θ
(t, x0, θ)

)

+
∂f

∂θ
(x(t, x0, θ)).

In other words if we denote by A(t) =
∂f

∂x
(x(t, x0, θ)) the depending of time

n× n matrix, by B(t) =
∂f

∂θ
(x(t, x0, θ)) the depending of time n× p matrix,
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then z(t) =

(

∂x

∂θ
(t, x0, θ)

)

the n × p matrix is solution of following matrix

linear equation

ż(t) = A(t) z(t) +B(t),

with the initial condition z(0) = 0.

For the dependency of the initial condition we have

∂y

∂x0
(t, x0, θ) =

∂

∂x
h(x(t, x0, θ) =

∂h

∂x

∂x

∂x0
(t, x0, θ).

With the same reference [36]
∂x

∂x0
(t, x0, θ) is solution of the linear equation

d

dt

(

∂x

∂x0
(t, x0, θ)

)

=
∂f

∂x
(x(t, x0, θ))

(

∂x

∂x0
(t, x0, θ)

)

.

Denoting w(t) =
∂x

∂x0
(t, x0, θ), w(t) is solution of the linear matrix equation

ẇ(t) = A(t)w(t),

with the initial condition w(0) = IdRn.

To summarize we have to solve the following system in dimension n2+np+n























































ẋ(t) = f(x(t), θ)

ż(t) = A(t) z(t) +B(t)

ẇ(t) = A(t)w(t)

x(0) = x0
z(0) = 0n×p

w(0) = Idn×n.

(16)

With A(t) =
∂f

∂x
(x(t, x0, θ)) and B(t) =

∂f

∂θ
(x(t, x0, θ)) .

For big systems the computation of the different Jacobians can be prohibitive,
in this case automatic differentiation software has to be used.
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4.2 With Generalized Least Squares

With Ordinary Least Squares constant variance has been assumed which may
be not appropriate for some data. A relative error, i.e., when the error is
assumed to be proportional to the size of the measurement, is an assumption
that might be reasonable when counting individuals in a population.

In this case we assume that the observation are [8, 20, 9, 15]:

Yi = y(ti, x0, θ) + y(ti, x0, θ)
ρ Ei.

The minimization is

L(x0, θ) =

N
∑

i=1

wi [Yi − y(ti, x0, θ)]
2 .

The values of the weight wi depend on the value of the model and are not
known. The process is carried with an iterated reweighted least squares

1. Estimate θ̂0 and x̂00 with an OLS step : w1 = 1

2. Set ρ = 2 and wi = 1/
[

y(ti, x̂
0
0, θ̂

]2 ρ

3. Form L(x0, θ) with these wj and estimate

(θ̂1, x̂
1
0) = argmin

θ,x0

L(x0, θ)

4. continue the procedure till the estimates (θ̂k, x̂
k
0) are sufficiently close

to each other, to obtain θ̂GLS .

With θ̂GLS, as in the OLS case, we can have an approximation of the corre-
lation matrix, using the Fisher information matrix with weights

FIM((x̂0)GLS, θ̂GLS) =

N
∑

i=1

1

y(ti, (x̂0)GLS, θ̂GLS)2 ρ
∂y

∂θ
(ti, (x̂0)GLS, θ̂GLS)

T ∂y

∂θ
(ti, (x̂0)GLS, θ̂GLS.

Then we set
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ΣGLS = σ̂2
GLS

[

FIM((x̂0)GLS, θ̂GLS)
]−1

,

with

σ̂2
GLS =

1

N − p

N
∑

i=1

1

y(ti, (x̂0)GLS, θ̂GLS)2 ρ

[

Yi − y(ti, (x̂0)GLS, θ̂GLS)
]2

.

The square roots of the diagonal elements of the approximation of the co-
variance matrix ΣGLS give the standard errors.

4.3 Remarks

This parts use asymptotic statistical theory. The Kermack-McKenrik SIR
model has been studied in a series of excellent papers [19, 18, 20, 15]. These
papers approach the problem of observability/identifiability from the statisti-
cal point view : addressing parameter identifiability by exploiting properties
of both the sensitivity matrix and uncertainty quantifications in the form of
standard errors. Therefore the problem of the structural observability/iden-
tifiability is missed. For example in [20] the author identify (β/N, γ, S, I)
which we have proved to be identifiable. On the other hand in [15] the au-
thors try to identify (S, I, N, β, γ) which is, as we have seen, hopeless. It is
not surprising that the authors conclude : In this example, if we assume the
initial conditions are known, our ability to estimate β and γ is good. Yet,
once we have to estimate one or both initial conditions, our ability to esti-
mate either β or γ worsens considerably. Given that in most situations initial
conditions are not known exactly, parameter identifiability has the potential
to be of widespread concern.

As already said a structural observability/identifiability must be done as a
prerequisite. Then pursued by a sensitivity and uncertainty analysis. When
doing this analysis the error structure of the data must be addressed. For
example in [19] it is shown that using ρ = 1 in the GLS process gives better
estimates for influenza data.
Another issue is when the output signal is not sufficiently informative ( i.e.,
not persistently exciting [50]). For example when the data correspond to
states near unobservability, e.g., near an equilibrium.
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The problem of observability/ identifiability either theoretical (structural) or
practical is not simple. More parameters are fitted, identifiability becomes a
more serious problem.
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