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Abstract:

The use of deep learning techniques for map generalisation raises new problems regarding the evaluation of the results:
(1) images are used as input/output instead of vector data; (2) the deep learning processes do not guarantee results that
follow cartographic principles; (3) the deep learning models are black boxes that hide the causal mechanisms. Also, deep
learning intern evaluation is mostly based on the realism of the images and the pixel classification accuracy, and none of
these criteria is sufficient to evaluate a generalisation process. In this article, we propose an adaptation of the constraint-
based evaluation to the images generated by deep learning. Six raster-based constraints are proposed for a mountain road

generalisation use case.
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1. Introduction

Map generalisation recently gave in to the trendy deep learn-
ing techniques. These techniques seek to generate images
of generalised maps from images of ungeneralised maps,
using examples of maps already generalised to train the
model. (Feng et al., 2019) used a supervised learning net-
work to learn the segmentation of buildings generalised
shape. Then, a similar approach was proposed for moun-
tain road generalisation (Courtial et al., 2020). Otherwise,
an approach by image generation seems to be able to give
promising result for map generalisation, as shown by the
experiments to generate a map from aerial images (Isola et
al., 2017) and by the experiments about style transfer on
maps (Kang et al., 2019). Among the challenges raised by
these new techniques, the evaluation is particularly impor-
tant (Touya et al., 2019). The current techniques to evalu-
ate map generalisation (Mackaness and Ruas, 2007, Stoter
et al., 2014) do not really apply to the output image of a
deep learning generalisation model: (1) images are used as
input/output instead of vectors, and even if the conversion
to vector before evaluation is possible it is not adapted for
an evaluation that aims to guide the learning process; (2)
the deep learning processes do not guarantee results that
follow cartographic principles, so additional realism con-
straint are needed; (3) the deep learning models are black
boxes that hide the causal mechanisms, which makes the
evaluation moreover interesting to identify the weakness
of each network. Also, deep learning evaluation is mostly
based on the realism of the images and the pixel classifi-
cation accuracy, and none of these criteria are sufficient to
evaluate a generalisation process in practice.

2. Use case

In this short paper, we propose an adaptation of the constraint-

based evaluation to the images generated by deep learning,
with a use case on images of generalized mountain roads
for a display at the 1:250,000 scale. We implemented all
our constraints in Python. We based our experiments on
images of roads from the Alps extracted from IGN (the
French national mapping agency) maps at 1:250,000 (ref-
erence of generalization) and 1:25,000 (input) scale. Our
images (input and output) represent 2.5 km?2 in 256%256
pixels, so the resolution is around 10 metres. The width
of the road symbols on these images corresponds to their
importance and varies between 1 and 6 pixels. We evaluate
the images generated by three different deep learning mod-
els, i.e., CycleGAN (Zhu et al., 2017), Pix2Pix (Isola et
al., 2017), and U-net (Courtial et al., 2020). Except for the
colour constraint that uses the real prediction output (red
roads on a white background), constraints are all adapted
to square images post-processed in black (background) and
white (roads).

3. Workflow

We draw our inspiration from the traditional process of au-
tomatic evaluation that aims to provide a measure that is
both understandable by a human and a computer (Mack-
aness and Ruas, 2007). We try to adapt classical con-
straints to guarantee the realism of the image, the preser-
vation of the road initial characteristics, and, of course, the
legibility of the mountain roads. But the challenge is to
compute the constraints satisfaction in raster mode. We
also try to keep our constraints balanced between these
tree objectives in order to ensure the quality of the eval-
uation (Zhang, 2012). As we only deal with pixels and
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Figure 1. Workflow for constraint definition.

images (eventually split in several sub-images) the level of
the evaluation cannot be managed as for classical evalua-
tion in term of micro, meso or macro objects, but there still
are three levels: the evaluation is at the pixel level, at the
level of a set of homogeneous pixels, or more generally,
at the image level. We applied the method in Figure 1 in
order to create and validate our constraints. After the con-
straint definition, we search for identifying the associated
characteristics on the image and a way to measure them.
Then, we tested the measures on real images in order to
determine the optimal value of parameters. For the valida-
tion, we compare the evaluation value with our perceptual
evaluation for some real and fake images, but we have not
yet compared it with the evaluation from a user test.

4. Constraints

In the following paragraphs, we detail a proposition of
six constraints. There are two legibility constraints: first,
the generalized roads must be smoother than the initial
one; the second legibility constraint deals with the coa-
lescence problems frequently encountered with mountain
roads. Then, we want the information to be preserved to a
certain extent, especially the initial position and the struc-
ture of the road network. Finally, we introduce some addi-
tional constraints to avoid some artifacts we observed dur-
ing our experiments with deep learning: noisy colours and
shapes.

4.1 Smoothness

We propose to measure the smoothness of produced roads
using a closing operation (dilation followed by an erosion)
in mathematical morphology. It permits to fill in the con-
cave irregularities of the road shape (second column of
the Figure 2). Then, the deletion of the shape of the road
only lets the number of necessary pixels to make the road
smooth (white pixels on the third column of Figure 1). The
size of the closing determines the size of the biggest ir-
regularity we try to smooth; if we choose a threshold too
large, concave portions that are not irregularities might be
wrongly filled. This measure seems to work the best at the
scale of our use case with a closing value of three pixels
(30 meters). As the number of not smooth pixels is not
easy to interpret (correlated with the number of roads in
the image), we compute the ratio of the initial roughness
that is removed by generalisation instead.
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Figure 2. Effect of the closing on a road and its generalisa-
tion.

Road shape Coalescence
7

Initial image

Prediction

Figure 3. Effect of the coalescence measure, on a road and
its generalisation.

4.2 Coalescence

We propose to measure the coalescence of road symbols
using the following mathematical morphology operations:
first a dilation of roads of n pixels, then an erosion of size
n + 6 (the maximal width of roads in our images), and fi-
nally a dilation of 6 pixels. This process is illustrated on
Figure 3. The size n corresponds to the maximal distance
between two coalescent parts of roads from map specifica-
tions. For our use case, a threshold of five pixels gives the
best measure of coalescence.

4.3 Position accuracy

To measure position accuracy, the intersection between the
road pixels in the initial and in the generalised images is
computed. This is a classical measure to assess image seg-
mentation and determine which parts of the roads pixels
are common with the initial image. As displacement is
tolerated, and sometimes necessary, we can use a buffer
of size n around roads instead of just road pixels. This
threshold can be very large (around 20 pixels) because the
displacement offset can be large for mountain roads.

4.4 Continuity

We based the measure of continuity (or connectivity) preser-
vation on the number of sets of contiguous road pixels
and contiguous background pixels. Figure 4 illustrate how
these numbers can reveal changes in the structure.

The equation 1 shows how we combine these numbers of
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Figure 4. Number and roads and background pixel sets in
some cases of continuity loss.

contiguous parts to measure continuity preservation:

nroad;n;t — Nroadimage + NbacCkinis — nbackimage

nroad;n;t + nbackint

ey
Where nroad is the number of road sets in the image and
nback the number of sets of background pixels. This mea-
sure has two problems: first all changes are considered
equal, even the addition of very small sets. To solve the
first problem, we decided to count as a change only the ap-
pearance or the disappearance of sets larger than two pix-
els. Then, there is a border problem (illustrated in the last
column of Figure 3), when a road has bends at the border
of an image, these bends can be connected or disconnected
by a small displacement, without a real change in the struc-
ture.

4.5 Color

We want to make sure that the generated images do not
convey any unexpected information. In a map, a different
colour may convey a different object. So we propose to
measure if there is colour noise: pixel that are not roads
(red) or background (white). We have decided to use an
implementation of the CIEDE2000 distance between colours
(Sharma et al., 2004), because of its consistency with hu-
man colour perception. Then, we counted the quantity of
pixels that are visibly too distant from red or white (d > 9).

4.6 Noise

We also found that some deep learning models can gener-
ate some noise: isolated roads pixels that are not roads. We
counted the number of sets of contiguous road pixels that
are too small to be real roads (below 6 pixels).

5. How to use these constraints?

Depending on the objectives of the evaluation, the combi-
nation and analysis of these values will be different. For
example, when the aim is to compare different deep learn-
ing models, a discretisation would be useful to derive con-
straint levels of satisfaction (e.g. very good, good, medium,
bad, very bad); then it is easier to merge the constraint sat-
isfaction values into one or several synthetic values. How-
ever, if we want to identify the weaknesses of a model,
or detect if specific post-processes are required (removing
colour noise for instance), the discretisation can be used
but merging constraints is not necessary. Then, the evalua-
tion can also be used to control a model: these constraints
can be normalized and weighted to construct a loss func-
tion that controls how the deep learning internally assesses
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its results after each iteration. Finally, the evaluation can
help to build a complete map from the several image tiles
used in the deep learning models: as tiles cover similar
portions of space, the constraints could be used to decide
in which image the generalised output is the best one.

6. Conclusion

To conclude, we think that this work shows the applica-
bility of constraint-based evaluation on images generated
by deep learning. The next step would be to experiment
the use of these constraint in different evaluation scenarios
(comparison, triggering post-processes, monitoring the in-
ternal iterations. .. ), with a particular focus on a loss func-
tion that is specific to map generalisation. We also plan to
couple this constraint-based quantitative evaluation with a
user survey to make sure that these measures do reflect the
human perception of a “good map”.
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