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Abstract
Purpose – This paper aims to present the mathematical formulations of a magnetic inverse problem
for the electric arc current density reconstruction in a simplified arc chamber of a low-voltage circuit
breaker.
Design/methodology/approach – Considering that electric arc current density is a zero divergence
vector field, the inverse problem can be solved inWhitney spaceW2 in terms of electric current density Jwith
the zero divergence condition as a constraint or can be solved in Whitney space W1 in terms of electric vector
potential T where the zero divergence condition naturally holds. Moreover, the tree gauging condition is
applied to ensure a unique solution when solving for the vector potential in space W1. Tikhonov
regularization is used to treat the ill-posedness of the inverse problem complemented with L-curve method for
the selection of regularization parameters. A common mode approach is proposed, which solves for the
reduced electric vector potential representing the internal current loops instead of solving for the total electric
vector potential. The proposed inversion approaches are numerically tested starting from simulated magnetic
field values.
Findings – With the common mode approach, the reconstruction of current density is significantly
improved for both formulations using face elements in space W2 and using edge elements in space W1. When
solving the inverse problem in space W1, the choice of the regularization operator has a key role to obtain a
good reconstruction, where the discrete curl operator is a good option. The standard Tikhonov regularization
obtains a good reconstruction with J-formulation, but fails in the case of T-formulation. The use of edge
elements requires a tree-cotree gauging to ensure the uniqueness ofT. Moreover, additional efforts have to be
taken to find an optimal regularization operator and an optimal tree when using edge elements. In conclusion,
the J-formulation is to be preferred.
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Originality/value – The proposed approaches are able to reconstruct the three-dimensional electric arc
current density from its magnetic field in a non-intrusive manner. The formulations enable us to incorporate a
priori knowledge of the unknown current density into the solution of the inverse problem, including the zero
divergence condition and the boundary conditions. A common mode approach is proposed, which can
significantly improve the current density reconstruction.

Keywords Inverse problems, Finite element method, Whitney forms

Paper type Research paper

Introduction
Low voltage circuit breakers are used to protect people and electrical equipment in power
systems by switching off the fault electric current. The current interruption in circuit
breakers is characterized by electric arcs. When a fault current occurs in an electrical circuit,
an electric arc is ignited during the contacts opening process. Then the electric arc slides
between two electrodes due to the electromagnetic force and gas flow; finally, it is
extinguished in splitter plates (Yang, 2013; Chadebec et al., 2004). Current density
distribution in electric arcs gives us very important information to understand the
distribution of temperature, the erosion ratio of electrodes and the interaction of arcs with
surroundings. The corresponding magnetic field can be studied under magnetostatic
approximation (Wu et al., 2006). The better knowledge of the electric arc current density
helps to understand the complex physical behavior of arc plasmas.

At present, available diagnostic techniques to investigate the arc dynamics in a circuit
breaker include optical and magnetic methods. Optical diagnostic methods include charge-
coupled device (CCD) cameras (Lindmayer et al., 2006), optical fiber arrays (McBride et al.,
2010) and spectrum analysis (Hong et al., 2005), whereas the use of the spectrum analysis is
limited due to its low temporal resolution. CCD cameras and optical fiber arrays are able to
study the arc commutation and movement with high temporal and spatial resolution.
However, optical diagnostic techniques require transparent walls or holes drilled on the wall
in the experimental device, leading to dramatic effects on the characteristics of the arc
plasma (Shea, 2004). Optical methods are, therefore, intrusive and can only obtain the two-
dimensional optical images of the electric arc in a light pattern, which is not the current
density.

On the other hand, magnetic diagnostic techniques are fully non-intrusive methods. In
Brdys et al. (2002) and Toumazet et al. (2005), the electrodes and the arc column are simplified
to be a succession of two-dimensional linear current lines and the average arc positions are
obtained by measuring the magnetic field near the sidewall of the device. In Brdys et al.
(2010), the electric arc is modeled as a two-dimensional rectangular current sheet and the
current density distribution in the sheet is reconstructed from the magnetic field with a
deconvolution approach. However, these models are oversimplified compared with a realistic
electric arc and unable to determine the three-dimensional electric arc current density.

This work focuses on a non-intrusive diagnostic technique able to reconstruct the
three-dimensional arc current density from its magnetic field by solving a magnetic
inverse problem. Different formulations of the magnetic inverse problem are numerically
studied in Ghezzi et al. (2012) and Dong et al. (2018). However, a key point for this
approach is how to implement the zero divergence condition and the boundary conditions
for the reconstructed current density. To this scope, we apply Whitney elements in the
formulation of the magnetic inverse problem. The use of Whitney elements in the
identification of current distributions is already proposed to model bioelectric current
sources in electroencephalography and magnetoencephalography in (Tanzer et al., 2005;



Pursiainen et al., 2011; Bauer et al., 2015), but no condition on the current density
divergence is imposed.

In this work, the magnetic inverse problem is formulated with both face elements in
space W2 in terms of electric current density J and edge elements in space W1 in terms of
electric vector potential T. The implementations of the zero divergence condition and the
boundary conditions for both formulations are presented. The inverse problem is solved
with the help of Tikhonov regularization to address the ill-posedness. Comparisons between
J-formulation and T-formulation are carried out. Moreover, a common mode approach is
proposed to improve the reconstructions.

Forward and inverse problem formulations
Governing differential equations
A simplified arc chamber with two parallel electrodes is considered, as in Figure 1. A planar
sensor array is used to perform the magnetic measurements. We assume magnetostatic
conditions over the whole domain X, i.e. the displacement current is neglected due to the
low-frequency applications of low voltage circuit breakers. Therefore, the current density is
a zero divergence vector field:

div J ¼ 0; (1)

in the problem’s domainX, complemented by boundary conditions:

n � J ¼ 0 on SJ ; (2)

Figure 1.
Model geometry and
setup of the magnetic
sensor array



ð
SCi
n � JdS ¼ 6Itot on SCi (3)

on the boundary @X = SJ| SC0| SC1. As shown in Figure 1, SC0 is the terminal section of the
upper electrode where the current flows in and SC1 is the terminal section of the lower electrode
where the current flows out. SJ is the rest surface of themodel with no currentflowing out.

In this study, only linear ferromagnetic materials are considered leading to a linear
magnetic inverse problem. The corresponding magnetic field equations read:

curlB ¼ mJ; (4)

divB ¼ 0; (5)

In the above equations (1) to (5), J is the current density, B the magnetic induction, m the
permeability and n the unit normal vector to the boundary. Itot is the total conduction current.

In this paper, we focus on the solution of the magnetic inverse problem with the
incorporation of equations (1) to (3). Thus, we can start from a given reference current density
and then calculate the corresponding magnetic field using magnetostatic equations (4) and
(5). We then reconstruct the current density from the obtained magnetic field by solving the
inverse problem; and finally, compare reconstructions with reference current densities. The
modeling of the forward problem considering eddy currents is not in the scope of our work.

Inverse problem formulation using Whitney elements
The shape function spaces are defined using Whitney elements andW0, W1, W2 andW3 are
the nodal, edge, face and volume function spaces, respectively (Bossavit, 1988). The relations
between these spaces are given by De Rham’s diagram (Bossavit, 1988):

W0!gradwn W1!curlwe W2!divwf W3: (6)

The tetrahedral mesh is used for the discretization of the problem’s domainX, withN nodes,
E edges, F facets and V elements. On a face with nodes m, n and p, where its orientation is
given by the node order (m, n, p), the face shape function belonging to space W2 can be
expressed with nodal shape functions as:

wf ¼ 2 wmrwn �rwp þ wnrwp �rwm þ wprwm �rwnð Þ: (7)

Representing the current density J inW2 using face elements, the forward problem reads:

½B� ¼ ½L�½J �; (8)

where [B] is the vector of magnetic induction, [J] is the vector of the degrees of freedom inW2

and [L] is the kernel matrix. Using Biot-Savart law, the generic element of kernel matrix [L]
corresponding to the i-th sensor and j-th face functionwfj is calculated by:

L½ �ij ¼ l0
4p

ð
X

di �
wfj rsð Þ � ri � rsð Þ

jri � rs j3
dX; (9)



where ri is the position of i-th sensor, di the vector of the orientation of i-th sensor and rs the
integration point. Single component magnetic field data are used for the reconstruction. The
impact of more than one magnetic field component could be investigated, as in (Di Rienzo
et al., 2005).

The current density J is expressed as a linear combination of face shape functions:

J¼
XF
1

wfi J½ �i: (10)

The integral of the face shape function on its own face, i.e. the flux flowing through its
corresponding face, is equal to one and is zero on all the other faces. Thus, the i-th element of
[J] is the current flux flowing through its corresponding face (the i-th face). Face shape
functions have normal continuity, i.e. when passing from one tetrahedron to its neighboring
tetrahedron both sharing the face, the normal component of the current density represented
inW2 is continuous, whereas the tangential component may have jumps.

The magnetic inverse problem, i.e. reconstructing the current density from the magnetic
field, is known to be ill-conditioned. This leads to highly unstable solutions where any
arbitrary measurement errors in the magnetic field could cause large perturbations in the
solution. Therefore, it is necessary to use regularization methods to make the ill-posed
inverse problem more regular to stabilize the problem. To address the ill-posedness, we use
Tikhonov regularization to obtain a least-squares solution by solving for [J] inW2:

min
J½ �

k L½ � J½ � � B½ �k22 þ l 2k K½ � J½ �k22
n o

; (11)

where [K] is referred as the matrix of the regularization operator and the scalar l � 0 is the
regularization parameter.

Regularization operator [K] and scalar parameter l are essential parameters to ensure a
stable and useful solution from the Tikhonov regularized least-squares problem. Many
works explore various appropriate options for [K] and l (Hasani Eskandari and
Zareamoghaddam, 2014). The regularization operator is related to the prior information
about the solution. Particularly, the most common choice for [K] is the identity matrix [I]
with the same dimension of the vector of unknowns [J], where the problem defined by
equation (11) is reduced as the standard Tikhonov regularization. We use the L-curve
method for the choice of a scalar parameter l (Calvetti et al., 2004).

Implementation of zero divergence condition
In a magneto-quasi-static approximation, the current density is a zero divergence vector
field, so that [D][J] = 0, where [D] is the faces-to-volumes incidence matrix serving as the
discrete equivalent of the divergence operator. To implement the zero divergence condition
in space W2, we solve a constrained least-squares problem with the free divergence
condition as a constraint:

min
J½ �

k L½ � J½ � � B½ �k22 þ l 2k J½ �k22
n o

; s:t: D½ � J½ � ¼ 0: (12)

Alternatively, we can solve the inverse problem in space W1 by introducing a current
vector potentialT with J = curlT, whereT can be appropriately represented in space W1



using edge elements. We denote the vector of degrees of freedom in space W1 as [T] forT,
so that [J] = [C][T], where [C] is the edges-to-faces incidence matrix acting as the discrete
equivalent of the curl operator. The generic element of [T] is the circulation along
the corresponding edge. The edge shape functions have tangential continuity, i.e. the
tangential component of T is continuous, whereas its normal component may have
jumps. One remarkable advantage of the current vector potential approach is that zero
divergence condition naturally holds noting the vector calculus identity div(curl T) : 0.
Moreover, the tree-cotree gauging technique is adopted to ensure the uniqueness of the
solution for T (Meunier, 2008). The regularized least-squares solution by solving for [T]
in space W1 is given by:

min
T½ �

k L½ � C½ � T½ � � B½ �k22 þ l 2k K½ � T½ �k22
n o

: (13)

Implementation of boundary conditions
The boundary condition defined in equation (2) implies a zero current flux flowing through
surface SJ. Representing the current density with face elements in spaceW2, we have:

J½ �i
����
fi2SJ

¼ 0; (14)

for every face element fi located on SJ. For terminal sections SC0 and SC1, the total current
flux is known as implied by equation (3). Thus, for the elements located on SC0 and on SC1,
we have:

X
fi2SC0

J½ �i ¼
X
fi2SC1

J½ �i ¼ Itot: (15)

From equation (2), we have n � T|SJ = 0. We set [T] to be zero for every edge element ei
located on SJ, that is:

T½ �i
����
ei2SJ

¼ 0: (16)

In addition, equation (15) implies that for the edge elements located on SC0 and on SC1, the
circulations of T along the boundaries of terminal sections @SC0 and @SC1 are the total
current, that is:

X
ei2@SC0

T½ �i ¼
X

ei2@SC1
T½ �i ¼ Itot: (17)

Common mode approach
In this work, we introduce a common mode approach for the formulations of forward
and inverse problems. To be precise, we split the total current vector potential T into a
source field Hs representing a common mode current density J0 = curl Hs with its
terminal current being equal to the prescribed total current Itot and into a reduced



current vector potential Tm representing the internal current loops Jm = curl Tm. Then
we have:

J ¼ r�Hs þr� Tm; (18)

whereTm and Jm are the unknowns in spaces W1 andW2, respectively. The current density
can be written as the superposition of the common mode current density J0 plus an
unknown current density Jm, i.e. J= J0þ Jm. Owing to the linear property of the Biot-Savart
operator, we have:

Bm½ � ¼ B½ � � L½ � J0½ � ¼ L½ � Jm½ � (19)

Instead of solving for the total current density J in W2 or total current vector potential T in
W1, we can solve for the reduced unknowns Jm in W2 or Tm in W1. Thus, we solve for [Jm]
from [Bm]:

min
Jm½ �

k L½ � Jm½ � � Bm½ �k22 þ l 2k Jm½ �k22
n o

; (20)

or solve for [Tm] from [Bm]:

min
Tm½ �

k L½ � C½ � Tm½ � � Bm½ �k22 þ l 2k K½ � Tm½ �k22
n o

: (21)

The source fieldHs describes an arbitrary source current distribution J0 that is supposed
to be known in X and must be zero outside X. Moreover, Hs should be tangentially
continuous in the whole region, i.e. represented in W1. Possible choices forHs and J0 have
been discussed in (Biro et al., 1993). In this work, we solve an electrokinetic problem by
imposing a uniform conductivity distribution s cm in arc chamber with s cm<< s e, where
s e is the conductivity of the electrodes. Then, we obtain [J0] as the vector of degree of
freedoms for J0 by projecting J0 into space W2. [Hs] can be calculated from [J0] by using
Biot-Savart law.

Results
The proposed approaches are numerically tested with 256 simulated magnetic field
values of a 16-by-16 sensor array. The magnetic sensors are assumed to be able to
measure the normal component of the magnetic induction, i.e. x-component as in Figure 1.
The model of the arc chamber shown in Figure 1 is discretized using tetrahedrons with
N = 392, E = 2,037, F = 3,004 and V = 1,358. Taking into account the implementation of
boundary conditions in space W2, we finally have 2,440 unknowns when solving for [J] or
[Jm]. The condition number of the kernel matrix is 1.56 � 106. With the implementation of
boundary conditions and the tree gauging condition, we have 1,646 unknowns when
solving for [T] or [Tm] in space W1 with the condition number as 6.88 � 105. That means,
whether we solve the inverse problem in W2 or in W1, the inverse problem is strongly
underdetermined and ill-conditioned. The singular value decomposition is used to
calculate the Tikhonov regularized solution. The optimal regularization parameter is
computed by the L-curve method using a MATLAB package of regularization tools
(Hansen, 2007).



To avoid the inverse crime, the reference current density [Jref] and the common mode
current density [J0] and their corresponding magnetic fields [B] and [B0] are obtained in DC
with w � A formulation using a commercial FEM software (AC/DC module user’s guide, v.
5.3a, COMSOL, Inc, 2017). A non-uniform conductivity distribution sarc is imposed in the
arc chamber to calculate [Jref] and its corresponding [B]. The distribution of [Jref] and [J0] are
shown in Figure 2.

The reconstructions of current density by solving for J in W2 and by solving forT in W1

without the proposed common mode approach are presented in Figure 3. Large errors are
found in the reconstructions as we can see from the pictures. The reconstructions can be
significantly improved with the proposed common mode approach, i.e. solving for Jm in W2

and Tm in W1, as shown in Figures 4(a) and (c). Standard Tikhonov regularization, i.e. the
regularization operator [K] = [I], is used when solving the inverse problem in space W2.
However, the standard Tikhonov regularization fails to obtain a useful result, as shown in
Figure 4(b). Noting that the standard Tikhonov regularization minimizes the norm of [T], we
choose the discrete curl operator [C] as the regularization operator, i.e. [K] = [C], to minimize
[J] instead of [T], which may be physically reasonable.

To guarantee that the divergence of reconstructed current density is zero, an additional
constraint is used when solving the inverse problem in space W2. One of the most important

Figure 2.
Reference current

density Jref (left) and
commonmode

current density J0
(right)

Figure 3.
Reconstructions of
current density by
solving for [J] inW2

(left) and by solving
for [T] inW1 (right)



benefits for solving the inverse problem inW1 using edge elements is that there is no need to
implement the zero divergence condition. It can be noted that no big difference is found
between the reconstructions in Figure 4(a) with zero divergence condition as a constraint
and that in Figure 4(c), where the zero divergence condition naturally holds.

To analyze the effects of the mesh resolution on the arc current density reconstruction, a
finer tetrahedral mesh is used with N = 1,313, E = 7,735, F = 12,220 and V = 5,797. The
condition numbers of the kernel matrix when solving for Jm and Tm are 2.08 � 108 and
7.64 � 107, respectively. Figure 5 shows the improved reconstructions of the arc current
density using the finer mesh.

From the comparison between the formulations using face elements with the one using
edge elements, it can be noted that the use of edge elements requires a tree-cotree gauging to
ensure a unique solution for the current vector potential. The choice of the tree affects
significantly the accuracy and the use of an arbitrary tree may result in a poor convergence
and accuracy or even in an unsolvable problem (Golias and Tsiboukis, 1994; Igarashi, 2001).
The tree-cotree gauging has to search for an optimal minimum spanning tree, which can be
difficult and time-consuming for complicated structures and finer meshes. Moreover, the

Figure 4.
Reconstructions of
current density
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standard Tikhonov regularization (where the regularization operator is the identity
operator) can obtain a good reconstruction when solving the inverse problem formulated
using face elements, but fails in the case of edge elements. Thus, additional efforts have to be
taken to find an optimal regularization operator for the inverse problem using edge
elements. Given that both formulations can result in comparable accuracy in the
reconstructions of the electric arc current density, the formulation using face elements in
spaceW2 is to be preferred.

Conclusion
This paper presents a formulation of the magnetic inverse problem using Whitney elements
to reconstruct the electric arc current density in a simplified arc chamber of low voltage
circuit breakers. To guarantee that the divergence of the reconstructed current density is
zero, two methods for the formulation of the inverse problem are proposed, i.e. the
formulations using face elements in Whitney space W2 and using edge elements in Whitney
space W1. An additional constraint is introduced using the discrete divergence operator

Figure 5.
Reconstructions with

a finermesh



when solving the inverse problem in W2, while zero divergence condition naturally holds
when solving the inverse problem in W1. The proposed common mode approach has a key
role to obtain a good reconstruction. No large difference are found between the
reconstruction in W2 and the reconstruction in W1. In addition, when solving for Tm in W1,
the choice of the regularization operator has a very important influence on the
reconstruction. From the numerical results, the discrete curl operator [C] is a good option for
the regularization operator, i.e. [K] = [C], to ensure a stable and good solution. The
formulation using face elements is to be preferred considering the complexity of the
formulations.

In future work, we will consider more realistic geometries and magnetic field
experimental data.
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