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Symbolic observer-based controller for uncertain nonlinear systems*
W.A. Apaza-Perez1, A. Girard1, C. Combastel2, A. Zolghadri2

Abstract—Symbolic control is an approach to the control of
continuous or hybrid systems with specifications expressed in
a logic form. This approach is based on the use of symbolic
models describing the dynamical system behavior with a finite
description of the transition relation between its states. In
the literature, many results using this approach assume the
availability of full and exact information about the system states
to compute the control actions. In this paper, we consider a
more realistic scenario where only partial information about the
plant states is available. This paper proposes an abstraction that
makes it possible to synthesize output-feedback controllers. The
presence of disturbances and output noise is also considered.
A direct path between observer designs in the classical theory
and control synthesis in formal methods is established and a
numerical example is provided to illustrate the results.

I. INTRODUCTION

Over the last decades, the problem of control design for
systems with complex specifications has spurred on substantial
research efforts that have been developing along several major
lines. One appealing direction takes advantage of the so-
called formal methods and is based on symbolic models.
These models are abstractions which are related to the dy-
namics of the system by some formal behavioral relationship
such as alternating simulations [1] or feedback refinement
relations [2]. This allows to capture aspects of the system
being analyzed explaining how the results of analysis/design
for the symbolic model can be used in the system, see for
example [1], [3], [4], [5]. Finite state models are especially
well suited for automated analysis and offer a common lan-
guage to describe an abstract view of continuous dynamics
as well as the software implementation of control algorithms
[6]. It is, therefore, possible to formally reason about the
behavior of the interconnection between continuous dynamics
and software which has been one of the main thrusts behind
the research area of hybrid systems. Classical control theory
provides a wide range of results to control of continuous or
hybrid systems where control objectives are usually aimed at
satisfying specifications such as stabilization, output tracking
or disturbance rejection; while symbolic control and systems
allow us to consider more complex specifications expressed
in some formal syntax (e.g. linear temporal logic LTL,
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computational tree logic). The use of symbolic models for
control design purposes has been investigated, among many
others, in the following papers: LTL specifications for linear
control systems by [7], [8], and for discrete time piecewise
affine systems by [9], [10]; nonlinear control systems with
general specifications in a behavioral framework by [1], [11],
[2], and with specifications expressed as nondeterministic
transition systems by [12]; nonlinear switched systems and
safety and reachability specifications were considered in [13],
[14]; networked nonlinear control systems and specifications
expressed as nondeterministic transition systems in [15], [16].
[17] considers safety specifications and overlapping symbolic
models. Along theoretical results, computational tools have
also been developed to compute abstractions and control
synthesis PESSOA [18], CoSyMa [19], TuLiP [20], SCOTS
[21], pFaces [22], or Mascot [23]. Apart from differences
in the classes of specifications and of plants considered, the
common denominator of the papers above is in assuming full
information on the state of the plant for control purposes. The
issue is that this assumption may become very restrictive in
many real applications where only output variables, or sensor
measurements of them, are available.

The aim of the paper is to overcome the crucial assumption
about full and exact knowledge of the states of the system
for the controller synthesis. We use observers to define an
abstraction, which allows us to cover a wide class of systems
(linear and nonlinear) due to the extensive literature on ob-
server design in the classical control theory for continuous
or hybrid systems [24], [25], and complex specifications can
be considered [26]. The proposed observer-based approach
to synthesize symbolic controllers for systems with partial
information and bounded disturbances has some important
features: i) The abstraction is related to a feedback refinement
relation of the system formed by the plant and the observer, ii)
Computing the abstraction is solely based on the dynamics of
the plant and only requires the knowledge of some bounds on
the estimation error of the observer, iii) Controller refinement
only requires feeding the obtained symbolic controller with
the state estimate of the observer.

Some recent works on observer/estimator-based abstractions
for control with partial information can be found in [27], [28],
[29], [30], [31]. The observer design can be realized from the
initial dynamic system as it is done in [27] and [28] where
discrete-time linear systems with LTL specifications, and a
class of discrete-time piecewise-affine systems with a robust
interpretation of LTL were considered respectively. In com-
parison, in the current work, the approach allows considering
linear and non-linear systems with uncertainties. In another
way, the estimation of the non-measurable states can also be
done at the symbolic level as it has been done works [29],
[30], [31] but this demands the use of more computational



resources due to the handling of sets of symbolic states as
estimators.

The remainder of the paper is organized as follows. Section
II presents some preliminary notions. The problem is formally
stated and the main results are presented in section III. In
section IV, a numerical example is presented to illustrate
technical results. Finally, section V concludes the paper with
some remarks.

II. PRELIMINARIES

Notations. R, R>0, R≥0, and N0 denote the set of real, posi-
tive real, non negative real numbers, and non negative integers,
respectively. Given a,b ∈ N0 such that a ≤ b, we denote by
[a;b] a closed interval in N0. Given a relation R⊆ X×Y and
X ′⊆X , we have R(X ′) = {y∈Y |∃x∈X ′, (x,y)∈R}. Consider
a vector x∈Rn, we denote by xi the i-th component of x and by
‖x‖ the Euclidean norm of x. For ε ∈Rn

≥0, x∈Rn and A⊆ Rn,
define the ε-expansion of A as the set Nε(A) = {y ∈ Rn |∃x ∈
A,∀i ∈ [1;n], |yi− xi| ≤ εi}, and a hyper rectangle with center
x and radius ε as Nε(x) = {y ∈ Rn | ∀i ∈ [1;n], |yi− xi| ≤ εi}.
Given a function V : X ⊆Rn→R≥0 and k ∈R≥0, its gradient
is denoted by ∇V and V−1(≤ k) = {x ∈ X |V (x) ≤ k}. A
continuous function γ : R≥0→ R≥0 is said to belong to class
κ (resp. κ∞) if it is strictly increasing and γ(0) = 0 (and
γ(r)→∞ when r→∞). X+ denotes the set of finite sequences
of elements in X .

A. Transition systems.

Abstractions are dynamical systems with finitely many
states and input values, each of which symbolizes aggregates
of states and inputs of the original system. Abstractions are
mathematically modeled as transition systems [1].

Definition 1 (Transition system): A transition system S is a
tuple (X ,U,F), where X is a set of states, U is a set of control
inputs, F ⊆ X×U×X is a transition relation.

The notation F(x,u) = {x′ ∈ X |(x,u,x′) ∈ F} denotes the
set of successors of x upon control input u. Since F(x,u)
may be empty, we denote U(x) = {u ∈U |F(x,u) 6= /0} . A
system is called nonblocking if the set U(x) of every x ∈ X is
nonempty. A transition (x,u,x′) ∈ F is also denoted by x u−→ x′

and an infinite sequence of transitions x0
u0−→ x1

u1−→ x2
u2−→·· · by

(xui
i )i∈N0 , where the set of all infinite sequences of transitions

in X is denoted by (X ×U)ω . A state-feedback control C is
a partial function on non-empty sequences of states of the
system

C : X× (U×X)+→ 2U (1)
(x0,uo,x1,u1...,uk−1,xk) 7→Uk

where Uk is a set of admissible inputs to be used in the
subsequent k-step. The behaviour generated by a system S
and a state-feedback control C is denoted as B(S,C) and
consists of all infinite sequences (xui

i )i∈N0 ∈ (X ×U)ω that
satisfies ui ∈C(x0,u0, ..,ui−1,xi) and xi

ui−→ xi+1 for all i ∈ N0.
Given ε ∈ Rn

≥0, the ε-expansion of B(S,C) is defined as
Nε(B(S,C)) = {(yui

i )i∈N0 ∈ (X×U)ω |∃(xui
i )i∈N0 ∈ B(S,C)∧

∀i ∈ N0, |xi− yi| ≤ εi}.

Consider a transition system S = (X ,U,F), where X ⊆
X1×X2, and a state-feedback control C in the system S. The
projection of B(S,C) over X1, denoted by BX1(S,C), is de-
fined as BX1(S,C) = {(xui

i )i∈N0 ∈ (X×U)ω |∃((x̃i,zi)
ui)i∈N0 ∈

B(S,C) ∧ ∀i ∈ N0,xi = x̃i}, and the projection over X2 is
defined analogously.

Definition 2: Given two transition systems Sa =(Xa,Ua, Fa)
and Sb = (Xb,Ub,Fb) with Ub ⊆Ua. A relation R⊆ Xa×Xb is
a feedback refinement relation from Sa to Sb if ∀xa ∈ Xa,∃xb ∈
Xb,(xa,xb) ∈ R and the following holds for all (xa,xb) ∈ R:

Ub(xb)⊆Ua(xa); (2)
u ∈Ub(xb) =⇒ R(Fa(xa,u))⊆ Fb(xb,u).

Feedback refinement relation allows the designer to work
with the abstract system Sb instead of the concrete system Sa.
Under conditions in (2), a controller for the abstract system
Sb can be used on the concrete system Sa, see [2].

III. PROBLEM STATEMENT

Consider the following nonlinear continuous-time system{
ξ̇ (t) = f (ξ (t),u(t),w(t))
y(t) = h(ξ (t),δ (t))

(3)

where ξ (t)∈X⊆Rn, u(t)∈U⊆Rp, y(t)∈ Y⊆Rm denote the
state, the control input, the measured output at time t ∈ R≥0,
respectively. The uncertainties denoted by w(t)∈W⊆Rr1 and
δ (t) ∈D⊆Rr2 are bounded, i.e. there exist b1,b2 ∈R≥0 such
that ∀t ∈ R≥0, ‖w(t)‖ ≤ b1, ‖δ (t)‖ ≤ b2.

The problem considered in the paper can be roughly for-
mulated as follows: how to build abstractions which take into
account disturbances and partial information of the system and
how to synthetize output feedback controllers.

A. Observer and discrete abstraction

Assume there exist:
i) An observer for the system (3), which is expressed by

˙̂
ξ (t) = g(ξ̂ (t),u(t),y(t)), (4)

where ξ̂ (t) ∈ X̂ ⊆ Rn. It is assumed that the observer
has been synthesized by some method, e.g. [32], [33].

ii) class-κ∞ functions α , α , class-κ functions β , γ1, γ2, and
a positive-definite function V : Rn→R≥0 such that into
the dynamic of the estimation error

ż(t) = G(z(t),ξ (t),u(t),w(t),δ (t)), (5)

where z(t) = ξ̂ (t)−ξ (t), the following conditions hold

α(‖z‖)≤V (z)≤ α(‖z‖) (6)

∇V (z(t)) ·G(z(t),ξ (t),u(t),w(t),δ (t))≤ (7)
−β (V (z(t)))+ γ1(‖w(t)‖)+ γ2(‖δ (t)‖).

Consider the composition of system (3) and the observer
(4) given by{

ξ̇ (t) = f (ξ (t),u(t),w(t)),
˙̂
ξ (t) = g(ξ̂ (t),u(t),h(ξ (t),δ (t))),

(8)



where forward completeness is assumed, and define the state
space I as

I= {(x, x̂) ∈ X× X̂ |V (x− x̂)≤ β
−1 (γ1(b1)+ γ2(b2))}. (9)

Note that condition (7) ensures that I is a forward invariant set.
Since we are interested in controlling the system (3) through
a digital and quantized controller, the controls are assumed
piecewise constant functions from R+

0 to U such that given
τ ∈ R>0, u(t) = u(kτ) for all t ∈ [kτ,(k + 1)τ[ and k ∈ N0.
The τ-sampled system from (8) is given as

S1 = (X1,U1,F1) (10)

with state space X1 = I, input space U1 = U and a transition
function F1((x, x̂),u) := {(x′, x̂′) |∃(ξ , ξ̂ ) a solution of (8)
with u ∈U1∧ (ξ (0), ξ̂ (0)) = (x, x̂)∧ (ξ (τ), ξ̂ (τ)) = (x′, x̂′)}.

Consider uniform grids

ηZn = {q ∈ Rn|∃k ∈ Zn,∀i ∈ [1;n] qi = kiηi},
µZp = {u ∈ Rp|∃k ∈ Zp,∀i ∈ [1; p] ui = kiµi},

with η ∈ Rn
>0 and µ ∈ Rp

>0. Given ε ∈ Rn
≥0, define a system

S2 = (X2,U2,F2) (11)

with X2 = 2ηZn∩ X̂, U2 = µZp∩U1, and

F2(q,u) =
{

q′ ∈ X2 |Nε (F0 (Nε+η(q),u))∩Nη(q′) 6= /0
}
,

where given a set A⊆ X,

F0 (A,u) :=
{

x′∈X

∣∣∣∣∣ ∃x ∈ A, ∃ξ a solution of (3) with
u ∈U2∧ξ (0) = x∧ξ (τ) = x′

}
.

The quantizer map from X̂ to X2 is denoted Q and defined
as Q(x̂) = {q ∈ X2 | x̂ ∈ Nη(q)}. The behavior of the transition
relation F2 defined in (11) is illustrated in Figure 1.

Fig. 1. Transition relation F2 defined in S2: if the estimation error between ξ

and ξ̂ is included in the ε-expansion of Nη (q), then its effect on the dynamics
F0 under u is included in ε-expansion of F0(Nη+ε (q),u).

The following theorem allows us to define a feedback
refinement relation between S1 and S2.

Theorem 3: Consider the systems (10) and (11), then the
relation

R = {((x, x̂),q) ∈ X1×X2 | x̂ ∈ Nη(q)}, (12)

defines a feedback refinement relation from S1 to S2 if V−1(≤
β−1 (γ1(b1)+ γ2(b2)))⊆ Nε(0). 4
Proof. Let ((x, x̂),q) ∈ R, u ∈U2(q)⊆U1((x, x̂)). The proof is
reduced to guarantee the following inclusion R(F1((x, x̂),u))⊆
F2(q,u). Consider q̃ ∈ R(F1((x, x̂),u)), then there exists
(x′, x̂′) ∈ F1 ((x, x̂),u) such that

x̂′ ∈ Nη(q̃), (13)

by (12). As I is a forward invariant set from (6)-
(7), then F1 ((x, x̂),u) ⊆ I. Consequently, V (x′ − x̂′) ≤
β−1 (γ1(b1)+ γ2(b2)), which implies

∀i ∈ [1;n], |x′i− x̂′i| ≤ εi, (14)

by V−1(≤ β−1 (γ1(b1)+ γ2(b2))) ⊆ Nε(0). From (14), we
obtain

x̂′ ∈ Nε (F0(x,u)) . (15)

As ((x, x̂),q) ∈ R, then (x, x̂) ∈ I which implies x− x̂ ∈
V−1(≤ β−1 (γ1(b1)+ γ2(b2)) by (9). Consequently,

∀ i ∈ [1;n], |xi− x̂i| ≤ εi. (16)

As x̂ ∈ Nη(q), then x ∈ Nε+η(q) by (16), and F0(x,u) ⊆
F0(Nε+η(q),u). Thus, Nε(F0(x,u)) ⊆ Nε (F0(Nε+η(q),u))
holds. From (15), it is ensured that x̂′ ∈ Nε (F0(Nε+η(q),u))
which implies with (13) that Nη(q̃)∩Nε (F0(Nε+η(q),u)) 6= /0,
i.e. R(F1((x, x̂),u))⊆ F2(q,u). �

The idea behind the hyper rectangle containing the invariant
set is to better manage the precision of the observer which
is affected by different disturbances. If a controller can be
designed satisfying some specifications based on abstraction
(11), then an output feedback controller based on chosen
observer can be used to compute controls driving the initial
system consistently with the specifications.

Proposition 4: Assume that conditions on Theorem 3 hold,
and let C2 : X2 × (U2×X2)

+ → U2 be a control defined
in the system (11). If a control C1 : X1 × (U2×X1)

+ →
U2 in (10) is defined as C1(x0, x̂0,u0,x1, x̂1,u1, ...,xk, x̂k) :=
C2(Q(x̂0),u0,Q(x̂1),u1, ...,Q(x̂k)), then

BX(S1,C1)⊆ Nε+η (B(S2,C2)) . (17)

Proof. The proof is reduced to two claims:
Claim 1. BX(S1,C1)⊆ Nε(BX̂(S1,C1)).
Let (xui

i )i∈N0 ∈BX(S1,C1) then ∃ (x̂ui
i )i∈N0 ∈ (X̂×U2)

ω ,

((xi, x̂i)
ui)i∈N0

∈B(S1,C1). (18)

From (18) and its projection over X̂, (x̂ui
i )i∈N0 ∈ BX̂(S1,C1)

holds, and ∀i ∈ [1;n], |x̂i− xi| ≤ εi by (8)-(9). Consequently,
(xui

i )i∈N0 ∈ Nε(BX̂(S1,C1)).
Claim 2. Nε(BX̂(S1,C1))⊆ Nε+η (B(S2,C2)).
Let (xui

i )i∈N0 ∈ Nε(BX̂(S1,C1)), then ∃ (x̂ui
i )i∈N0 ∈BX̂(S1,C1)

such that ∀i ∈ [1;n], |x̂i− xi| ≤ εi. Since control C1 is defined
from C2 and applying the quantizer Q to the states of (x̂ui

i )i∈N0 ,
then there exists (qui

i )i∈N0 ∈ B(S2,C2) such that ∀i ∈ [1;n],
x̂i ∈ Nη(qi). Consequently (xui

i )i∈N0 ∈ Nε+η (B(S2,C2)). �
Theorem 3 provides an abstraction design which is related

by a feedback refinement relation of the system formed by
the plant and the observer. It should be pointed out that this
abstraction computation is solely based on the dynamics of
the plant and only requires the knowledge of some bound ε

on the estimation error of the observer, see system S2 in (11).
Proposition 4 allows us to refine a controller C1 which only
requires feeding the obtained symbolic controller C2 with the
state estimate of the observer through the quantizer map Q.



IV. EXAMPLE: ADAPTIVE CRUISE CONTROL
Adaptive cruise control is a driver assistance system that

seeks to combine safe following distance with speed regula-
tion. We consider a set-up with two vehicles. Vehicle 2 is
following vehicle 1, the relative position of vehicle 2 w.r.t the
vehicle is given by d ∈ (−∞,0].

The dynamic of vehicle 2 is controlled while that of vehicle
1 is considered as a disturbance. Consider the following
continuous-time model adapted from [34]:

ḋ = v1− v2; yd = d +δ1;
v̇2 = u−h(v2)

M ; yv2 = v2 +δ2;
v̇1 = Γ(v1,w);

(19)

where h(v2) = f0 + f1v2 + f2v2
2, and the function Γ as

Γ(v1,w) =


w if v1 ∈ (vmin

1 ,vmax
1 )

max(0,w) if v1 = vmin
1

min(0,w) if v1 = vmax
1

which gives v1(t) ∈ [vmin
1 ,vmax

1 ] for all time. The states d and
v2 are measured through the outputs yd and yv2 , while v1 is
not measured. The control input u∈ [umin,umax] represents the
contribution of braking and engine torque to the acceleration
of vehicle 2. M > 0 represents the mass of vehicle 2, while the
vector of parameters f = ( f0, f1, f2) describes the road friction
and vehicle aerodynamics. The disturbance w(t)∈ [wmin,wmax]
represents the acceleration of vehicle 1, and δ1, δ2 denote
bounded disturbances in the measured variables of the system.

The problem of designing an adaptive cruise control sys-
tem is considered with a time headway defined as ϑ(t) =
−d(t)/v2(t). The requirements for adaptive cruise control
are parameterized by a target velocity v∗ and a target time
headway ϑ ∗. They are formulated as synthesizing a controller
enforcing uniform attractivity of

X∗ =
{
(d,v2) ∈ R2 | (−d/v2,v2) ∈ Z∗a ∪Z∗b

}
, (20)

where Z∗a = {(ϑ ,v2) ∈ R2 | ϑ ≥ ϑ ∗,v2 = v∗}, Z∗b = {(ϑ ,v2) ∈
R2 | ϑ = ϑ ∗,v2 ≤ v∗}.

Actually, this specification cannot be enforced so we aim
at synthesizing a least-violating controller, according to [35],
enforcing the closed-loop behavior whose attractor is the
closest to X∗ in (20) with respect to the following distance
function:

H(d,v2,v1) = min
(ϑ ′,v′2)∈Z∗a∪Z∗b

max
(
|−d/v2−ϑ

′|,α|v2− v′2|
)

where α > 0 is a design parameter defining the relative
tolerance to deviations from the desired velocity and from the
desired time headway. In addition, we specify strong safety
requirements regarding collision avoidance and conformance
to speed limitations. We must at all time: i) keep the distance
d(t)≤ 0, and ii) keep velocity v2(t) ∈ [vmin

2 ,vmax
2 ].

Values of parameters, compatible with empirical measure-
ments are taken from [34] and given in Table I.

Consider the observer
˙̂d = v̂1− v̂2 + l1

(
d̂− yd

)
+ l2 (v̂2− yv2) ,

˙̂v2 =
u−h(yv2 )

M + l3
(
d̂− yd

)
+ l4 (v̂2− yv2)

˙̂v1 = l5
(
d̂− yd

)
+ l6 (v̂2− yv2)

(21)

TABLE I
PARAMETER VALUES

M 1370 Kg
f0 51 N
f1 1.2567 Ns/m
f2 0.4342 Ns2/m2

g 9.82 m/s2

umin -0.3 g m/s2

umax 0.2 g m/s2

vmin
2 10 m/s

vmax
2 30 m/s

vmin
1 12 m/s

vmax
1 28 m/s

wmin -1.7 m/s2

wmax 3 m/s2

ϑ ∗ 1.5 s
v∗ 20 m/s
τ 0.5 s
α 0.5

which is similar to (19) with linear correction terms; the
parameters l1,..., l6 will be designed to ensure that trajectories
(d̂, v̂2, v̂1) converge to a neighborhood of (d,v2,v1) (related to
the considered disturbances).

Defining estimation errors as ed = d̂−d, ev1 = v̂1−v1, ev2 =
v̂2− v2, the estimation error dynamics is defined as:

ėd = ev1 − ev2 + l1ed + l2ev2 − l1δ1− l2δ2

ėv2 =
h′(v0

2)
M δ2 + l3ed + l4ev2 − l3δ1− l4δ2

ėv1 = l5ed + l6ev2 − l5δ1− l6δ2−Γ(v1,w)

(22)

where v0
2 is an unknown value inside [vmin

2 ,vmax
2 ] but |h′(v0

2)| ≤
h = f1 + 2 f2vmax

2 holds (locally Lipschitz). Since the dis-
turbances considered in the system (19) are bounded, there
are constants δ 1,δ 2,Γ ∈ R>0 such that |δ1| ≤ δ 1, |δ2| ≤ δ 2,
|Γ(v1,w)| ≤ Γ are satisfied.

In matrix terms, the system (22) can be expressed as

ė = (A+LC)e+(LC+B1)∆δ̃ +B2Ww̃, (23)

where e = [ed ,ev2 ,ev1 ]
T , ∆ =

√
3diag(δ 1,δ 2,

h
M δ 2), W = Γ,

A =
[0 −1 1

0 0 0
0 0 0

]
, L =

[
l1 l2
l3 l4
l5 l6

]
, C =

[
1 0 0
0 1 0

]
, B1 =

[0 0 0
0 0 1
0 0 0

]
, B2 =

[
0
0
1

]
,

δ̃ = ∆−1
[
−δ1 −δ2

h′(v0
1)

M δ2

]T
, w̃ = −W−1Γ(v1,w). The distur-

bances in terms of δ̃ , w̃ allows to satisfy ‖δ̃‖,‖w̃‖ ≤ 1.
We propose a quadratic Lyapunov function V (e) = eT Pe for

the system (22), where P ∈ R3×3 is a positive definite matrix
which will be obtained through the next matrix inequality1:[

AT P+PA+CT ZT+ZC+λP ? ?
∆T (CT ZT+BT

1 P) −ρ1I3 ?

W T BT
2 P 0 −ρ2

]
≤ 0, (24)

where Z = PL, and λ ,ρ1,ρ2 ∈ R>0 are design parameters.
The derivative of Lyapunov function along the trajectories

of the system (23) is given by

V̇ (e(t)) = eT (AT P+PA+CT ZT +ZC
)

e+

+2eT (ZC+PB1)∆δ̃ +2eT PB2Ww̃

≤−λeT Pe+ρ1‖δ̃‖2 +ρ2‖w̃‖2, from (24).

Thus, all trajectories of (23) converge to the invariant set
V−1 (≤ ρ1+ρ2

λ
), which is contained in a hyper rectangle Nε(0),

with ∀i ∈ [1;3], εi =
√

ρ1+ρ2
λ

(P−1)i,i , see Proposition 1 in [36].
For the numerical results reported below the following

parameters were chosen: δ 1 = δ 2 = 0.01 and notice that
Γ(v1,w) ∈ [wmin, wmax], obtaining from (24): l1 = −28.51,
l2 = 0.96, l3 = −3.01, l4 = −24.91, l5 = −270.11, l6 = 3.08,

1The symbol ? refers to symmetric terms and I3 is the identity matrix of
dimension 3.
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Fig. 3. Simulated trajectories of system (19) using the observer-based controller: (left side) evolution of the time headway, of the velocities of vehicle 2 and
vehicle 1 where the target time headway ϑ ∗ and the values of the target velocity v∗ are represented by dashed lines; (right side) the control input of vehicle
2 and estimation errors between real and observer states.

λ = 10.95, ρ1 = 1.59, ρ2 = 2.31, ε = [0.04 0.06 0.59 ]T , P =[ 353.23 ? ?
−6.34 109.09 ?
−18.73 0.23 1.99

]
.

The parameter ε is used to define S2 in (11) with the abstrac-
tion parameters η = (ηd ,ηv2 ,ηv1) and µ which were chosen
as: d0 = −100m, ηd = −d0/100, ηv2 = (vmax

2 − vmin
2 )/100,

ηv1 = (vmax
1 − vmin

1 )/80, µ = (umax − umin)/10. Theorem 3,
using ε and V (e) = eT Pe, guarantees a feedback refinement
relation between the τ-sampled system of (19)-(21) and S2.
We have synthesized a least-violating controller C2 for S2
according to [35]. It is shown in Figure 2, where the slices
are computed at different values of v1:
• The red line represents the target set X∗ in (20), and the
white set represents the attractor of the closed-loop dynamics
that is the closer to the target set as measured by distance H.
All trajectories starting in this set stay there forever.
• In the light grey set, all trajectories starting in this set
will reach the attractor while still enforcing the strong safety
requirements.
• The black set consists of the uncontrollable states from
which the strong safety requirements cannot be guaranteed.

The implementation of the least-violating controller for
system (19) is done through the controller C1 defined in
Proposition 4 which depends solely on the information of the
observer. In Figure 3, we show a simulation of system (19)
using the observer-based controller in the following scenario:
the initial value of (d,v2,v1) and (d̂, v̂2, v̂1) are (−50+ε1,25+
ε2,20+ε3) and (−50,25,20), respectively. The leading vehicle

(vehicle 1) drives at constant speed for the first 25s, then
applies maximal deceleration until reaching minimal speed for
the next 50s, and maximal acceleration until reaching maximal
speed for the last 25s. The plots represent the evolution of
the time headway, of the velocities of vehicle 2 and vehicle
1, the control input of vehicle 2 and estimation errors. The
values of the target velocity v∗ and the target time headway
ϑ ∗ are represented by dashed lines in left side. Initially the
time headway is greater than ϑ ∗ so vehicle 2 regulates its
speed around v∗. After vehicle 1 decelerates, the time headway
reduces and drops below ϑ ∗, then vehicle 2 stops regulating
its speed to regulate its time headway around ϑ ∗. When
vehicle 1 accelerates, the time headway increases again and
becomes larger than ϑ ∗, then vehicle 2 restarts regulating its
speed around v∗. The error magnitudes never exceed their
never exceed the bound values (ε1,ε2,ε3), due to stability
and reduce to the magnitude of the measurement noises δ1,
δ2 (white noise of magnitude 0.01) and the disturbance term
w during the simulation. Numerically, |d̂(t)− d(t)| ≤ 0.05,
|v̂2(t)− v2(t)| ≤ 0.06, |v̂1(t)− v1(t)| ≤ 0.59 for all time. Note
that the estimation error in v1 is greater than other states, this
is due to the effect of the disturbance w for which the observer
cannot compensate between a time step and the next. We can
see on the simulation that the system behaves as expected.
The performance degradation of the observer-based controller
compared to a state-based controller can be evaluated through
the value ς = max

t≥ts
H(d(t),v2(t),v1(t)) , which is the maximal



value reached by the distance function H after the trajectory
reaches the attractor. In the simulation, ς = 1.8286 (observer)
is reduced to 1.1 (state), which appears acceptable in view of
the observer precision given by ε .

V. CONCLUSIONS

In this paper, an abstraction design which is related by a
feedback refinement relation of the system formed with the
plant and a chosen observer was proposed. This approach
allows us to use results in the observer design from clas-
sical control theory, which covers a wide class of systems
(linear and nonlinear), while being able to deal with complex
specifications and disturbances. The controller refinement only
requires feeding the obtained symbolic controller with the state
estimate of the observer, which provides an output-feedback
controller. An application to adaptive cruise control illustrates
our results. Further investigations are necessary to cope with
the transient behaviour of the observer before reaching the
forward invariant set.
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