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Brief editorial summary of the paper: “Compiling a global geo-database of >30,000 range 18 

shifts, the authors show that marine species closely track shifting isotherms whereas terrestrial 19 

species lag behind, likely due to wider thermal safety margins and movement constraints 20 

imposed by human activities.” 21 
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There is mounting evidence of species redistribution as climate warms. Yet, our knowledge 22 

of the coupling between species range shifts and isotherm shifts remains limited. Here we 23 

introduce BioShifts, a global geo-database of 30,534 range shifts. Despite a spatial 24 

imbalance towards the most developed regions of the northern hemisphere and a 25 

taxonomic bias towards the most charismatic animals and plants of the planet, data shows 26 

that marine species are better at tracking isotherm shifts, and move towards the pole six 27 

times faster than terrestrial species. More specifically, we find that marine species closely 28 

track shifting isotherms in warm and relatively undisturbed waters (e.g. Central Pacific 29 

Basin) or in cold waters subject to high human pressures (e.g. North Sea). On land, human 30 

activities impede the capacity of terrestrial species to track isotherm shifts in latitude, with 31 

some species shifting in the opposite direction to isotherms. Along elevational gradients, 32 

species follow the direction of isotherm shifts but at a pace that is much slower than 33 

expected, especially in areas with warm climates. Our results suggest that terrestrial 34 

species are lagging behind shifting isotherms more than marine species, which is likely 35 

related to the interplay between wider thermal safety margin of terrestrial vs. marine 36 

species and more constrained physical environment for dispersal in terrestrial vs. marine 37 

habitats. 38 

The redistribution of life on Earth in response to climate change1–4 is now considered a 39 

global change driver on its own with far-reaching implications for ecosystem and human health5. 40 

Managing the consequences of climate-driven species redistributions requires a better 41 

understanding of the capacity of species of various taxonomic groups and from different habitats 42 

to shift their distribution ranges and track shifting isotherms. As climate warms, isotherms are 43 

shifting poleward and upslope to cooler latitudes and elevations in most parts of the world, 44 

generating spatially-structured patterns in the velocity of isotherm shifts6,7. Marine organisms 45 
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seem to closely track this complex mosaic of climate velocities8. However, the pattern is less 46 

clear for terrestrial organisms2. Evidence suggests that biotic responses on land are lagging 47 

behind the velocity of climate change, particularly for long-lived species and poor-dispersers9,10. 48 

To date, a comprehensive analysis of the coupling between the velocity of species range shifts 49 

and the velocity of isotherm shifts across biological systems (i.e. terrestrial vs. marine) and life 50 

forms (e.g. ectotherms vs. endotherms) is still lacking11,12. 51 

To fill this knowledge gap, we compiled data on range shifts for marine and terrestrial 52 

species in both the northern and southern hemispheres from an exhaustive literature review 53 

building on and updating the most recent syntheses on climate-related range shifts2–4 54 

(BioShifts13; see Data Availability for download) (Supplementary Fig. 1). The BioShifts geo-55 

database encompasses 30,534 range shifts documented from 258 peer-reviewed studies13, 56 

spanning a total of: 12,415 harmonized species names; four kingdoms (Bacteria, Plantae, Fungi 57 

and Animalia); 20 phyla; and 56 classes. It also contains several methodological attributes (e.g. 58 

study area, study period, sampling effort, data quality), that can be used to account for 59 

methodological variations in meta-analyses or quantitative reviews such as ours14. Based on this 60 

geo-database, we first carefully assessed the geographical and taxonomic biases4,15 impeding our 61 

knowledge of climate change effects on species redistribution (Extended Data 1-3). We then 62 

provided robust estimates of the velocity of latitudinal and elevational range shifts for the 20 63 

most studied taxonomic classes (Fig. 1), with the aim to compare our estimates with former 64 

estimates from the existing literature1–3 while accounting for potential methodological biases14. 65 

To do so, we fitted several linear mixed-effects models (LMMs) with methodological attributes 66 

treated as random effects14, all arranged in a full factorial design of geographical gradient 67 

(latitude vs. elevation)1,2 × biological system (marine vs. terrestrial)15 × hemisphere (North vs. 68 

South)4 × positional parameter (centroid vs. margins)3,4 (Supplementary Table 1). We expected 69 
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(1) faster velocities of latitudinal range shifts in the oceans than on land3, (2) faster velocities of 70 

range shifts in the northern hemisphere than in the southern hemisphere due to the inter-71 

hemispheric asymmetry in the rate of climate warming over the twentieth century16 and (3) 72 

different velocities of shifts across the distribution range. For each taxonomic class, we thus 73 

estimated the velocity of range shift separately for the centroid and the margins of the range, 74 

making the distinction between the trailing and leading edge to test for different types of range 75 

shifts3,4,17,18: trailing-edge contractions; leading-edge expansions; lockstep shifts involving both 76 

trailing-edge contractions and leading-edge expansions together with a displacement at the 77 

centroid of the range; and lean range shifts involving stable margins with the centroid shifting 78 

within the existing range. 79 

Then, we assessed the coupling between the velocity of isotherm shifts and the velocity of 80 

range shifts at the species level, along the latitudinal gradient in marine systems and separately 81 

for the latitudinal and elevational gradients in terrestrial systems (Extended Data 4-6). As before, 82 

we controlled for varying methodologies14, using LMMs, and tested for two-way interaction 83 

terms between the velocity of isotherm shifts and: (i) life-form categories (ectotherms, 84 

endotherms, phanerogams, cryptogams); (ii) baseline temperatures (the historical mean annual 85 

temperature regime prior to the baseline survey); and (iii) the standardized human footprint index 86 

(a scaled variable summarizing the direct and indirect human pressures on both terrestrial and 87 

marine environments: human population density; buildings; roads; agricultural lands; pollution; 88 

commercial shipping; industrial fishing; ocean acidification; etc.)19,20. Among animals, we 89 

distinguished ectotherms from endotherms to test the hypothesis that ectotherms better track 90 

shifting isotherms than endotherms. Theory and evidence suggest that ectotherms are more 91 

sensitive to temperature fluctuations than endotherms21 and conform more closely to their 92 

physiological limits of thermal tolerance, especially so for marine ectotherms22, and are thus 93 
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more likely to closely track shifting isotherms8. For chlorophyllous organisms, we distinguished 94 

phanerogams or seed-bearing plants (angiosperms and gymnosperms) from cryptogams 95 

reproducing by spores (ferns, mosses, lichens and algae) to test the hypothesis that greater 96 

dispersal abilities in cryptogams allows to better track shifting isotherms23. As historical 97 

temperature regime may affect the rate at which species are shifting their distributions24,25, we 98 

tested whether the coupling between species range shifts and isotherm shifts varied with baseline 99 

temperatures. Similarly, we accounted for potential effects of anthropogenic disturbances on the 100 

magnitude of the coupling. We expected that land-use intensity in terrestrial systems may impede 101 

species range shifts through habitat fragmentation26, while exploitation of marine resources (e.g. 102 

demersal or bottom trawling) may accelerate the relocation of exploited stocks through massive 103 

population die-offs and crashes followed by local extinctions27. 104 

Results and discussion 105 

Geographical, taxonomic and methodological biases matter. We found a strong spatial 106 

imbalance in the data towards the most developed regions of the northern hemisphere (Extended 107 

Data 1-2) and a clear taxonomic bias towards the most charismatic animals (Aves, Actinopterygii, 108 

Amphibia, Mammalia) and plants (Magnoliopsida, Liliopsida) (Extended Data 3). This supports 109 

former claims that global meta-analyses on species range shifts are not truly global4,15 and that 110 

most species remain understudied, while others attract most of the public, scientific and 111 

government attention28. In addition to these geographic and taxonomic biases, differences in 112 

methodological attributes among studies play a key role in the observed variation in the velocity 113 

of range shifts among the 12,415 species included in BioShifts13 (Fig. 2). Most of this variation 114 

was explained by methodological attributes, which contributed from 6 to 82% (mean = 36%, 115 

median = 35%) of the total variation (Supplementary Table 1). By contrast, differences among 116 

taxonomic classes and positions at range margins (trailing edge vs. leading edge) contributed 117 
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only 0 to 50% (mean = 10%, median = 7%) of the total variation. These findings confirm the 118 

importance of accounting for varying methodologies in meta-analyses14. However, contrary to 119 

former meta-analyses arguing against the use of studies reporting range shifts for a single or a 120 

handful number of species because such studies are more likely to select responsive species1–3, 121 

we found no relationship between sample size and the velocity of range shifts (Supplementary 122 

Fig. 2). Hence, we recommend future meta-analyses on range shifts to consider all available 123 

information instead of constraining the analyses to the set of studies that focused on multiple 124 

species (e.g. more than 3 species). 125 

Marine organisms move faster than terrestrial organisms. Once methodological attributes were 126 

accounted for, the variation in the estimated velocity of range shifts among taxonomic classes 127 

and positions at range margins was still fairly large, ranging from 3.20 m.yr-1 downslope for 128 

freshwater fishes (trailing edge, northern hemisphere) to 12.39 m.yr-1 upslope for amphibians 129 

(trailing edge, southern hemisphere) and from 6.52 km.yr-1 equatorward for reptiles (trailing 130 

edge, northern hemisphere) to 18.54 km.yr-1 poleward for insects (centroid of the range, northern 131 

hemisphere) (Fig. 3). Marine species (~80% being ectotherms in the database, Extended Data 2) 132 

have moved towards the poles at a mean (±s.e.m.) pace of 5.92±0.94 km.yr-1 (one-sample 133 

Student’s t-test: t = 6.26; df residuals = 23; P = 2.20 × 10-6), almost six times faster than 134 

terrestrial species (one-way ANOVA: F = 12.68; df factor = 1; df residuals = 45; P = 8.88 × 10-135 

4). This mean velocity far exceeds the one reported by the first synthesis (0.61±0.24 km.yr-1)1 but 136 

is very similar in magnitude and direction to the mean velocity reported by a more recent 137 

synthesis focusing exclusively on marine species (7.20±1.35 km.yr-1)3. Importantly, the mean 138 

velocity of latitudinal range shifts we found for terrestrial systems (1.11±0.96 km.yr-1) was non-139 

significantly different from zero (one-sample Student’s t-test: t = 1.15; df residuals = 22; P = 140 

0.25). This contradicts a former synthesis from 2011 reporting a mean positive velocity of 141 
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latitudinal range shifts across a wide range of taxonomic groups (1.76±0.29 km.yr-1)2. Although 142 

the authors of this synthesis chiefly focused on terrestrial taxonomic groups, they also included 143 

data on range shifts from several marine taxonomic groups (molluscs and algae) in their 144 

analyses, which could explain the discrepancy. Along the elevation gradient, we found that 145 

terrestrial species have shifted upslope at a mean pace of 1.78±0.41 m.yr-1 (one-sample Student’s 146 

t-test: t = 4.33; df residuals = 36; P = 1.13 × 10-3), slightly faster than what was previously 147 

reported (1.22±0.18 m.yr-1)2. 148 

Although we found a tendency towards faster latitudinal range shifts in the northern 149 

hemisphere (4.24±0.70 km.yr-1; one-sample Student’s t-test: t = 4.66; df residuals = 36; P = 4.28 150 

× 10-5) as opposed to the southern hemisphere (1.07±0.34 km.yr-1; one-sample Student’s t-test: t 151 

= 1.43; df residuals = 9; P = 0.19), the difference was not significant (one-way ANOVA: F = 152 

3.08; df factor = 1; df residuals = 45; P = 0.09). More data on species range shifts are thus clearly 153 

needed in the southern hemisphere (see geographical biases in Extended Data 1-2) to be able to 154 

confirm or infirm our hypothesis of faster range shifts in the northern hemisphere related to the 155 

faster rates of climate warming over there compared with the southern hemisphere16. 156 

Regarding the position within the range, terrestrial taxa seem to have relatively stable 157 

latitudinal distributions, showing no clear signal of range shift at the trailing edge (-0.17±1.61 158 

km.yr-1; one-sample Student’s t-test: t = -0.10; df residuals = 5; P = 0.92), the centroid of the 159 

range (2.41±2.45 km.yr-1; one-sample Student’s t-test: t = 0.98; df residuals = 7; P = 0.36) or the 160 

leading edge (0.81±0.65 km.yr-1; one-sample Student’s t-test: t = 1.24; df residuals = 8; P = 161 

0.25). By contrast, marine species seem to be very sensitive to warming, showing trailing-edge 162 

contractions (6.49±2.13 km.yr-1; one-sample Student’s t-test: t = 3.04; df residuals = 7; P = 0.02), 163 

leading-edge expansions (6.02±1.77 km.yr-1; one-sample Student’s t-test: t = 3.40; df residuals = 164 

8; P = 9.32 × 10-3) and poleward shifts at the centroid of the range (5.13±0.41 km.yr-1; one-165 
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sample Student’s t-test: t = 12.54; df residuals = 6; P = 1.57 × 10-5). Our results also indicate that 166 

the leading and trailing edge of marine species are equally sensitive to warming (one-way 167 

ANOVA: F = 0.03; df factor = 1; df residuals = 15; P = 0.87), which is consistent with 168 

expectations from thermal tolerance limits of marine ectotherms22 (though in contrast to a 169 

previous report3). In turn, this suggests that marine species are moving in lockstep4 towards the 170 

poles. Similarly, along elevational gradients, the trailing and leading edge of terrestrial species 171 

have moved towards the summits at a comparable mean pace of 2.34±0.67 m.yr-1 and 2.15±0.60 172 

m.yr-1, respectively (one-way ANOVA: F = 0.03; df factor = 1; df residuals = 23; P = 0.87). This 173 

indicates that terrestrial species are moving in lockstep towards mountain summits, which is very 174 

consistent with two recent syntheses concluding on symmetric boundary shifts in mountains17,18. 175 

Note, however, that the mean upslope shift was significant at the leading edge (one-sample 176 

Student’s t-test: t = 6.19; df residuals = 12; P = 4.65 × 10-5), but only marginally significant at 177 

both the trailing edge (one-sample Student’s t-test: t = 2.07; df residuals = 11; P = 0.06) and the 178 

centroid of the range (one-sample Student’s t-test: t = 2.13; df residuals = 11; P = 0.06). 179 

Marine species are better at tracking isotherm shifts. Assessing the degree of coupling between 180 

species range shifts and isotherm shifts (Extended Data 4-6), we found that marine species better 181 

track isotherm shifts in latitude than terrestrial species (Figs. 4-5). For marine systems, our best 182 

model explained 33% of the total variation in the velocity of species range shifts (Fig. 4a). Only 183 

4% of the total variation was related to fixed effects, namely the velocity of isotherm shifts (VIS), 184 

standardized human footprint index (HFI), baseline temperatures (BT), life forms (LF) and 185 

synergistic effects between VIS and HFI or BT (Fig. 4b), whereas 29% was explained by random 186 

effects or methodological attributes (Supplementary Table 2). Again, this strongly supports the 187 

idea that varying methodologies in estimates of climate-driven biological responses can 188 

contribute to most of the explained variation and need to be explicitly considered in quantitative 189 
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reviews14. Noteworthy, we found that faster climate velocities combined with higher human 190 

pressures in the oceans (e.g. commercial shipping, industrial fishing, ocean acidification) or 191 

warmer sea surface temperatures during the baseline survey increases the velocity of species 192 

range shifts along the latitudinal gradient for both marine ectotherms and cryptograms (Figs. 5c-193 

d, Extended Data 7, Supplementary Table 2). More specifically, we found that marine species 194 

closely track shifting isotherms either in initially warm and undisturbed waters (e.g. Central 195 

Pacific Basin)19 or in initially cold waters where human activities are more pronounced (e.g. 196 

Norwegian Sea, North Sea and English Channel) (Fig. 6c, Extended Data 8). This pattern is 197 

unlikely to result from a collinearity issue between the velocity of isotherm shifts and the 198 

standardized human footprint index (R2 = 0.05) (Supplementary Fig. 3). Instead, it may stem 199 

from the combination of two processes. First, marine species are living closer to their upper 200 

thermal limits in the tropics, where sea surface temperatures are the highest, thus increasing the 201 

likelihood of local extirpations at their trailing edges as climate warms11. Second, lower 202 

constraints on dispersal and colonization in the oceans (as opposed to terrestrial habitats)3 may 203 

help species to rapidly shift their distribution towards the newly available habitats. By contrast, 204 

at high latitudes where the thermal safety margin of marine species is larger11, climate warming 205 

alone is unlikely to explain isotherm tracking. Instead, anthropogenic activities (e.g. fishing 206 

pressure and pollution in the North Sea) may render populations more sensitive to climate 207 

change by reducing abundance and density, truncating the age distribution and leading to the 208 

depletion of fish stock at the trailing edge of their range27. In parallel, successful management 209 

actions at higher latitudes, such as along the Norwegian’s coastlines in the Norwegian Sea and 210 

the Barents Sea, combined with climate warming, may increase population sizes of commercial 211 

fishes at the leading edge of their range29, thus promoting successful colonization. 212 
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Unlike in the oceans, the degree of coupling between the velocity of species range shifts 213 

and the velocity of isotherm shifts is comparatively poor on land (Fig. 4). Again, this 214 

inconsistency with a former synthesis2 from 2011 may stem from the fact that we here analyzed 215 

the coupling separately for the marine and terrestrial systems, a distinction that was not possible 216 

in 2011 due to a lack of data at that time, for marine systems. Our best model explained 47% of 217 

the total variation in the velocity of species range shifts along the latitudinal gradient on land 218 

(Supplementary Table 2), of which the largest proportion was explained by varying 219 

methodologies among studies (Fig. 4a). Among fixed effects, we found that range shifts were 220 

best explained by differences between life forms and a negative interaction term between the 221 

velocity of isotherm shifts and the standardized human footprint index (explaining 8% of the 222 

total variation; Fig. 4b). Such antagonistic effect between climatic and human-related drivers 223 

suggests that habitat loss and fragmentation – associated with high population densities and other 224 

human activities such as agricultural practices – in the lowlands, combined with limited species’ 225 

dispersal abilities – relative to the speed at which isotherms are shifting along the latitude 226 

gradient30 – likely impede the capacity of terrestrial taxa to track shifting isotherms. Again, this 227 

pattern is unlikely to result from a collinearity issue between the velocity of isotherm shifts and 228 

the standardized human footprint index (R2 = 0.09) (Supplementary Fig. 3). Interestingly, we 229 

found that when exposed to a high degree of anthropogenic disturbances (HFI > 0.3), terrestrial 230 

species tend to shift in the opposite direction to isotherms (i.e. HFI conditions for which both 231 

velocities show opposite signs in Fig. 5b and Extended Data 9), most likely due to local 232 

extinction processes at the leading edge. For instance, a previous study showed that during 1970-233 

1999, habitat loss and degradation led to a decline in the distribution sizes of three-quarters of 234 

butterfly species that approach their northern climatic range margins in Britain, outweighing the 235 

climate-induced species range shifts that were expected from climate warming26. This is 236 
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consistent with the general idea that land-use and climate change may act as opposing forces on 237 

species distribution changes. In addition, air conducts heat 25 times less effectively than water12, 238 

which makes terrestrial species, in general, less sensitive than marine species to temperature 239 

fluctuations and thus less likely to move as a direct response to climate warming11. The 240 

availability of thermal microrefugia (e.g. shaded environments) on land may also allow species 241 

to more easily regulate their body temperature (e.g. microhabitats may allow terrestrial 242 

ectotherms to increase their thermal safety margin by 3°C on average as compared with marine 243 

ectotherms11). Hence, we confirm that isotherm tracking is very unlikely for terrestrial taxa 244 

living in the lowlands9,25. 245 

Along elevational gradients, the best model explained 11% of the total variation in the 246 

velocity of range shifts (Fig. 4a; Supplementary Table 2) and showed that the velocity of 247 

isotherm shifts interacts with both baseline temperatures and life forms (explaining 2% of the 248 

total variation; Figs. 5a-6a, Extended Data 9-10). Contrary to the latitudinal gradient, the 249 

standardized human footprint index was not selected as a meaningful explanatory variable in the 250 

best model. Noteworthy, we found a better coupling between the velocity of species range shifts 251 

and the velocity of isotherms shifts for ectotherms in cold environments (i.e. close to 252 

mountaintops). The geographic isolation and habitat area constraints specific to mountaintops 253 

(e.g. sky islands) may exacerbate local extinction events through reduced population sizes as 254 

climate warms and habitat area shrinks, thus paying off part of the climatic debt for ectotherms 255 

living close to mountaintops. For instance, mass extinction events associated with climate 256 

warming and pathogen outbreaks have already been reported for several amphibian species 257 

endemic to mountainous regions31. For endotherms, phanerogams and cryptogams, the slope of 258 

the relationship between the velocity of species range shifts and the velocity of isotherm shifts in 259 

mountainous systems is negative, especially under warm climates (Extended Data 9). However, 260 
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we found that velocity values for range shifts along elevational gradients are always positive, 261 

except under very warm baseline temperature conditions (BT > 20°C). This indicates that 262 

endotherms, phanerogams and cryptogams are in general shifting their elevational ranges 263 

upslope to track shifting isotherms but are consistently lagging behind climate change. Isotherms 264 

may be shifting upslope at a pace that is simply too fast for species with limited dispersal 265 

abilities and long life spans, such as trees, to keep pace. Additionally, in the tropics, the higher 266 

importance of biotic interactions32 may further impede the rate of range shifts over what is 267 

expected from climate change alone33. But most importantly, the global climatic grids that are 268 

currently available, and that we used here, may still be too coarse in spatial resolution (1 km2 at 269 

best) to allow a reliable assessment of the true velocity of isotherm shifts experienced along 270 

mountain slopes. Indeed, the topoclimatic and microclimatic heterogeneity that is available 271 

across few metres in mountain systems, something that is not accounted for here, may provide a 272 

strong spatial buffer against climate warming34, allowing species to shift at relatively small 273 

spatial distances and seemingly “stay”35 relative to the velocity of isotherm shifts that is 274 

measured at a coarser spatial resolution. Hence, the slow velocities of species range shifts that 275 

we observed in mountainous areas could also be the result of local compensation effects 276 

involving short distance escapes and species persistence within microrefugia. 277 

General implications. To conclude, the coupling between species range shifts and isotherm 278 

shifts is not uniform across biological systems, confirming the lags observed in the biotic 279 

responses of terrestrial organisms to climate change9,10. Noteworthy, we demonstrate complex 280 

interactions between the velocity of climate warming, the degree of human pressures on the 281 

environment, historical temperature regimes and species characteristics. We suggest that 282 

commercial fishing may speed up the displacement of marine species distribution through 283 

resource depletion and population crashes at the trailing edge, whereas low constraints on 284 
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dispersal in the oceans may allow marine species living close to their upper thermal limits to 285 

better track climate warming at the leading edge. On land, habitat loss and fragmentation due to 286 

land-use changes may impede the ability of terrestrial species to track shifting isotherms. These 287 

complex interactions need to be accounted for to improve scenarios of biodiversity redistribution 288 

and its consequences on human well-being5 under future climate change. The fact that marine 289 

species better track climate warming than terrestrial species also suggests that biodiversity 290 

redistribution will have more immediate and far-reaching consequences in the oceans than on 291 

land. For instance, community reshuffling9,25 and the “tropicalisation” of temperate 292 

ecosystems36,37 is likely to happen much faster in marine than in terrestrial systems, with more 293 

direct and rapid consequences on ecosystem health and functioning (e.g. increasing fish 294 

herbivory in kelp forests38) as well as on the valuable services (e.g. fishery) and disservices (e.g. 295 

coastal erosion) oceans can provide. 296 

However, it is important to bear in mind that our findings, as well as former syntheses on 297 

the topic, are still dependent on data availability and thus suffer from severe taxonomic and 298 

geographic biases. Despite a broad taxonomic coverage of the tree of life (Extended Data 3), 299 

species range shifts recorded in BioShifts13 cover only 0.6% of the described biodiversity on 300 

Earth (N = 2,094,892 taxa). Besides, it is noteworthy that species range shifts in the southern 301 

hemisphere and in tropical regions in general are underrepresented. These limitations may affect 302 

our perception of species redistribution, and by consequence challenge global biodiversity 303 

conservation efforts4,15. It is thus more important now than ever to continue to study and 304 

document range shifts in areas and for taxonomic groups that have been so far somewhat 305 

neglected. Our database on species range shifts provides solid foundations to build a truly global 306 

monitoring of species redistribution. We thus call for future research perspectives linking our 307 
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database on species range shifts with existing but scattered databases on species traits39–44 to 308 

improve our ability to anticipate biodiversity redistribution under climate change. 309 
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Methods 310 

Literature search. We reviewed the scientific and peer-reviewed literature reporting climate-311 

driven range shifts under contemporary climate change. By contemporary climate change, we 312 

here mean the period stretching from the beginning of the 19th century and onwards. As a 313 

general approach, we started from the reference lists of the most recent meta-analyses and 314 

syntheses on the topic2–4 that we completed by regularly searching the scientific literature 315 

published between 2014 and 2018, following the same protocol as in Lenoir & Svenning4 316 

(Supplementary Fig. 1). Because of the clear focus on latitudinal and elevational range shifts in 317 

the scientific literature and the lack of information on the other geographical dimensions4, we 318 

excluded several reports focusing exclusively on bathymetric or longitudinal range shifts. Broad 319 

inclusion criteria comprised studies: (i) focusing on relatively recent (since 1850s) distribution 320 

changes; (ii) based on occurrence or abundance data of at least one species; and (iii) only if 321 

studies were based on assessments covering at least two historical censuses with a minimum of 322 

10 years between censuses. Hence, we excluded studies reporting distribution range changes 323 

from a single census (synchronous approach comparing data from different ontogenetic life 324 

stages of the same species like seedlings vs. adult trees) or based on historical patterns of species 325 

mortality obtained from climatic reconstructions only, without real occurrence or abundance data 326 

from at least two different time periods to confirm model outputs. We also excluded studies 327 

focusing exclusively on distributional range changes of invasive alien species. This selection 328 

procedure led to a total of 258 published and peer-reviewed studies for which we could extract 329 

data on species range shifts8,27,45–300. 330 

We used Google Sheets to store the raw data on species range shifts in a dynamic and 331 

common file that we shared among co-authors, while always keeping a regular copy of the 332 

database saved on several computers to ensure backups. Once studies were clearly identified and 333 
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stored as “.pdf” files in a common folder in Google Docs, each co-author picked studies, one by 334 

one, and entered data manually in the database. Some of the “.pdf” files were carefully annotated 335 

to help us quickly identify and recover any meaningful information in the main text or display 336 

items (e.g. tables or figures). When data on species range shifts were not directly available in the 337 

main text, in tables or in the appendices of the publication, we first contacted the corresponding 338 

authors and requested the data. In case of no positive response from the original authors and 339 

when data on range shifts could be extracted from published figures, we used the 340 

“WebPlotDigitizer” program (https://automeris.io/WebPlotDigitizer/). When range shifts were 341 

reported for more than one geographically distinct survey area or between more than two 342 

censuses (e.g. more than one resurvey of historical data), we considered them as independent 343 

case studies (N = 325). This data entry procedure led to a total of 30,534 range shift estimates at 344 

the species level (see Data Availability to access the database: BioShifts13). 345 

Range shift estimates, as reported by the original authors, were coded as positive values if 346 

poleward in latitude, or upward in elevation, and negative otherwise (equatorward and 347 

downward). When the authors reported horizontal range shifts with both the magnitude and 348 

direction (i.e. azimuth) values, we used trigonometric relationships to transform these values into 349 

latitudinal range shifts for consistency with the main bulk of data available in the scientific 350 

literature. Next, we divided each range shift estimate by the study duration between two 351 

consecutive censuses (ending year – starting year + 1) to assess the rate or velocity of range shift 352 

(ShiftR), in kilometer per year along the latitudinal gradient and in meter per year along 353 

elevational gradients. In addition to the velocity of range shift at the species level, we also 354 

retrieved information at the case study level (N = 325), including methodological attributes 355 

known to potentially affect the velocity of range shift14: the starting year of the study (Start); the 356 

ending year of the study (End); the size of the study area (Area); the number of taxa in a study 357 
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(Ntaxa) (continuous variable ranging from 1 to 4426; median = 21; mean = 122); the frequency 358 

of sampling (Sampling) (factor variable with four levels: “continuous”; “irregular”; or 359 

comparison of “two”; or “multiple” periods); whether range shift estimates were generated from 360 

“occurrence” or “abundance” data (PrAb) (factor variable with two levels); the spatial resolution 361 

of the raw data used to estimate range shifts (Grain) (factor variable with three levels: “fine” for 362 

data based on GPS coordinates with a spatial resolution lower than 10 km; “coarse” for data 363 

based on range maps or atlas grids with a spatial resolution greater than 100 km; and “medium” 364 

for intermediate situations); the quality of the approach used to estimate range shifts (Quality) 365 

(factor variable with four levels: “low” when no data cleaning procedures were performed before 366 

computing range shifts; “balanced” when data cleaning or resampling procedures were carried 367 

out to calculate range shifts on a balanced dataset; “modeled” when range shifts were obtained 368 

by computing the difference in the position of a given range parameter estimated from species 369 

distribution models (SDMs) independently calibrated during at least two different time periods 370 

(note that in this case SDM outputs represent the realized and not the potential species 371 

distribution for a given time period); and “resurveyed” when range shifts were calculated from 372 

paired designs such as permanent plots); and whether the “significance” of range shift estimates 373 

were assessed or “not” in the original study (Signif) (factor variable with two levels). To improve 374 

the balance in the number of observations among levels of a given factor variable, we merged 375 

some levels with poor data coverage together for the Sampling and Quality variables. For 376 

instance, the levels “continuous” and “irregular” were merged together with the level “multiple” 377 

such that Sampling was used in our analyses as a factor variable with two levels: “two” vs. 378 

“multiple”. Regarding the Quality variable, we merged the level “resurveyed” together with the 379 

level “balanced” such that Quality was used in our analyses as a factor variable with three levels: 380 

“low”; “balanced”; and “modeled”. Still at the case study level (N = 235), we digitized the study 381 
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region in Google Earth and used the resulting polygons to retrieve spatial information such as the 382 

total area covered by the study. If no clear maps delineating the study area was reported in the 383 

original study (e.g. map displaying the study region), we used national geographic boundaries or 384 

any meaningful spatial information from the text to delineate the study area. All spatial polygons 385 

were used to produce a geo-database (Extended Data 1-2). 386 

Taxonomic harmonization. Before undertaking any taxonomic harmonization procedure, the 387 

last version of our database, dated April 2018, contained 13,570 entries of taxa at any taxonomic 388 

rank up to the genus level (i.e. subspecies, species and genus). Using the R programming 389 

language301, we assembled an R script in order to retrieve, for each taxonomic entry, the most 390 

recent accepted name and its associated classification. After a visual inspection for obvious 391 

syntax correction, three steps of taxonomic verification were performed. First, names were 392 

searched in the National Center for Biotechnology Information (NCBI) taxonomy database using 393 

the function “classification” from the R package “taxize”302. Then, in the same way, any 394 

remaining taxonomic entity not found in NCBI was verified with the Integrated Taxonomic 395 

Information System (ITIS) database. The full taxonomic classification was also retrieved during 396 

these two steps. Third, the last remaining taxonomic entities not found in NCBI and ITIS were 397 

checked using the Global Biodiversity Information Facility (GBIF) database, using the function 398 

“name_backbone” in the R package “rgbif”. If we found a match, the corrected taxonomic entity 399 

was again checked in NCBI and ITIS by undergoing the previously mentioned procedure once 400 

again to retrieve a reliable taxonomic classification. Finally, only names at the species and the 401 

genus level were kept for the analyses (subspecies being aggregated at the species level). 402 

Following this taxonomic harmonization procedure, the final number of taxa names in the 403 

database was reduced to 12,415. 404 
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Climate velocity. Using the spatial information obtained from the digitized polygons as well as 405 

the temporal information (Start and End years) available from each of the 258 publication 406 

sources, we retrieved basic temperature information to calculate the velocity of temperature 407 

change throughout the study period. Terrestrial climate data were obtained from WorldClim v. 408 

1.4 (http://www.worldclim.org/) and the Climate Research Unit (CRU) TS v. 3.23 409 

(https://crudata.uea.ac.uk/cru/data/hrg/) while marine climate data were obtained from BIO-410 

ORACLE (http://www.bio-oracle.org/) and the Met office Hadley Centre observations datasets 411 

(https://www.metoffice.gov.uk/hadobs/hadisst/). 412 

Because marine and terrestrial taxa shift at different rates and directions to potentially track 413 

the complex mosaic of local climate velocities8, we calculated the observed local velocity of 414 

temperature change (i.e. the spatial shift of isotherms over time)6,7 for each case study, following 415 

the approach used by Burrows et al.7. We divided the temporal change in annual mean 416 

temperature observed over the studied period (°C.yr-1) by the corresponding spatial gradient 417 

(°C.km-1 or °C.m-1) as a measure of the velocity of temperature change (km.yr-1 or m.yr-1)6. The 418 

temporal gradient was calculated using time-series data from the CRU covering the period 1901-419 

2016 at a spatial resolution of 0.5° (about 55 km at the equator) and from the Met office Hadley 420 

Centre observations datasets covering the period 1870-2018 at a spatial resolution of 1° (about 421 

111 km at the equator) for terrestrial and marine studies, respectively. To do so, we regressed 422 

annual mean temperature (°C) values for all years throughout the study period as well as the two 423 

preceding years against time (yr) using linear regressions. When the starting year was prior to 424 

1901 or 1870 for terrestrial and marine systems, respectively, we started the time series in 1901 425 

or 1870 depending on the climate series. The slope parameter (°C.yr-1) of this model was then 426 

used as an estimate of the temporal gradient. For the sake of comparison with the rate of range 427 

shift usually calculated along the latitudinal and elevational gradients, we calculated the spatial 428 
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gradient of annual mean temperature along the latitudinal (km.yr-1) and along elevational (m.yr-1) 429 

gradients, separately. This allowed us to assess both the latitudinal and elevational velocity of 430 

temperature change (LatVeloT and EleVeloT). To assess the latitudinal spatial gradient of annual 431 

mean temperature across land and sea, we used spatial grids from WorldClim and BIO-432 

ORACLE, respectively, at a spatial resolution of 5 arc-minute (about 9.2 km at the equator). The 433 

WorldClim grid of annual mean temperature was downloaded at the finest spatial resolution, 434 

which is 30 arc-second (about 1 km at the equator), but aggregated at 5 arc-minute to be 435 

consistent with the spatial resolution of sea surface temperatures. Latitudinal spatial gradients 436 

were calculated as in Burrows et al. 7 based on a 3 × 3 neighborhood sub-grid with the centre cell 437 

being the focal cell and its eight neighboring cells used to calculate the difference in 438 

temperatures for each northern and southern (resp. southern and northern in the southern 439 

hemisphere) pairs divided by the distance between them. Average differences (°C.km-1) for the 440 

focal centre cell were calculated, excluding any missing values (usually along coastlines), using 441 

weightings of 1 and 2 for cells diagonal and adjacent, respectively, to the focal centre cell. For 442 

the elevation gradient, we used the temperature data from the WorldClim grid of annual mean 443 

temperature at the finest spatial resolution (30 arc-second which is about 1 km at the equator) 444 

and calculated the spatial gradient across each case study using a linear model relating annual 445 

mean temperature (the response variable) to both elevation and latitude (the explanatory 446 

variables). We used latitude as a covariate in this model to account for the latitudinal variation in 447 

temperature observed within studies covering large spatial extents, i.e. elevation values close to 448 

the equator are not directly comparable, in terms of temperature, to elevation values close to the 449 

poles. The coefficient parameter along elevational gradients (°C.m-1) was then used as an 450 

estimate of the local adiabatic lapse rate. For the study areas that were larger in extent than the 451 

spatial resolution of the temperature grids, we computed the mean values of LatVeloT or 452 
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EleVeloT throughout the entire study area by averaging values across all spatial grid cells 453 

overlapping with the polygons delineating the study area. 454 

Additional drivers of range shifts. As baseline temperature conditions may affect the rate at 455 

which species are shifting their distributions24, we extracted annual mean temperature values 456 

during the year of the initial census (Start) as well as the two preceding years and calculated the 457 

mean (hereafter BT in °C). For terrestrial and marine systems, we used time-series data from 458 

CRU and the Met office Hadley Centre observations datasets, respectively. When the initial 459 

census of a given publication source was prior to 1901 or 1870 for terrestrial and marine 460 

systems, respectively, we used the oldest years available from the time series to compute 461 

baseline temperature conditions. Similar to climate velocity variables, when the study areas were 462 

larger in extent than the spatial resolution of the temperature grids, we computed the mean values 463 

of BT throughout the entire study area by averaging values across all spatial grid cells 464 

overlapping with the polygons delineating the study area. 465 

As anthropogenic disturbances such as land-use intensity or industrial fishing may act as 466 

confounding factors on the velocity of range shift24, we retrieved information on anthropogenic 467 

impacts for both the terrestrial and marine environment. For terrestrial systems, we downloaded 468 

the Global terrestrial Human Footprint maps for the year 200920. These maps, at a spatial 469 

resolution of 30 arc-second (about 1 km at the equator), provide remotely-sensed and bottom-up 470 

survey information on eight variables measuring the direct and indirect human pressures on the 471 

environment: (1) the extent of built environments; (2) human population density; (3) electric 472 

infrastructure (night-light time); (4) crop lands; (5) pasture lands; (6) roads; (7) railways; and (8) 473 

navigable waterways acting like roads for people to access natural resources. All eight pressure 474 

variables were scaled by the original authors based on their degree of influence on the terrestrial 475 

environment. For instance, human population density and night-time lights were scaled between 476 
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0 and 10 while roads were scaled between 0 and 8. Scores for each of the eight individual threats 477 

were then summed and weighted by the original authors to make a composite map of the global 478 

human footprint index ranging from 0 to 50. For marine systems, we used the Global Map of 479 

Human Impact on Marine Ecosystems19, also available at 30 arc-second resolution (about 1 km 480 

at the equator). This gridded dataset provides a cumulative impact score ranging from 0.01 to 481 

90.1 for the minimum and maximum value, respectively. It was developed on the basis of expert 482 

judgment, to estimate ecosystem-specific impacts with respect to 17 anthropogenic drivers of 483 

ecological change (e.g. commercial shipping, demersal and pelagic fishing, ocean acidification, 484 

pollution). To allow comparison between terrestrial and marine systems, we rescaled both 485 

indices between 0 and 1 (standardized human footprint index or standardized HFI) and computed 486 

the mean per study area. The original authors have extensively validated HFI values against 487 

satellite imagery, yielding high confidence they represent conditions of human pressure on the 488 

environment20. 489 

Description: assessing geographic and taxonomic biases. To evaluate spatial biases in the 490 

reporting of species range shift, we built 2° × 2° gridded maps, on top of which we overlaid the 491 

digitized polygons associated with the observations gathered in the database for both the 492 

terrestrial and marine realm, and separately for latitudinal and elevational range shifts. For each 493 

2° × 2° grid cell, we also computed the relative proportion of ectotherms vs. endotherms for 494 

animals and phanerogams vs. cryptogams for plants and plant-like life forms (e.g. lichens and 495 

algae). We distinguished ectotherm from endotherm life-forms due to their contrasting sensitivity 496 

to temperature fluctuations in the environment, with ectotherms being unable to directly regulate 497 

their body temperatures as opposed to endotherms. The distinction between phanerogams and 498 

cryptogam life-forms allowed to contrast between two different reproduction strategies among 499 

chlorophyllous organisms: the evolved seed-bearing plants (angiosperms and gymnosperms) vs. 500 
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the other plant-like life forms reproducing by spores (ferns, mosses, lichens and algae). We then 501 

generated cartograms using the diffusion-based method for producing density-equalizing 502 

maps303. The number of range shift rates per 2° × 2° grid cell (i.e. sample size) was used to 503 

distort the map: the bigger the grid cell, the larger the sample size (Extended Data 1). We 504 

additionally estimated the phylogenetic coverage of the range shift database with respect to the 505 

whole tree of life described in the Open Tree of Life (https://tree.opentreeoflife.org) collapsed at 506 

the level of taxonomic classes and the total number of species recorded in the Catalogue of Life 507 

(http://catalogueoflife.org/). 508 

Detection: estimating the velocity of range shifts per taxonomic class. Data coverage in our 509 

database is very unbalanced between: the marine vs. terrestrial realm; the northern vs. southern 510 

hemisphere; and the margins vs. centroid of the species range (Supplementary Table 1). Besides, 511 

data on species range shifts do not even exist for some taxonomic classes in some of the 512 

combination of realm × hemisphere × position in the species range. For instance, dicots 513 

(Magnoliopsida) are exclusively terrestrial organisms while cartilaginous fishes 514 

(Chondrichthyes) almost exclusively live in marine habitats except for a few sharks and rays 515 

living in freshwater habitats during all or part of their lives. Thus, a single model to estimate the 516 

velocity of range shifts per taxonomic class while accounting for methodological biases4,14,15 517 

would be inappropriate. Hence, we divided latitudinal range shifts (N = 16,952) into a full 518 

factorial design304 with eight experimental units based on all possible combinations of levels 519 

across three factor variables: biological system (marine vs. terrestrial); hemisphere (north vs. 520 

south); and range position (centroid vs. margins). We did the same for elevational range shifts (N 521 

= 13,582) except that there were only four possible experimental units (i.e. terrestrial systems 522 

only). To ensure robust fit, we further focused on taxonomic classes with more than 30 523 

observations per experimental unit (N = 20 taxonomic classes fulfilling this sample size 524 
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criterion) (Fig. 1, Supplementary Table 1), which reduced our sample size to 16,399 and 13,341 525 

observations for latitudinal and elevational range shifts, respectively. Among the 12 possible 526 

combinations, only one combination (latitude × margins × terrestrial × south) could not be 527 

fulfilled due to a lack of range shift data (N = 8). This resulted in a total of 11 sub-models (i.e. 528 

factorial models) (Supplementary Table 1). 529 

For each of the 11 factorial models for which the data were available, we built a linear 530 

mixed-effects model (LMM) relating the velocity of species range shift (ShiftR) for a given taxon 531 

(i.e. the response variable) against taxonomic Class, a factor variable with as many levels as the 532 

number of taxonomic classes within the focal experimental unit (e.g. Amphibia vs. Aves for 533 

latitudinal range shifts at the centroid of the distribution in terrestrial systems of the southern 534 

hemisphere) (Supplementary Table 1). Note that if a given factorial model only had data for one 535 

unique taxonomic class (e.g. Actinopterygii for latitudinal range shifts at the centroid of the 536 

distribution in marine systems of the southern hemisphere) (Supplementary Table 1), then the 537 

variable Class was not included in the fixed effects of the LMM. For the five LMMs focusing on 538 

the rate of range shift at the margins of the distribution, we added an extra factor variable 539 

(Margin) with two levels (“leading” vs. “trailing” edge) in the fixed effects, to provide robust 540 

estimates of the rate of range shift at both the leading and trailing edges. Given the complex 541 

structure of the database, involving repeated observations per taxonomic units (e.g. family, 542 

genus) or methodological levels, LMM is the most appropriate modelling approach304. This 543 

allowed to provide estimates of the velocity of range shifts per taxonomic class that are 544 

representative across all levels of a given methodological variable rather than providing 545 

estimates for each level separately, while accounting for taxonomic non-independence. More 546 

specifically, we included Genus as a random intercept term nested (or not: in case of singularity 547 

fit) within Family to account for potential taxonomic autocorrelation in the residuals of the 548 
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models. In addition, because the different methodological approaches used in the scientific 549 

studies may also contribute to a non-negligible fraction of the variation in range shifts14, we 550 

considered several methodological variables as random intercept terms in the LMMs (Area, 551 

Start, Ntaxa, Sampling, PrAb, Grain, Quality and Signif). To be included in the random part of 552 

our LMMs, the continuous variables Area, Start and Ntaxa were first transformed into factor 553 

variables with four levels each, using the respective quantiles as cutting points. Then, for each 554 

factorial model separately, we selected only the set of uncorrelated variables with at least two 555 

levels having more than four observations. We used the “lmer” function from the “lme4” 556 

package305 in the R programming language301. 557 

We used a model selection procedure where the best random effect structure was identified 558 

by testing all the combinations of random factors and selecting the one with the lowest Akaike 559 

information criterion with small-sample correction (AICc). To compare AICc values among 560 

candidate models, we set the restricted maximum likelihood argument to “FALSE” in the “lmer” 561 

function (i.e. REML = FALSE for maximum likelihood)305. To ensure robust estimations, all the 562 

singular fits were removed from the list of candidate models prior to model selection. In case of 563 

singular fits across all candidate models, we used case study (Source) as the unique random 564 

intercept term. If the random intercept term Source also led to a singular fit, then we used a linear 565 

regression model (LM). For each of the LMMs (or LMs in case of singular fits for all the 566 

candidate models) focusing on the velocity of range shift at the margins of the distribution, we 567 

also included an interaction between Margin and Class that we tested against a model without 568 

the interaction term in the fixed effects based on the AICc value. When the absolute difference in 569 

AICc value between these two candidate models was greater than two, we selected the model 570 

with the lowest AICc value. Otherwise, in case of equivalent competing models, we selected the 571 

one with the interaction effect between Margin and Class considering that it allows flexible 572 
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range shift estimations at the trailing and leading edge. Once the best LMM was selected for 573 

each factorial model (Supplementary Table 1), we set REML to TRUE305 to extract coefficient 574 

estimates among the different levels of the factor variables Class and Margin. To test whether 575 

the estimated rate of range shift for a given taxonomic class and at a given position within the 576 

range was significantly different from zero, we reran each of the 11 selected best models using a 577 

bootstrap approach (N = 5,000 iterations). From these 5,000 estimates, we computed the mean 578 

and median velocity of range shift as well as the standard deviation and 95% confidence interval 579 

per taxonomic class. Finally, to assess the overall goodness-of-fit of the different factorial 580 

models, as well as to compare the relative importance of biological versus methodological effects 581 

on the rate of range shift, we computed the marginal (i.e. variance explained by the fixed effects) 582 

and conditional (i.e. variance explained by both the fixed and random effects) R2 values306 of 583 

each bootstrap iteration and for each factorial model using the “r.squaredGLMM” function from 584 

the “MuMIn” package in the R programming language301. 585 

Attribution: coupling between species’ range shifts and isotherms’ shifts. We assessed the 586 

coupling between the velocity of species range shifts and the velocity of isotherm shifts (VIS) 587 

using LMMs built separately for the latitudinal and elevational gradients. We specified the 588 

velocity of species latitudinal (km.yr-1) or elevational (m.yr-1) range shifts as the response 589 

variable and either the latitudinal or elevational VIS (LatVeloT / EleVeloT; continuous variables) 590 

as the main explanatory variable. To account for potential interacting effects on the relationship 591 

between the velocity of range shifts and VIS, we added several covariates in our models: baseline 592 

temperature (BT; a continuous variable); standardized human footprint index (standardized HFI; 593 

a continuous variable representing human pressures on the environment bounded between 0 and 594 

1); and life forms (LF) (a factor variable with 4 levels: ectotherm, endotherm, cryptogam, 595 

phanerogam). As temperature regimes and human pressures on the environment are not directly 596 
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comparable between lands and oceans, we further modeled the coupling between the velocity of 597 

species latitudinal range shifts and VIS in latitude (LatVeloT) separately for the marine and 598 

terrestrial realm. We tested for all two-way interaction terms between each covariate (BT, HFI 599 

and LF) and VIS (either LatVeloT or EleVeloT). We also tested for a unimodal relationship 600 

between the estimated rates of range shifts and baseline temperature conditions (BT) using a 601 

second-order polynomial term. The variables Position within the range (a factor variable with 3 602 

levels: trailing edge, centroid and leading edge) and Hemisphere (a factor variable with 2 levels: 603 

North vs. South) were not incorporated as covariates in the models as both variables had no 604 

effect to explain the variation in the rates of latitudinal and elevational range shifts per 605 

taxonomic class (Supplementary Table 2). 606 

Similar to the LMMs developed at the taxonomic class, the aforementioned explanatory 607 

variables were used as fixed effects in LMMs, whereas the methodological attributes (Area, 608 

Start, Ntaxa, Sampling, PrAb, Grain, Quality and Signif) were used as random intercept terms. 609 

Starting from the beyond optimal model (full model with all fixed effects)305 separately for the 610 

velocity of latitudinal range shifts in marine and terrestrial systems as well as for the velocity of 611 

elevational range shifts, we tested all model combinations and selected the best model based on 612 

the lowest AICc value, setting REML to FALSE (i.e. maximum likelihood) for model selection 613 

and then to TRUE to estimate the coefficients once the best model was selected305. We first 614 

selected the random effect structure after removing singular fits, using the exact same procedure 615 

as for the models used to estimate the mean velocity of range shift per taxonomic class. We then 616 

selected the fixed effect structure, keeping the previously identified random structure constant. 617 

All continuous variables (LatVeloT, EleVeloT, BT and HFI) were standardized to z-scores using 618 

the “gscale” function307 from the “jtools” package in the R programming language301. This 619 

function standardizes each value of a given variable by subtracting it from the mean and dividing 620 
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it by two times the standard deviation of the focal variable (instead of one time as more 621 

commonly done). This rescaling formula is recommended over the traditional formula of 622 

dividing by one time the standard deviation because it allows direct comparisons of model 623 

coefficients with untransformed binary predictors307. For the sake of consistency, we focused on 624 

the set of species belonging to the taxonomic classes with more than 30 observations, resulting in 625 

16,521 (1,403 marine vs. 15,118 terrestrial) and 13,459 observations for latitudinal and 626 

elevational range shifts, respectively. The 95% confidence intervals around each of the estimated 627 

coefficients were calculated using bootstraps (N = 5,000 iterations), similar to the models used to 628 

estimate the mean velocity of range shift per taxonomic class. 629 

Finally, to illustrate the capacity of species to track the shifting isotherms, we mapped the 630 

predicted slopes for each combination of the predictors identified in the best models, separately 631 

for latitudinal (marine or terrestrial) and elevational range shifts. A slope value of one between 632 

the velocity of species range shifts and the velocity of isotherm shifts indicates a perfect coupling 633 

with species closely tracking the shifting isotherms. To do so, we built a 2° × 2° gridded map, on 634 

top of which we overlaid the digitized polygons associated with each observation used in the 635 

previous models. We then generated cartograms using the diffusion-based method for producing 636 

density-equalizing maps303. As before (see section entitled “Detection: assessing geographic and 637 

taxonomic biases”), the number of range shift rates per grid cell (i.e. sample size) was used to 638 

distort the map: the bigger the grid cell, the larger the sample size. Finally, we tested whether the 639 

slope estimated for each 2° × 2° grid cell (i.e. according to the grid-specific baseline temperature 640 

and the standardized human footprint index) significantly differed from a value of one 641 

(indicating a perfect coupling), based on 5,000 bootstrap iterations. 642 
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Figure Legends 1408 

Fig. 1│Taxonomic coverage. Number of taxa (in parenthesis), in log scale, per taxonomic class: 1409 

from the least (top) to the most (bottom) studied taxonomic class. Only taxonomic classes with 1410 

more than 30 observations per factorial model are displayed. 1411 

Fig. 2│Sources of variation in species range shifts. Proportion of explained variation either 1412 

related to the taxonomic class and position at the range margin (fixed-effect terms in the models) 1413 

or to methodological attributes (random effect terms in the models) for each of the 10 factorial 1414 

models for which we had data (Supplementary Table 1). Each factorial model represents a 1415 

combination of positional parameter (Cen: centroid; Mrg: margins) × spatial gradient (L: 1416 

latitude; E: elevation) × biological systems (M: marine; T: terrestrial) × hemisphere (N: north; S: 1417 

south). Note that the “Margin” factor variable with two levels (leading edge vs. trailing edge) 1418 

was only tested in model combinations focusing on margins (Mrg). Error bars represent the 1419 

distribution of 5,000 bootstrap iterations. 1420 

Fig. 3│Mean velocity of species range shifts per taxonomic class. Estimated velocity of range 1421 

shift per taxonomic class (i.e. effect size) in km.yr-1 and m.yr-1 for (a) latitudinal and (b) 1422 

elevational range shifts, respectively, after accounting for methodological variation. Outputs are 1423 

displayed for all possible combinations of positional parameter (TE: trailing edge; CE: centroid 1424 

vs. LE: leading edge) × hemisphere (N: north; S: south) × biological systems (M: marine; T: 1425 

terrestrial). Violin plots represent the distribution of 5,000 bootstrap iterations. Stars show 1426 

significant deviations from zero shift (*: P < 0.05; **: P < 0.01; ***: P < 0.001). 1427 

Fig. 4│Degree of coupling between species range shifts and isotherm shifts. Models outputs 1428 

in terms of (a) proportion of explained variation and (b) effect size related to the velocity of 1429 

isotherm shifts (VIS), baseline temperatures (BT + BT2), standardized human footprint index 1430 
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(HFI) and two-way interaction terms (VIS:HFI and VIS:BT) for each of the four studied life 1431 

forms (LF: endotherms, ectotherms, phanerogams and cryptogams). Intercept refers to the effect 1432 

size of the focal life form. Error bars represent the distribution of 5,000 bootstrap iterations. 1433 

Model outputs are displayed separately for marine latitudinal range shifts, terrestrial latitudinal 1434 

range shifts and elevational range shifts. 1435 

Fig. 5│Main determinants of the velocity of species range shifts. Results are displayed along 1436 

(a) elevational and (b, c, d) latitudinal gradients for both the (a, b) terrestrial and (c, d) marine 1437 

realms. Panel a shows the interaction effect between baseline temperatures and the velocity of 1438 

isotherm shifts in elevation for ectotherms. Panel b shows the interaction effect between the 1439 

standardized human footprint index and the velocity of isotherm shifts in latitude for terrestrial 1440 

ectotherms. Panel c shows the interaction effect between baseline temperatures and the velocity 1441 

of isotherm shifts in latitude for marine ectotherms while setting the standardized human 1442 

footprint index to its median value in the database. Panel d shows the interaction effect between 1443 

the standardized human footprint index and the velocity of isotherm shifts in latitude for marine 1444 

ectotherms while setting baseline temperatures to the median value in the database. The two 1445 

white lines and the white hatching represent the range of conditions for which marine ectotherms 1446 

closely track the shifting isotherms in latitude (i.e. slope parameter not significantly different 1447 

from 1 based on 5,000 bootstrap iterations). Note that negative slopes do not necessarily indicate 1448 

species range shifts in the opposite direction to isotherm shifts, unless the signs of the two 1449 

estimates (for a given combination of baseline temperatures and standardized human footprint 1450 

index) are opposite. 1451 

Fig. 6│Maps of the degree of coupling between the velocity of species range shifts and the 1452 

velocity of isotherm shifts. Cartograms show the predicted slope coefficient between the 1453 

velocity of species range shifts and the velocity of isotherm shifts per 2° × 2° grid cell along (a) 1454 
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elevational and (b, c) latitudinal gradients for both terrestrial (b) and (c) marine realms. Note that 1455 

panel a only displays the predicted slope coefficient for ectotherms. Positive slope values (bluish 1456 

colors) close to 1 suggest a perfect isotherm tracking while negative values (reddish colors) 1457 

suggest that species are not tracking the shifting isotherms. Note that negative slopes do not 1458 

necessarily mean that species are shifting in the opposite direction to isotherm shifts (see Fig. 5). 1459 

The number of range shift estimates (i.e. sample size) in each grid cell was used to distort the 1460 

map: the bigger the grid cell, the larger the sample size. Grid cells with a black and bold border 1461 

display areas where species are closely tracking the shifting isotherms (i.e. slope parameter not 1462 

significantly different from 1 based on 5,000 bootstrap iterations). 1463 
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