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ALUTHGE OPERATOR FIELD AND ITS NUMERICAL RANGE
AND SPECTRAL PROPERTIES

GILLES CASSIER1˚ AND THOMAS PERRIN 2

Abstract. For an arbitrary operator T acting on a Hilbert space we consider
a field of operators p∆zpT qq called the Aluthge operator field associated with
T . After giving preliminary results, we establish that two fields (left and right),
canonically linked to the Altuthge field p∆zpT qq and a support subspace, are
constant on each horizontal segment where they are defined. This result leads
to a positive solution of a conjecture stated by Jung-Ko-Pearcy in 2000. Then
we do a detailed spectral study of p∆zpT qq and we give a Yamazaki type formula
in this context.

1. Introduction

Let H be a Hilbert space and let BpHq be the algebra of all bounded operators
acting on H. We write KpHq for the ideal of compact operators, CpHq for the
quotient algebra BpHq{KpHq (called the Calkin algebra) and π for the canonical
surjection from BpHq onto CpHq. If T P BpHq we denote by σpT q the spectrum
of T and by rpT q its spectral radius. Among familiar sets associated with T ,
recall that the numerical range of T is defined as

W pT q “ txTx | xy : }x} “ 1u .

As usual, we write σppT q, σapppT q, σrespT q, σepT q, σlepT q, σrepT q and σsurjpT q for
the point spectrum, the approximate point spectrum, the residual spectrum, the
essential spectrum, the left essential spectrum, the right essential spectrum and
the surjective spectrum of T , respectively. Recall that an operator T P BpHq is
said to be Weyl if it is Fredholm of index zero and Browder if it is Fredholm of
finite ascent and descent. The Weyl spectrum σwpT q and the Browder spectrum
σbpT q of T P BpHq are defined by

σwpT q “ tλ P C : λI ´ T is not Weylu

σbpT q “ tλ P C : λI ´ T is not Browderu .

Denote by S the open strip of the complex plane defined by

S “ tz P C; 0 ă <pzq ă 1u .

Let T P BpHq and let T “ U |T | be its polar decomposition, we define the Aluthge
field of operators associated with T by setting

∆zpT q “ |T |
zU |T |1´z
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for any z P S (for u such that <puq ě 0, the complex power |T |u of |T | is
defined bellow in Section 2). The operator ∆pT q :“ ∆1{2pT q is called the Aluthge
transform of T and was introduced in [1]. Since then, the Aluthge transformation
has been studied by many authors in many areas of operator theory (see for
example [2, 3, 4, 5, 7, 8, 9, 10, 12, 18, 20, 21, 22, 23, 24] and the references
therein, the list is far to be exhaustive). In [1], A. Aluthge proved that if T is p-
hyponormal with p P r1{2, 1r then ∆pT q is hyponormal, and if T is p-hyponormal
with p P s0, 1{2r then ∆pT q is pp`1{2q-hyponormal, thus showing the regularizing
effect of the Aluthge transformation. For z “ 1, the operator ∆1pT q corresponds
to the Duggal transform of T . For α P s0, 1r, it seems that the transformation
∆α : T ÞÑ ∆αpT q was firstly considered in [20].
In Section 2, we provide preliminary results which will be used throughout the
paper. Some of them are of own interest (see for instance Theorem 2.5).
Section 3 is devoted to numerical range properties of the Aluthge field associated
with an operator T P BpHq. I. B. Jung, E. Ko and C. Pearcy (2000) have
conjectured (conjecture 1.9 of [18]) that

W p∆pT qq Ď W pT q (1.1)

for any T P BpHq. In [22], P. Y. Wu has given the first result in this direction

which is W p∆pT qq Ď W pT q (see also [23]). In the finite dimensional case, it gives

(1.1). Later in [3], it is shown that W p∆αpT qq Ď W pT q for each α P r0, 1s. Notice
that almost all results which are concerned with closure of numerical ranges are
based on the following Hildebrandt’s characterization of W pT q established in [16]

W pT q “
č

ζPC

D pζ, }ζI ´ T }s .

The main result of this paper is Theorem 3.1 asserting that the two fields of
operators (left and right), canonically associated with the Altuthge field p∆zpT qq
and a support subspace (defined bellow in Subsection 2.6), are constant on each
horizontal segment included in S. As a direct consequence, a positive answer to
conjecture (1.1) is given. Even more, the inclusion

W p∆zpT qq Ď W pT q (1.2)

is obtained for each z P S.
The last section deals with spectral properties of the Aluthge field p∆zpT qqzPS
associated with an operator T P BpHq. We carefully study different spectra of
∆zpT q, showing that most of them are preserved by the transformation ∆z when
z P S. Using counter examples we prove that some of these spectra are not
preserved when z belongs to the boundary of S. Finally, by means of a short and
direct proof, we show that a Yamazaki type formula holds for every z P S.

2. Preliminaries

Let T P BpHq, as usually we write N pT q for the nullspace of T , RpT q for its
range, LatpT q for the set of invariant subspaces of T and γpT q for the reduced
minimum modulus of T .
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2.0.1. Power operator field associated with a positive operator. Let R be a positive
operator, using the spectral measure ER associated with R we can define the
power operator field z ÝÑ Rz defined on P` “ tz P C;<pzq ě 0u by setting

Rz
“

ż

s0,}R}s

tzdER
ptq.

The next proposition is a direct consequence of functional calculus associated
with a positive operator and Lebesgue theorem.

Proposition 2.1. Let R be a positive operator acting on a Hilbert space H. Then
the operator field

z ÝÑ Rz

is strongly continuous on the half plane P`, holomorphic on t<pzq ą 0u and
uniformly bounded on any closed strip of the form tz P C; a ď <pzq ď bu where
0 ď a ď b.

Let R P BpHq be a positive operator, the following proposition summarizes a
number of useful properties of the power operator field associated with R.

Proposition 2.2. Let R be a nonzero positive operator acting on a Hilbert space
H. Then, we have:

(i) R0 “ PRpRq :“ P and Rz1`z2 “ Rz1 ˝Rz2 “ Rz2 ˝Rz1 for any pz1, z2q P P2
`;

(ii) N pRzq “ N pRq for any z P P`;

(iii) RpRzq “ RpRq for any z P P`;
(iv) γpRitq “ 1 for any t P R and γpRzq “ γpRq2<pzq for each z P P`ziR.
(v) Let z0 P P`. Assume that Rz0 is semi-Fredholm, then Rz0 is Fredholm.

Moreover, if z0 P
˝

P`, then Rz is Fredohlm for any z P P`.
(vi) Let Ω be a Borelian subset of R with positive Lebesgue measure. Assume

that E P
Ş

uPiΩ

LatpRuq, then E P LatpRzq for any z P
˝

P`.

Proof. (i) For any z P P` and any t P r0, }R}s, set ϕzptq “ 1s0,}R}sptqt
z (ϕzp0q “ 0).

Notice that ϕ0ptq “ 1s0,}R}sptq, hence R0 “ PRpRq. Since ϕz1`z2 “ ϕz1 ˆ ϕz1 , the

equality Rz1`z2 “ Rz1 ˝ Rz2 “ Rz2 ˝ Rz1 follows from the Borelian functional
calculus associated with R.

(ii) Let x P N pRzq, then we have

0 “

ż

s0,}R}s

exp p2<pzq lnptqq dER
x,xptq.

Therefore we have necessarily ER
x,x ps0, }R}sq “ 0 and then ER

x,y ps0, }R}sq “ 0

for any y P H, so Rx “
”

ş}R}

0
tdERptq

ı

x “ 0. Thus, x P N pRq. Conversely, if

x P N pRq we have ER
x,y “ xx | yyδ0 for any y P H. Then we get xRzx | yy “

ş}R}

0
ϕzptqdE

R
x,y “ 0 for each y P H and hence Rzx “ 0.
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(iii) The equality RpRzq “ RpRq follows from (ii).

(iv) Recall that the reduced modulus of an operator T P BpHq is defined by
setting

γpT q “ inf
 

}Tx};x P N pT qK and }x} “ 1
(

.

Let z P P`ziR. On the one hand, from (i) we infer that |Rz|2 “ RzRz “ R2<pzq

and hence |Rz| “ R<pzq. On the other hand, since R is a positive operator,
using Theorem 1.5 of [19], we see that γpR<pzqq “ inf

 

t; t P σpR<pzqqz t0u
(

“

inf
 

t<pzq; t P σpRqz t0u
(

“ inf tt; t P σpRqz t0uu<pzq “ γpRq<pzq. Let z “ it P iR,
then we have |Rit| “ R0 “ P (P ‰ 0 because R ‰ 0 ). It implies that
γpRitq “ γp|Rit|q “ γpP q “ 1.

(v) Assume that Rz0 is semi-Fredholm for some z0 P P`, then the range of
Rz0 is closed and from (ii) we derive that dimpN pRz0qq “ dimpN pRz0qq ă `8,

so Rz0 is Fredholm. Now suppose that z0 P
˝

P` and let z P P`. If z P iR, then

the range of Rz is closed. Thus, we may supposed that z P
˝

P`. By (iv) we have

γpRzq “ γpRz0q
<pzq
<pz0q ą 0, and hence the range of Rz is closed. By (ii), we also

have dimpN pRzqq “ dimpN pRzqq “ dimpN pRz0qq “ dimpN pRz0qq ă `8. The
conclusion follows.

(vi) Let E P
Ş

uPiΩ

LatpRuq and x, y be two vectors of H. Without loss of

generality, we may suppose that }R} ď 1. We introduce the function f defined

on the open unit disk D by fpwq “ xR
1´w
1`wx | yy (1´w

1`w
P

˝

P`). Using Proposition
2.1, we see that f is an analytic function. Besides, we have

|fpzq| ď

ż

s0,1s

|r
1´w
1`w |d|ER

x,y|prq ď

ż

s0,1s

d|ER
x,y|prq “ |E

R
x,y|ps0, 1sq ď }x}}y}.

Therefore, the function f belongs to the space H8 of bounded analytic functions
on D. Then, the function f admits nontangential limits almost everywhere (see
for instance [15]). Using again Proposition 2.1, we see that for any w P Tz t´1u,

we still have lim
rÑ1´

fprwq “ xR
1´w
1`wx | yy. Let z0 P

˝

P` and w0 be such that

z0 “
1´w0

1`w0
. Since f P H8 (see [15]), fpw0q is the Poisson integral of the boundary

values of f . Then, we have

xRz0x | yy “

ż

s´π,πr

xR
1´eit

1`eit x | yyPw0pe
it
q
dt

2π
. (2.1)

Now, suppose that x P E and y P EK. Then fpwq “ 0 for any w P
„

Ω “
 

u P Tz t´1u ; 1´u
1`u

P Ω
(

. Clearly
„

Ω is of positive Lebesgue measure on the torus T.

As f P H8, we necessarily have fpeitq “ 0 for almost every t Ps´π, πr. From (2.1)
we infer that xRz0x | yy “ 0, thus Rz0x P E. Consequently E P LatpRz0q. �
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2.0.2. Ultrapower of a Hilbert space. Recall that a Banach limit L is a state
on l8pCq which is shift invariant (that is L ppun`1qně0q “ L ppunqně0q). If the
sequence punqně0 converges to l, we have necessarily

L ppunqně0q “ l. (2.2)

Recall also that 0 ď un ď vn implies 0 ď L ppunqně0q ď L ppvnqně0q. The associ-
ated ultrapower of a Hilbert space H was firstly considered by S. K. Berberian
in [6] and is constructed in the following way:
We consider the space l8pHq of bounded sequences x “ pxnq of H, and define a
positive sesquilinear form by setting

px | yq “ L ppxxn | ynyqq
and the corresponding Hilbertian seminorm

npxq “
a

px | yq “
a

L pp}xn}2qq.
We set N “ tx P l8pHq : npxq “ 0u. The completion H :“ HL of l8pHq{N is
called the ultrapower of H associated with L. For any x “ pxnq P l

8pHq, we

denote by
.
x “

.
Ŋpxnq the associated point in H. The map

y ÞÝÑ
.
y “

.
Ŋpynq p where yn “ y for all nq

is a canonical isometric embedding of H into H. We consider the unital C˚-
morphism Φ, from the von Neumann algebra l8pBpHqq (l8pBpHqq can be identify
with the algebra of diagonal operators acting on l2pHq “ H ‘ ¨ ¨ ¨ ‘H ‘ ¨ ¨ ¨ ) into
BpHq, which is defined by setting

ΦppTnqqp
.
xq “

.
ŔpTnpxnqq.

Notice that }ΦppTnqq} ď supně0 }Tn}. We set T̂ “ ΦppTnqq where Tn “ T for each

n P N. The map ϕ : T ÞÝÑ T̂ is a C˚-embedding of BpHq into BpHq. The next
Proposition gives some useful properties.

Proposition 2.3. Let pTnq P l
8pBpHqq and let T P BpHq, then we have

(i) }ΦppTnqq} P rlim inf }Tn}, lim sup }Tn}s;

(ii) |ΦppTnqq|
z “ Φpp|Tn|

zqq for any z P
˝

P`;
(iii) ∆z pΦ ppTnqqq “ Φpp∆zpTnqqq for any z P S;

(iv) σpT̂ q “ σpT q;

(v) σppT̂ q “ σapppT̂ q “ σapppT q;
(vi) Assume that the sequence p}Tn}qně0 is convergent, then there exists x “

pxnq P l
8pHq such that |ΦppTnqq|p

.
xq “ }ΦppTnqq}

.
x with }

.
x} “ 1.

Proof. (i) For convenience we set R “ ΦppTnqq. Let x “ pxnq P l
8pHq, then for

any p P N we have

}Tn`pxn`p}
2
ď

„

sup
něp

}Tn}
2



}xn`p}
2,

which implies }R
.
x}2 ď supněp }Tn}

2}
.
x}2 and hence }R} ď supněp }Tn}. Letting p

goes to `8, we get }R} ď lim sup }Tn}. Now, for each n P N we choose a unit
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vector xn such that }Tnxn}
2 ě }Tn}

2 ´ 1{pn` 1q and consider x “ pxnq P l
8pHq.

Then, we have

}R}2 ě }R
.
x}2 “ L

`

p}Tn`pxn`p}
2
q
˘

ě L
ˆ

p}Tn`p}
2
´

1

n` p` 1
q

˙

ě inf
něp
}Tn}

2,

and hence }R} ě lim inf }Tn}.

(ii) Using the continuous functional calculus associated with positive operators,
we see that it is a direct consequence of the fact that Φ is a continuous morphism
which preserves the composition and the adjonction.

(iii) Let pTnq P l
8pBpHqq. For each n P N, consider the polar decomposition

Tn “ Un|Tn|. Set A “ Φ ppTnqq, B “ Φ pp∆zpTnqqq and UΦ “ Φ ppUnqq. Since
z P S , we have <pzq ą 0 and <p1 ´ zq ą 0 and hence |A|u “ Φ pp|Tn|

uqq for
u P tz, 1´ zu by (ii). It follows that B “ |A|zUΦ|A|

1´z. Let A “ U |A| be the po-
lar decomposition of A. On the one hand, we have ∆zpAq|A| “ |A|

zU |A||A|1´z “
|A|zUΦ|A||A|

1´z “ B|A|, so ∆zpAq|Rp|A|q“ B|Rp|A|q. On the other hand, we have

0 “ ∆zpAq|N p|A|q“ B|N p|A|q by using Proposition 2.2 (ii). Therefore, we get the
desired equality ∆zpAq “ B “ Φ pp∆zpTnqqq for any z P S.

(iv) The inclusion ρpT q Ď ρpT̂ q is clear. For the reverse inclusion, consider the
canonical isometric embedding of H into H. With this identification, we see that
H is a reducing subspace for T̂|H“ T and hence ρpT̂ q Ď ρpT q.

(v) The equality σapppT̂ q “ σapppT q follows directly from the fact that a complex
number λ does not belong to the approximate point spectrum σapppAq of a oper-

ator A if and only if there exists ρ ą 0 such that pλI ´A˚qpλI ´Aq ě ρI and the

fact that the application T ÞÝÑ T̂ is a C˚-embedding of BpHq into BpHq. Taking

into account the construction of H, we easily see that σapppT q Ď σppT̂ q. Then,

the equality σppT̂ q “ σapppT̂ q comes from the previous equality σapppT̂ q “ σapppT q
and usual properties.

(vi) In this case, observe that (i) implies that }ΦppTnqq} “ lim }Tn}. For each
n P N, let xn be a unit vector such that }Tnxn}

2 ě }Tn}
2´ 1{pn` 1q and consider

x “ pxnq P l
8pHq. Then, we have }

.
x} “ 1 and

}ΦppTnqq}
2
ě }|ΦppTnqq|

.
x}2 “ }Φpp|Tn|qq

.
x}2 “ L

`

}Tnxn}
2
˘

ě L
ˆ

}Tn}
2
´

1

n` 1

˙

“ lim }Tn}
2
“ }ΦppTnqq}

2
“ }|ΦppTnqq|}

2.

Thus, we get }|ΦppTnqq|
.
x} “ }|ΦppTnqq|} which forces |ΦppTnqq|

.
x “ }|ΦppTnqq|}

.
x “

}ΦppTnqq}
.
x, since |ΦppTnqq| is a positive operator. �

Remark 2.4. (1) In general, we do not have }ΦppTnqq} “ L pp}Tn}qq. Indeed, set
Tn “ I if n is even and Tn “ 0 if n is odd, then we see that ΦppTnq is a non-zero
orthogonal projection and hence }ΦppTnqq} “ 1 while we have L pp}Tn}qq “ 1{2.
(2) Consider a positive operator A P BpHq which is one-to-one but not invertible.
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Let z “ it P iR and set Tn “ A for each n P N, then we easily check that ΦppT itn qq

is a unitary operator, but Φpp|Tn|qq
it is not a unitary operator because 0 P σpp|Â|q

since 0 P σppÂq “ σapppÂq “ σapppAq. Thus, Property (ii) cannot be extended to
whole P`.
(3) By keeping the notations used in proof of (iii), we can remark that UΦ may
be different from U . Indeed, let us consider any one-to-one operator T P BpHq
whose range is dense in H but not equal to H, and set Tn “ T for each n P N.
Then, the operators Un are all unitary and hence UΦ is a unitary operator. But
U can not be a unitary operator since 0 P σppT̂ q. Thus, Φ does not preserve the
polar decomposition.

The next result establishes some links between the iterated Aluthge fields as-
sociated with T and the powers of T .

Theorem 2.5. Let T P BpHq be an operator of norm 1, then we have

(i) N pI ´ |T n`1|q “ N pI ´ |∆n
z pT q|q for each z P S;

(ii) Let z P S, then }∆n
z pT q} “ 1 if and only if }T n`1} “ 1.

Proof. (i) We proceed by induction. Denote by T “ U |T | the polar decomposition
of T . For n “ 0, it is obvious. Assume that assertion (i) is true for some n P N. Let
x be a unit vector in N pI ´ |T n`2|q, then we have 1 “ }T n`1U |T |x} ď }|T |x} ď 1.
Thus, we get 1 “ }|T |x} “ }|T |} which forces that |T |x “ x, because |T | is a
positive operator. We infer that

1 “ }T n`2x} “ }T n`1U |T |1´z|T |zx} “ }U |T |1´z∆n`1
z pT q|T |zx}

“ }U |T |1´z∆n`1
z pT qx} ď }∆zpT q

n`1x} “ }|∆zpT q
n`1
|x} ď }∆zpT q} ď 1.

Set A “ ∆zpT q, then we see that }A} “ 1 and that x P N pI ´ |An`1|q. We
can apply the induction assumption for A, this yields x P N pI ´ |∆n

z pAq|q “
N pI ´ |∆n`1

z pT q|q. Conversely, assume that

x P N
`

I ´ |∆n`1
z pT q|

˘

“ N pI ´ |∆n
z pAq|q .

By the induction assumption, it implies that x P N pI ´ |An`1|q, then we have
1 “ }|An`1|x} “ }An`1x} “ }∆zpT q

n`2x}. We write z “ a ` ib with a P s0, 1r.
We get 1 “ }∆zpT q

n`1|T |zU |T |1´zx} ď }|T |1´zx} ď }|T |1´ax} ď 1. Since |T |1´a is
a positive operator, it leads to |T |1´ax “ x. As 1´ a ą 0, we see that C rt1´as is
dense in the space Cr0, 1s of continuous functions on r0, 1s. Then, the continuous
functional calculus associated with |T | ensures that |T |ux “ x for any u P S.
Then,

1 “ }∆zpT q
n`1
|T |zU |T |1´zx} “ }|T |zT n`1U |T |1´zx}

“ }|T |zT n`1U |T |x} “ }|T |zT n`2x} ď }T n`2x} “ }|T n`2
|x} ď 1,

which implies that x P N pI ´ |T n`2|q and this completes the induction proof.

(ii) Assume that }∆n
z pT q} “ 1. Using Proposition 2.3 ((i), (iii) and (v)), we

obtain

1 P σappp|∆
n
z pT q|q “ σppϕ p|∆

n
z pT q|qq “ σpp|ϕ p∆

n
z pT qq |q “ σpp|∆

n
z pT̂ q|qq.
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Hence, there exists a unit vector
.
x P H which belongs to N

´

I ´ |∆n
z pT̂ q|

¯

“

N
´

I ´ |T̂ n`1|

¯

(by (i)). Therefore, we get x “ |T̂ n`1|x and hence 1 “ }T̂ n`1} “

}T n`1}. Using again (i) and Proposition 2.3, we prove in a similar way that the
converse implication holds. �

2.0.3. Support lines and support subspaces. Reccall that a infinite straight line L
in C may be written as : <peiθzq “ r with pr, θq P R2. Let C be a convex set
in C, we say that L is a support line of C if <peiθzq ď r for every z P C and
L X BC ‰ ∅. Let T P BpHq, the well known theorem of Toeplitz and Hausdorff
asserts that the numerical range W pT q is convex. Therefore, we can consider
support lines associated with W pT q and observe that we have

Proposition 2.6. Let T P BpHq and L a support line for W pT q whose equation
is <peiθzq “ r, then the set of points x P H satisfying <peiθxTx | xyq “ r ‖ x}2 is
a closed vectorial subspace of H.

Proof. Since L is a support line for W pT q, we see that the operator rI ´<peiθT q
is a positive operator and then admits a square root. Thus, we have

x
`

rI ´ <peiθT
˘

x | xy “ }
a

rI ´ <peiθT qx}2.
It easily implies that the set of points x P H satisfying <peiθxTx | xyq “ r}x}2 is
exactly N prI ´ <peiθT qq, and the conclusion follows. �

Such subspaces will be called support subspaces for T .

3. Aluthge field of operators and Numerical range properties

The following result is due to the first author. Let T P BpHq, the most striking
fact is that the two fields (left and right), canonically associated with the Aluthge
field p∆zpT qqzPS and a support subspace, are constant on each horizontal segment.

Theorem 3.1. Let T P BpHq, z0 P S and λ P W p∆z0pT qq X BW pT q, then there
exists a support subspace E for ∆z0pT q associated with a support line containing
λ, not reduced to t0u, and such that the two operator fields z P S ÝÑ PE∆zpT q
and z P S ÝÑ ∆zpT qPE are constant on each horizontal segment contained in
S. Moreover, if T is one-to-one and has a dense range, then the operator A :“
PE∆zpT qPE is normal. In particular, we always have

W p∆zpT qq Ď W pT q

for every z P S and any T P BpHq.

Proof. Let z “ a ` ib be in S and λ be in W p∆zpT qq, then there exists a unit
vector x P H such that λ “ x∆zpT qx | xy. Using Proposition 2.1 and Proposition
2.2, we can write

λ “ x∆apT q|T |
´ibx | |T |´ibxy “ x∆apT q

“

|T |´ibx`Qx
‰

|
“

|T |´ibx`Qx
‰

y

where Q “ PN pT q “ I´P . Observe that }|T |´ibx`Qx}2 “ }P |T |´ibPx`Qx}2 “
}P |T |´ibPx}2 ` }Qx}2 “ }|T |´ibPx}2 ` }Qx}2 “ }Px}2 ` }Qx}2 “ }x}2 “ 1.
Therefore λ P W p∆apT qq. Conversely, assume that λ “ x∆apT qx | xy, in a
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similar way we can see that λ “ x∆zpT q
“

|T |ibx`Qx
‰

|
“

|T |ibx`Qx
‰

y with

}|T |ibx ` Qx} “ 1, and hence λ P W p∆zpT qq. Consequently, for each z P S, we
have

W p∆zpT qq “ W p∆<pzqpT qq. (3.1)

From (3.1) and the fact that ∆zpT q “ |T |
i=pzq∆<pzqpT q|T |

´i=pzq, it suffices to prove
Theorem 3.1 in the case where z0 “ α0 Ps0, 1 r .

On the one hand, since W pT q is convex and λ P BW pT q, we know that there
exists a support line L for W pT q which contains λ. On the other hand, we
have ∆βpe

iθRq “ eiθ∆βpRq and W peiθRq “ eiθW pRq for any triple pR, β, θq P
BpHq ˆ r0, 1s ˆ R. Then, we are reduced to the case where there exists a unit
vector x0 P H and a real number r such that

@z P W pT q <pzq ď r, λ “ x∆α0pT qx0 | x0y and <pλq “ r. (3.2)

Since W p∆αpT qq Ď W pT q for any α P r0, 1s, L is still a support line for ∆α0pT q
(λ P W p∆α0pT qq). Let E be the support subspace for ∆α0pT q associated with L
(now L is determined by the equation <pzq “ r). Observe that E is not reduced
to t0u because x0 P E. Let T “ U |T | be the polar decomposition of T and let x
be a unit vector in H, we consider the function f defined on the closed strip S
by setting

fpzq “ exp
`

x|T |zU |T |1´zx | xy
˘

. (3.3)

Using Proposition 4.2 we see that the two operator fields z ÝÑ |T |z and z ÝÑ
|T |1´z are strongly continuous on S. Since the strong convergence is preserved by
products, it implies the strong continuity of the operator field z ÝÑ |T |zU |T |1´z

and hence the continuity of f on S. Besides, f is analytic in S.
Let s P R. On the one hand, since <pT q ď rI we have

|fpisq| “ exp
`

x<
`

|T |isU |T |1´is
˘

x | xy
˘

“ exp
`

x<pT q|T |´isx | |T |´isxy
˘

ď exp
`

r}|T |´isx}2
˘

ď expprq.

On the other hand, we get

|fp1´ isq| “ exp
`

x<
`

|T |1´isU |T |is
˘

x | xy
˘

“ exp
`

x<p|T |Uq|T |isx | |T |isxy
˘

“ exp
`

xU˚<pT qU |T |isx | |T |isxy
˘

ď exp
`

r}U |T |´isx}2
˘

ď expprq.

Then, the Hadamard three-lines theorem tells us that

|fpzq| ď pexpprqq<pzq pexpprqq1´<pzq “ expprq

for any z P S. This inequality leads to the next operatorial inequality

<
`

|T |zU |T |1´z
˘

ď rI, (3.4)

valid for any z P S. Let x be a unit vector in E and let g be the function on
S given by gpzq “ x< p|T |zU |T |1´zqx | xy. As x is a unit vector in E, we have
gpα0q “ x< p∆α0pT qqx | xy “ r. Using (3.4), we derive that g is a harmonic
function in the open set S that is bounded above and attains its maximum at
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α0 P S, therefore g is constant in S, and by continuity, in fact in all S. Thus, we
get

<
`

|T |zU |T |1´z
˘

y “ ry (3.5)

for every y P E and every z P S.
Let t be a real number and let y P E, then (3.5) ensures that

|T |´it< p∆α0pT qq |T |
ity “ < p∆α0´itpT qq y “ ry.

As |T |it|T |´it “ PRp|T |q and Rp< p∆α0pT qqq Ď Rp|T |q, we deduce that |T |ity P E

for any t P R. Applying Proposition 2.2 (vi), we derive that |T | is necessarily of
the form |T | “ L1‘L2 with respect the orthogonal sum H “ E‘EK, and where
L1 and L2 are two positive operators. Let

U “

ˆ

U1 W
V U2

˙

be the matrix representation relative to the direct sum H “ E‘EK of the partial
isometry U associated with the polar decomposition T “ U |T |. Then, we get

< p∆βpT qq “
1

2

ˆ

Lβ1U1L
1´β
1 ` L1´β

1 U˚1L
β
1 Lβ1WL1´β

2 ` L1´β
1 V ˚Lβ2

Lβ2V L
1´β
1 ` L1´β

2 W ˚Lβ1 Lβ2U2L
1´β
2 ` L1´β

2 U˚2L
β
2

˙

(3.6)

for any β P r0, 1s. According to (3.5), we have < p∆βpT qq y “ ry for any couple
pβ, yq P r0, 1s ˆ E. It forces < p∆βpT qq to be of the form

< p∆βpT qq “

ˆ

rI1 0
0 ˚

˙

. (3.7)

Using (3.6) and (3.7), we obtain the following system of equations
"

Lβ1U1L
1´β
1 ` L1´β

1 U˚1L
β
1 “ 2rI1

Lβ2V L
1´β
1 ` L1´β

2 W ˚Lβ1 “ 0
(3.8)

for every β P r0, 1s. Let α P r0, 1s, then by successively taking β “ α and
β “ 1 ´ α P r0, 1s in the first equation of the system (3.8), we get the system of
equations

"

Lα1U1L
1´α
1 ` L1´α

1 U˚1L
α
1 “ 2rI1

L1´α
1 U1L

α
1 ` L

α
1U

˚
1L

1´α
1 “ 2rI1

(3.9)

Summing the two equations of the system (3.9) we get

Lα1< pU1qL
1´α
1 ` L1´α

1 < pU1qL
α
1 “ 2rI1. (3.10)

Set A1 “ < pU1q and P1 “ PRpL1q
, and let Ã1 “ P1A1P1 and L̃1 “ P1L1P1 be the

respective compressions of A1 and L1 that act on the subspace RpL1q. Since the
operators P1 and L1 commute, we derive from (3.10) that

2rP1 “ P1L
α
1P1A1P1L

1´α
1 P1 ` P1L

1´α
1 P1A1P1L

α
1P1

“ L̃1
α
Ã1L̃1

1´α
` L̃1

1´α
Ã1L̃1

α
.

Then, taking α “ 0 we obtain 2rP1 “ P1Ã1L̃1 ` L̃1Ã1P1. Multiplying this last
equality by L̃1, once on the left and once on the right, we obtain 2rL̃1P1 “ 2rL̃1 “

L̃1P1Ã1L̃1 ` L̃1
2
Ã1P1 “ L̃1Ã1L̃1 ` L̃1

2
Ã1 and 2rL̃1 “ P1Ã1L̃1

2
` L̃1Ã1P1L̃1 “
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P1Ã1L̃1
2
` L̃1Ã1L̃1, from which we deduce that Ã1L̃1

2
“ L̃1

2
Ã1. Then, using the

continuous functional calculus associated with the positive operator L̃1, we derive
that

Ã1L̃1 “ L̃1Ã1. (3.11)

Subtracting the two equations of the system (3.9), we obtain Lα1= pU1qL
1´α
1 `

L1´α
1 p´= pU1qqL

α
1 “ 0. Set A2 “ = pU1q and denote by Ã2 the compression of

A2 to RpL1q, we see that L̃1
α
Ã2L̃1

1´α
“ L̃1

1´α
Ã2L̃1

α
. Then, making α to be 0

we have P1Ã2L̃1 “ L̃1Ã2P1, and hence

Ã2L̃1 “ L̃1Ã2. (3.12)

Taking into account (3.11) and (3.12), we finally obtain

Ũ1L̃1 “ L̃1Ũ1 (3.13)

where Ũ1 is the compression of U1 to RpL1q.
Now, we exploit the second equation of (3.8). Taking successively β “ α and

β “ 1´ α in this equation, we deduce
#

L̃2
α
Ṽ L̃1

1´α
` L̃2

1´α
W̃ ˚L̃1

α
“ 0

L̃2
1´α

Ṽ L̃1
α
` L̃2

α
W̃ ˚L̃1

1´α
“ 0

(3.14)

where P2 “ PRpL2q
, L̃2 “ P2L2P2, Ṽ “ P2V P1 and W̃ “ P1WP2. Set C “

Ṽ `W̃ ˚, by summing the two equations of the system (3.14) we get L̃2
α
CL̃1

1´α
`

L̃2
1´α

CL̃1
α
“ 0. Thus we obtain

CL̃1 “ ´L̃2C (3.15)

by taking α “ 0. Similarily, by subtraction, we get from (3.14)

DL̃1 “ L̃2D (3.16)

where D “ Ṽ ´ W̃ ˚. Using (3.15) and (3.16), on the one hand we can see that
pD ` CqL̃1 “ L̃2pD ´ Cq, and hence

Ṽ L̃1 “ ´L̃2W̃
˚. (3.17)

On the other hand, we derive that pD ´ CqL̃1 “ L̃2pD ` Cq, and hence

L̃2Ṽ “ ´W̃
˚L̃1. (3.18)

Combining (3.17) and (3.17), we see that Ṽ L̃1
2
“ ´L̃2W̃

˚L̃1 “ L̃2
2
Ṽ which

implies Ṽ p
´

L̃1
2
¯

“ p
´

L̃1
2
¯

Ṽ for any complex polynomial p. Let β Ps0, 1s and

consider a sequence ppnq of complex polynomials converging to the function ϕ in
the space C r0, }T }s, where ϕ is defined by setting ϕptq “ tβ. Using the functional
calculus associated with the two positive operators L̃1 and L̃2, we easily get

Ṽ L̃1
β
“ L̃2

β
Ṽ . (3.19)
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We also observe that W̃ ˚L̃1
2
“ ´L̃2Ṽ L̃1 “ L̃2

2
W̃ ˚. By working in the same way,

we come to the second intertwining relation

W̃ ˚L̃1
β
“ L̃2

β
W̃ ˚ (3.20)

valid for any β Ps0, 1s. Let α Ps0, 1r, by substituting the two intertwining relations
(3.19) and (3.20) into the second equation of the system (3.14), we see that 0 “

L̃2
1´α

Ṽ L̃1
α
` L̃2

α
W̃ ˚L̃1

1´α
“ L̃2

α
L̃2

1´α
Ṽ ` L̃2

1´α
L̃2

α
W̃ ˚ “ L̃2

´

Ṽ ` W̃ ˚

¯

. Since

by construction we have R
´

Ṽ ` W̃ ˚

¯

Ď RpL2q, we deduce that
´

Ṽ ` W̃ ˚

¯

x P

N pL2q XRpL2q “ t0u for any x P E, and hence

W̃ “ ´Ṽ ˚. (3.21)

Combining (3.13), (3.19), (3.20) and (3.21), we successively obtain

Lα1U1L
1´α
1 “ L̃1

α
Ũ1L̃1

1´α
“ Ũ1L̃1 “ P1U1L1,

Lα1WL1´α
2 “ L̃1

α
W̃ L̃2

1´α
“ L̃1

α
L̃1

1´α
W̃

“ L̃1W̃ “ ´L̃1Ṽ
˚
“ ´L1P1V

˚P2 “ ´L1V
˚P2,

From the above equalities, the strong continuity of p∆zpT qqzPS and the fact that
∆zpT q “ |T |i=pzq∆<pzqpT q|T |

´i=pzq, we obtain that the two operator fields z P

S ÝÑ PE∆zpT q and z P S ÝÑ ∆zpT qPE are constant on each horizontal segment
contained in S.

Now, assume that T is one-to one and has a dense range. Then, the operator
U in the polar decomposition of T is unitary. Therefore, using (3.21) we derive
that I1 “ U1U

˚
1 `WW ˚ “ U1U

˚
1 ` V ˚V , and that I1 “ U˚1U1 ` V ˚V . Thus U1

is normal (in a similar way, we can prove that U2 is also normal). In this case
U1 “ Ũ1 commutes with L1 “ L̃1, and then A “ P1U1L1 “ U1L1 is normal.

Let T P BpHq, the last step in the proof consists in showing that

W p∆zpT qq Ď W pT q

for every z P S. Taking into account (3.1), we are reduced to prove this inclusion
for z “ α0 P r0, 1s. When α0 P t0, 1u, we easily check this inclusion. Thus, we

may assume that α0 P s0, 1r. Since W p∆αpT qq Ď W pT q, we can suppose that
λ P W p∆α0pT qq X BW pT q. In this case we have shown that there exists a unit
vector w such that λ “ x∆α0pT qw | wy, and a support subspace E containing w
such that the operator field p∆αpT qPEqαPr0,1s is constant. We derive that

λ “ x∆α0pT qw | wy “ x∆α0pT qPEw | wy “ x∆0pT qPEw | wy “ xPRp|T |qTw | wy.

Two possibilities occurs:
- Firstly, if T is one-to-one, then PRp|T |q “ I and there is nothing to do.

- Secondly, if T is not one-to-one, then 0 P W pT q. So, we may assume that λ ‰ 0
and hence PRp|T |qw ‰ 0. We can write

λ “
´

1´ }PRp|T |qw}
2
¯

ˆ 0` }PRp|T |qw}
2
xT

˜

PRp|T |qw

}PRp|T |qw}

¸

|
PRp|T |qw

}PRp|T |qw}
y,



ALUTHGE FIELD OF OPERATORS 13

and then the Toeplitz-Hausdorff theorem tells us that λ P W pT q. This achieves
the proof of Theorem 3.1. �

Remark 3.2. (1) For α “ 1
2
, the inclusion W p∆pT qq Ď W pT q given by Theorem

3.1 answers positively to Conjecture 1.9 of [18].
(2) Assume that T is one-to-one and has a dense range. Let E be a support

subspace for ∆zpT q (z P S) wich is associated with a complex scalar λ and U be
the partial isometry given by the polar decomposition of T . Then, we have seen
in the proof of Theorem 3.1 that U takes the form

U “

ˆ

U1 ˚

˚ U2

˙

,

with respect to the orthogonal decomposition H “ E ‘EK, where the two oper-
ators U1 and U2 are normal.

4. Spectral properties for Aluthge operator fields

4.0.1. Different type of spectra and Aluthge operator fields. Some spectral results
are known for ∆ 1

2
pT q :“ ∆pT q where T P BpHq (see for instance [17], and

Theorem 1.3 and Theorem 1.5 of [18]). In the next theorem, we extend a number
of useful spectral properties of ∆pT q to the Aluthge operator field p∆zpT qqzPS
and establish some new spectral properties in this context.

Theorem 4.1. Let T be an operator acting on a Hilbert space H. Then the
Aluthge operator field associated with T satisfies the following properties:

(i) We have σsurjp∆zpT qqz t0u “ σsurjpT qz t0u and σsurjpT q Ď σsurjp∆zpT qq for
any z P S. The last inclusion may be strict.

(ii) σp∆zpT qq “ σpT q for any z P S;
(iii) (a) For any z P S we have σep∆zpT qq “ σepT q;

(b) Let z P Sz r1` iRs then we have σlep∆zpT qq “ σlepT q. When z P 1`iR,
we have σlep∆zpT qq Ď σlepT q and the inclusion may be strict;

(c) For any z P S, we have σrepT q Ď σrep∆zpT qq. Moreover the inclusion
may be strict for all z P S;

(iv) σwp∆zpT qq “ σwpT q for any z P S;
(v) σbp∆zpT qq “ σbpT q for any z P S;

(vi) σpp∆zpT qq “ σppT q for any z P S;
(vii) σappp∆zpT qq “ σapppT q for any z P Sz r1` iRs. If z P 1 ` iR, we have

σappp∆zpT qq Ď σapppT q and the inclusion may be strict;
(viii) σresp∆zpT qq “ σrespT q for each z P iR and σresp∆zpT qq Ď σrespT q for any

z P Sz riRs. Moreover, in this latter case, the inclusion may be strict.

Proof. (i) Let A,B be two operators acting on H and let λ be a nonzero com-
plex number such that λI ´ AB is surjective. Then λI ´ AB admits a right
inverse X P BpHq. Set Y “ 1

λ
rI `BXAs, then we have pλI ´ BAqY “

1
λ
rλI ´BA`BpλI ´ ABqXAs “ 1

λ
rλI ´BA`BAs “ I, thus λI ´ AB ad-

mits a right inverse. As the operators A and B play a symetric role, we deduce
that σsurjpABqz t0u “ σsurjpBAqz t0u. Then, using Proposition 2.1 (i), we see
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that σsurjp∆zpT qqz t0u “ σsurjpT qz t0u. Now, suppose that ∆zpT q is onto, then
it implies that |T |z is onto and that |T |z is one-to-one. By Proposition 2.2 (ii),
we have t0u “ N p|T |zq “ N p|T |zq, we finally get that |T |z is invertible. Thus
T “ p|T |zq´1 ∆zpT q|T |

z is onto. Taking into account the two previous proper-
ties we get σsurjpT q Ď σsurjp∆zpT qq. Let T be a pure coisometry, then we have
0 R σsurjpT q. As in [7] (Proposition 4), we can see that ∆zpT qq “ T ˚T 2 which
is clearly not surjective and hence 0 P σsurjp∆zpT qq. Therefore, the inclusion
σsurjpT q Ď σsurjp∆zpT qq may be strict.

(ii) Since σp|T |zU |T |1´zqz t0u “ σpU |T |1´z|T |zqz t0u “ σpT qz t0u, it remains
to prove that T is invertible if and only if ∆zpT q is invertible. Assume that
T is invertible, then we successively see that |T | and |T |z are invertible, hence
∆zpT q “ p|T |

zq´1T |T |z is invertible. Conversely, assume that ∆zpT q is invertible,
then there exists X P BpHq such that |T |zU |T |1´zX “ X|T |zU |T |1´z “ I, it

implies that |T |z is onto and t0u “ N p|T |1´zq “ N p|T |zq, thus |T |z is invertible
and hence T “ |T |z∆zpT qp|T |

zq´1 is invertible.

(iii) Let λ P C˚ and suppose that there exists X such that XpλI´ABq “ I`K1

(resp. pλI ´ ABqX “ I ` K2 ), where K1, K2 belong to the space KpHq of all
compact operators on H. As in the proof of (i), set Y “ 1

λ
rI `BXAs, then we

easily check that Y pλI ´BAq “ I ` 1
λ
BK1A (resp. pλI ´BAqY “ I ` 1

λ
BK2A)

with 1
λ
BKiA P KpHq (i P t1, 2u). It follows that σep∆zpT qqz t0u “ σepT qz t0u,

σlep∆zpT qqz t0u “ σlepT qz t0u and σrep∆zpT qqz t0u “ σrepT qz t0u. Consequently,
To prove (a) (b) and (c), it suffices to examine what happens at the point 0.
(a) In the sequel, we denote by F (resp. SF) the class of Fredholm (resp. semi-
Frdohlm) operators in BpHq. Assume that 0 P ρepT q, then T P F and hence |T | P
F which implies in turn that U P F . By Proposition 2.2 (v) , we see that |T |u P F
for any u P S. Therefore πp∆zpT qq “ πp|T |zqπpUqπp|T |1´zq is invertible in CpHq
as a product of elements of GLpCpHqq, equivalently 0 P ρep∆zpT qq. Conversely,
suppose that 0 P ρep∆zpT qq, then we derive that |T |z and |T |1´z are both in
SF . Since <pzq and <p1 ´ zq are not both zero, using Proposition 1 (v) we see
that |T |u P F for any u P S, and hence πpUq “ πp|T |zq´1πp∆zpT qqπp|T |

1´zq´1 P

GLpCpHqq. Thus πpT q “ πpUqπp|T |q P GLpCpHqq which gives that 0 P ρepT q.
(b) Assume that 0 P ρlepT q, then |T | P SF which implies, as we have seen
before, that |T |u P F for any u P S. Thus, πpUq is left invertible in CpHq and
hence 0 P ρlep∆zpT qq for any z P S. Now, let z P Sz r1` iRs and suppose
that 0 P ρlep∆zpT qq, it implies that |T |1´z is in SF . As <p1 ´ zq ‰ 0, we get
that |T |u P F for any u P S and hence U P SF . We derive that 0 P ρlepT q.
Summarizing, we obtain σlep∆zpT qq “ σlepT q for each z P z P Sz r1` iRs and
σlep∆zpT qq Ď σlepT q when z P 1` iR.
Let penqně0 be the canonical orthonormal basis of the Hilbert space H :“ l2pNq.
One may then define operators A and B in BpHq by setting Aen “

1
2n
e2n`1 and

Ben “ e2n. We consider the operator T acting on H “ H ‘H which is given by
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the 2ˆ 2 matrix

T “

ˆ

0 0
A B

˙

.

We can check that |A|en “
1

2n
en and that A˚B “ 0. Notice also that B is an

isometry, then we get

|T | “

ˆ

|A| 0
0 I

˙

.

Let T “ U |T | be the polar decomposition of T . Since RpAqXRpBq “ t0u and A
is one-to-one, we derive that T is one-to-one, and hence U is an isometry. Taking
into account that U is the unique isometry W such that T “ W |T |, we see that
U is necessarily given by

U “

ˆ

0 0
V B

˙

where V is the partial isometry (here V is an isometry) associated with the polar
decomposition of A “ V |A|. Then, for any z P 1` iR we obtain

∆zpT q “

ˆ

0 0
V |A|´i=pzq B

˙

.

On the one hand, we see that ∆zpT q is an isometry and hence 0 R σlep∆zpT qq.
On the other hand, let Q be the orthogonal projection on the subspace H ‘ t0u,
then we get

TQ “

ˆ

0 0
A 0

˙

P KpHq.

Then, from Theorem 1.1 of [11] we deduce that 0 P σlepT q. Thus the inclusion
σlep∆zpT qq Ď σlepT q is strict for each z P 1` iR.
(c) Let z P S and suppose that 0 P ρrep∆zpT qq. We infer that πp|T |zq is
right invertible in CpHq and hence invertible (Proposition 2.2 (v)). It succes-
sively implies that πpU |T |1´zq and πpT q “ πpU |T |1´zqπp|T |zq are right invert-
ible in CpHq, thus 0 P ρrepT q. Since σrep∆zpT qqz t0u “ σrep|T |

zU |T |1´zqz t0u “
σrepU |T |

1´z|T |zqz t0u “ σrepT qz t0u, we finally get σrepT q Ď σrep∆zpT qq. Let T
be a pure coisometry of infinite dimensional null space. Using Proposition 4 of
[7], we can see that ∆zpT q

˚ “ T ˚2T has an infinite dimensional null space, and
hence 0 P σrep∆zpT qq, but clearly 0 R σrepT q because T is right invertible. It
follows that the inclusion may be strict for all z P S.

(iv) We have seen before ((iii) (a)) that λI´∆zpT q P F if and only if λI´T P F .
Besides that, we know that dimpN pλI ´ABqq “ dimpN pλI ´BAqq for any non-
zero λ, and for any pair pA,Bq P BpHq. It leads to σwp∆zpT qqz t0u “ σwpT qz t0u.
Suppose now that T is a Weyl operator, then we have seen that U P F and
|T |u P F for any u P S (see (iii) (a)). Then ∆zpT q P F and using the multiplica-
tive property of the index we get indp∆zpT qq “ indp|T |zq`indpUq`indp|T |1´zq “
indpT q “ 0, so ∆zpT q is a Weyl operator. In the same manner, we prove that
∆zpT q is a Weyl operator implies that T is a Weyl operator. Finally, we have
obtained the desired equality σwp∆zpT qq “ σwpT q for any z P S.
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(v) Recall that A is a Browder operator if and only if A is a Fredholm operator
and zI ´ A is invertible for sufficiently small z P Cz t0u ([13] Theorem 7.9.3).
Thus, the desired equality follows from (ii) and (iii) (a).

(vi) As σpp|T |
zU |T |1´zqz t0u “ σppU |T |

1´z|T |zqz t0u “ σppT qz t0u, it rests to
prove that 0 P σppT q if and only if 0 P σpp∆zpT qq for any z P S . Assume there ex-
ists x ‰ 0 such that Tx “ 0. By Proposition 2.2 (ii), we know that x P N p|T |zq “
N p|T |1´zq, thus x P N p∆zpT qqq. Conversely, suppose that 0 P σpp∆zpT qq and let
x P rHz t0us X N p∆zpT qq, then 0 “ U |T |1´z∆zpT qx “ TU |T |1´zx. On the one
hand, if y “ U |T |1´zx ‰ 0, we have N pT q ‰ t0u. On the other hand, y “ 0,
using Proposition 2.2 we see that |T |1´zx P N pUq “ N p|T |q “ N p|T |zq and hence
x P N p|T |q “ N pT q. Consideration of both cases leads to 0 P σppT q. This con-
cludes the proof of this assertion.

(vii) Having in view that σapppAq “ σlepAq Y σppAq for each A P BpHq and
using (iii) (b) and (vi), we get σappp∆zpT qq “ σapppT q for any z P Sz r1` iRs and
σappp∆zpT qq Ď σapppT q when z P 1 ` iR. Moreover, let z P 1 ` iR and consider
the operator T acting on l2pNq ‘ l2pNq and defined in (iii) (b). Since ∆zpT q is
an isometry, we clearly have 0 R σappp∆zpT qq but }T pen ‘ 0q} Ñ 0 which implies
0 P σapppT q. Therefore the inclusion σappp∆zpT qq Ď σapppT q may be strict when
z P 1` iR;

(viii) We have σresp|T |
zU |T |1´zqz t0u “ σrespU |T |

1´z|T |zqz t0u “ σrespT qz t0u
for each z P S. Let z “ ib P iR, taking into account that T is one-to-one if and
only if ∆zpT q is also (see (vi)), we remark that ∆zpT q “ |T |

ibT |T |´ib is unitarily
similar to T as soon as 0 P σrespT qY σresp∆ibpT qq. We infer that 0 P σresp∆ibpT qq
if and only if 0 P σrespT q, and hence σresp∆ibpT qq “ σrespT q. From now on, we
suppose that z P SzriRs. Assume that 0 P σresp∆zpT qq, then ∆zpT q is one-to-one
and there exists a non-zero x P H such that ∆zpT q

˚x “ 0. It implies that |T |u

is one-to-one for any u P P`, and hence that U˚|T |zx “ 0. Obviously, we have
y “ |T |zx ‰ 0 and y P N pU˚q “ N pT ˚q. Finally, it leads to 0 P σrespT q, thus
σresp∆zpT qq Ď σrespT q for any z P SzriRs.
Now, let z P SzriRs, H be L2pr0, 1sdtq, R be the positive operator defined by
Rpfqptq “ t1{<pzqfptq for any f P H. Consider an isometry U acting on H whose

range is t1uK, and set T “ UR. We easily check that T is one-to-one and that
T ˚p1q “ 0, so 0 P σrespT q. Observe that R “ |T | and that N pUq “ t0u “ N pT q,
it follows that T “ UR is exactly the polar decomposition of T and then ∆zpT q “
RzUR1´z. Suppose that 0 P σresp∆zpT qq, then there exists a non-zero f P H such
that 0 “ R1´zU˚Rzpfq, it implies that Rzpfq P N pU˚q “ C1. So Rzpfq is almost
everywhere equal to a non-zero constant a. It forces the function ψ : t ÞÑ at´1 to
be in L2pr0, 1sdtq, a fact which is absurd. Consequently, in this case, the inclusion
σresp∆zpT qq Ď σrespT q is strict for any z P Sz riRs. This completes the proof of
Theorem 4.1.

�
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Remark 4.2. Note that we have proved in passing (see (iv)) that if T is a Fredholm
operator, then ∆zpT q P F for any z P S and the index is constant on the Aluthge
operator field p∆zpT qqzPS .

4.0.2. Generalized Yamazaki formula. Let T P BpHq and denote by rpT q its
spectral radius. Recall the famous Gelfand formula

rpT q “ lim }T n}
1
n “ inf

ně0
}T n}

1
n .

In [23], T. Yamazaki gives an alternative formula involving the Aluthge transfor-
mation ∆1{2 :

rpT q “ lim }∆n
1
2
pT q} “ inf

ně0
}∆n

1
2
pT q}.

Notice that a simpler proof is given in [2]. See also [8] for other spectral radius
formulas via Aluthge transformation. In [3], the authors proved that for any
square matrix M and any α Ps0, 1r we have

rpMq “ lim }∆n
αpMq} “ inf

ně0
}∆n

αpMq}. (4.1)

In [21], it is proved that Formula 4.1 holds if we replace M by any invertible
operator acting on an infinite dimensional Hilbert space. In the next theorem, we
show that we can drop the assumption that T is invertible and we can consider
∆z for any z P S.

Theorem 4.3. Let T be a operator acting on a Hilbert space H, then we have

rpT q “ lim }∆n
z pT q} “ inf

ně0
}∆n

z pT q}

for any z P S.

Proof. Firstly, from Proposition 4.1 we know that σp∆n
z pT qq “ σpT q, so rpT q “

rp∆n
z pT qq ď }∆

n
z pT q} and hence rpT q ď infně0 }∆

n
z pT q}. Thus from now on, by

homogeneity we may assume that infně0 }∆
n
z pT q} “ 1. We set z “ a ` ib with

a Ps0, 1r. Let A,B be two positive operators acting on H and X P BpHq. Recall
that Heinz inequality (see [14] ) tells us that

}ArXB1´r
} ď }AX}r}XB}1´r

for each r P r0, 1s. Using Heinz inequality, for any m ě 1 we get

}∆zpT q
m} “ }|T |zTm´1U |T |1´z} ď }|T |aTm´1U |T |1´a}

ď }|T |Tm´1U}a}Tm´1U |T |}1´a ď }Tm}a}Tm}1´a “ }Tm}. (4.2)

By (4.2), we see that the sequence p}∆n
z pT q

m}qně0 is decreasing for any m P N˚.
On the one hand, it implies that the operator R “ Φpp∆n

z pT qqně0q, acting on the
ultrapower of H associated with a Banach limit L, is well defined. On the other
hand, by Proposition 2.3 (i) and by (4.2) we get

}Rm
} “ lim

nÑ`8
}∆n

z pT q
m
} ď }Tm},

a fact which leads to rpRq ď rpT q. Let m ě 1, observe that }∆m
z pRq} “

limp}∆m`n
z pT q}q “ infně0 }∆

n
z pT q} “ 1 “ }R}. Applying Theorem 2.5 (ii), we

obtain that }Rm`1} “ 1. It follows that 1 “ rpRq ď rpT q and finally that
rpT q “ 1. It ends the proof of Theorem 4.3. �
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Remark 4.4. Let T P BpHq be a one-to-one operator with dense range such that
rpT q ă }T }. In this case, we have

}∆1`itpT q} “ }|T |U} “ }|T |} “ }T } “ }∆itpT q}

for any t P R. If T is one-to-one with dense range, then ∆zpT q is still one-to-one
with dense range. So, by iteration we obtain }∆n

1`itpT q} “ }T } “ }∆n
itpT q} for

each n P N. Therefore, a Yamazaki type formula is not true in general when z
belongs to the boundary of S.
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2 École normale supérieure Paris-Saclay,61 Avenue du Président Wilson, 94230
Cachan, France

Email address: thomas.perrin@ens-paris-saclay.fr


	1. Introduction
	2. Preliminaries
	3. Aluthge field of operators and Numerical range properties
	4. Spectral properties for Aluthge operator fields
	References

