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Adversarial Manifold Estimation

This paper studies the statistical query (SQ) complexity of estimating d-dimensional submanifolds in R n . We propose a purely geometric algorithm called Manifold Propagation, that reduces the problem to three natural geometric routines: projection, tangent space estimation, and point detection. We then provide constructions of these geometric routines in the SQ framework. Given an adversarial STAT(τ ) oracle and a target Hausdorff distance precision ε = Ω(τ 2/(d+1) ), the resulting SQ manifold reconstruction algorithm has query complexity Õ(nε -d/2 ), which is proved to be nearly optimal. In the process, we establish low-rank matrix completion results for SQ's and lower bounds for randomized SQ estimators in general metric spaces.

Introduction

In the realm of massive data acquisition, the curse of dimensionality phenomena led to major developments of computationally efficient statistical and machine learning techniques. Central to them are topological data analysis and geometric methods, which have recently garnered a lot of attention and proved fruitful in both theoretical and applied areas [START_REF] Wasserman | Topological data analysis[END_REF]. These realms refer to a collection of statistical methods that find intrinsic structure in data. In short, this field is based upon the idea that data described with a huge number of features n may be subject to redundancies and correlations, so that they include only d ≪ n intrinsic and informative degrees of freedom. This low-dimensional paradigm naturally leads to the problem of recovering this intrinsic structure, for data visualization or to mitigate the curse of dimensionality. This problem is usually referred to as support estimation [START_REF] Cuevas | A plug-in approach to support estimation[END_REF] or dimensionality reduction [START_REF] Lee | Nonlinear dimensionality reduction. Information Science and Statistics[END_REF].

Linear dimensionality reduction techniques, such as Principal Component Analysis and LASSO-types methods [START_REF] Hastie | The elements of statistical learning[END_REF], assume that the data of interest lie on a low-dimensional linear subspace. This assumption appears to be often too strong in practice, so that one may use problem-specific featurization techniques, or other non-linear methods. On the other hand, non-linear dimensionality reduction techniques such as Isomap [START_REF] Tenenbaum | Mapping a manifold of perceptual observations[END_REF], Local Linear Embedding [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF] and Maximum Variance Unfolding [START_REF] Arias-Castro | On the convergence of maximum variance unfolding[END_REF], work under the relaxed assumption that the data of interest lie on an embedded d-dimensional manifold of R n with d ≪ n, hence allowing natively for non-linearities.

Context

Geometric Inference from Samples. The classical statistical framework, based on data points, is usually referred to as PAC-learning [START_REF] Valiant | A theory of the learnable[END_REF] or sample framework. In this setting, the learner is given a set {x 1 , . . . , x s } of s samples drawn, most commonly independently, from an unknown distribution D. From these samples, the learner then aims at estimating a parameter of interest θ(D), which in our context will naturally be taken as the support θ(D) = Supp(D) ⊆ R n . As described above, for this problem to make sense, D shall be assumed to be supported on (or near) a low-dimensional structure, i.e. a d-dimensional submanifold with d ≪ n. Here, the precision is usually measured with the Hausdorff distance, a L ∞ -type distance between compact subsets of R n .

The Hausdorff estimation of manifolds in the noiseless sample framework is now well understood. The first minimax manifold estimation results in the sample framework are due to [START_REF] Christopher | Minimax manifold estimation[END_REF][START_REF] Christopher | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF]. At the core of their work is the reach, a scale parameter that quantitatively encodes C 2 regularity of the unknown manifold M = Supp(D) ⊆ R n , and that allows measuring the typical scale at which M looks like R d [AKC + 19] (see Definition 2.3). Under reach assumptions, the estimator of [START_REF] Christopher | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF] achieves a worst-case average precision at most O((log s/s) 2/d ), but with a computationally intractable method. This rate was later shown to be log-tight optimal by [START_REF] Arlene | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF]. Given a target precision ε > 0, these results hence reformulate to yield sample complexity of order s = O(ε -d/2 log(1/ε)). Later, [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF] gave a constructive estimator combining local PCA and the computational geometry algorithm from [START_REF] Boissonnat | Manifold reconstruction using tangential Delaunay complexes[END_REF], which outputs a triangulation of the sample points in polynomial time, and linear time in the ambient dimension n [START_REF] Boissonnat | Manifold reconstruction using tangential Delaunay complexes[END_REF]. More recently, [START_REF] Divol | Minimax adaptive estimation in manifold inference[END_REF] proposed a computationally tractable minimax adaptive method that automatically selects the intrinsic dimension and reach. Let us also mention that by using local polynomials, faster sample rates can also be achieved when the manifolds are smoother than C 2 [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF].

Manifold estimation in the presence of noise is by far less understood. The only known optimal statistical method able to handle samples corrupted with additive noise [START_REF] Christopher | Minimax manifold estimation[END_REF] is intractable. Currently, the best algorithmically tractable estimators in this context require either the noise level to vanish fast enough as the sample size grows [START_REF] Puchkin | Structure-adaptive manifold estimation[END_REF], or very specific distributional assumptions on the noise: either Gaussian [START_REF] Fefferman | Fitting a manifold of large reach to noisy data[END_REF][START_REF] David | Inferring Manifolds From Noisy Data Using Gaussian Processes[END_REF] or ambient uni-form [START_REF] Aizenbud | Non-Parametric Estimation of Manifolds from Noisy Data[END_REF]. To date, the only computationally tractable sample method that truly is robust to some type of noise is due to [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF], in which the authors consider the so-called clutter noise model introduced by [START_REF] Christopher | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF]. In this model, the samples are generated by a mixture of a distribution D on M and a uniform distribution in the ambient space, with respective coefficients β ∈ (0, 1] and (1 -β). That is, the s-sample consists of unlabelled points in R n , with approximately βs informative points on M and (1 -β)s non-informative ambient clutter points. In [START_REF] Christopher | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF][START_REF] Arlene | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF], the optimal sample complexity was shown to be s = O(β -1 ε -d/2 log(1/ε)), but this rate was obtained with an intractable method. On the other hand, [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF] proposed to label the non-informative data points, which allows to apply a clutter-free estimation procedure to the remaining decluttered points. This results in a computationally tractable minimax optimal method, with an additional computational cost due to the decluttering. However, the success of this extra step relies heavily on the assumption that the ambient clutter is uniform.

Overall, the existing reasonable manifold estimation methods are heavily attached to the individual data points and do not tolerate much noise, as the change of a single point may have the method fail completely. Let us mention from now that in sharp contrast, the statistical query framework considered in this work is inherently robust to clutter noise without an artificial decluttering, no matter the clutter noise distribution (see Remark 2.2).

Private Learning. Beyond the classical sample complexity, the modern practice of statistics raised concerns leading to quantitative and qualitative estimation constraints [START_REF] Wainwright | Constrained forms of statistical minimax: computation, communication, and privacy[END_REF]. For instance, in many applications of learning methods, the studied data is contributed by individuals, and features represent their (possibly) private characteristics such as gender, race, or health history. Hence, it is essential not to reveal too much information about any particular individual. The seminal paper [KLN + 11] on this topic introduces the notion of private learning, a learning framework inspired by differentially private algorithms [START_REF] Dwork | Calibrating noise to sensitivity in private data analysis[END_REF]. Given samples {x 1 , . . . , x s }, this framework imposes privacy to a learner by requiring it not to be significantly affected if a particular sample x i is replaced with an arbitrary x ′ i . In contrast to precision, which is analyzed with respect to a model, the level of differential privacy is a worst-case notion. Hence, when analyzing the privacy guarantees of a learner, no assumption should be made on the underlying generative model. Indeed, such a generative assumption could fall apart in the presence of background knowledge that the adversary might have: conditioned on this background knowledge, the model may change drastically.

There are two main types of differentially private algorithms. Global differential privacy assumes that there is a trusted entity (i.e. a central data aggregator) that can give private answers to database queries [KLN + 11]. This approach was used by LinkedIn to share advertisements data [RSP + 20], by Uber's system for internal analytics [START_REF] Johnson | Towards practical differential privacy for SQL queries[END_REF], and is about to be implemented by the U.S. Census Bureau for publishing data [START_REF] Dr | Census bureau adopts cutting edge privacy protections for 2020 census[END_REF].

In contrast, local differential privacy, as defined by [EGS03, KLN + 11], even further restricts the learners. It requires that even if an adversary has access to the personal revealed data of individuals, this adversary will still be unable to learn too much about the user's actual personal data. The simplest example of a locally private learning protocol was originally introduced to encourage truthfulness in surveys [START_REF] Stanley | Randomized response: A survey technique for eliminating evasive answer bias[END_REF]. In local differential privacy, a trusted entity is not necessarily present, and each individual protects their own privacy, for instance, by adding noise to their data separately.

Statistical Queries. Instead of sample complexity, this paper considers the notion of statistical query complexity, which was proved to be equivalent to the locally private learning complexity up to a polynomial factor [KLN + 11], and that naturally enforces robustness to clutter noise (see Remark 2.2).

First introduced by Kearns [START_REF] Michael | Efficient noise-tolerant learning from statistical queries[END_REF], the statistical query (SQ) framework is a restriction of PAC-learning, where the learner is only allowed to obtain approximate averages of the unknown distribution D via an adversarial oracle, but cannot see any sample. That is, given a tolerance parameter τ > 0, a STAT(τ ) oracle for the distribution D accepts functions r : R n → [-1, 1] as queries from the learner, and can answer any value a ∈ R such that | Ex∼D [r(x)] -a| ≤ τ . Informally, the fact that the oracle is adversarial is the counterpart to the fact that differential privacy is a worst-case notion. We emphasize that in the statistical query framework, estimators (or learners) are only given access to such an oracle, and not to the data themselves. Limiting the learner's accessible information to adversarially perturbed averages both restricts the range of the usable algorithms, and effectively forces them to be robust and efficient. Kearns showed that any statistical query learner can be transformed into a classical PAClearning algorithm with robustness to random classification noise [START_REF] Michael | Efficient noise-tolerant learning from statistical queries[END_REF]. Conversely, many commonly used PAC-learning algorithms have statistical query implementations [START_REF] Michael | Efficient noise-tolerant learning from statistical queries[END_REF][START_REF] Bylander | Learning linear threshold functions in the presence of classification noise[END_REF][START_REF] Dunagan | A simple polynomial-time rescaling algorithm for solving linear programs[END_REF]. Though, Kearns also showed that there are information-theoretic obstacles that are specific to the statistical query framework; e.g. parity functions require an exponential number of queries [START_REF] Michael | Efficient noise-tolerant learning from statistical queries[END_REF]. In other words, PAC-learning is strictly stronger than SQ-learning.

We have already mentioned the connection between statistical queries and private learning. On top of this, the simplicity of the SQ framework allowed its application in several other fields, such as (theoretical and practical) learning algorithms for distributed data systems. Indeed, a problem has an efficient SQ algorithm if and only if it has an efficient distributed learner [START_REF] Ben | Learning with restricted focus of attention[END_REF][START_REF] Steinhardt | Memory, communication, and statistical queries[END_REF]. Another incentive to study statistical queries arises from quantum computations: general quantum PAC learners can perform complex entangling measurements which do not seem realizable for near-term quantum computers. To overcome this issue, Arunachalam, Grilo, and Yuen [START_REF] Arunachalam | Quantum statistical query learning[END_REF] introduced the notion of quantum statistical query learning, for which practical implementations would only require to measure a single quantum state at a time.

Overall, certainly the most interesting property of statistical query algorithms is the possibility of proving unconditional lower bounds on the complexity of statistical problems. Considering the number of learning algorithms that are implementable in the statistical query framework, these lower bounds provide strong evidence of hardness of these problems. Moreover, for many learning problems, the known unconditional lower bounds for the statistical query framework closely match the known computational complexity upper bounds. For instance, [BFJ + 94] proved that SQ algorithms require a quasi-polynomial number of queries to learn disjunctive normal forms (DNF), which matches the running time upper bound by Verbeurgt [START_REF] Verbeurgt | Learning DNF under the uniform distribution in quasipolynomial time[END_REF]. Similar results were proved by [FGR + 17] for the planted clique problem, and by [START_REF] Diakonikolas | Statistical query lower bounds for robust estimation of high-dimensional gaussians and gaussian mixtures[END_REF] for high-dimensional Gaussian mixtures learning. Finally, some problem-specific statistical query lower bounds directly imply lower bounds against general convex relaxations of Boolean constraint satisfaction problems [START_REF] Feldman | On the complexity of random satisfiability problems with planted solutions[END_REF][START_REF] Vitaly Feldman | Statistical query algorithms for mean vector estimation and stochastic convex optimization[END_REF], lower bounds on approximation of Boolean functions by polynomials [DFT + 15], and lower bounds on dimension complexity of Boolean function classes [START_REF] Sherstov | Halfspace matrices[END_REF][START_REF] Vitaly Feldman | Statistical query algorithms for mean vector estimation and stochastic convex optimization[END_REF].

Contribution

This paper is the long and complete version of [START_REF] Aamari | Statistical query complexity of manifold estimation[END_REF]. We establish nearly matching upper and lower bounds on the statistical query complexity of manifold learning. As a corollary, it provides an efficient and natural noise-tolerant sample manifold estimation technique; as another side-product, it also provides, to the best of our knowledge, the first private manifold estimation method. In some regimes of the parameters, it also exhibits another example of a natural statistical problem with different sample and statistical query complexities.

Main Results

Upper Bounds. The main contribution of this paper is the construction of a low-complexity deterministic SQ algorithm that uniformly estimates the compact connected d-dimensional C 2 -manifolds M ⊆ R n with reach rch M ≥ rch min > 0 (i.e. curvature roughly bounded by 1/rch min ), from distributions D with support Supp(D) = M that have a Lipschitz density function bounded below by f min > 0 on M (i.e. volume of M roughly bounded by 1/f min ). See Definition 2.5 for a formal definition. The estimation error is measured in Hausdorff distance, which plays the role of a sup-norm between compact subsets of R n .

In Proposition 2.1, we prove that without any prior information about the location of the manifolds, SQ algorithms cannot estimate them, even with an unlimited number of queries. It is worth noting that this phenomenon is specific to the SQ framework and does not occur in the sample framework. We consider two ways to "localize" the model. Namely, we either assume: that the manifold contains the origin (fixed point model), or that the manifold lies within the ball of radius R > 0 centered at the origin (bounding ball model).

[Fixed point model] Theorem 5.1 presents a deterministic algorithm which, given the information that 0 ∈ M , achieves precision ε using

q = O n polylog(n) f min 1 rch min ε d/2
queries to a STAT(τ ) oracle, provided that ε = Ω rch min τ f min rch d min 2/(d+1)

, and τ = O(f min rch d min ).

[Bounding ball model] Theorem 5.4 shows that the same estimation problem can still be solved using O(n log(R/ε)) extra queries to STAT(τ ) if M is only assumed to be contained in the ball B(0, R). That is, it shows that manifold estimation with precision ε in the bounding ball model can be done deterministically with

q = O n log R ε + n polylog(n) f min 1 rch min ε d/2
queries to a STAT(τ ) oracle, under similar conditions as above.

Notice the limited quasi-linear dependency on the ambient dimension n in these bounds. Actually, in the fixed point model, the given query complexity corresponds to the sample complexity up to the n polylog(n) factor [START_REF] Arlene | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF][START_REF] Divol | Minimax adaptive estimation in manifold inference[END_REF]. This apparent discrepancy can be explained by the fact that a single sample of M ⊆ R n corresponds to n coordinates, while statistical queries are forced to be real-valued. More interestingly, the extra cost O(n log(R/ε)) in the bounding ball model is specific to the statistical query framework and does not appear in the sample framework [START_REF] Arlene | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF], although this term would dominate only in the regime where R is exponentially bigger than rch min .

The insights underlying these upper bounds are described in Sections 1.2.2 and 1.2.3, and the formal statements in Sections 3 to 5.

Differentially Private Manifold Estimation. As a direct corollary (see [KLN + 11, Theorem 5.7]), these SQ upper bounds transform into private learning upper bounds. They yield, to the best of our knowledge, the first private learning algorithms for manifold estimation. More precisely, we proved that for all ε = O(rch min ), there is a local δ-differentially1 private algorithm estimating the d-dimensional C 2 -manifolds M with precision ε that requires no more than

s δ-private (ε) = Õ n (f min rch d min ) 3 δ 2 rch min ε (3d+2)/2
samples in the fixed point model, where Õ hides the logarithmic terms of the complexity. See [KLN + 11] for more formal and thorough developments on differential privacy.

Lower Bounds. Complementing these upper bounds on the statistical query complexity of manifold estimation, we prove a computational and an informational lower bound, that both nearly match. To examine whether or not randomness may facilitate manifold learning, the below lower bounds apply to randomized SQ algorithms, which are allowed to use randomness and to fail with probability at most α ∈ [0, 1). Recall that the above upper bounds stand for deterministic (α = 0) SQ algorithms. First, we prove the following computational lower bounds.

[Fixed point model] Theorem 5.3 asserts that any randomized SQ algorithm estimating M with precision ε and probability of error at most α in the fixed point model requires at least

q = Ω    n f min 1 rch min ε d/2 + log(1 -α) log 1 + 1 τ   
queries to a STAT(τ ) oracle.

[Bounding ball model] Theorem 5.6 states that any randomized SQ algorithm estimating M with precision ε and probability of error at most α in the bounding ball model requires at least

q = Ω    n log R ε + n f min 1 rch min ε d/2 + log(1 -α) log 1 + 1 τ    queries to a STAT(τ ) oracle.
In words, this proves that for any fixed probability of error α < 1, the above manifold estimators are optimal up to a polylog(n, 1/τ ) factor. Hence, randomized algorithms are not significantly more powerful than deterministic ones in these models.

Second, we establish informational lower bounds (Theorems 5.2 and 5.5) that advocate for the necessity of the requirements on ε and τ made in the upper bounds. More precisely, they assert that if we either have ε

= o rch min τ f min rch d min 2/d
, or τ = Ω(f min rch d min ) and ε = o(rch min ), then no SQ algorithm (even randomized) can estimate manifolds in these models with precision ε, regardless of its number of queries. Said otherwise, the adversarial tolerance parameter τ prevents the learner to have arbitrary precision ε , with quantitative lower bound

ε = Ω rch min min 1, τ f min rch d min 2/d
no matter the computational power of the statistician.

The high level exposition of these lower bounds stands in Section 1.2.4, and all the necessary details and formal statements in Section 5.

Manifold Propagation Algorithm

The core component of the upper bounds (Theorems 5.1 and 5.4) is a purely geometric algorithm, which we call Manifold Propagation, parametrized by an initialization method x0 and two routines T (•) and π(•) related to the manifold M : (Seed point) This initialization method finds a point x0 that is η-close to M , for some η ≥ 0.

(Tangent space) Given a point x 0 that is η-close to M , this routine finds a linear subspace T (x 0 ) that is (sin θ)-close to the tangent space T π M (x 0 ) M at its projection π M (x 0 ) (i.e. the closest point on M ), for some θ ≥ 0.

(Projection) Given a point x 0 that is Λ-close to M , this routine finds a point π(x 0 ) that is η-close to its projection π M (x 0 ), where Λ ≥ η.

Then, given a tuning scale parameter ∆ > 0, Manifold Propagation iteratively explores the connected manifold M starting from the seed point, and constructs a Ω(∆)-sparse and O(∆)dense point cloud O of points close to M (see Theorem 3.1). This algorithm is reminiscent of breadth-first search and can be roughly described as follows:

1. Start with the seed point x0 in the vicinity of the manifold and initialize a queue of points to Q = {x 0 }, and the final output point cloud to O = ∅.

2. Pick a point x 0 ∈ Q, remove x 0 from Q and add it to O. Compute the approximate tangent space T (x 0 ) of M at x 0 .

3. Consider a covering y 1 , . . . , y k of a sphere of radius ∆ in T (x 0 ). To avoid backtracking, remove all of these points that are too close to (the already-visited) points from Q ∪ O.

To account for the linear approximation made and the past estimation errors, "project" the remaining points y i 's on M with π(•) and add them to Q.

4. If Q is empty, terminate and output O. Otherwise go to Step 2.

Note the importance of the proximity check of Step 3, without which the algorithm would not terminate, even with infinitely precise routines.

Then, given such a point cloud O that forms a O(∆)-dense sample of M , existing algorithms from computational geometry (Theorem 2.1) allow to reconstruct a manifold with precision O(∆ 2 /rch min ). This quadratic gain is made possible by the C 2 -smoothness of M [BG14, AL18]. Hence, running Manifold Propagation with step size ∆ = O( √ rch M ε) and applying Theorem 2.1 yields a dynamic method to estimate a manifold M with reach rch min > 0. Namely, to estimate M with precision ε in Hausdorff distance, it shows that it is sufficient to design routines for M that have precision η = O(ε) for the seed point, sin θ = O( ε/rch min ) for the tangent spaces, and η = O(ε) for the projection.

To our knowledge, this provides the first computational geometric result involving the three routines above only. It also does a single call to x0 for initialization, and provably no more than

O(H d (M )/∆ d ) = O(H d (M )/(rch min ε) d/2
) calls to the routines π(•) and T (•), where H d (M ) stands for the surface area of M . In particular, this number of calls is blind to the ambient dimension. Overall, Manifold Propagation manages to have this possible ambient dependency supported by x0 , T (•) and π(•) only. See Section 3 for the formal statements and further discussion.

Statistical Query Algorithms for the Routines

In order to plug Manifold Propagation in the SQ framework, we then provide SQ implementations of its geometric routines.

Projection Routine. As mentioned above, the projection routine should allow to find a point π(x 0 ) that is η-close to π M (x 0 ), provided that x 0 is Λ-close to M . To implement this using a STAT(τ ) oracle, we first note that the conditional expectation of D in the neighborhood of x 0 has small bias for estimating π M (x 0 ). That is, ∥π M (x 0 ) -Ex∼D [x |B(x 0 , h) ] ∥ is small for a properly tuned bandwidth h (see Lemma C.2). Hence, it is enough to estimate

m D (x 0 , h) = E x∼D [x |B(x 0 , h) ] = x 0 + h Ex∼D (x-x 0 ) h • 1 ∥x-x 0 ∥≤h D(B(x 0 , h)) ,
where D(B(x 0 , h)) stands for the mass of the ball B(x 0 , h) for distribution D. Written as a ratio of two means, one easily sees how to estimate m D (x 0 , h) in STAT(τ ), as we now explain. The denominator only requires one query r = 1 B(x 0 ,h) to the oracle. As about the numerator, which is a n-dimensional mean vector, the naive approach that would query each coordinate of its integrand separately would end up with the dimension-dependent precision √ nτ in Euclidean norm. Instead, by using tight frames, an algorithm of Feldman, Guzmán, and Vempala [START_REF] Vitaly Feldman | Statistical query algorithms for mean vector estimation and stochastic convex optimization[END_REF] allows to get precision O(τ ) in only 2n queries. At the end of the day, we achieve precision η = O Λ 2 /rch min with O(n) queries to STAT(τ ), provided that: (see Theorem 4.1)

Λ = Ω rch min τ f min rch d min 1/(d+1)
.

Tangent Space Routine. Here, the tangent space routine should allow to estimate the tangent space T π M (x 0 ) M of M at π M (x 0 ), provided that x 0 is η-close to M . Local Principal Component Analysis proved fruitful in the sample framework [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF]. Inspired by it, we notice that the local covariance matrix of D at x 0

Σ D (x 0 , h) = E x∼D (x -x 0 )(x -x 0 ) ⊤ h 2 1 ∥x-x 0 ∥≤h allows to approximate T π M (x 0 ) M . That is, Σ D (x 0 , h) is almost rank-d and its first d prin- cipal components span a d-plane close to T π M (x 0 )
M , for a properly tuned bandwidth h (see Lemma D.1). Next, aiming at estimating Σ D (x 0 , h) ∈ R n×n in STAT(τ ), we note that seeing it as a mean vector of R n 2 and using tight frames [START_REF] Vitaly Feldman | Statistical query algorithms for mean vector estimation and stochastic convex optimization[END_REF] directly would cost O(n 2 ) queries for precision O(τ ), but would not exploit the low-rank (hence redundant) structure of Σ D (x 0 , h). Instead, we use matrix compression arguments [START_REF] Fazel | Compressed sensing and robust recovery of low rank matrices[END_REF] to present a new general SQ algorithm estimating low-rank mean matrices (Lemma D.4). This allows to mitigate the query complexity from O(n 2 ) to O(dn log 6 (n)) while keeping precision O(τ ) in Frobenius norm. At the end of the day, coming back to our initial problem of tangent space estimation in STAT(τ ), we achieve precision sin θ = O η/rch min with O(dn polylog(n)) queries to STAT(τ ), provided that: (see Theorem 4.2)

η = Ω rch min τ f min rch d min 2/(d+1)
. Seed Point Detection. Finally, the seed point x0 should be η-close to M . In the fixed point model, this method is trivial since 0 ∈ M by assumption. In the bounding ball model, where it is only assumed that M ⊆ B(0, R), we proceed in two stages:

• First, we use a divide and conquer strategy over B(0, R) (Theorem E.1). The algorithm (SQ Ambient Binary Search) recurses down over a discretization of B(0, R) with unions of small balls, maintained to intersect M = Supp(D) by querying their indicator functions, i.e. by checking that they have non-zero mass for D. It stops when there is only one ball left and outputs its center xraw 0 . Unfortunately, the output point xraw • Starting from xraw 0 , the algorithm applies iteratively the projection routine π(•) described above. Since xraw 0 is already close to M , the procedure is guaranteed to improve precision quadratically at each step, and to output a point x0 that is η-close to M after a logarithmic number of iterations.

At the end of the day, we achieve precision η with O(n log(R/η)) queries to STAT(τ ), provided that: (see Theorem 4.3)

η = Ω rch min τ f min rch d min 2/(d+1)
.

Lower Bound Techniques

The standard SQ lower bound techniques, such as those involving the so-called statistical dimension [START_REF] Feldman | A general characterization of the statistical query complexity[END_REF], appear to be ill-suited to our context. In fact, the informational bounds on the statistical dimension naturally involve Kullback-Leibler or chi-squared divergences [START_REF] Feldman | A general characterization of the statistical query complexity[END_REF][START_REF] Diakonikolas | Statistical query lower bounds for robust estimation of high-dimensional gaussians and gaussian mixtures[END_REF], which are non-informative in non-dominated statistical models such as manifolds ones. Indeed, two low-dimensional submanifolds M 0 , M 1 ⊆ R n that are not equal would differ in a non-trivial area, yielding distributions are not absolutely continuous with respect to one another. This results in infinite Kullback-Leibler and chi-squared divergences, and hence non-informative lower bounds.

To overcome this issue, we present a two-step technique -involving a computational and an informational lower bound -that does not involve these quantities. The method applies in general metric spaces (see Appendix G), although we shall limit its exposition and application to the case of manifolds with Hausdorff distance in this introduction.

Computational Lower Bounds. We aim at deriving a lower bound the number q(ε) of queries necessary to achieve precision ε. For this, we observe that since a SQ algorithm should cope with any adversarial oracle, it has to cope with the oracle that answers roundings a = τ ⌊ Ex∼D [r(x)]/τ ⌋ of the true queried mean to the nearest integer multiple of τ in [-1, 1]. As this oracle only generates (1 + 1/τ ) different answers, any SQ manifold estimation algorithm that makes only q queries to this discrete oracle produces at most N ≤ (1+1/τ ) q possible outputs M . Hence, if this estimator has precision ε, these outputs should form an ε-covering of the manifold class of interest M. Hence, deriving a lower bound on q = q(ε) ≥ log N (ε)/ log(1 + 1/τ ) boils down to deriving a lower bound on the ε-covering number of M for the Hausdorff distance, or equivalently, by duality, on its ε-packing number. This argument also extends to randomized SQ algorithms (see Appendix G.2).

We then explicitly build ε-packings of the manifold classes associated to the models, with a general combinatorial scheme (see Proposition H.5) based on a single initial manifold M 0 . The construction bumps M 0 at many different locations, with bumps of height Ω(ε) scattered in all the available (n -d) codimensions of space, as shown in Figure 1. Note that the C 2 -like , each bump has the two options "upwards" and "downwards" within each of the N ≫ 1 locations, yielding 2 N ε-separated manifolds.

Ω(ε) M 0 Ω( √ rch min ε) M 0
assumption rch M ≥ rch min forces to spread each of these bumps on a ball of radius Ω( √ rch min ε). Intuitively, in this construction, the larger the surface area H d (M 0 ) of the base manifold M 0 , the more room to include many bumps on it, and hence the stronger the lower bound. Hence, in the bounding ball model, we exhibit manifolds that can have large volume, while remaining in B(0, R) and with reach rch M ≥ rch min . This is done by gluing next to each other linkable widgets along a long path in the cubic grid in B(0, R) (see Appendix H.2). Overall, this construction allows to get the correct dependency in 1/f min -which plays the role of a maximal volume, see Section 2.2.3 -in the bounds.

[Fixed point model] If 0 ∈ M 0 , the above construction is possible while preserving the point 0 ∈ R n within all the bumped manifolds, yielding the lower bound (Theorem 5.3).

[Bounding ball model] As in this model, no point is fixed, we build another type of ε-packing by translating a base manifold M 0 ⊆ B(0, R/2) in the ambient space by all the possible vectors of an ε-packing of the ambient ball B(0, R/2), which has size Ω((R/ε) n ). This yields the first term of the lower bound, while the second term follows as described above, by locally bumping a manifold M 0 ⊆ B(0, R) (Theorem 5.6).

Informational Lower Bounds. In addition, forgetting about the number of queries SQ algorithms may do, they have a limited precision ε given tolerance τ . Hence, aiming at lower bounding this best precision ε(τ ) achievable in STAT(τ ), we notice that two distributions that are closer than τ /2 in total variation distance allow an adversarial oracle to swap their respective answers, and hence make them -and their supports -indistinguishable using SQ's. This idea is at the core of standard lower bounds in the sample framework [START_REF] Yu | Assouad, fano, and le cam[END_REF], and is formalized in the so-called Le Cam's lemma for SQ's (Theorem G.1).

M 0 O (τ /f min ) 1/d M 1 O(ε)
Figure 2: Indistinguishable manifolds for the informational lower bound. The measure on which they differ being of order O(τ ), an adversarial STAT(τ )-oracle may fool the learner and force them to make an error proportional to the Hausdorff distance between them.

To build such indistinguishable manifolds, we locally bump a base manifold M 0 at a single location. As M 0 supports a d-dimensional measure with density lower bounded by f min , the largest possible width of such a bump is of order δ = Ω((τ /f min ) 1/d ), since the d-volume of this area multiplied by f min (i.e. total variation) gets of order Ω(τ ). Similarly as above, given the width δ of this bump, its largest possible height is

ε = Ω δ 2 /rch min = Ω rch min τ f min rch d min 2/d
, which provides the ε-separated manifolds indistinguishable in STAT(τ ). This yields the announced informational lower bounds (Theorems 5.2 and 5.5), after picking manifolds M 0 in the fixed point and bounding model respectively that have volume of order 1/f min , and the uniform distributions on them.

Preliminaries

Statistical Query Framework

To begin with the formal presentation of this work, let us define the statistical query (SQ) framework used throughout the paper. In the SQ framework, the algorithm (or learner) is allowed to access to the unknown underlying distribution D over R n via an adversarial oracle O who knows it perfectly. The learner also has access to some prior information on D via the knowledge of a model D, i.e. a set of probability distributions over R n assumed to contain D. For a measurable function r : R n → [-1, 1], called query, the oracle answers the mean value Ex∼D [r(x)] of r with respect to D, up to some adversarial error τ known to both parties.

Let F denote the set of Borel-measurable functions from R n to [-1, 1]. An oracle provides answers a : F → R. Given a query r ∈ F and a tolerance parameter τ ≥ 0, we say that O is a valid STAT(τ ) oracle for the distribution D over R n if its answers are such that |a(r) -Ex∼D [r(x)]| ≤ τ . Let us insist on the fact that the oracle is adversarial, meaning that it can answer any such values. Its adversarial strategy can also adapt to the previous queries made by the learner. See formal Definition 2.1).

We now describe the estimation framework using SQ's. Given a metric space (Θ, ρ), a target precision ε > 0 and a parameter of interest θ : D → Θ, the learner aims at estimating θ(D) with precision ε for the metric ρ with a minimum number of queries r : R n → [-1, 1], uniformly over the model D. The present framework is a particular case of the search problems considered in [START_REF] Feldman | A general characterization of the statistical query complexity[END_REF], where a metric on Θ is not necessarily available.

Remark 2.1. Manifold estimation will naturally bring us to consider the support θ(D) = Supp(D) ⊆ R n as the parameter of interest, and the Hausdorff distance ρ = d H . However, we present the broader setting of a general metric space (Θ, ρ) of estimation, to also cover the intermediate results required by the SQ versions of the routines of Manifold Propagation (see Section 4). Namely, it will involve the Euclidean space (R n , ∥•∥) for point estimation, and the matrix spaces (R n×n , ∥•∥ F ) and (R n×n , ∥•∥ op ). This paper considers interactive SQ algorithms, meaning that the learner is allowed to interact with the oracle dynamically and does not have to send all their queries at once before any answer. That is, query functions are allowed to depend arbitrarily on the previous answers given by the oracle. More formally, we give the following Definition 2.1.

Definition 2.1 (Deterministic Statistical Query Estimation Framework).

• A statistical query algorithm making q queries is a tuple A = (r 1 , . . . , r q , θ), where r 1 ∈ F, r 2 : R → F, • • • , r q : R q-1 → F, and θ : R q → Θ.

• Let a 1 : F → R, a 2 : F 2 → R, . . . , a q : F q → R. We say that O = (a 1 , . . . , a q ) is a STAT(τ ) oracle for SQ algorithms making q queries on the distribution D, if for all r 1 ∈ F, r 2 : R → F, . . . , r q : R q-1 → F,

a 1 (r 1 ) -E x∼D r 1 (x) ≤ τ, a 2 (r 1 , r 2 ) -E x∼D r 2 (a 1 (r 1 ))(x) ≤ τ,
. . . a q (r 1 , . . . , r q ) -E x∼D r q (a 1 (r 1 ), . . . , a q-1 (r 1 ))(x) ≤ τ.

• The output of A = (r 1 , . . . , r q , θ) when it interacts with the oracle O = (a 1 , . . . , a q ) is defined by θ(r 1 , . . . , r q ; O) = θ(a 1 (r 1 ), . . . , a q (r 1 , . . . , r q )).

• Given a model D over R n (i.e. a set of probability distributions), we say that a SQ algorithm A is a STAT(τ ) estimator with precision ε for the statistical estimation problem θ : D → Θ if for all D ∈ D and all valid STAT(τ ) oracle O for D, ρ θ(D), θ(r 1 , . . . , r q ; O) ≤ ε.

Beyond deterministic algorithms, one may allow the learner to access randomness, and to fail at estimating the parameter of interest with some controlled probability α < 1 [START_REF] Michael | Efficient noise-tolerant learning from statistical queries[END_REF][START_REF] Feldman | A general characterization of the statistical query complexity[END_REF]. This gives rise to the following Definition 2.2. Definition 2.2 (Randomized SQ Estimation Framework).

• A randomized SQ algorithm A is a distribution over SQ algorithms.

• Given a model D over R n , we say that a randomized SQ algorithm A is a STAT(τ ) algorithm with precision ε and probability of failure (or error) α over D, if for all distribution D ∈ D and all valid STAT(τ ) oracle O for D,

Pr A=(r 1 ,...,rq, θ)∼A ρ θ(D), θ(r 1 , . . . , r q ; O) ≤ ε ≥ 1 -α.
Naturally, any SQ algorithm making at most q queries can be emulated into a PAC algorithm by considering empirical averages. Indeed, given independent and identically distributed data {X 1 , . . . , X s } with common distribution D, Hoeffding's inequality yields that the oracle which answers a = 1 s s i=1 r(X i ) to any query r :

R n → [-1, 1] satisfies |a-EP [r]| ≤ τ with probability ≥ 1 -2e -sτ 2 /2
. Therefore, if we can estimate θ : D → Θ "efficiently" in STAT(τ ), so do we in the PAC (sample) framework, with sample complexity s ≤ q √ log(q/α) τ 2

. . A priori, randomized algorithms may require significantly less queries than deterministic ones to achieve an estimation task [START_REF] Feldman | A general characterization of the statistical query complexity[END_REF]. However, we will show that this phenomenon does not occur for manifold estimation, as soon as the probability of error α is not considerably close to 1. For this, we will exhibit upper bounds using deterministic algorithms, and matching lower bounds on randomized algorithms. See Section 5 for the precise statements.

Remark 2.2 (About Noise). The statistical models considered in this work (Definition 2.5) are noise-free, in the sense that the STAT(τ ) oracle -although adversarial -has access to the exact underlying distribution D. Beyond such an exact model, a noise model that is particularly popular in the manifold estimation literature is the so-called clutter noise model [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF][START_REF] Christopher | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF]. Given a nuisance parameter β ∈ (0, 1] and a fixed noise distribution Q 0 over R n -usually the ambient uniform distribution over a compact set of R n -, the associated clutter noise model is the set of mixtures

D (clutter) β,Q 0 = {βD + (1 -β)Q 0 , D ∈ D} .
In particular, D

β=1,Q 0 coincides with D. For β < 1, in the independent and identically distributed (i.i.d.) sampling framework, it yields samples with a proportion of approximately β informative points and (1 -β) of non-informative clutter points.

As mentioned in the introduction, this type of noise model gave rise to subtle iterative decluttering procedures that rely heavily on the properties of Q 0 (i.e. being ambient uniform) [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF]. This noise-specificity is also a limitation of the (intractable) estimator of [START_REF] Christopher | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF], which would also fail with clutter distributions Q 0 other than uniform. In contrast, in the statistical query framework, if β and Q 0 are known, then estimation techniques need not be much more elaborate for the case β < 1 than for β = 1. Indeed, the statistical query complexity of an estimation problem in STAT(τ ) over

D (clutter) β,Q 0 coincides with its counterpart in STAT(τ /β) over D.
The correspondence is explicit: algorithms designed for β = 1 naturally generalize for β < 1 and vice-versa. To see this, let r : R n → [-1, 1] be a query to a STAT(τ ) oracle with true distribution D (clutter) = βD + (1 -β)Q 0 . Say that the learner gets answer a ∈ R, then the function returning a ′ = (a-(1-β) EQ 0 [r])/β, which can be computed by the learner who knows Q 0 and β, clearly simulates a valid STAT(τ /β) oracle to the query for the distribution D. For the same reason, conversely, any STAT(τ /β)-algorithm over D yields a STAT(τ )-algorithm in D Conversely, any SQ algorithm in the clutter-free model can easily be made robust to clutter noise, as soon as the clutter distribution Q 0 and noise level 0 < β ≤ 1 are known to the learner.

As a first illustration of a non-trivial SQ estimation problem, let us describe that of the mean Ex∼D [F (x)] of a bounded vector-valued function F : R n → R k , where ∥F (x)∥ ≤ 1, see [START_REF] Vitaly Feldman | Statistical query algorithms for mean vector estimation and stochastic convex optimization[END_REF].

Here and below, ∥•∥ stands for the Euclidean norm. This example will be central in the construction of our SQ geometric routines (Theorems 4.1 to 4.3), and hence for the final SQ manifold estimation algorithms (Theorems 5.1 and 5.4).

One query to a STAT(τ ) oracle allows to compute the mean value of a function ranging in [-1, 1] with precision τ . Hence, the k coordinate functions r i (x) = ⟨e i , F (x)⟩ ∈ [-1, 1] are valid queries, and allow to estimate each coordinate of Ex∼D [F (x)] with precision τ . This naive strategy results in a deterministic SQ algorithm making k queries to STAT(τ ) and precision τ for the sup-norm, but only √ kτ for the Euclidean norm. The following Lemma 2.1 shows that the learner may ask 2k queries to a STAT(τ ) oracle, while still preserving a precision of order τ for the Euclidean norm. The strategy consists in querying F in a suitable frame of R k [FGV21, Theorem 3.9], i.e. a redundant family of vectors of R k which avoids the extra √ k factor of the non-redundant coordinate-wise queries.

Lemma 2.1. Let D be a Borel probability distribution on R n , and F : R n → R k be such that ∥F (x)∥ ≤ 1 for all x ∈ R n .

There exists a deterministic statistical query algorithm making 2k queries to a STAT(τ ) oracle, and that estimates Ex∼D [F (x)] with precision Cτ for the Euclidean norm, where C > 0 is a universal constant.

Proof of Lemma 2.1. Let us denote by D ′ the pushforward distribution of D by F . As for all measurable function r :

R k → [-1, 1], E x ′ ∼D ′ [r(x ′ )] = E x∼D [r(F (x))],
any valid STAT(τ ) oracle for D simulates a valid STAT(τ ) oracle for D ′ . Hence, applying [FGV21, Theorem 3.9] to D ′ , we get the desired result.

Manifold Regularity and Distributional Assumptions

General Notation and Differential Geometry

From now on, n ≥ 2 is referred to as the ambient dimension and R n is endowed with the Euclidean inner product ⟨•, •⟩ and the associated norm ∥•∥. The closed Euclidean ball of center x and radius r is denoted by B(x, r). The volume of the d-dimensional unit ball B d (0, 1) is denoted by ω d , and that of the d-dimensional unit sphere S d (0, 1) ⊆ R d+1 by σ d .

We will consider compact connected submanifolds M of R n , without boundary, and with dimension d < n [dC92]. Given a point p ∈ M , the tangent space of M at p, denoted by T p M , is the d-dimensional linear subspace of R n spanned by the velocity vectors at p of C 1 curves of M . The Grassmannian G n,d is the set of all the d-dimensional linear subspaces of R n , so that T p M ∈ G n,d for all p ∈ M . In addition to the Euclidean structure induced by R n on M ⊆ R n , we also endow M with its intrinsic geodesic distance d M , with B M (p, s) denoting the closed geodesic ball of center p ∈ M and of radius s. More precisely, given a C 1 curve c : [a, b] → M , the length of c is defined as Length(c) = b a ∥c ′ (t)∥ dt. Given p, q ∈ M , there always exists a path γ p→q of minimal length joining p and q [dC92]. Such a curve γ p→q is called geodesic, and the geodesic distance between p and q is given by d M (p, q) = Length(γ p→q ) [BBI01, Chapter 2]. In particular, (M, d M ) is a length space [BBI01, Remark 5.1.7]. A geodesic γ such that ∥γ ′ (t)∥ = 1 for all t is called arc-length parametrized. Unless stated otherwise, we always assume that geodesics are parametrized by arc-length. For all p ∈ M and all unit vectors v ∈ T p M , we denote by γ p,v the unique arc-length parametrized geodesic of M such that γ p,v (0) = p and γ ′ p,v (0) = v [dC92]; the exponential map is defined as exp M p (vt) = γ p,v (t). Note that from the compactness of M , exp M p : T p M → M is defined globally on T p M [BBI01, Theorem 2.5.28].

Geometric and Statistical Models

Let us detail the geometric assumptions we will make throughout. Besides the differential structure given by low-dimensional submanifolds, the core regularity assumption of this work will be encoded by the reach, a central quantity in the statistical analysis of geometric structures (see [AKC + 19] and references therein), and that we now describe.

To this aim, let us define the medial axis Med(K) of a closed subset K ⊆ R n as the set of ambient points that have at least two nearest neighbors on K. Namely, if we let d(z, K) = inf p∈K ∥p -z∥ denote the distance function to K,

Med(K) = {z ∈ R n | ∃p ̸ = q ∈ K, ∥p -z∥ = ∥q -z∥ = d(z, K)} .
By definition of the medial axis, the metric projection onto K, given by π K (z) = argmin p∈K ∥p -z∥ is well defined exactly on R n \ Med(K). The reach of K is then defined as the minimal distance from K to Med(K).

Definition 2.3 ([Fed59, Theorem 4.18]). The reach of a closed subset K ⊆ R n is defined by rch K = inf z∈Med(K) d(z, K). Furthermore, if K = M ⊆ R n is a C 2 -
submanifold, then its reach can be written as

rch M = inf p̸ =q∈M ∥q -p∥ 2 d(q -p, T p M ) .
The second formulation of Definition 2.3 assesses how a large positive reach testifies of a quantitative uniform regularity of M ⊆ R n . Indeed, the submanifold M being C 2 -smooth essentially means that locally, M deviates at most quadratically from its tangent spaces. Adding the condition rch M ≥ rch min > 0 yields the quantitative bound d(q -p, T p M ) ≤ ∥q -p∥ 2 /(2rch min ) for all p, q ∈ M . In particular, this condition bounds curvature and intrinsic metric properties (see Lemma 2.2). We shall refer the interested reader to [AKC + 19] for further discussions on the reach. Definition 2.4. We let M n,d rch min denote the class of compact connected d-dimensional C 2submanifolds M of R n , without boundary, that have reach bounded below by rch M ≥ rch min .

Among the key properties shared by submanifolds M with reach bounded below rch M ≥ rch min are a quantitative equivalence between the Euclidean and geodesic distances, and the fact that their curvature is uniformly bounded by 1/rch min .

Lemma 2.2. Let M ∈ M n,d rch min and p, q ∈ M . If ∥q -p∥ < 2rch min , then ∥q -p∥ ≤ d M (p, q) ≤ 2rch min arcsin ∥q -p∥ 2rch min .
In particular, for all r < 2rch min ,

B p, r 1 -(r/rch min ) 2 /24 ∩ M ⊆ B M (p, r) ⊆ B(p, r) ∩ M ⊆ B M p, r 1 + (r/rch min ) 2 /4 . Furthermore, if γ : [a, b] → M is an arc-length parametrized geodesic, then for all t ∈ [a, b], ∥γ ′′ (t)∥ ≤ 1/rch min .
Proof of Lemma 2.2. We clearly have ∥q -p∥ ≤ d M (p, q), and the upper bound comes from [BLW19, Lemma 3]. The ball inclusions then follow from the elementary bounds sin s ≥ s(1 -s 2 /6) for s ≥ 0, and arcsin u ≤ u(1

+ u 2 ) for 0 ≤ u ≤ 1. The last claim is a rephrasing of [NSW08, Proposition 6.1].
These estimates will be used to compare, in a quantitative way, the (curved) geometry of M with that of the (flat) Euclidean d-dimensional space. Finally, we present the following uniform estimate on the massivity of submanifolds M ∈ M n,d rch min , which we will use below to show that Manifold Propagation terminates. For δ > 0, the δ-packing number pk

M (δ) of M ⊆ R n is the maximal cardinal k of a set of points {p i } 1≤i≤k ⊆ M such that B(p i , δ) ∩ B(p j , δ) = ∅ for all i ̸ = j (i.e. ∥p i -p i ∥ > 2δ) (see Appendix B.2 for more details). Lemma 2.3. Let M ∈ M n,d rch min . Then for all δ ≤ rch min /8, pk M (δ) ≤ H d (M ) ω d (δ/4) d ,
where 

D on R n with M = Supp(D) ∈ M n,d
rch min and a density f with respect to vol M such that: • f is bounded away from zero and infinity: 0

< f min ≤ f (x) ≤ f max < ∞ for all x ∈ M . • f is L-Lipschitz over M : |f (x) -f (y)| ≤ L ∥x -y∥ for all x, y ∈ M .
In this model, as will be clear below, the extra degree of freedom allowed by the density f being non-constant will contribute in the final estimation rate and query complexity, especially through the lower bound f min . On the geometric side, f -1 min and f -1 max impose quantitative restrictions on the volume H d (M ) of M (see Section 2.2.3).

Since D n,d rch min (f min , f max , L) is invariant by translations in R n , this model actually provides insufficient prior information to derive any uniform SQ complexity bound over it. This contrasts sharply with the sample framework [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF][START_REF] Christopher | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF], where the sample points provide automatic location information and yields finite sample complexity over D n,d rch min (f min , f max , L).

Proposition 2.1. Assume that σ d f min rch d min ≤ 1. Then for all ε > 0, manifold estimation over D n,d rch min (f min , f max , L) with precision ε has infinite randomized statistical query complexity.

The assumption that σ d f min rch d min ≤ 1 is made to preclude degeneracy of the model. It can be shown to be necessary (see Section 2.2.3 below for a more detailed discussion). The proof of Proposition 2.1 relies on the fact that the supports Supp(D) of distributions D ∈ D n,d rch min (f min , f max , L) form an unbounded class for the Hausdorff distance. It is therefore natural to add an extra location constraint to the model. We study two different such constraints. The first one fixes membership of a distinguished point to M , which we take to be the origin 0 ∈ R n without loss of generality. The second one bounds the problem in an ambient ball of radius R > 0, which we take to be centered at the origin B(0, R) without loss of generality.

Definition 2.6. Completing the framework of Definition 2.5, we consider the two following models.

• Fixed point model:

-{0} ⊔ M n,d rch min denotes the set of manifolds M ∈ M n,d rch min such that 0 ∈ M ; -The model {0}⊔D n,d rch min (f min , f max , L) stands for the set of distributions D ∈ D n,d rch min (f min , f max , L) with support such that 0 ∈ M = Supp(D). • Bounding ball model: given R > 0, -B(0, R) ⊓ M n,d rch min denotes the set of manifolds M ∈ M n,d rch min such that M ⊆ B(0, R); -The model B(0, R)⊓D n,d rch min (f min , f max , L) stands for the set of distributions D ∈ D n,d rch min (f min , f max , L) with support such that Supp(D) = M ⊆ B(0, R).
Let us now discuss some features imposed by the above models.

On Some Implicit Bounds on the Model Parameters

Although not explicit in Definition 2.6, parameters of the models are not arbitrary. That is, D n,d rch min (f min , f max , L) might be degenerate or even empty in some regimes of parameters, making the manifold estimation problem vacuous. The reason for this resides in implicit volume bounds imposed by the reach. Indeed, if

D ∈ D n,d rch min (f min , f max , L) has support M , then since D is a probability distribution, f min H d (M ) ≤ 1 = M f dH d ≤ f max H d (M ).
As a result, the volume estimates of Proposition B.5 yield

f min ≤ 1 H d (M ) ≤ 1 σ d rch d min ≤ 1 ω d rch d min . If furthermore, D ∈ B(0, R) ⊓ D n,d rch min (f min , f max , L) (i.e. M ⊆ B(0, R)), then f max ≥ 1 H d (M ) ≥ 1 18R rch min n ω d rch min 2 d .
Note that Proposition B.5 also yields that R ≥ rch min / √ 2. Consequently, to ensure non-vacuity of the models, and without loss of generality, it is natural to take the following setup. Here, C □ stands for a constant depending only on □.

• When working over {0} ⊔ D n,d rch min (f min , f max , L), we will always assume that f min ≤ f max , R ≥ Crch min , and

ω d f min rch d min ≤ C -1 d , for some large enough constant C d > 0.
• When working over B(0, R) ⊓ D n,d rch min (f min , f max , L), we will always assume that

f min ≤ f max , R ≥ Crch min , ω d f min rch d min ≤ C -1 d and ω d f max rch d min ≥ C n,d rch min R n , for some large enough constants C, C d , C n,d > 0.
See Appendix B for a more thorough exposition of the technical properties of the models

{0} ⊔ D n,d rch min (f min , f max , L) and B(0, R) ⊓ D n,d rch min (f min , f max , L).

Manifold Reconstruction from Point Clouds

Following the recent line of research on manifold estimation [GPPVW12b, GPPVW12a, AL18, AL19, Div21a], we will measure the accuracy of estimators M of manifolds M via the so-called Hausdorff distance, which plays the role of an L ∞ -distance between compact subsets of R n . To this aim, we will need the following piece of notation. For K ⊆ R n and r ≥ 0, we let K r denote the r-offset of K:

K r := {z ∈ R n , d(z, K) ≤ r} , (1) 
where we recall that d(z, K) = inf p∈K ∥p -z∥ is the function distance to K.

Definition 2.7 (Hausdorff Distance [BBI01, Section 7.3.1]). Given two compact subsets K, K ′ ⊆ R n , the Hausdorff distance between them is

d H (K, K ′ ) = sup x∈R n |d(x, K) -d(x, K ′ )| = inf r > 0, K ⊆ (K ′ ) r and K ′ ⊆ K r .
Manifold reconstruction from point clouds has been extensively studied in the area of computational geometry [START_REF] Tamal | Curve and surface reconstruction: algorithms with mathematical analysis[END_REF][START_REF] Boissonnat | Manifold reconstruction using tangential Delaunay complexes[END_REF]. In this field, the learner is given a sample of M , usually seen as deterministic, and the goal is to build efficiently a reliable triangulation M of M , either topologically, geometrically, or both. Such a construction actually is always possible, provided that the point cloud is sufficiently close and dense in M , and that the learner is provided with tangent space estimates at these points. This is formalized in the following Theorem 2.1, where ∥•∥ op stands for the operator norm over the set of matrices.

Theorem 2.1 (Adapted from [AL18, Theorem 4.4]). There exists λ d > 0 such that for all ε ≤ λ d rch min and all M ∈ M n,d rch min , the following holds. Let X ⊆ R n be a finite point cloud and

T X = T x x∈X ⊆ G n,d be a family of d-dimensional linear subspaces of R n such that • max x∈X d(x, M ) ≤ η, • max p∈M d(p, X ) ≤ ∆, • max x∈X π T π M (x) M -π Tx op ≤ sin θ.
If θ ≤ ∆/(1140rch min ) and η ≤ ∆ 2 /(1140rch min ), then one can build a triangulation M = M (X , T X ) with vertices in X such that

• d H M, M ≤ C d ∆ 2 /rch min ,
• M and M are ambient isotopic.

Proof of Theorem 2.1. We apply [AL18, Theorem 4.4] on a sparsified subset X ′ of X , which is a pruned version of X that is ε-sparse but still dense enough in M . This subsample X ′ can be built explicitly by using the so-called farthest point sampling algorithm to X [AL18, Section 3.3]. For this, initialize X ′ with X ′ = {x 0 }, where x 0 ∈ X is chosen arbitrarily. Then, while max x∈X d(x, X ′ ) > ∆, find the farthest point to X ′ in X , and add it to X ′ . That is, X ′ ← X ′ ∪ {argmax x∈X d(x, X ′ )} (and if the argmax is not a singleton, pick an arbitrary element of it). The output X ′ ⊆ X of this algorithm clearly satisfies min x ′ ̸ =y ′ ∈X ′ ∥y ′ -x ′ ∥ ≥ ∆, and furthermore, max

p∈M d(p, X ′ ) ≤ max p∈M d(p, X ) + max x∈X d(x, X ′ ) ≤ 2∆.
Therefore, [AL18, Theorem 4.4] applies to X ′ and T X ′ , and M (X ′ , T X ′ ) provides the announced triangulation.

Although we will not emphasize on exact topology recovery in the present work, let us mention that the triangulation M actually exhibits the extra feature of sharing the same topology as M , i.e. M and M are isotopy equivalent. Let us also mention that the triangulation can be built in linear time in n, with an explicit polynomial time and space complexity [BG14, Section 4.6].

Said otherwise, Theorem 2.1 asserts that manifold reconstruction with precision ε can be achieved if a sample that is ( √ rch min ε)-dense and ε-close to M , together with associated estimated tangent spaces with precision ε/rch min , are available to the learner. As opposed to the sample framework, the statistical framework does not provide the learner with such data directly. In STAT(τ ), our strategy will therefore be to build such a point cloud and tangent spaces iteratively from queries, using the following purely geometric Manifold Propagation algorithm.

Manifold Propagation Algorithm

We now present the Manifold Propagation algorithm and its properties, which works in a setting where only geometric routines are available to the learner. Although we will eventually apply this algorithm in the context of statistical queries (see Section 5), let us insist on the fact that the framework detailed in this Section 3 is purely geometric, and does not rely specifically on statistical queries.

As mentioned in the introduction, the idea is to explore the unknown manifold M via the access to only three complementary geometric routines. Roughly speaking, Manifold Propagation explores M in a greedy way, while building a point cloud with associated tangent spaces, by using:

• A seed point x0 ∈ R n ,
known to be close to M , and that allows to initialize the process.

• A tangent space routine T : R n → G n,d , that allows to make linear approximations of M nearby points, and hence to provide local candidate directions to explore next.

• A projection routine π : R n → R n , that compensates for the errors made by the previous steps, by approximately projecting points back to M .

To avoid redundancy, all this is done while checking that the new candidate points are not too close to some already-visited region of the space. More formally, the algorithm runs as described on page 20. In spirit, Manifold Propagation is similar to the marching cube algorithm of [LC87] and the tracing algorithm of [START_REF] Boissonnat | Sampling and Meshing Submanifolds in High Dimension[END_REF], which use calls to an intersection oracle answering whether Algorithm 1 Manifold Propagation Require:

Seed point x0 ∈ R n Tangent space routine T : R n → G n,d Projection routine π : R n → R n Tuning parameters ∆, δ > 0 (scales) and 0 < α < π/2 (angle)

1: Initialize Q ← {x 0 }, O ← ∅ and T O ← ∅ 2: while Q ̸ = ∅ do 3: Pick x ∈ Q 4:
Set T ← T (x) and

T O ← T O ∪ {T } 5:
Consider a maximal (sin α)-packing v 1 , . . . , v k of the sphere S d-1 T (0, 1) ⊆ T 6:

for i ∈ {1, . . . , k} do 7:

if d x + ∆v i , Q ∪ O ≥ δ then 8: Q ← Q ∪ π(x + ∆v i ) 9:
end if 10:

end for 11:

Q ← Q \ {x} and O ← O ∪ {x} 12: end while 13: return O and T O a candidate element of a partition of the ambient space intersects the manifold. However, the approaches of [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] and [START_REF] Boissonnat | Sampling and Meshing Submanifolds in High Dimension[END_REF] use static partitions of R n (cubes and a Coxeter triangulation respectively), which translates into an exploration complexity of M -measured in the number of calls made to the oracles/routines -that strongly depends on the ambient dimension [BKW19, Theorem 24]. In contrast, Manifold Propagation builds a point cloud nearby M dynamically, which allows to adapt to its intrinsic low-dimensional geometry. This results in an exploration complexity that is completely oblivious to the ambient space. That is, the overall dependency in the ambient dimension is fully supported by the geometric routines themselves. This can be explained by the intermediate tangent space estimation routine, that allows the algorithm to only explore the d local (approximate) tangent directions of M only, while being oblivious to the (n -d) ≫ d non-informative codimensions. As a counterpart, Manifold Propagation needs to compensate for these local linear approximations which, although possibly negligible at each iteration, may cumulate into substantial deviations from the manifold after several steps. This possible global drift is taken care of via the projection routine, which somehow reboots the precision of the process when a point is added. To the best of our knowledge, Manifold Propagation is the first instance of an algorithm working only with the three geometric routines described above. We now state the main result presenting its properties.

Theorem 3.1 (Properties of Manifold Propagation). Let M ∈ M n,d
rch min , and assume that there exist 0 ≤ η ≤ Λ < rch min and 0 ≤ θ < π/2 such that: 

(i) d(x 0 , M ) ≤ η; (ii) For all x ∈ R n such that d(x, M ) ≤ η, π T π M (x) M -π T (x) op ≤ sin θ; (iii) For all x ∈ R n such that d(x, M ) ≤ Λ, ∥π M (x) -π(x)∥ ≤ η.
max x∈O π T π M (x) M -π T (x) op ≤ sin θ.
To get to Theorem 3.1, we will need the following series of lemmas, which are proved in Appendix A. The first statement asserts that the point clouds Q and O that the algorithm builds remain η-close to M at all times. The reason for this resides in the fact that this property holds for the seed point x0 by assumption, and that the projection routine π maintains this η-closeness when points are added to Q, and hence to

Q ∪ O. Lemma 3.1. Let M ∈ M n,d
rch min , and assume that η < rch min , ∆ ≤ rch min /4 and 5 8 ∆ 2

rch min + η + ∆ sin θ ≤ Λ. Then when running Manifold Propagation, the following inequality is maintained:

max x∈Q∪O d(x, M ) ≤ η.
The second statement ensures that points in Q ∪ O remain far away from each other, so that they always form a packing with fixed radius. This property, maintained by the proximity test at Line 7 of Manifold Propagation, is the key ingredient for the termination of the algorithm and its complexity. rch min + η + ∆ sin θ ≤ Λ. Then when running Manifold Propagation, the following inequality is maintained:

min x,y∈Q∪O x̸ =y ∥x -y∥ ≥ δ - 5 8 ∆ 2 rch min -2η -∆ sin θ.
The third and last statement roughly asserts that if Manifold Propagation terminates, then all the ∆-neighborhoods of M have been visited by the output O, i.e. that the greedy tangential exploration strategy is somehow exhaustive at scale ∆.

Lemma 3.3. Let M ∈ M n,d
rch min , and assume that ∆ ≤ rch min /24, η < ∆/64, and max {sin α, sin θ} ≤ 1/64. Assume furthermore that, 5 

∥π M (x) -π M (y)∥ ≥ min x,y∈Q∪O x̸ =y ∥π M (x) -π M (y)∥ ≥ min x,y∈Q∪O x̸ =y ∥x -y∥ -∥x -π M (x)∥ -∥y -π M (y)∥ ≥ δ - 5 8 ∆ 2 rch min -2η -∆ sin θ -2η ≥ 173 960 ∆ ≥ 173 960 10 7 δ > δ 4 > 0.
This shows that π M : O → π M (O) is one-to-one, and that the set π M (O) ⊆ M is a (δ/8)packing of M . As a consequence, we have at all times

N loop = |O| = |π M (O)| ≤ pk M (δ/8) ≤ H d (M ) ω d (δ/32) d ,
where the last inequality follows from Lemma 2.3. As N loop < ∞, this first item also shows that Manifold Propagation terminates.

2. This statement follows directly from Lemma 3.1. 4. Follows straightforwardly from Item 2 above, and the assumption that

We have already shown that

π T π M (x) M -π T (x) op ≤ sin θ for all x ∈ R n such that d(x, M ) ≤ η.

Geometric Routines with Statistical Queries

Coming back to manifold estimation with SQ's, we notice that by combining together: (Exploration) the greedy point cloud construction of Theorem 3.1 using geometric routines only, (Reconstruction) the point cloud-based reconstruction method of Theorem 2.1, we have reduced the problem to constructing SQ algorithms emulating these routines with a STAT(τ ) oracle. We now present constructions of SQ algorithms for the projection routine π(•) (Section 4.1), the tangent space estimation routine T (•) (Section 4.2), and the seed point detection x0 (Section 4.3).

Projection

Given a point x 0 ∈ R n nearby M = Supp(D), we aim at estimating its metric projection π M (x 0 ) onto M with statistical queries to STAT(τ ). As mentioned earlier, the reasoning we adopt is as follows:

• For a properly chosen bandwidth h > 0, the local conditional mean

m D (x 0 , h) = E x∼D [x |B(x 0 , h) ] = x 0 + h Ex∼D (x-x 0 ) h 1 ∥x-x 0 ∥≤h D(B(x 0 , h))
of D around x 0 has small bias for estimating π M (x 0 ) (Lemma C.2).

• As m D (x 0 , h) ∈ R n writes as a functional of the two means

D(B(x 0 , h)) = Ex∼D [1 ∥x-x 0 ∥≤h ] ∈ R, and 
Ex∼D (x-x 0 ) h 1 ∥x-x 0 ∥≤h ∈ R n ,
it can be estimated using 2n + 1 queries (Lemma 2.1).

The proof of these results are to be found in Appendix C. Combined together, we then prove the correctness of the SQ projection estimation procedure (Theorem 4.1) in Appendix C.2.

Theorem 4.1 (SQ Projection Estimation). Let D ∈ D n,d rch min (f min , f max , L) have support M = Supp(D). Assume that τ ω d f min rch d min ≤ c d(d+1) Γ d and Λ ≤ rch min 16 ,
for some small enough absolute constant c > 0, where Γ = Γ f min ,fmax,L = f min fmax+Lrch min . Then for all x 0 ∈ R n such that d(x 0 , M ) ≤ Λ, there exists a SQ algorithm making 2n + 1 queries to STAT(τ ), that outputs a point π(x 0 ) ∈ R n estimating π M (x 0 ) with precision

∥π(x 0 ) -π M (x 0 )∥ ≤ η = C d Γ max Λ 2 rch min , Γ 2 d+1 rch min τ ω d f min rch d min 2 d+1
, where C > 0 is an absolute constant.

Tangent Space

Given a point x 0 ∈ R n nearby M = Supp(D), we aim at estimating the tangent space T π M (x 0 ) M with statistical queries to STAT(τ ). The strategy we propose is based on local Principal Components Analysis, combined with low-rank matrix recovery with SQ's. This local PCA approach is similar to that of [ACLZ17, AL18]. As described above, the reasoning is as follows:

• For a properly chosen bandwidth h > 0, the local (rescaled) covariance matrix • Principal components being stable to perturbations (Lemma D.2), estimating

Σ D (x 0 , h) = E x∼D (x -x 0 )(x -x 0 ) ⊤ h 2 1 ∥x-x 0 ∥≤h ∈ R n×n
Σ D (x 0 , h) ∈ R n×n is sufficient to estimate T π M (x 0 ) M ∈ G n,d . • Estimating Σ D (x 0 , h) ∈ R n×n = R n 2 using O(n 2 ) queries (Lemma 2.1
) is too costly and would be redundant since Σ D (x 0 , h) is nearly rank d ≪ n. Instead, we use matrix compression arguments (Theorem D.1) and an explicit construction of a matrix sensing operator (Lemma D.3) to derive a general mean low-rank matrix SQ algorithm (Lemma D.4). This result roughly asserts that a mean matrix Σ = Ex∼D [F (x)] ∈ R n×n of a bounded function F : R n → R n×n that has nearly rank d can be estimated with precision Cτ using nd polylog(n) queries to STAT(τ ).

The proof of these results are to be found in Appendix D. All combined together, we then prove the correctness of the SQ tangent space estimation procedure (Theorem 4.2) in Appendix D.4.

Theorem 4.2 (SQ Tangent Space Estimation). Let D ∈ D n,d rch min (f min , f max , L) have support M = Supp(D). Assume that τ ω d f max rch d min ≤ 1 8 √ d d+1 and η ≤ rch min 64d .
Then for all x 0 ∈ R n such that d(x 0 , M ) ≤ η, there exists a deterministic SQ algorithm making at most Cdn log 6 (n) queries to STAT(τ ), and that outputs a d-plane

T (x 0 ) ∈ G n,d estimating T π M (x 0 ) M with precision π T (x 0 ) -π T π M (x 0 ) M op ≤ sin θ = Cd f max f min max η rch min , τ ω d f max rch d min 1 d+1
, where C > 0 is an absolute constant.

Seed Point

Given a ball of radius R > 0 guaranteed to encompass M = Supp(D) ⊆ B(0, R), and a target precision η > 0, we aim at finding a point that is η-close to M with statistical queries to STAT(τ ). The strategy we propose is as follows:

• Starting from B(0, R), we use a divide and conquer strategy (Theorem E.1). The algorithm (SQ Ambient Binary Search) queries indicator functions of an interactively chosen union of balls (i.e. the queried balls depend on the previous answers of the oracle), stops when there is only one ball left and outputs its center xraw 0 . This method only uses estimates on the local mass of balls for D (Lemma B.1), and forgets about the differential structure and C 2 -smoothness of M . Hence, although efficient, it only obtains a precision O(max η, τ 1/d ), that can be much larger than the prescribed one O(max η, τ 2/(d+1) ).

• Starting from xraw 0 , we then refine this detected point by iterating the SQ projection routine π(•) (Theorem 4.1), which does use extensively the C 2 -smoothness of M . As xraw 0 is close to M , this procedure is guaranteed to enhance precision quadratically at each step, and is hence satisfactory (i.e. has precision η) after a logarithmic number of iterations.

The proof of these results are to be found in Appendix E.

Theorem 4.3 (SQ Point Detection). Let D ∈ B(0, R) ⊓ D n,d rch min (f min , f max , L) have support M = Supp(D) ⊆ B(0, R). Assume that τ ω d f min rch d min ≤ cΓ d min c d , (n log (R/(Γrch min )) -1/2 d
, and η ≤ rch min 16 24 for some small enough c > 0, where Γ = Γ f min ,fmax,L = f min fmax+Lrch min , Then there exists a deterministic SQ algorithm making at most 6n log(6R/η) queries to STAT(τ ), and that outputs a point x0 ∈ B(0, R) such that

d(x 0 , M ) ≤ max η, C d Γ 2 d+1 -1 rch min τ ω d f min rch d min 2 d+1
, where C > 0 is the absolute constant of Theorem 4.1.

Manifold Estimation with Statistical Queries

We are now in position to state the main results of this work, namely bounds on the statistical query complexity of manifold estimation in STAT(τ ). We split the results into the two studied models {0}⊔D n,d rch min (f min , f max , L) and B(0, R)⊓D n,d rch min (f min , f max , L). For each model, we get an upper bound by combining the results of Sections 3 and 4. It is followed by an informational and a computational lower bound, coming from the general lower bound techniques of Appendix G and the constructions of Appendix H.

Fixed Point Model

In {0} ⊔ D n,d rch min (f min , f max , L), the origin 0 ∈ R n is known to belong to M . The SQ algorithm we propose consists in running Manifold Propagation with seed point x0 = 0 and the SQ projection and tangent space routines of Theorems 4.1 and 4.2. This leads to the following upper bound. Let us mention that one could easily extend this result and relax the assumption that 0 ∈ M to d(0, M ) being small enough. for some small enough absolute constants c, c > 0. Then there exists a deterministic SQ algorithm making at most

q ≤ n log 6 n C d f min rch d min rch min ε d/2
queries to STAT(τ ), and that outputs a finite triangulation M ⊆ R n that has the same topology as M , and such that

d H (M, M ) ≤ max ε, Cd Γ 3 rch min τ f min rch d min 2/(d+1)
, where C d > 0 depends on d and C > 0 is an absolute constant.

The algorithm of Theorem 5.1 has a statistical query complexity comparable to the optimal sample complexity s = O(ε -2/d log(1/ε)) over the model D n,d rch min (f min , f max , L) [GPPVW12a, KZ15, AL18], and can provably achieve precision O(τ 2/(d+1) ). Furthermore, the assumptions made as well as the final precision are completely insensitive to n. The ambient dimension n only appears as a quasi-linear factor in the query complexity. This contrasts with the sample complexity which does not depends on n. However, notice that a single sample nearby M ⊆ R n consists of n coordinates, while statistical queries are forced to be real-valued (one dimensional) pieces of information, which explains this apparent discrepancy.

Discussing its optimality, one may first wonder if the assumption made on τ is necessary, and whether the precision barrier of order O(τ 2/(d+1) ) is improvable in STAT(τ ). The following statement answers to these questions, regardless the statistical query complexity.

Theorem 5.2. Let α < 1/2 be a probability of error. Assume that f min ≤ f max /4 and

2 d+1 σ d f min rch d min ≤ 1.
Then no randomized SQ algorithm can estimate M = Supp(D) over {0} ⊔ D n,d rch min (f min , f max , L) with precision

ε < rch min 2 21 min 1 2 20 d 2 , τ ω d f min rch d min 2/d
and probability 1 -α, no matter its number of queries.

This result justifies why the quantity τ /(ω d f min rch d min ) is required to be small enough in Theorem 5.1: this actually is necessary so as to reach a precision of order at least O(rch min ). Second, this informational lower bound shows that the learner cannot hope to achieve precision better than

ε = Ω rch min τ /(ω d f min rch d min ) 2/d
, even with the most costly randomized SQ algorithms. In fact, the precision O(τ 2/(d+1) ) of Theorem 5.1 is nearly optimal. Here, the assumptions made on f min , f max and rch min are also necessary to ensure non-degeneracy of the model {0} ⊔ D n,d rch min (f min , f max , L), as mentioned in Section 2.2.3. Beyond the above informational considerations, we turn to the computational one, i.e. to the minimal number of queries to STAT(τ ) that a learner must make to achieve precision ε.

Theorem 5.3. Let α < 1 be a probability of error, and ε ≤ rch min /(2 34 d 2 ). Assume that f min ≤ f max /4 and 2 d+1 σ d f min rch d min ≤ 1. Then any randomized SQ algorithm estimating M = Supp(D) over {0} ⊔ D n,d rch min (f min , f max , L) with precision ε and with probability of success at least 1 -α must make at least

q ≥ n 1 ω d f min rch d min rch min 2 21 ε d/2 + log(1 -α) log(1 + 1/τ )
queries to STAT(τ ).

For deterministic SQ algorithms (α = 0), the statistical query complexity of the algorithm of Theorem 5.1 is therefore optimal up to polylog(n, 1/τ ) factors. It even performs nearly optimally within all the possible randomized algorithms, provided that their probability of error α is not too close to 1, which would allow for a naive random pick among an ε-covering of the space {0} ⊔ M n,d rch min , d H (with zero query to STAT(τ )) to be a valid algorithm.

Bounding Ball Model

In B(0, R) ⊓ D n,d rch min (f min , f max , L), no distinguished point of R n is known to belong to M , but a location area B(0, R) containing M is available to the learner. Hence, the strategy of the previous section cannot initialize directly. However, Theorem 4.3 allows to find a seed point x0 close to M using a limited number of queries to STAT(τ ). Starting from x0 and, as above, running Manifold Propagation with the SQ projection and tangent space routines of Theorems 4.1 and 4.2 leads to the following upper bound. for some small enough absolute constants c, c > 0. Then there exists a deterministic SQ algorithm making at most

q ≤ Cn log R ε + n log 6 n C d f min rch d min rch min ε d/2
queries to STAT(τ ), and that outputs a finite triangulation M ⊆ R n that has the same topology as M , and such that

d H (M, M ) ≤ max ε, Cd Γ 3 rch min τ f min rch d min 2/(d+1)
, where C d > 0 depends on d and C > 0 is an absolute constant.

Compared to Theorem 5.1, observe the extra O(n log(R/ε)) queries made in Theorem 5.4, which come from the seed point search performed at initialization. Passed this difference, the two results are tightly similar. In the same fashion as above, we first discuss the necessity of the assumptions made on τ and the precision threshold O(τ 2/(d+1) ).

Theorem 5.5. Let α < 1/2 be a probability of error. Assume that rch min ≤ R/144 and f min ≤ f max /96, and

min 1≤k≤n 192rch min √ k R k ≤ 36 × 8 d σ d-1 f min rch d min ≤ 1.
Then no randomized SQ algorithm can estimate M = Supp(D) over B(0, R)⊓D n,d rch min (f min , f max , L) with precision

ε < rch min 2 31 min 1 2 10 d 2 , τ ω d f min rch d min 2/d
and probability 1 -α, no matter its number of queries.

As above, we emphasize the fact that the assumptions made on f min , f max , rch min and R are necessary to guarantee the non-degeneracy of the model B(0, R) ⊓ D n,d rch min (f min , f max , L), and hence a non-trivial estimation problem (see Section 2.2.3). As for the fixed point model, we hence see that the assumptions made on τ and the precision ε cannot be omitted. Let us though notice the slightly more stringent assumption made on τ that depends on n in the upper bound (Theorem 5.4) but not in the lower bound (Theorem 5.5). This dependency originates from the seed point detection method that we developed (Theorem 4.3) and we do not claim it to be optimal. As about the computational lower bound for this model, we state the following result.

Theorem 5.6. Let α < 1 be a probability of error, and ε ≤ rch min /(2 34 d 2 ). Assume that rch min ≤ R/144, f min ≤ f max /96, and

min 1≤k≤n 192rch min √ k R k ≤ 36 × 8 d σ d-1 f min rch d min ≤ 1.
Then any randomized SQ algorithm estimating M = Supp(D) over B(0, R)⊓D n,d rch min (f min , f max , L) with precision ε and with probability of success at least 1 -α must make at least

q ≥ n max log R 4ε , 1 ω d f min rch d min rch min 2 31 ε d/2 + log(1 -α) log(1 + 1/τ ) queries to STAT(τ ).
As a result, the extra O(n log(R/ε)) queries of Theorem 5.4 are necessary in the SQ framework. This contrasts sharply with the sample model, where no prior location information is necessary appears in the sample complexity [GPPVW12a, [START_REF] Arlene | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF][START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF]. Roughly speaking, this is explained by the fact that a single sample (the first, say) does provide location information for free, while in the SQ framework, the learner is left with the whole ball B(0, R) to explore at initialization. However, as mentioned above, note that the term Ω(n log(R/ε)) attributable to this initialization step would only dominate in the regime where R is exponentially bigger than rch min .

Further Directions

As mentioned above, a byproduct of these results is that manifold estimation is possible in a locally private way. However, the transformation used to pass from statistical query learning to locally private learning has a polynomial blowup [KLN + 11]. Hence, the derived locally private upper bound may not be optimal, so that a close study of the private framework directly is still necessary. Coming back to SQ's, the derived bounds on the best achievable precision ε in STAT(τ ) do not match, as they are respectively of the form ε = O rch min for the lower bounds, so that this gap remains to be breached.

The case of smoother C k manifolds (k > 2) would be of fundamental interest, as their estimation is at the basis of plugin methods of higher order. This includes, for instance, density estimation [START_REF] Berenfeld | Estimating the reach of a manifold via its convexity defect function[END_REF], or distribution estimation in Wasserstein distance [START_REF] Divol | Reconstructing measures on manifolds: an optimal transport approach[END_REF]. For k > 2, local linear approximations are not optimal [AL19], and local polynomials of higher orderthat were shown to be optimal in the sample framework -might adapt to statistical queries.

On a more technical side, note that we have assumed throughout that the density f is L-Lipschitz and satisfies f min ≤ f ≤ f max , although the lower bounds do not let L and f max appear, but only f min . While the Lipschitz assumption could be dropped for the tangent space routine, it actually is crucial in the proposed projection routine to bound the bias term. Hence, it remains unclear to us how to design an efficient projection routine without this assumption, as well as how to carry the whole analysis with f max = ∞. validity of this approximation, which is ensured by the reach assumption rch M ≥ rch min , which bounds curvature. Recall from (1) that M r = {z ∈ R n , d(z, M ) ≤ r} stands for the r-offset of M .

Lemma A.1. Let M ∈ M n,d rch min , and x ∈ M η with η < rch min . Take T ∈ G n,d such that π T π M (x) M -π T op ≤ sin θ. Then for all ∆ ≤ rch min /4, and all unit vector v ∈ T ,

d x + ∆v, M ≤ 5 8 ∆ 2 rch min + η + ∆ sin θ.
Proof of Lemma A.1. By assumption on T , there exists a unit vector

v ′ ∈ T π M (x) M such that ∥v -v ′ ∥ ≤ sin θ. Hence, since d(•, M ) is 1-Lipschitz, we have d x + ∆v, M ≤ d x + ∆v ′ , M + ∆ sin θ ≤ d π M (x) + ∆v ′ , M + η + ∆ sin θ ≤ π M (x) + ∆v ′ -exp M π M (x) (∆v ′ ) + η + ∆ sin θ ≤ 5 8 ∆ 2 rch min + η + ∆ sin θ,
where the last inequality follows from [AL19, Lemma 1].

We are now in position to prove Lemma 3.1, that guarantees that Manifold Propagation builds point clouds that do not deviate from M .

Proof of Lemma 3.1. The points added to O are all first added to Q: therefore, it is sufficient to check that all the points x added to Q satisfy d(x, M ) ≤ η. To see this, proceed by induction:

• As Q is initialized to {x 0 } with d(x 0 , M ) ≤ η, the inequality holds true at Line 1, before the first loop.

• If x ̸ = x0 was added to Q, it can be written as x = π(x 0 + ∆v i ), for some point x 0 ∈ Q and a unit vector v i ∈ T (x 0 ). By induction, we have d(x 0 , M ) ≤ η. But since T (•) is assumed to have precision sin θ over M η , we hence obtain that π T π M (x 0 ) M -π T (x 0 ) op ≤ sin θ. As a result, from Lemma A.1,

d(x 0 + ∆v i , M ) ≤ 5 8 ∆ 2 rch min + η + ∆ sin θ ≤ Λ,
and therefore

d(x, M ) ≤ ∥x -π M (x 0 + ∆v i )∥ = ∥π(x 0 + ∆v i ) -π M (x 0 + ∆v i )∥ ≤ η since π(•) is assumed to have precision η over M Λ .
This concludes the induction and hence the proof.

Next we show Lemma 3.2, asserting that the radius of sparsity of the point clouds built by Manifold Propagation is maintained at all times.

Proof of Lemma 3.2. At initialization of Manifold Propagation, Q ∪ O = {x 0 }, so that the inequality trivially holds at Line 1. Then, if a point x is added to Q at Line 8, it means that it can be written as x = π(x 0 + ∆v i 0 ), with d(x 0 + ∆v i 0 , Q ∪ O) ≥ δ. Consequently, by induction, we have min

x,y∈Q∪O∪{x} x̸ =y ∥x -y∥ = min min x,y∈Q∪O x̸ =y ∥x -y∥ , d (x, Q ∪ O) ≥ min δ - 5 8 ∆ 2 rch min -2η -∆ sin θ, d(x 0 + ∆v i 0 , Q ∪ O) -∥(x 0 + ∆v i 0 ) -x∥ ≥ min δ - 5 8 ∆ 2 rch min -2η -∆ sin θ, δ -∥(x 0 + ∆v i 0 ) -x∥ .
In addition, Lemma A.1 and Lemma 3.1 combined yield

∥(x 0 + ∆v i 0 ) -x∥ = ∥(x 0 + ∆v i 0 ) -π(x 0 + ∆v i 0 )∥ ≤ ∥π(x 0 + ∆v i 0 ) -π M (x 0 + ∆v i 0 )∥ + ∥π M (x 0 + ∆v i 0 ) -(x 0 + ∆v i 0 )∥ ≤ η + 5 8 ∆ 2 rch min + η + ∆ sin θ .
As a result, after the update Q ← Q ∪ {x}, the announced inequality still holds. Finally, we notice that Line 11, which swaps a point from Q to O, leaves Q ∪ O unchanged. By induction, this concludes the proof.

Finally we prove Lemma 3.3, that states that if Manifold Propagation terminates, it outputs a point cloud dense enough nearby M .

Proof of Lemma 3.3. Assume for contradiction that there exists p 0 ∈ M such that for all x ∈ O, d M p 0 , π M (x) > ∆. Let x 0 ∈ O (which is not empty since x0 ∈ O) be such that

d M p 0 , π M (x 0 ) = min x∈O d M (p 0 , π M (x) := r 0 > ∆,
and write y 0 := π M (x 0 ). Let γ := γ y 0 →p 0 : [0, r 0 ] → M denote an arc-length parametrized geodesic joining y 0 and p 0 . Finally, set q 0 := γ(∆) ∈ M and v 0 := γ ′ (0) ∈ T y 0 M .

Consider the sets Q and O of Manifold Propagation right after x 0 was removed from Q and added to O (Line 11). By construction, all the elements v 1 , . . . , v k of a maximal (sin α)packing of S d-1

T (x 0 )
were tested to enter Q (Loop from Line 6 to Line 10). Because the packing is maximal, it is also a (2 sin α)-covering of S d-1

T (x 0 )
(see the proof of Proposition B.2). As a result, by assumption on the precision of T (x 0 ), there exists v i 0 in this packing such that ∥v 0 -v i 0 ∥ ≤ 2 sin α + sin θ.

As γ is a distance-minimizing path on M from y 0 to p 0 , so it is along its two sub-paths with endpoint q 0 , as otherwise, one could build a strictly shorter path between y 0 and p 0 . In particular, since ∆ < r 0 = d M (y 0 , p 0 ), we have d M (y 0 , q

0 ) = d M (y 0 , γ(∆)) = ∆ and d M (p 0 , q 0 ) = d M (p 0 , γ(∆)) = r 0 -∆. As a result, d M (p 0 , π M (π (x 0 + ∆v i 0 ))) ≤ d M (p 0 , q 0 ) + d M (q 0 , π M (π (x 0 + ∆v i 0 ))) = r 0 -∆ + d M (q 0 , π M (π (x 0 + ∆v i 0 ))) .
(2)

But from Lemma 2.2, we get

d M (q 0 , π M (π (x 0 + ∆v i 0 ))) ≤ 2rch min arcsin ∥q 0 -π M (π (x 0 + ∆v i 0 ))∥ 2rch min ≤ ∥q 0 -π M (π (x 0 + ∆v i 0 ))∥ 1 - ∥q0-πM (π(x0+∆vi 0 ))∥ 2rch min 2 , (3) 
and furthermore,

∥q 0 -π M (π (x 0 + ∆v i 0 ))∥ ≤ ∥q 0 -(y 0 + ∆v 0 )∥ + ∥(y 0 + ∆v 0 ) -(x 0 + ∆v i 0 )∥ + ∥(x 0 + ∆v i 0 ) -π (x 0 + ∆v i 0 )∥ + ∥π (x 0 + ∆v i 0 ) -π M (π (x 0 + ∆v i 0 ))∥ . (4) 
We now bound the right hand side of Equation ( 4) term by term. The first term is bounded by

∥q 0 -(y 0 + ∆v 0 )∥ = γ(∆) -(γ(0) + ∆γ ′ (0)) ≤ ∆ 2 2rch min ,
where the inequality follows from a Taylor expansion and Lemma 2.2. For the second term, write

∥(y 0 + ∆v 0 ) -(x 0 + ∆v i 0 )∥ ≤ ∥y 0 -x 0 ∥ + ∆ ∥v 0 -v i 0 ∥ ≤ η + ∆(2 sin α + sin θ).
For the third term, we combine Lemma A.1 and Lemma 3.1 to get

∥(x 0 + ∆v i 0 ) -π (x 0 + ∆v i 0 )∥ ≤ d (x 0 + ∆v i 0 , M ) + ∥π M (x 0 + ∆v i 0 ) -π (x 0 + ∆v i 0 )∥ ≤ 5 8 ∆ 2 rch min + 2η + ∆ sin θ,
and for the fourth term, applying again Lemma A.1 and Lemma 3.1 yields

∥π (x 0 + ∆v i 0 ) -π M (π (x 0 + ∆v i 0 ))∥ = d π (x 0 + ∆v i 0 ) , M ≤ η.
Plugging these four bounds in Equation (4), we have shown that

∥q 0 -π M (π (x 0 + ∆v i 0 ))∥ ≤ 9∆ 2 8rch min + 4η + 2∆(sin α + sin θ). (5) 
Combining Equation (5), Equation (3), and the assumptions on the parameters ∆, η, θ, α hence yields

d M (y 0 , π M (π (x 0 + ∆v i 0 ))) ≤ 2 ∥q 0 -π M (π (x 0 + ∆v i 0 ))∥ ≤ ∆/2, so that Equation (2) gives d M (p 0 , π M (π (x 0 + ∆v i 0 ))) ≤ r 0 -∆ + ∆/2 < r 0 = d M (p 0 , π M (x 0 )) = min x∈O d M (p 0 , π M (x) .
In particular, π (x 0 + ∆v i 0 ) was not added to Q in the Loop of Lines 6 to 10 investigating the neighbors of x 0 (i.e. when x 0 was picked Line 3). Since Q ∪ O is an increasing sequence of sets as Manifold Propagation runs and that Q = ∅ when it terminates, this means that there exists x 1 in the final output O such that ∥x 0 + ∆v i 0 -x 1 ∥ ≤ δ. The existence of this particular point x 1 in O which is δ-close to x 0 + ∆v i 0 will lead us to a contradiction: we will show that π M (x 1 ) will be closer to p 0 than π M (x 0 ) is in geodesic distance.

To get there, we first notice that any such x 1 ∈ O would satisfy d(x 1 , M ) ≤ η from Lemma 3.1, so that

∥π M (x 0 + ∆v i 0 ) -π M (x 1 )∥ ≤ ∥π M (x 0 + ∆v i 0 ) -(x 0 + ∆v i 0 )∥ + ∥(x 0 + ∆v i 0 ) -x 1 ∥ + ∥x 1 -π M (x 1 )∥ ≤ δ + 5 8 ∆ 2 rch min + 2η + ∆ sin θ ≤ δ + 17 192 ∆ ≤ 25 192 rch min ,
where the last-but-one line follows from Lemma A.1, and the last one from the assumptions on the parameters ∆, η, θ and δ. As a result, from Lemma 2.2,

d M (π M (x 0 + ∆v i 0 ) , π M (x 1 )) ≤ ∥π M (x 0 + ∆v i 0 ) -π M (x 1 )∥ 1 - 25 2×192 2 ≤ 1 + 3 10000 δ + 17 192 ∆ . (6) 
Furthermore, using a similar decomposition as for Equation (5), we have 

∥q 0 -π M (x 0 + ∆v i 0 )∥ ≤ ∥q 0 -(y 0 + ∆v 0 )∥ + ∥(y 0 + ∆v 0 ) -(x 0 + ∆v i 0 )∥ + ∥(x 0 + ∆v i 0 ) -π M (x 0 + ∆v i 0 )∥ ≤ ∆ 2 2rch min + (η +
M (q 0 , π M (x 0 + ∆v i 0 )) ≤ ∥q 0 -π M (x 0 + ∆v i 0 )∥ 1 - 11 2×1536 2 ≤ 3 16 ∆. ( 7 
)
This takes us to the desired contradiction, since:

• on one hand, x 1 ∈ O forces to have d M (p 0 , π M (x 1 )) ≥ r 0 = min x∈O d M (p 0 , π M (x) = d M (p 0 , π M (x 0 ));
• on the other hand, Equation (6) and Equation (7) combined yield

d M (p 0 , π M (x 1 )) ≤ d M (p 0 , q 0 ) + d M (q 0 , π M (x 0 + ∆v i 0 )) + d M (π M (x 0 + ∆v i 0 ) , π M (x 1 )) ≤ r 0 -∆ + 3 16 ∆ + 1 + 3 10000 δ + 17 192 ∆ < r 0 ,
where we used that δ ≤ 7∆/10.

As a result, we have proved that

max p∈M min x∈O d M (p, π M (x) ≤ ∆,
which is the announced result.

B Preliminary Geometric Results

B.1 Local Mass of Balls Estimates

To prove the properties of the statistical query routines, we will need the following two geometric results about manifolds with bounded reach. In what follows, t + := max{0, t} stands for the positive part of t ∈ R.

Proposition B.1 ([AL18, Proposition 8.2]). Let M ∈ M n,d rch min , x ∈ R n such that d(x, M ) ≤ rch min /8, and h ≤ rch min /8. Then, B π M (x), r - h ∩ M ⊆ B(x, h) ∩ M ⊆ B π M (x), r + h ∩ M, where r h = (h 2 -d(x, M ) 2 ) 1/2 + , (r - h ) 2 = 1 -d(x,M ) rch min r 2 h , and (r + h ) 2 = 1 + 2d(x,M ) rch min r 2 h .
As a result, one may show that any ball has large mass with respect to a measure

D ∈ D n,d rch min (f min , f max , L). Lemma B.1. Let D ∈ D n,d rch min (f min , f max , L) have support M = Supp(D). • For all p ∈ M and h ≤ rch min /4, a d f min h d ≤ D B(p, h) ≤ A d f max h d , where a d = 2 -d ω d and A d = 2 d ω d .
• For all x 0 ∈ R n and h ≤ rch min /8,

a ′ d f min (h 2 -d(x 0 , M ) 2 ) d/2 + ≤ D B(x 0 , h) ≤ A ′ d f max (h 2 -d(x 0 , M ) 2 ) d/2 + ,
where a ′ d = (7/8) 

B.2 Euclidean Packing and Covering Estimates

For sake of completeness, we include in this section some standard packing and covering bounds that are used in our analysis. We recall the following definitions.

A r-covering of K ⊆ R n is a subset X = {x 1 , . . . , x k } ⊆ K such that for all x ∈ K, d(x, X ) ≤ r. A r-packing of K is a subset Y = {y 1 , . . . , y k } ⊆ K such that for all y, y ′ ∈ Y, B(y, r) ∩ B(y ′ , r) = ∅ (or equivalently ∥y ′ -y∥ > 2r). Definition B.1 (Covering and Packing numbers). For K ⊆ R n and r > 0, the covering number cv K (r) of K is the minimum number of balls of radius r that are necessary to cover K: cv K (r) = min {k > 0 | there exists a r-covering of cardinality k} .

The packing number pk K (r) of K is the maximum number of disjoint balls of radius r that can be packed in K: pk K (r) = max {k > 0 | there exists a r-packing of cardinality k} .

Packing and covering numbers are tightly related, as shown by the following well-known statement.

Proposition B.2. For all subset K ⊆ R n and r > 0, pk K (2r) ≤ cv K (2r) ≤ pk K (r).

Proof of Proposition B.2. For the left-hand side inequality, notice that if K is covered by a family of balls of radius 2r, each of these balls contains at most one point of a maximal 2rpacking. Conversely, the right-hand side inequality follows from the fact that a maximal rpacking is always a 2r-covering. Indeed, if it was not the case one could add a point x 0 ∈ K that is 2r-away from all of the r-packing elements, which would contradict the maximality of this packing.

We then bound the packing and covering numbers of the submanifolds with reach bounded below. Note that these bounds depend only on the intrinsic dimension and volumes, but not on the ambient dimension. As a result, pk M (r) ≥ cv M (2r) = N ≥ H d (M ) ω d (4r) d . For the second bound, use again Proposition B.2 to get cv M (r) ≤ pk M (r/2). Now, by definition, a maximal (r/2)-packing {q j } 1≤j≤N ′ ⊆ M of M provides us with a family of disjoint balls of radii r/2. Hence, from Lemma B.1, we get

1 ≥ D M ∪ N ′ i=j B(q j , r/2) = N ′ j=1 D M (B(q j , r/2)) ≥ N ′ 2 -d ω d (r/2) d /H d (M ), so that cv M (r) ≤ pk M (r/2) = N ′ ≤ H d (M ) ω d (r/4) d .
Bounds on the same discretization-related quantities computed on the Euclidean n-balls and k-spheres will also be useful.

Proposition B.4.

• For all r > 0,

pk B(0,R) (r) ≥ R 2r n and cv B(0,R) (r) ≤ 1 + 2R r n .
• For all integer 1 ≤ k < n and r ≤ 1/8,

pk S k (0,1) (r) ≥ 2 1 4r k . Proof of Proposition B.4. • From Proposition B.2, we have pk B(0,R) (r) ≥ cv B(0,R) (2r). Fur- thermore, if ∪ N i=1 B(x i , 2r) ⊇ B(0, R) is a minimal 2r-covering of B(0, R), then by a union bound, ω n R n = H n (B(0, R)) ≤ N ω n (2r) n , so that pk B(0,R) (r) ≥ cv B(0,R) (2r) = N ≥ (R/(2r)) n .
For the second bound, we use again Proposition B.2 to get cv B(0,R) (r) ≤ pk B(0,R) (r/2), and we notice that any maximal (r/2)-packing of B(0, R) with cardinality N ′ provides us with a family of disjoint balls of radii r/2, all contained in B(0, R) r/2 = B(0, R + r/2). A union bound hence yields

ω n (R + r/2) n = H n (B(0, R + r/2)) ≥ N ′ H n (B(0, r/2)) = N ′ ω n (r/2) n , yielding cv B(0,R) (r) ≤ pk B(0,R) (r/2) = N ′ ≤ (1 + 2R/r) n .
• Notice that S k (0, 1) ⊆ R n is a compact k-dimensional submanifold without boundary, reach rch S k (0,1) = 1, and volume H k (S k (0, 1)) = σ k . Applying Proposition B.3 together with elementary calculations hence yield

pk S k (0,1) (r) ≥ σ k ω k 1 4r k = 2π (k+1)/2 Γ k+1 2 π k/2 Γ k 2 + 1 -1 1 4r k = 2 √ π Γ k 2 + 1 Γ k+1 2 1 4r k ≥ 2 1 4r k .

B.3 Global Volume Estimates

The following bounds on the volume and diameter of low-dimensional submanifolds of R n with positive reach are at the core of Section 2.2.3. They exhibit some implicit constraints on the parameters for the statistical models not to be degenerate. 

H d (M ∩ B(z i , rch min /8)) ≤ (5/4) d/2 × 2 d ω d ((rch min /8) 2 -d(z i , M ) 2 ) d/2 + ≤ ω d rch min 2 d ,
for all i ∈ {1, . . . , N }. A union bound then yields

H d (M ) = H d ∪ N i=1 M ∩ B(z i , rch min /8) ≤ N ω d rch min 2 d ≤ 18R rch min n ω d rch min 2 d ,
which concludes the proof.

C Projection Routine

We now build the SQ projection routine π : R n → R n (Theorem 4.1), which is used repeatedly in the SQ emulation of Manifold Propagation (Theorems 5.1 and 5.4). Recall that given a point x 0 ∈ R n nearby M = Supp(D), we aim at estimating its metric projection π M (x 0 ) onto M with statistical queries to STAT(τ ). We follow the strategy of proof described in Section 4.1.

C.1 Bias of the Local Conditional Mean for Projection

In what follows, we will write

m D (x 0 , h) = E x∼D [x |B(x 0 , h) ] = Ex∼D x1 ∥x-x 0 ∥≤h D(B(x 0 , h)) (8) 
for the local conditional mean of D given B(x 0 , h). In order to study the bias of m D (x 0 , h) with respect to π M (x 0 ), it will be convenient to express it (up to approximation) with intrinsic geodesic balls B M (•, •) instead of the extrinsic Euclidean balls B(•, •) that appears in its definition (Equation ( 8)). This change of metric is stated in the following result. 

E x∼D x1 B M (p,r) (x) -D (B M (p, r)) p ≤ C d ω d f max rch min + L r d+2 ,
and for r ≤ r ≤ rch min /4,

D (B M (p, r) \ B M (p, r)) ≤ (C ′ ) d ω d f max rd-1 (r -r),
where C, C ′ > 0 are absolute constants.

Proof of Lemma C.1. First apply the area formula [Fed69, Section 3.2.5] to write the mean of any measurable function G defined on M as

E x∼D G(x)1 B M (p,r) (x) = r 0 S d-1 J(t, v)f exp M p (tv) G exp M p (tv) dvdt,
where J(t, v) is the Jacobian of the volume form of M expressed in polar coordinates around

p for 0 ≤ t ≤ r ≤ rch min /4 and unit v ∈ T p M . That is, J(t, v) = t d-1 det A ⊤ t,v A t,v where A t,v = d tv exp M p .
But from [AKC + 19, Proposition A.1 (iv)], for all w ∈ T p M , we have

1 - t 2 6rch 2 min ∥w∥ ≤ ∥A t,v w∥ ≤ 1 + t 2 rch 2 min ∥w∥ . As a consequence, 1 - t 2 6rch 2 min d ≤ det A ⊤ t,v A t,v ≤ 1 + t 2 rch 2 min d and in particular, R J (t, v) := J(t, v) -t d-1 ≤ C d t d-1 t rch min 2 ,
where C > 0 is an absolute constant. Also, by assumption on the model, f is L-Lipschitz, so

|R f (t, v)| := f exp M p (tv) -f (p) = f exp M p (tv) -f (exp M p (0)) ≤ L exp M p (tv) -exp M p (0) ≤ Ld M (exp M p (0), exp M p (tv)) = Lt.
Finally, from [AL19, Lemma 1], we have

∥R exp (t, v)∥ := exp M p (tv) -(p + tv) ≤ 5t 2 /(8rch min ).
Putting everything together, we can now prove the first bound by writing

E x∼D x1 B M (p,r) (x) -D (B M (p, r)) p = r 0 S d-1 J(t, v)f exp M p (tv) exp M p (tv) -p dvdt = r 0 S d-1 t d-1 + R J (t, v) (f (p) + R f (t, v)) (tv + R exp (t, v)) dvdt ≤ Cd ω d f max rch min + L r d+2 ,
where the last inequality used the fact that r 0 S d-1 t d f (p)vdvdt = 0. Similarly, to derive the second bound, we write

D (B M (p, r) \ B M (p, r)) = r r S d-1 J(t, v)f exp M p (tv) dvdt ≤ σ d-1 f max r r t d-1 1 + C d (t/rch min ) 2 dt ≤ (C ′ ) d σ d-1 f max r r t d-1 dt ≤ (C ′′ ) d ω d f max rd-1 (r -r),
which concludes the proof.

We are now in position to bound the bias of m D (x 0 , h).

Lemma C.2. Let D ∈ D n,d rch min (f min , f max , L) have support M = Supp(D), and x 0 ∈ R n be such that d(x 0 , M ) < h ≤ rch min /8. Then,

∥π M (x 0 ) -m D (x 0 , h)∥ ≤ C d f max + Lrch min f min hr h rch min ,
where r h = (h 2 -d(x 0 , M ) 2 ) 1/2 and C > 0 is an absolute constant.

Proof of Lemma C.2. For short, let us write p 0 = π M (x 0 ). All the expected values E are taken with respect to x ∼ D. Before any calculation, we combine Proposition B.1 and Lemma 2.2 to assert that

B M p 0 , r - h ⊆ B(x 0 , h) ∩ M ⊆ B M p 0 , R + h , (9) 
where we wrote (r -

h ) 2 = (1 -d(x 0 , M )/rch min ) r 2 h and R + h = r + h 1 + (r + h /rch min ) 2 , with (r + h ) 2 = (1 + 2d(x 0 , M )/rch min ) r 2
h . We note by now from the definition 0 < r - h ≤ R + h ≤ rch min /4 since d(x 0 , M ) < h ≤ rch min /8, and that

R + h -r - h ≤ C ′ r h rch min d(x 0 , M ) + r 2 h /rch min ≤ 2C ′ hr h rch min , (10) 
for some absolute constant C ′ > 0.

We can now proceed and derive the asserted bound. From triangle inequality,

∥m D (x 0 , h) -π M (x 0 )∥ = Ex∼D (x -p 0 )1 B(x 0 ,h) (x) D(B(x 0 , h)) ≤ E (x -p 0 )1 B(x 0 ,h) (x) D(B(x 0 , h)) - E (x -p 0 )1 B M (p 0 ,R + h ) (x) D(B M (p 0 , R + h )) + E (x -p 0 )1 B M (p 0 ,R + h ) (x) D(B M (p 0 , R + h ))
.

Combining Equation (9), Lemma C.1, Proposition B.1 and Lemma B.1, the first term of the right hand side can be further upper bounded by

E (x -p 0 )1 B(x 0 ,h) (x) D(B(x 0 , h)) - E (x -p 0 )1 B M (p 0 ,R + h ) (x) D(B M (p 0 , R + h )) ≤ E (x -p 0 )1 B(x 0 ,h) (x) D(B(x 0 , h))D(B M (p 0 , R + h )) D(B M (p 0 , R + h )) -D(B(x 0 , h)) + E (x -p 0 ) 1 B M (p 0 ,R + h ) (x) -1 B(x 0 ,h) (x) D(B M (p 0 , R + h )) ≤ 2R + h D B M (p 0 , R + h ) \ B M (p 0 , r - h ) D(B M (p 0 , R + h )) ≤ (C ′′ ) d ω d f max (R + h ) d (R + h -r - h ) c d ω d f min (R + h ) d ≤ Cd f max f min hr h rch min ,
where the last bound uses (10). For the second term, we use Lemma C.1 and Lemma B.1 to derive

E (x -p 0 )1 B M (p 0 ,R + h ) (x) D(B M (p 0 , R + h )) ≤ ( C′ ) d ω d fmax rch min + L (R + h ) d+2 c d ω d f min (R + h ) d ≤ ( C′′ ) d f max + Lrch min f min r 2 h rch min .
Since r h ≤ h, this concludes the proof by setting C = C + C′′ .

C.2 Metric Projection with Statistical Queries

We finally prove the main announced statement of Appendix C.

Proof of Theorem 4.1. First note that under the assumptions of the theorem, d(x 0 , M ) ≤ Λ ≤ rch min /8. We hence let h > 0 be a bandwidth to be specified later, but taken such that

d(x 0 , M ) < √ 2Λ ≤ h ≤ rch min /8. Consider the map F (x) = (x-x 0 ) h 1 ∥x-x 0 ∥≤h for x ∈ R n . As ∥F (x)∥ ≤ 1 for all x ∈ R n ,
Lemma 2.1 asserts that there exists a deterministic statistical query algorithm making 2n queries to STAT(τ ) and that outputs a vector Ŵ

= V /h ∈ R n such that Ex∼D [F (x)] -V /h ≤ Cτ .
Furthermore, with the single query r = 1 B(x 0 ,h) to STAT(τ ), we obtain â ∈ R such that |D(B(x 0 , h) -â| ≤ τ . Let us set π(x 0 ) := x 0 + V /â and prove that it satisfies the claimed bound. For this, use

|V /a -V /â| ≤ |a -â|V /(aâ) + |V -V |/â to write ∥m D (x 0 , h) -π(x 0 )∥ = Ex∼D (x -x 0 )1 ∥x-x 0 ∥≤h D(B(x 0 , h)) - V â ≤ |D(B(x 0 , h)) -â| Ex∼D (x -x 0 )1 ∥x-x 0 ∥≤h D(B(x 0 , h))â + Ex∼D (x -x 0 )1 ∥x-x 0 ∥≤h -V â ≤ |D(B(x 0 , h)) -â| h + Ex∼D (x -x 0 )1 ∥x-x 0 ∥≤h -V D(B(x 0 , h)) -|D(B(x 0 , h) -â| ≤ (C + 1)τ h D(B(x 0 , h)) -τ ≤ (C + 1)τ h cd ω d f min (h/ √ 2) d -τ ,
where the last inequality comes from Lemma B.1, and

r h = (h 2 -d(x 0 , M ) 2 ) d/2 ≥ h/ √ 2 since h ≥ √ 2Λ. If in addition, one assumes that cd ω d f min (h/ √ 2) d ≥ 2τ , we obtain the lower bound cd ω d f min (h/ √ 2) d -τ ≥ cd ω d f min (h/ √ 2) d /2
, so that the previous bound further simplifies to

∥m D (x 0 , h) -π(x 0 )∥ ≤ (C ′ ) d ω d f min τ h 1-d .
On the other hand, Lemma C.2 yields that the bias term is not bigger than

∥π M (x 0 ) -m D (x 0 , h)∥ ≤ Cd f max + Lrch min f min hr h rch min , with r h ≤ h. As a result, ∥π M (x 0 ) -π(x 0 )∥ ≤ ∥π M (x 0 ) -m D (x 0 , h)∥ + ∥m D (x 0 , h) -π(x 0 )∥ ≤ (C ′ ∨ C) d f min (f max + Lrch min ) h rch min + τ ω d h d h.
Taking bandwidth

h = max 2Λ, rch min f max + Lrch min 1 d+1 τ ω d 1 d+1 = max 2Λ, rch min f min f max + Lrch min 1 d+1 τ ω d f min rch d min 1 d+1
, we have by assumption on the parameters of the model that rch min /8 ≥ h ≥ 2Λ ≥ √ 2Λ, and that cd ω d f min (h/ √ 2) d ≥ 2τ as soon as c > 0 is small enough. Finally, plugging the value of h in the above bound and recalling that Γ =

f min fmax+Lrch min yields ∥π M (x 0 ) -π(x 0 )∥ ≤ Cd Γ max Λ 2 rch min , Γ 2 d+1 rch min τ ω d f min rch d min 2 d+1
, which concludes the proof.

D Tangent Space Estimation Routine

We now build the SQ tangent space routine T : R n → G n,d (Theorem 4.2), which is used repeatedly in the SQ emulation of Manifold Propagation (Theorems 5.1 and 5.4). Recall that given a point x 0 ∈ R n nearby M = Supp(D), we aim at estimating the tangent space T π M (x 0 ) M with statistical queries to STAT(τ ). We follow the strategy of proof described in Section 4.2.

To fix notation from now on, we let ⟨A, B⟩ = tr(A * B) stand for the Euclidean inner product between A, B ∈ R k×k . We also write ∥Σ∥ F = ⟨Σ, Σ⟩ for the Frobenius norm, ∥Σ∥ op = max ∥v∥≤1 ∥Σv∥ for the operator norm, and ∥Σ∥ * = max ∥X∥ op ≤1 ⟨Σ, X⟩ for the nuclear norm. In what follows, for a symmetric matrix A ∈ R n×n , we let µ i (A) denote its i-th largest singular value.

D.1 Bias of Local Principal Component Analysis

In what follows, we will write

Σ D (x 0 , h) = E x∼D (x -x 0 )(x -x 0 ) ⊤ h 2 1 ∥x-x 0 ∥≤h (11)
for the re-scaled local covariance-like matrix of D at x 0 ∈ R n with bandwidth h > 0. Notice that for simplicity, this local covariance-like matrix is computed with centering at the current point x 0 , and not at the local conditional mean Ex∼D [x| ∥x -x 0 ∥ ≤ h]. This choice simplifies our analysis and will not impact the subsequent estimation rates. Let us first decompose this matrix and exhibit its link with the target tangent space

T π M (x 0 ) M ∈ G n,d . Lemma D.1. Let D ∈ D n,d rch min (f min , f max , L) have support M = Supp(D), x 0 ∈ R n and h > 0. If d(x 0 , M ) ≤ η ≤ h/ √ 2 and h ≤ rch min /(8 √ d), then there exists a symmetric matrix Σ 0 ∈ R n×n with Im(Σ 0 ) = T π M (x 0 ) M such that Σ D (x 0 , h) = Σ 0 + R, with µ d (Σ 0 ) ≥ ω d f min (ch) d and ∥R∥ * ≤ ω d f max (Ch) d η h + h rch min
, where c, C > 0 are absolute constants.

Proof of Lemma D.1. This proof roughly follows the ideas of [AL18, Section E.1], with a different center point in the covariance matrix (x 0 itself instead of the local mean around x 0 ) and finer (nuclear norm) estimates on residual terms. For brevity, we let p 0 = π M (x 0 ). We first note that the integrand defining h 2 Σ D (x 0 , h) decomposes as

(x -x 0 )(x -x 0 ) ⊤ = (x -p 0 )(x -p 0 ) ⊤ + (x 0 -p 0 )(x 0 -p 0 ) ⊤ (12) + (x -p 0 )(x 0 -p 0 ) ⊤ + (x 0 -p 0 )(x -p 0 ) ⊤ ,
for all x ∈ B(x 0 , h) ∩ M . After integrating them with respect to x ∼ D, we bound the last two terms, by writing

E x∼D (x -p 0 )(x 0 -p 0 ) ⊤ 1 ∥x-x 0 ∥≤h * = E x∼D (x 0 -p 0 )(x -p 0 ) ⊤ 1 ∥x-x 0 ∥≤h * ≤ E x∼D (x 0 -p 0 )(x -p 0 ) ⊤ * 1 ∥x-x 0 ∥≤h = E x∼D ∥x 0 -p 0 ∥ ∥x -p 0 ∥ 1 ∥x-x 0 ∥≤h ≤ ηhD(B(x 0 , h)) ≤ C d ω d f max ηh d+1 ,
where the last inequality uses Lemma B.1. Similarly, for the second term of Equation ( 12), we have

E x∼D (x 0 -p 0 )(x 0 -p 0 ) ⊤ 1 ∥x-x 0 ∥≤h * = ∥x 0 -p 0 ∥ 2 D(B(x 0 , h)) ≤ C d ω d f max η 2 h d . Given v ∈ R n , write v = π Tp 0 M (v) and v ⊥ = v -v = π Tp 0 M ⊥ (v)
. We now focus on the first term of Equation ( 12), which we further decompose as

(x -p 0 )(x -p 0 ) ⊤ = (x -p 0 ) (x -p 0 ) ⊤ + (x -p 0 ) ⊥ (x -p 0 ) ⊥ ⊤ (13) + (x -p 0 ) ⊥ (x -p 0 ) ⊤ + (x -p 0 ) (x -p 0 ) ⊥ ⊤ ,
for all x ∈ B(x 0 , h) ∩ M . Note that for those points x ∈ B(x 0 , h) ∩ M , we have (x -p 0 ) ≤ ∥x -p 0 ∥ ≤ 2h, and from [Fed59, Theorem 4.18], ∥(x -p 0 ) ⊥ ∥ ≤ ∥x -p 0 ∥ 2 /(2rch min ) ≤ 4h 2 /(2rch min ). Hence, for the last two terms of Equation ( 13),

E x∼D (x -p 0 ) ⊥ (x -p 0 ) ⊤ 1 ∥x-x 0 ∥≤h * = E x∼D (x -p 0 ) (x -p 0 ) ⊥ ⊤ 1 ∥x-x 0 ∥≤h * ≤ E x∼D (x -p 0 ) ∥(x -p 0 ) ⊥ ∥ 1 ∥x-x 0 ∥≤h ≤ C d ω d f max h d+3 /rch min ,
where we used Lemma B.1 again. Dealing now with the second term of Equation ( 13),

E x∼D (x -p 0 ) ⊥ (x -p 0 ) ⊥ ⊤ 1 ∥x-x 0 ∥≤h * ≤ E x∼D ∥(x -p 0 ) ⊥ ∥ ∥(x -p 0 ) ⊥ ∥ 1 ∥x-x 0 ∥≤h ≤ C d ω d f max h d+4 /(4rch 2 min ).
Finally, let us write

Σ 0 = E x∼D (x -p 0 ) (x -p 0 ) ⊤ h 2 1 ∥x-x 0 ∥≤h .
The matrix Σ 0 is symmetric and clearly has image Im(Σ 0 ) ⊆ T p 0 M . Furthermore, since d(x 0 , M ) ≤ η ≤ h/ √ 2 and h ≤ rch min /8, Proposition B.1 and Lemma 2.2 yield that M ∩ B(x 0 , h) ⊇ M ∩ B p 0 , √ 7h/4 ⊇ B M (p 0 , h/2). Hence, for all u ∈ T p 0 M ,

h 2 ⟨Σ 0 u, u⟩ = E x∼D (x -p 0 ) , u 2 1 ∥x-x 0 ∥≤h = E x∼D ⟨x -p 0 , u⟩ 2 1 ∥x-x 0 ∥≤h ≥ f min B M (p 0 ,h/2) ⟨x -p 0 , u⟩ 2 dH d (x) = f min B d (0,h/2) exp M p 0 (v) -p 0 , u 2 det d v exp M p 0 dv,
where H d is the d-dimensional Hausdorff measure on R n , and exp M p 0 : T p 0 M → M is the exponential map of M at p 0 . But [AL18, Proposition 8.7] states that there exists c > 0 such that for all v ∈ B d (0, rch min /4), det d v exp M p 0 ≥ c d , and [AL19, Lemma 1] yields the bound exp M p 0 (v) -(p 0 + v) ≤ 5 ∥v∥ 2 /(8rch min ). As a result, using the fact that (a -b) 2 ≥ a 2 /2 -3b 2 for all a, b ∈ R, we have

h 2 ⟨Σ 0 u, u⟩ ≥ c d f min B d (0,h/2) ⟨v, u⟩ -exp M p 0 (v) -(p 0 + v), u 2 dv ≥ c d f min B d (0,h/2) ⟨v, u⟩ 2 /2 -3 exp M p 0 (v) -(p 0 + v), u 2 dv ≥ c d f min B d (0,h/2)
⟨v, u⟩ 2 /2 -3 ∥u∥ 2 5 ∥v∥ 2 /(8rch min )

2 dv = c d f min σ d-1 1 2d(d + 2) - 3(5/8) 2 d + 4 h 2rch min 2 h 2 d+2 ∥u∥ 2 ≥ (c ′ ) d ω d f min h d+2 ∥u∥ 2 ,
as soon as h ≤ rch min / √ d. In particular, the last bound shows that the image of Σ 0 is exactly T p 0 M , and that µ d (Σ 0 ) ≥ ω d f min (c ′ h) d . Summing up the above, we have shown that

Σ D (x 0 , h) = Σ 0 + R, where Σ 0 is symmetric, Im(Σ 0 ) = T π M (x 0 ) M , µ d (Σ 0 ) ≥ ω d f min (c ′ h) d , and
∥R∥ * ≤ ω d f max (C ′ h) d η h + η 2 h 2 + h rch min + h 2 rch 2 min ≤ ω d f max (C ′′ h) d η h + h rch min ,
which is the announced result.

D.2 Matrix Decomposition and Principal Angles

The following lemma ensures that the principal components of a matrix A are stable to perturbations, provided that A has a large-enough spectral gap. For a symmetric matrix A ∈ R n×n , recall that µ i (A) denotes its i-th largest singular value.

Lemma D.2 (Davis-Kahan). Let Â, A ∈ R n×n be symmetric matrices such that rank(A) = d.

If T ∈ G n,d denotes the linear space spanned by the first d eigenvectors of Â, and

T = Im(A) ∈ G n,d , then ∠ T, T := π T -π T op ≤ 2 Â -A F µ d (A) .
Proof of Lemma D.2. It is a direct application of [YWS15, Theorem 2] with r = 1 and s = d.

D.3 Low-rank Matrix Recovery

Proceeding further in the strategy described in Section 4.2, we now explain how to estimate the local covariance matrix Σ D (x 0 , h) ∈ R n×n (Equation ( 11)) in STAT(τ ). Because Σ D (x 0 , h) ∈ R n×n = R n 2 can be seen as a mean vector with respect to the unknown distribution D, 2n 2 queries to STAT(τ ) would yield error O(τ ) from Lemma 2.1. However, this would not use the low-rank structure of Σ D (x 0 , h), i.e. some redundancy of its entries. To mitigate the query complexity of this estimation problem, we will use compressed sensing techniques [START_REF] Fazel | Compressed sensing and robust recovery of low rank matrices[END_REF]. Mimicking the vector case (Lemma 2.1), we put our problem in the broader context of the estimation of Σ = Ex∼D [F (x)] ∈ R k×k in STAT(τ ), where F : R n → R k×k and Σ are approximately low rank (see Lemma D.4).

D.3.1 Restricted Isometry Property and Low-Rank Matrix Recovery

Let us first present some fundamental results coming of matrix recovery. Following [FCRP08, Section II], assume that we observe y ∈ R q such that

y = L(Σ) + z, (14) 
where Σ ∈ R k×k is the matrix of interest, L : R k×k → R q is a linear map seen as a sampling operator, and z ∈ R q encodes noise and has small Euclidean norm ∥z∥ ≤ ξ.

In general, when q < k 2 , L has non-empty kernel, and hence one has no hope to recover Σ only from y, even with no noise. However, if Σ is (close to being) low-rank and that L does not shrink low-rank matrices too much, L(Σ) may not actually censor information on Σ, while compressing the dimension from k 2 to q. A way to formalize this idea states as follows.

Definition D.1 (Restricted Isometry Property). Let L : R k×k → R q be a linear map, and d ≤ k. We say that L satisfies the d-restricted isometry property with constant δ > 0 if for all matrix X ∈ R k×k of rank at most d,

(1 -δ) ∥X∥ F ≤ ∥L(X)∥ ≤ (1 + δ) ∥X∥ F .
We let δ d (L) denote the smallest such δ.

To recover Σ only from the knowledge of y, consider the convex optimization problem (see [START_REF] Fazel | Compressed sensing and robust recovery of low rank matrices[END_REF]) over X ∈ R k×k : minimize ∥X∥ * subject to ∥y -L(X)∥ ≤ ξ.

(15)

Let Σ opt denote the solution of Equation (15). To give insights, the nuclear norm is seen here as a convex relaxation of the rank function [START_REF] Fazel | Compressed sensing and robust recovery of low rank matrices[END_REF], so that Equation ( 15) is expected to capture a low-rank matrix close to Σ. If L satisfies the restricted isometry property, the next result states that (15) does indeed capture such a low-rank matrix. In what follows, we let Σ (d) ∈ R k×k denote the matrix closest to Σ among all the matrices of rank d, where closeness is indifferently measured in nuclear, Frobenius, or operator norm. That is, Σ (d) is the truncated singular value decomposition of Σ.

Theorem D.1 ([FCRP08, Theorem 4]). Assume that δ 5d < 1/10. Then the solution Σ opt of Equation (15) satisfies

∥Σ opt -Σ∥ F ≤ C 0 Σ -Σ (d) * √ d + C 1 ξ,
where C 0 , C 1 > 0 are universal constants.

D.3.2 Building a Good Matrix Sensing Operator

We now detail a standard way to build a sampling operator L that satisfies the restricted isometry property (Definition D.1), thereby allowing to recover low-rank matrices from a few measurements (Theorem D.1). For purely technical reasons, we shall present a construction over the complex linear space C k×k . This will eventually enable us to recover results over R k×k via the isometry R k×k → C k×k . First, we note that given an orthonormal C-basis W = (W 1 , . . . , W k 2 ) of C k×k for the Hermitian inner product ⟨A, B⟩ = tr(A * B), we can build a sampling operator L S : C k×k → C q by projecting orthogonally onto the space spanned by only q (randomly) pre-selected S ⊆ W elements of the basis.

When k = 2 ℓ , an orthonormal basis of C k×k of particular interest is the so-called Pauli basis [START_REF] Liu | Universal low-rank matrix recovery from pauli measurements[END_REF]. Its construction goes as follows:

• For k = 2 (ℓ = 1), it is defined by W (1) i = σ i / √ 2,
where

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 , σ 4 = 1 0 0 1 .
Note that the σ i 's have two eigenvalues, both belonging to {-1, 1}, so that they are both Hermitian and unitary. In particular, W

= 1/ √ 2 and W

(1) i F

= 1 for all i ∈ {1, . . . , 4}.

One easily checks that W

(1) i 1≤i≤4 is an orthonormal basis of C 2×2 .

• For k = 2 ℓ (ℓ ≥ 2), the Pauli basis W (ℓ) i 1≤i≤2 ℓ is composed of matrices acting on the tensor space C 2 ⊗ℓ ≃ C 2 ℓ , and defined as the family of all the possible ℓ-fold tensor products of elements of W (1) i 1≤i≤4 . As tensor products preserve orthogonality, we get that

W (ℓ) i 1≤i≤2 ℓ is an orthonormal basis of C 2 ℓ ×2 ℓ . Furthermore, as ∥W ⊗ W ′ ∥ op = ∥W ∥ op ∥W ′ ∥ op , we get that for all i ∈ 1, . . . , 2 ℓ , W (k) i op = 1 √ 2 ℓ = 1 √ k . (16) 
Since ∥W ∥ F ≤ √ k ∥W ∥ op , the value 1/ √ k actually is the smallest possible common operator norm of an orthonormal basis of C k×k . As will be clear in the proof of Lemma D.3, this last property -called incoherence in the matrix completion literature [START_REF] Liu | Universal low-rank matrix recovery from pauli measurements[END_REF] -is key to design a good sampling operator.

Still considering the case k = 2 ℓ , we let L Pauli : C k×k → C q denote the random sampling operator defined by

L Pauli (X) = k √ q W (ℓ) I i , X 1≤i≤q , (17) 
where (I i ) 1≤i≤q is an i.i.d. sequence with uniform distribution over 1, . . . , k 2 . Up to the factor k/ √ q, L Pauli is the orthogonal projector onto the space spanned by (W (ℓ)

I 1 , . . . , W (ℓ) 
Iq ). This normalisation k/ √ q is chosen so that for all X ∈ C k×k ,

E ∥L Pauli (X)∥ 2 = k 2 q k 2 i=1 q Pr (I 1 = i) W (ℓ) i , X 2 = k 2 i=1 W (ℓ) i , X 2 = ∥X∥ 2 F .
That is, roughly speaking, L Pauli satisfies the restricted isometry property (RIP, Definition D.1) on average. Actually, as soon as q is large enough compared to d, the result below states that L Pauli does fulfill a restricted isometry property with high probability.

Lemma D.3. Assume that k = 2 ℓ , and fix 0 < α ≤ 1. There exist universal constants c 0 , c 1 > 0 such that if q ≥ c 0 kd log 6 (k) log(c 1 /α), then with probability at least 1 -α, the following holds. For all

X ∈ R k×k such that ∥X∥ * ≤ √ 5d ∥X∥ F , |∥L Pauli (X)∥ -∥X∥ F | ≤ ∥X∥ F 20 .
In particular, on the same event of probability at least 1 -α, δ 5d (L Pauli ) < 1/10.

Proof of Lemma D.3. The Pauli basis is an orthonormal basis of C k×k , and from Equation ( 16), its elements all have operator norm smaller than 1/

√ k. Hence, applying [Liu11, Theorem 2.1] with K = √ k max 1≤i≤k W (ℓ) i op = 1, r = 5d, C = c 0 log(c 1 /α)
, and δ = 1/20 yields the first bound. The second one follows by recalling that any rank-r matrix X ∈ R k×k satisfies ∥X∥ * ≤ √ r ∥X∥ F .

D.3.3 Mean Matrix Completion with Statistical Queries

The low-rank matrix recovery of Appendices D.3.1 and D.3.2 combined with mean vector estimation in STAT(τ ) for the Euclidean norm (see Lemma 2.1) lead to the following result.

Lemma D.4. For all α ∈ (0, 1], there exists a family of statistical query algorithms indexed by maps F : R n → R k×k such that the following holds on an event of probability at least 1 -α (uniformly over F ). Let D be a Borel probability distribution over R n , and F : R n → R k×k be a map such that for all

x ∈ R n , ∥F (x)∥ F ≤ 1 and ∥F (x)∥ * ≤ √ 5d ∥F (x)∥ F . Write Σ = Ex∼D [F (x)],
and Σ (d) for the matrix closest to Σ among all the matrices of rank d ≤ k. Assume that Σ ∈ Ξ, where Ξ ⊆ R k×k is a known linear subspace of R k×k .

Then, there exists a statistical query algorithm making at most c 0 dk log 6 (k) log(c 1 /α) queries to STAT(τ ), and that outputs a matrix Σ ∈ Ξ that satisfies

Σ -Σ F ≤ C 0 Σ -Σ (d) * √ d + C 1 τ
on the event of probability at least 1 -α described above, where C 0 , C 1 > 0 are universal constants.

Proof of Lemma D.4. Without loss of generality, we can assume that k = 2 ℓ . Indeed, one can always embed R k×k isometrically into R 2 ℓ ×2 ℓ , with 2 ℓ = 2 ⌈log 2 (k)⌉ ≤ 2k, via the linear map

R k×k ∋ A -→ Ã = A 0 0 0 ∈ R 2 ℓ ×2 ℓ ,
which preserves both the rank, the Frobenius and nuclear norms. Let q ≥ 1 be a fixed integer to be specified later, and (I i ) 1≤i≤q be and i.i.d. sequence with uniform distribution over 1, . . . , k 2 , and for X ∈ R k×k , write

L Pauli (X) = k √ q W (ℓ) I i , X 1≤i≤q ∈ C q = R 2q , (18) 
as in Equation (17). For x ∈ R n , write G(x) = L Pauli (F (x))/2 ∈ R 2q . From Lemma D.3, with probability at least 1 -α (over the randomness of (I i ) 1≤i≤q ),

∥G(x)∥ = ∥L Pauli (F (x))∥ /2 ≤ (1 + 1/20) ∥F (x)∥ F /2 ≤ ∥F (x)∥ F ≤ 1
holds simultaneously for all the described F : R k×k → R 2q . Hence, on this event of probability at least 1 -α, Lemma 2.1 applies to G and provides a deterministic statistical query algorithm making 4q queries to STAT(τ ), and that outputs a vector y ∈ R 2q such that

y -E x∼D [G(x)] ≤ Cτ,
where C > 0 is a universal constant. But on the other hand, by linearity,

E x∼D [2G(x)] = E x∼D [L Pauli (F (x))] = L Pauli E x∼D [F (x)] = L Pauli (Σ),
where all the expected values are taken with respect D, conditionally on (I i ) 1≤i≤q . Hence, as soon as q ≥ c 0 dk log 6 (k) log(c 1 /α), Theorem D.1 and Lemma D.3 combined together yields the following: on the same event of probability at least 1 -α as before, the solution Σ opt to the convex optimization problem over X ∈ R k×k given by minimize ∥X∥ * subject to ∥2y -L Pauli (X)∥ ≤ 2Cτ, satisfies

∥Σ opt -Σ∥ F ≤ C 0 Σ -Σ (d) * √ d + C 1 (2Cτ ).
Hence, the projected solution Σ = π Ξ (Σ opt ) onto Ξ ⊆ R k×k belongs to Ξ and satisfies

Σ -Σ F = ∥π Ξ (Σ opt -Σ)∥ F ≤ ∥Σ opt -Σ∥ F ≤ C 0 Σ -Σ (d) * √ d + C ′ 1 τ,
which concludes the proof.

D.4 Tangent Space Estimation with Statistical Queries

We finally prove the main announced statement of Appendix D.

Proof of Theorem 4.2. Let h > 0 be a bandwidth to be specified later, such that η ≤ h/ √ 2 and h ≤ rch min /(8

√ d). First note that Σ D (x 0 , h) = Ex∼D [F (x)],
where the function F (x) = (x -x 0 )(x -x 0 ) ⊤ /h 2 1 ∥x-x 0 ∥≤h is defined for all x ∈ R n , and is such that ∥F (x)∥ F ≤ 1 and rank(F (x)) ≤ 1. In particular, ∥F (x)∥ * = ∥F (x)∥ F ≤ √ 5d ∥F (x)∥ F for all x ∈ R n . Furthermore, Σ D (x 0 , h) belongs to the linear space Ξ of symmetric matrices. Working on the event on which Lemma D.4 holds (with α = 1/2, say), yields the existence of a deterministic SQ algorithm making at most c 0 dn log 6 (n) log(2c 1 ) queries to STAT(τ ), and that outputs a symmetric matrix Σ that satisfies

Σ -Σ D (x 0 , h) F ≤ C 0 Σ D (x 0 , h) -Σ (d) D (x 0 , h) * √ d + C 1 τ,
with probability at least 1 -α. On the other hand, from Lemma D.1, provided that

√ 2η ≤ h ≤ rch min /(8 √ d), one can write Σ D (x 0 , h) = Σ 0 + R,
where the symmetric matrix Σ 0 satisfies Im

(Σ 0 ) = T π M (x 0 ) M , µ d (Σ 0 ) ≥ ω d f min (ch) d and ∥R∥ F ≤ ∥R∥ * ≤ ω d f max (Ch) d η h + h rch min . As rank(Σ 0 ) = d, we have in particular that, Σ D (x 0 , h) -Σ (d) D (x 0 , h) * ≤ ∥Σ D (x 0 , h) -Σ 0 ∥ * = ∥R∥ * .
Therefore, taking T (x 0 ) as the linear space spanned by the first d eigenvectors of Σ, Lemma D.2 yields

∠ T π M (x 0 ) M, T (x 0 ) = π T (x 0 ) -π T π M (x 0 ) M op ≤ 2 Σ -Σ 0 F µ d (Σ 0 ) ≤ 2 Σ -Σ D (x 0 , h) F + ∥Σ D (x 0 , h) -Σ 0 ∥ F µ d (Σ 0 ) ≤ 2 ω d f min (ch) d C 0 ∥R∥ * √ d + C 1 τ + ∥R∥ F ≤ C ′d ω d f min ω d f max η h + h rch min + τ h d .
We conclude by setting h = rch min

η rch min ∨ τ ω d fmaxrch d min 1/(d+1)
in this last bound. This value for h does satisfy

√ 2η ≤ h ≤ rch min /(8 √ d) since η ≤ rch min /(64d) and τ ω d fmaxrch d min ≤ 1 8 √ d d+1
, so that the whole analysis applies, and yields the announced result.

E Seed Point Detection

We now build the SQ point detection algorithm x0 ∈ R n (Theorem 4.3), which is used to initialize in the SQ emulation of Manifold Propagation yielding the SQ reconstruction algorithm in the model B(0, R) ⊓ D n,d rch min (f min , f max , L) where no seed point is available (Definition 2.6). Recall that given a ball of radius R > 0 guaranteed to encompass M = Supp(D) ⊆ B(0, R), and a target precision η > 0, we aim at finding a point that is η-close to M with statistical queries to STAT(τ ). We follow the strategy of proof described in Section 4.3.

E.1 Detecting a Raw Initial Point

Starting from the whole ball B(0, R), the following result allows us to find a point nearby M using a binary search, with best precision of order Ω(τ 1/d ). Let us note that it does not explicitly rely on any differential property of M , but only the behavior of the mass of balls for D (Lemma B.1).

Theorem E.1. Let D ∈ D n,d
rch min (f min , f max , L) have support M = Supp(D) ⊆ B(0, R). Let Λ 0 ≤ rch min /8 be fixed, and assume that

Λ 0 √ log(6R/Λ 0 ) ≥ 21rch min √ n τ ω d f min rch d min 1/d .
Then there exists a deterministic statistical query algorithm making at most 3n log(6R/Λ 0 ) queries to STAT(τ ), and that outputs a point xraw

0 ∈ B(0, R) such that d(x raw 0 , M ) ≤ Λ 0 .
Remark E.1. Recall from Section 2.2.3 that we always assume that R ≥ rch min / √ 2 to ensure that the model is nonempty. As a result log(6R/Λ 0 ) ≥ 0 for all Λ 0 ≤ rch min /8. Proof of Theorem E.1. The idea is to use a divide and conquer strategy over a covering {x i } 1≤i≤N of B(0, R). The algorithm recurses over a subset of indices I ⊆ {1, . . . , N } that is maintained to fulfill ∪ i∈I B(x i , h) ∩ M ̸ = ∅ for some known h > 0. This property can be checked with the single query r = 1 ∪ i∈I B(x i ,h) to STAT(τ ), provided that D(∪ i∈I B(x i , h)) > τ . To ensure the later, the radius h > 0 is dynamically increased at each iteration. The algorithm stops when I is reduced to a singleton. More formally, we consider SQ Ambient Binary Search.

Algorithm 2 SQ Ambient Binary Search Require:

Model parameters d, rch min , f min Precision Λ 0 > 0 

1: Initialize value h ← Λ 0 /2, and set ∆ = 6rch min τ ω d f min rch d min 1/d 2: Consider a minimal (Λ 0 /2)-covering {x i } 1≤i≤N of B(0, R), where N = cv B(0,R) (Λ 0 /2) 3: Initialize sets I ← {1, . . . , N }, L ← ∅ and R ← ∅ 4: while |I| > 1 do 5: Split I = L ∪ R into two disjoint sets L ∩ R = ∅ such that ||L| -|R|| ≤ 1 6: Query r = 1 ∪ i∈L B(x i , √ h 2 +∆ 2 ) to the STAT(τ ) oracle
I ← R 12: end if h ← √ h 2 + ∆ 2 13: end while 14: return The only element of xraw 0 of {x i } i∈I
Because |I| is a decreasing sequence of integers, it is clear that SQ Ambient Binary Search terminates, and that |I f inal | = 1 so that the output xraw 0 is well defined. As each while loop does only one query to STAT(τ ), and that N = cv B(0,R) (Λ 0 /2) ≤ (6R/Λ 0 ) n from Proposition B.4 and Λ 0 ≤ R, it makes at most ⌊log 2 (N ) + 1⌋ ≤ ⌊n log(6R/Λ 0 )/ log(2) + 1⌋ ≤ 3n log(6R/Λ 0 ) queries in total.

Let us now prove that the output xraw 0 satisfies d(x raw 0 , M ) ≤ Λ 0 . For this, we show that when running SQ Ambient Binary Search, the inequality min i∈I d(x i , M ) ≤ h is maintained (recall that both I and h are dynamic), or equivalently that ∪ i∈I B (x i , h) ∩ M ̸ = ∅. At initialization, this is clear because I = {1, . . . , N }, h = Λ 0 /2, and {x i } 1≤i≤N is a (Λ 0 /2)-covering of B(0, R) ⊇ M . Then, proceeding by induction, assume that ∪ i∈I B (x i , h) ∩ M ̸ = ∅ when entering an iteration of the while loop. Let i 0 ∈ I be such that d(

x i 0 , M ) ≤ h. From Lemma B.1, provided that √ h 2 + ∆ 2 ≤ rch min /8, we have D ∪ i∈I B x i , h 2 + ∆ 2 ≥ D B x i 0 , h 2 + ∆ 2 ≥ ( 7/24) d ω d f min (h 2 + ∆ 2 ) -d(x i 0 , M ) 2 d/2 ≥ ( 7/24) d ω d f min ∆ d = ( 7/24) d 6 d τ > 2τ. (19) 
Hence, if we let a denote the answer of the oracle to the query r = 1 ∪ i∈L B(x i , √ h 2 +∆ 2 ) , we have:

• If a > τ , then D ∪ i∈L B x i , h 2 + ∆ 2 ≥ a -τ > 0,
so that after the updates I ← L and h ← √

h 2 + ∆ 2 , we still have ∪ i∈I B (x i , h) ∩ M ̸ = ∅.
• Otherwise a ≤ τ , so that from Equation ( 19),

D ∪ i∈R B x i , h 2 + ∆ 2 ≥ D ∪ i∈I B x i , h 2 + ∆ 2 -D ∪ i∈L B x i , h 2 + ∆ 2 > 2τ -(a + τ ) ≥ 0.
So as above, after the updates

I ← R and h ← √ h 2 + ∆ 2 , we still have ∪ i∈I B (x i , h)∩M ̸ = ∅.
Consequently, when the algorithm terminates, we have

d(x raw 0 , M ) ≤ h f inal ≤ Λ 0 2 2 + 3n log(6R/Λ 0 )∆ 2 ≤ Λ 0 2 + 3n log(6R/Λ 0 )6rch min τ ω d f min rch d min 1/d ≤ Λ 0 , since Λ 0 √ log(6R/Λ 0 ) ≥ 21rch min √ n τ ω d f min rch d min 1/d
. The above also shows that when running the algorithm we have

√ h 2 + ∆ 2 ≤ h f inal ≤ Λ 0 ≤ rch min /8
, which ensures that Equation ( 19) is valid throughout and concludes the proof.

E.2 Refined Point Detection

We finally prove the main announced statement of Appendix E. 0 , M ) ≤ η, and has required at most 3n log(6R/Λ 0 ) = 3n log(6R/η) queries to STAT(τ ). Otherwise, η ≤ Λ 0 , and we iterate the SQ approximate projections π(•) given by Theorem 4.1. Namely, we let ŷ0 = xraw 0 and for all integer k ≥ 1, ŷk = π(ŷ k-1 ). In total, note that the computation of ŷk requires at most 3n log(6R/η) + k(2n + 1) ≤ 3n log(6R/η) + k queries to STAT(τ ). Similarly as above, from the assumptions on the parameters, one easily shows by induction that since d(ŷ 0 , M ) ≤ Λ 0 ≤ rch min 16 , Theorem 4.1 applies to each ŷk and guarantees that

d(ŷ k , M ) = d(π(ŷ k-1 ), M ) ≤ ∥π(ŷ k-1 ) -π M (ŷ k-1 ))∥ ≤ max C d d(ŷ k-1 , M ) 2 Γrch min , C d Γ 2 d+1 -1 rch min τ ω d f min rch d min 2 d+1 ≤ max d(ŷ k-1 , M ) 2 , C d Γ 2 d+1 -1 rch min τ ω d f min rch d min 2 d+1 ≤ max Λ 0 2 k , C d Γ 2 d+1 -1 rch min τ ω d f min rch d min 2 d+1 .
To conclude, fix k 0 := ⌈log 2 (Λ 0 /η)⌉ ≤ log (6Λ 0 /η), and set x0 := ŷk 0 . From the previous bound, we obtain that

d(x 0 , M ) ≤ max η, C d Γ 2 d+1 -1 rch min τ ω d f min rch d min 2 d+1
, with x0 requiring at most 3n log(6R/η) + log (6Λ 0 /η) ≤ 6n log(6R/η) queries to STAT(τ ) to be computed, which concludes the proof. , for some large enough Cd > 0 depending on d and C to be chosen later, and δ = ∆/2. We will run Manifold Propagation with scale parameters ∆, δ, angle sin α = 1/64, and initialization point x0 = 0 ∈ M , the SQ projection routine π(•) of Theorem 4.1 and the SQ tangent space routine T (•) of Theorem 4.2. If we prove that these routines are precise enough, then Theorem 3.1 will assert that the output point cloud O and associated tangent space estimates T O of Manifold Propagation fulfill the assumptions of Theorem 2.1. This will hence allow to reconstruct M with a good triangulation, as claimed.

F Proof for the Main Statistical Query Manifold Estimators

Note by now that at each iteration Manifold Propagation, exactly one call to each SQ routine π(•) and T (•) are made, yielding at most (2n+1)+Cdn log 6 (n) ≤ C ′ dn log 6 (n) statistical queries. But if Theorem 3.1 applies, we get that the number of iteration N loop of Manifold Propagation satisfies

N loop ≤ H d (M ) ω d (δ/32) d ≤ C′ d f min ( √ rch min ε) d = C′ d f min rch d min rch min ε d/2
, where the second inequality comes from the fact that 1 = M f dH d ≥ f min H d (M ). In total, the resulting SQ algorithm hence makes at most

q ≤ C ′ dn log 6 (n) C′ d f min rch d min rch min ε d/2 = n log 6 n C d f min rch d min rch min ε d/2
queries to STAT(τ ), which is the announced complexity. It only remains to verify that the SQ routines π(•) and T (•) are indeed precise enough so that Theorem 3.1 applies, and to bound the final precision given by the triangulation of Theorem 2.1.

To this aim, we notice that the assumption made on τ puts it in the regime of validity of Theorem 4.1 and Theorem 4.2. Let us write

C := max C d Γ 2 d+1 -1 , Cd f max f min ≤ (max{C, C}) d Γ ,
where C > 0 is the constant of Theorem 4.1 and C > 1 that of Theorem 4.2. Note by now that since f max ≥ f min , we have C ≥ 1. For short, we also let τ := τ /(ω d f min rch d min ). At initialization, and since D ∈ {0} ⊔ D n,d rch min (f min , f max , L), the seed point x0 = 0 belongs to M , meaning that

d(x 0 , M ) = 0 ≤ η := rch min max 1 C 2 ∆ rch min 2 , Cτ 2 d+1 .
Note that from the assumptions on the parameters, η ≤ rch min /(64d). Hence, on the η-offset M η of M , Theorem 4.2 asserts that T (•) has precision Using again the assumptions on the parameters, we have Λ ≤ rch min /8. Hence, applying Theorem 4.1 and elementary simplifications given by the assumptions on the parameters yield that, over the Λ-offset M Λ of M , the projection π(•) has precision at most

sin θ ≤ max Cd f max f min 1 C ∆ rch min , Cd f max f min √ Cτ 1 d+1 ≤ max ∆ rch min , C 3 
η ′ ≤ rch min max 9C d Γ ∆ rch min 2 ∆ rch min 2 , max 9C d C 6 Γ τ 2/(d+1) , C d Γ 2 d+1 -1 τ 2/(d+1) = rch min max 9C d Γ ∆ rch min 2 ∆ rch min 2 , C d Γ 2 d+1 -1 τ 2/(d+1) ≤ rch min max 1 C 2 ∆ rch min 2 , Cτ 2/(d+1) = η.
Additionally, one easily checks that ∆ ≤ rch min /24, η ≤ ∆/24 and max {sin α, sin θ} ≤ 1/64, so that Theorem 3.1 applies: Manifold Propagation terminates and outputs a finite point cloud O such that max x∈O d(x, M ) ≤ η and max p∈M d(p, O) ≤ ∆ + η ≤ 2∆, together with tangent space estimates T O with error at most sin θ. Hence, applying Theorem 2.1 with parameters ∆ ′ = 2∆, η and sin θ (for which one easily checks that they fulfill its assumptions), we get that the triangulation M of Theorem 2.1 computed over O and T O achieves precision

d H (M, M ) ≤ C d ∆ ′2 rch min ≤ max ε, C 3 rch min τ 2 d+1 , which yields the announced result since C ≤ (C ∨ C) d /Γ.
Proof of Theorem 5.4. The proof follows the same lines as that of Theorem 5.1, except for the seed point x0 which is not trivially available, and requires extra statistical queries. More precisely, we let x0 be the output point given by the SQ detection algorithm of Theorem 4.3 applied with precision parameter ε/2. This point requires no more than 6n log(6R/ε) statistical queries to STAT(τ ). Furthermore, adopting the same notation as in the proof of Theorem 5.1 we have

d(x 0 , M ) ≤ max ε 2 , C d Γ 2 d+1 -1 rch min τ ω d f min rch d min 2 d+1 ≤ rch min max 1 C 2 ∆ rch min 2 , Cτ 2 d+1
, so that the rest of the proof runs exactly as that of Theorem 5.1, and yields the result.

G Statistical Query Lower Bounds in Metric Spaces

In spirit, the lower bound techniques developed below are similar to the statistical dimension of [START_REF] Feldman | A general characterization of the statistical query complexity[END_REF], developed for general search problems. However, when working with manifold models, this tool appears difficult to handle, due to the singular nature of low-dimensional distributions, yielding non-dominated models. Indeed, if D 0 and D 1 are distributions that have supports being d-dimensional submanifolds M 0 , M 1 ⊆ R n , and that M 0 ̸ = M 1 , then D 0 and D 1 cannot be absolutely continuous with respect to one another. As a result, any lower bound technique involving Kullback-Leibler or chi-squared divergences becomes non-informative (see for instance [START_REF] Feldman | A general characterization of the statistical query complexity[END_REF][START_REF] Diakonikolas | Statistical query lower bounds for robust estimation of high-dimensional gaussians and gaussian mixtures[END_REF]).

Instead, we present techniques that are well-suited for non-dominated models. They apply for SQ estimation in metric spaces (Θ, ρ) (see Section 2.1), as opposed to the (more general) setting of search problems of [START_REF] Feldman | A general characterization of the statistical query complexity[END_REF]. We decompose these results into two different types of lower bounds:

• (Appendix G.1) The information-theoretic ones, yielding a maximal estimation precision ε = ε(τ ) given a tolerance τ ;

• (Appendix G.

2) The computational ones, yielding a minimal number of queries q = q(ε) to achieve a given precision ε.

G.1 Information-Theoretic Lower Bound for Randomized SQ Algorithms

The proofs of the informational lower bounds Theorems 5.2 and 5.5 are based on the following Theorem G.1, which is similar to so-called Le Cam's Lemma [START_REF] Yu | Assouad, fano, and le cam[END_REF]. To introduce this result we define the total variation distance between probability distributions.

Definition G.1 (Total Variation Distance). Given two probability distributions D 0 and D 1 over (R n , B(R n )), the total variation distance between them is defined by

TV(D 0 , D 1 ) = sup B∈B(R n ) D 0 (B) -D 1 (B) = sup r:R n →[-1,1] measurable 1 2 E D 0 [r] -E D 1 [r] .
The second formula above for the total variation suggests how it can measure an impossibility of estimation with STAT(τ ) oracles: two distributions that are close in total variation distance provide a malicious oracle to make them -and their parameter of interest -indistinguishable using SQ's, . This lower bound insight is what underlies Le Cam's Lemma [START_REF] Yu | Assouad, fano, and le cam[END_REF] in the sample model, and it adapts easily to (randomized) SQ's in the following way. If α < 1/2, then no STAT(τ ) randomized SQ algorithm can estimate θ with precision ε ≤ δ and probability of success 1 -α over D (no matter how many queries it does).

Proof of Theorem G.1. We prove the contrapositive. For this purpose, assume that a randomized SQ algorithm A ∼ A estimates θ with precision ε ≤ δ and probability at least 1 -α over D. We will show that α ≥ 1/2. Consider the oracle which, given a query r : R n → [-1, 1] to the distribution D ∈ D, returns the answer:

G.2.1 Probabilistic Covering and Packing Number

To prove Theorem G.3, we will use the following notion of probabilistic covering. Given a set S and an integer k ≥ 0, we denote by S ≤k the set of all subsets of S of cardinality at most k.

Definition G.2. Let (Θ, ρ) be a metric space. We say that a probabilistic measure µ over Θ ≤d is a probabilistic (ε, α)-covering of (Θ, ρ) by d points if for all θ ∈ Θ,

Pr p∼µ θ ∈ q∈p B (Θ,ρ) (q, ε) ≥ 1 -α.
We denote by cv (Θ,ρ) (ε, α) the minimal d such that there is a probabilistic (ε, α)-covering of (Θ, ρ) with d points.

This clearly generalizes (deterministic) coverings, since cv (Θ,ρ) (ε, α = 0) coincides with the standard covering number cv (Θ,ρ) (ε). However, this quantity might be involved to compute since it involves randomness. Before proving Theorem G.3, let us show how to lower bound cv (Θ,ρ) (ε, α) in practice.

Theorem G.4. Let (Θ, ρ) be a metric space. Assume that there is a probability measure ν on Θ such that for all q 1 , . . . , q ℓ ∈ Θ,

ν ℓ i=1 B (Θ,ρ) (q i , ε) < 1 -α. Then cv (Θ,ρ) (ε, α) > ℓ.
Proof of Theorem G.4. Take any probability measure µ over Θ ≤ℓ , and consider the map f (p, θ) = 1 ∪q∈pB (Θ,ρ) (q,ε) (θ) for all p ∈ Θ ≤ℓ and θ ∈ Θ. By assumption, for all fixed p ∈ Θ ≤ℓ ,

1 -α > ν q∈p B (Θ,ρ) (q, ε) = Θ f (p, θ)ν(dθ);
hence, by integration with respect to µ(dp) and Fubini-Tonelli,

1 -α > ( Θ ≤ℓ ) Θ f (p, θ)ν(dθ) µ(dp) = Θ ( Θ ≤ℓ ) f (p, θ)µ(dp) ν(dθ).
As ν is a probability distribution, this yields the existence of a fixed θ = θ µ ∈ Θ such that

1 -α > ( Θ ≤ℓ ) f (p, θ)µ(dp) = Pr p∼µ θ ∈ q∈p B (Θ,ρ) (q, ε) .
In other words, we have shown that no probability distribution µ over Θ ≤ℓ can be an (ε, α)covering of (Θ, ρ) (Definition G.2). Hence, cv (Θ,ρ) (ε, α) > ℓ.

As a byproduct of Theorem G.4, we can now show that probabilistic coverings are closely related to the usual notions of metric covering and packing numbers.

Theorem G.5. Let (Θ, ρ) be a metric space, and α < 1. Then,

cv (Θ,ρ) (ε) ≥ cv (Θ,ρ) (ε, α) ≥ (1 -α)pk (Θ,ρ) (ε).
the identity map of R n . Given a regular map Φ : R n → R n , d x Φ and d 2

x Φ stand for its first and second order differentials at x ∈ R n . Proposition H.1. Let M 0 ∈ M n,d 2rch min and Φ : R n → R n be a proper C 2 map, i.e. lim ∥x∥→∞ ∥Φ(x)∥ = ∞. If sup x∈R n ∥I n -d x Φ∥ op ≤ 1/(10d) and sup x∈R n d 2

x Φ op ≤ 1/ (4rch min ), then Φ is a global diffeomorphism, and Φ(M 0 ) ∈ M n,d rch min . Furthermore, 1/2 ≤ H d (Φ(M 0 ))/H d (M 0 ) ≤ 2. Proof of Proposition H.1. As sup x ∥d x Φ -I n ∥ op < 1, d x Φ is invertiblefor all x ∈ R n . Hence, the inverse function theorem yields that Φ is everywhere a local diffeomorphism. As, lim ∥x∥→∞ ∥Φ(x)∥ = ∞ this diffeomorphism is global by the Hadamard-Cacciopoli theorem [START_REF] De | Global inversion of functions: an introduction[END_REF]. In particular, Φ(M 0 ) is a compact connected d-dimensional submanifold of R n without boundary. In addition, by Taylor's theorem, Φ is Lipschitz with constant sup 

x ∥d x Φ∥ op ≤ (1 + sup x ∥I n -d x Φ∥ op ) ≤ 11/10, Φ -1 is Lipschitz with constant sup x d x Φ -1 op ≤ (1 -sup x ∥I n -d x Φ∥ op ) -1 ≤ 10/
H d (Φ(M )) ≤ sup x ∥d x Φ∥ d op H d (M ) ≤ (1 + 1/(10d)) d H d (M ) ≤ 2H d (M ),
and symmetrically,

H d (M ) ≤ sup x d x Φ -1 d op H d (Φ(M )) ≤ 1 (1 -1/(10d)) d H d (Φ(M )) = 2H d (Φ(M )),
which concludes the proof.

Among the smooth perturbations Φ : R n → R n nearly preserving M n,d rch min , the following localized bump-like functions will be of particular interest for deriving lower bounds.

Lemma H.1. Let δ, η > 0 be positive reals. Fix p 1 , . . . , p N ∈ R n be such that ∥p i -p j ∥ > 2δ for all i ̸ = j ∈ {1, . . . , N }. Given a family of unit vectors w = (w i ) 1≤i≤N ∈ (R n ) N , we let Φ w be the function that maps any x ∈ R n to

Φ w (x) = x + η N i=1 ϕ x -p i δ w i ,
where ϕ : R n → R the real-valued bump function defined by

ϕ : R n -→ R y -→ exp -∥y∥ 2 /(1 -∥y∥ 2 ) 1 B(0,1) (y). Then Φ w is C ∞ smooth, lim ∥x∥→∞ ∥Φ w (x)∥ = ∞, and Φ w satisfies sup x∈R n ∥x -Φ w (x)∥ ≤ η, sup x∈R n ∥I n -d x Φ w ∥ op ≤ 5η 2δ and sup x∈R n d 2 x Φ w op ≤ 23η δ 2 .
Proof of Lemma H.1. Straightforward calculations show that the real-valued map ϕ : R n -→ R is C ∞ smooth over R n , equals to 0 outside B(0, 1), and satisfies 0 ≤ ϕ ≤ 1, ϕ(0) = 1, sup y∈B(0,1) ∥d y ϕ∥ ≤ 5/2 and sup y∈B(0,1)

d 2 y ϕ op ≤ 23.
By composition and linear combination of C ∞ smooth functions, Φ w is therefore C ∞ smooth. Also, Φ w coincides with the identity map outside the compact set ∪ N i=1 B(p i , δ). Furthermore, for i ̸ = j ∈ {1, . . . , N }, B(p i , δ) ∩ B(p j , δ) = ∅, since ∥p i -p j ∥ > 2δ. Therefore, if x ∈ B(p i , δ), we have Φ w (x) = x + ηϕ x-p i δ w i . This directly gives sup x∈R n ∥x -Φ w (x)∥ ≤ η, and by chain rule, sup 

x∈R n ∥I n -d x Φ w ∥ op = max 1≤i≤N sup x∈B(p i ,δ) η d x ϕ • -p i δ w i op = max 1≤i≤N sup y∈B(0,1) w i (d y ϕ) ⊤ op η δ = sup y∈B(0,
w i d 2 y ϕ op η δ 2 ≤ 23η δ 2 ,
which concludes the proof.

H.2 Building a Large-Volume Submanifold with Small Euclidean Diameter

The proofs of Theorems 5.5 and 5.6 will involve the construction of submanifolds M ⊆ R n with prescribed and possibly large volume H d (M ). Informally, this will enable us to build hypotheses and packings with large cardinality by local variations of it (see Propositions H.3 and H.5) under nearly minimal assumptions on f min (which can be seen as an inverse volume, for uniform distributions). For the reasons mentioned in Section 2.2.3, one easily checks that the volume of M ∈ B(0, R) ⊓ M n,d rch min can neither be too small nor too large, when rch min and R are fixed (Proposition B.5). Conversely, this section is devoted to prove the existence of submanifolds M ∈ B(0, R) ⊓ M n,d rch min that nearly achieve the minimum and maximum possible such volumes given by Proposition B.5.

H.2.1 The Statement

Namely, the goal of Appendix H.2 is to prove the following result.

Proposition H.2. Assume that rch min ≤ R/36. Writing C ′ d = 9(2 2d+1 σ d-1 ), let V > 0 be such that 1 ≤ V C ′ d rch d min ≤ max 1≤k≤n R 48rch min √ k k .
Then there exists M 0 ∈ M n,d rch min such that M 0 ⊆ B(0, R) and

V/24 ≤ H d (M 0 ) ≤ V.
Informally, in codimension one (i.e. D = d + 1), the manifold M 0 of Proposition H.2 can be though of as the boundary of the offset of a Hilbert curve in B(0, R) of prescribed length. This intuition, however, is only limited to codimension one, and requires extra technical developments for general d < D.

Proof of Proposition H.2. Consider the discrete grid G 0 in R n centered at 0 ∈ R n , with vertices (24rch min Z n ) ∩ B(0, R/2), and composed of hypercubes of side-length 24rch min . By considering a k 0 -dimensional sub-grid parallel to the axes, we see that the grid G 0 contains a square grid

G with side cardinality κ = R/2 24rch min √ k 0 , where k 0 belongs to argmax 1≤k≤n R 48rch min √ k k . Let us write ℓ = V/(C ′ d rch d min )
. By assumption on V, rch min and R, we have

1 ≤ ℓ ≤ V C ′ d rch d min ≤ max 1≤k≤n R 48rch min √ k k ≤ κ k 0 .
Hence 

′ 0 of class C 1,1 such that M ′ 0 = M (L n (ℓ)) ⊆ G 12rch min ⊆ B(0, R/2) 12rch min ⊆ B(0, 2R/3) since rch min ≤ R/36, reach rch M ′ 0 ≥ 2rch min . Fur- thermore, writing C d = 9(2 d σ d-1
) for the constant of Lemma H.3, we also have

H d (M ′ 0 ) ≤ (C d (2rch min ) d )|L n (ℓ)| ≤ (C d (2rch min ) d ) V C ′ d rch d min ≤ V/2, and 
H d (M ′ 0 ) ≥ (C d (2rch min ) d /3)|L n (ℓ)| ≥ (C d (2rch min ) d /3) V 2C ′ d rch d min = V/12,
where we used that ⌊t⌋ ≥ t/2 for all t ≥ 1 To conclude the proof, we use the density of C 2 submanifolds in the space of C 1,1 submanifolds to obtain a closed d-dimensional submanifold

M 0 of class C 2 such that rch M 0 ≥ rch M ′ 0 /2 ≥ rch min , d H (M 0 , M ′ 0 ) ≤ rch min (and hence M 0 ⊂ B(0, 2R/3 + rch min ) ⊂ B(0, R)), and 1/2 ≤ H d (M 0 )/H d (M ′ 0 ) ≤ 2 (and hence V/24 ≤ H d (M 0 ) ≤ V).
H.2.2 Widget Gluing: From Paths on the Discrete Grid to Manifolds Lemma H.2. Given rch min > 0 and d ≥ 1, there exist four d-dimensional C 1,1 -submanifolds with boundary:

M E , M S , M T B ⊆ [-6rch min , 6rch min ] d+1 and M N B ⊆ [-6rch min , 6rch min ] d+2 ,
called respectively end, straight, tangent bend and normal bend widgets (see Figure 3), that:

• are smooth: rch M E , rch M S , rch M T B , rch M N B ≥ rch min ;
• have the following topologies:

-M E is isotopic to a d-ball B d (0, 1), -M S , M T B and M N B are isotopic to a d-cylinder S d-1 × [0, 1];
• are linkable: writing s = 6rch min , we have

-For the tip widget M E : * M E ∩ [-s/2, s/2] d+1 c = M E ∩ [s/2, s] × R d = [s/2, s] × S d-1 (0, s/3).
-For the straight widget M S :

(C d /3)rch d min ≤ H d (M E ), H d (M S ), H d (M T B ), H d (M N B ) ≤ C d rch d min ,
where C d = 9(2 d σ d-1 ) depends only on d.

Proof of Lemma H.2. First notice that by homogeneity, we can carry out the construction in the unit hypercubes [-1, 1] d+1 (respectively [-1, 1] d+2 ) and conclude by applying an homothetic transformation. Indeed, for all closed set K ⊆ R n and λ ≥ 0, rch λK = λrch K and H d (λK) = λ d H d (K).

• End widget: the idea is to glue in a C 2 way a half d-sphere with a d-cylinder. Namely, let us consider

M (0) E = S d (0, 1/3) ∩ [-1, 0] × [-1, 1] d ∪ [0, 1] × S d-1 (0, 1/3) .
Elementary calculations yield the intersections

M (0) E ∩ [-1/2, 1/2] d+1 c = M (0) E ∩ [1/2, 1] × R d = [1/2, 1] × S d-1 (0, 1/3).
In addition, its medial axis is Med(M

(0) E ) = [0, 1] × {0} d , so that rch M (0) E = inf z∈Med(M (0) E ) d(z, M (0) 
E ) = 1/3. Finally, M (0) 
E is isotopic to the half d-sphere S d (0, 1/3) ∩ [-1, 0] × [-1, 1] d , or equivalently to a d-ball.

• Straight widget: a simple d-cylinder satisfies our requirements. Similarly as above, the set

M (0) S = [-1, 1] × S d-1 (0, 1/3)
clearly is (isotopic to) a d-cylinder, has reach rch M (0) S = 1/3, and all the announced intersection properties with s = 1. • Tangent Bend widget: we will glue two orthogonal straight d-cylinders via a smoothly rotating (d -1)-sphere. More precisely, consider the d-cylinders C 1 = S d-1 (0, 1/3) × [-1, -1/2] and C 2 = [-1, -1/2] × S d-1 (0, 1/3). We will connect smoothly their tips, which are the (d -1)-spheres S 1 = S d-1 (0, 1/3) × {-1/2} ⊆ C 1 and S 2 = {-1/2} × S d-1 (0, 1/3) ⊆ C 2 of same radius. To this aim, take the trajectory of S 1 via the affine rotations of center

R d+1 × {-s} { - s } × R d + 1 (0 R d+1 , -s) MNB (-s, 0 R d+1 ) (d) Normal Bend widget MNB.
x c = (-1/2, 0 R d-1 , -1/2) and linear parts R θ =        cos θ 0 • • • 0 -sin θ 0 1 • • • 0 0 . . . . . . . . . 0 0 • • • 1 0 sin θ 0 • • • 0 cos θ        ∈ R (d+1)×(d+1) , when θ varies in [0, π/2]. Hence, letting f θ (x) = x c + R θ (x -x c ), we have f 0 (S 1 ) = S 1 , f π/2 (S 1 ) = S 2 . In addition, for all θ ∈ [0, π/2] and x ∈ [-1/2, 1/2] d × {-1/2}, we have f θ (x) ∈ [-1/2, 1/2] d+1 . Hence, letting M (0) T B = C 1 ∪ 0≤θ≤π/2 f θ (S 1 ) ∪ C 2 , we directly get that M (0)
T B is isotopic to a d-cylinder, and that it satisfies all the announced intersection properties with s = 1. To conclude, by symmetry, the medial axis of this widget writes as

Med(M

(0) T B ) = {0} d × [-1, -1/2] ∪ x c + t≥0 (-t, 0 R d-1 , -t) ∪ [-1, -1/2] × {0} d , so that straightforward calculations yield rch M (0) T B = min 1/3, d(x c , M (0) 
T B ) = 1/6.

• Normal Bend widget: same as for the tangent bend widget, we glue the two orthogonal straight

d-cylinders C 1 = {0} × S d-1 (0, 1/3) × [-1, -1/2] and C 2 = [-1, -1/2] × S d-1 (0, 1/3) × {0}. via their respective tips, S 1 = {0} × S d-1 (0, 1/3) × {-1/2} ⊆ C 1 and S 2 = {-1/2} × S d-1 (0, 1/3) {0} ⊆ C 2 .
To this aim, take trajectory of S 1 via the affine rotation of center

x c = (-1/2, 0 R d , -1/2) and linear parts R θ ∈ R (d+2)×(d+2) for θ ∈ [0, π/2]. As before, letting f θ (x) = x c + R θ (x -x c ), we have f 0 (S 1 ) = S 1 , f π/2 (S 1 ) = S 2 . Also, for all θ ∈ [0, π/2] and x ∈ {0} × [-1/2, 1/2] d × {-1/2}, we have f θ (x) ∈ [-1/2, 1/2] d+1 . Hence, letting M (0) N B = C 1 ∪ 0≤θ≤π/2 f θ (S 1 ) ∪ C 2 ,
we get the announced results with s = 1, and in a similar way as above, rch M (0)

N B = min {1/3, 1/2} = 1/3.
Also one easily checks in all the four above cases that Lemma H.3. Let G be a discrete grid in R n composed of hypercubes of side-length 12rch min .

σ d-1 /3 d-2 3 ≤ H d (M (0) E ), H d (M (0) S ), H d (M (0) T B ), H d (M (0) N B ) ≤ σ d-1 /3 d-2 .
Then any connected open simple path L in G (see Lemma H.4) defines a C 1,1 d-dimensional closed submanifold, denoted by M (L), such that:

• M (L) ⊆ G 6rch min ; • M (L) ∈ M n,d rch min ; • C d /3 ≤ H d (M (L)) |L|rch d min ≤ C d , where C d is the constant of Lemma H.2; • If L and L ′ are two different such paths in G, d H (M (L), M (L ′ )) > 2rch min .
Remark H.1. The construction of Lemma H.3 shows that, given one discrete path L, one could actually define several different manifolds M (L) with the same properties. We will not exploit this fact as the construction is enough for our purpose.

Theorem 4.18] and the fact that d(y -x, T x M (L)) ≤ ∥y -x∥ for all x ∈ M (L), we get

rch M (L) = inf x̸ =y∈M (L) ∥y -x∥ 2 2d(y -x, T x M (L)) = min      inf x,y∈M (L) ∥y-x∥≥s/2 ∥y -x∥ 2 2d(y -x, T x M (L)) , inf x̸ =y∈M (L) ∥y-x∥≤s/2 ∥y -x∥ 2 2d(y -x, T x M (L))      ≥ min {s/4, min {rch M E , rch M S , rch M T B , rch M N B }} ≥ min {6rch min /4, rch min } = rch min , which ends proving that M (L) ∈ M n,d rch min . • As M (L) is the union of |L| of the widgets defined in Lemma H.2, it follows H d (M (L)) ≤ |L| max H d (M E ), H d (M S ), H d (M T B ), H d (M N B ) ≤ |L|C d rch d min ,
and similarly, as the intersection of the consecutive widgets (i.e. (d -1)-spheres) is H dnegligible, we have

H d (M (L)) ≥ |L| min H d (M E ), H d (M S ), H d (M T B ), H d (M N B ) ≥ |L|(C d /3)rch d min .
• Let us now fix two different connected open simple paths L and L ′ in G. Since L ̸ = L ′ , L passes through a vertex, say x 0 ∈ R n , where L ′ doesn't. Regardless of the widget used at x 0 to build M (L), this widget contains, up to rotation centered at x 0 , the set x 0 + {-s/2} × S d-1 (0, s/3) × {0} n-(d+1) . As a result, d(x 0 , M (L)) ≤ (s/2) 2 + (s/3) 2 . On the other hand, M (L ′ ) does not intersect the cube x 0 + [-s, s] n , so d(x 0 , M (L ′ )) ≥ s. Finally, we get

d H (M (L), M (L ′ )) = sup x∈R n d(x, M (L ′ )) -d(x, M (L)) ≥ d(x 0 , M (L ′ )) -d(x 0 , M (L)) ≥ s -(s/2) 2 + (s/3) 2 = 6(1 - √ 13/6)rch min > 2rch min ,
which concludes the proof.

H.2.3 Existence of Long Paths on the Grid

In order to complete the construction of Proposition H.2, we need the existence of paths of prescribed length over the n-dimensional discrete grid. Although standard, we include this construction for sake of completeness.

Lemma H.4. Let κ ≥ 1 be an integer and consider the square grid graph G n on {1, . . . , κ} n . Then for all ℓ ∈ {1, . . . , κ n }, there exists a connected open simple path L n (ℓ) of length ℓ in G n . That is, L n (ℓ) is a subgraph of G n such that:

tangent vector, a Taylor expansion of γ x 0 ,v 0 and Lemma 2.2 yields

∥p 0 -x 0 ∥ ≥ ∥2rch min v 0 ∥ -∥γ x 0 ,v 0 (rch min ) -(x 0 + 2rch min v 0 )∥ ≥ 2rch min -(2rch min ) 2 /(2rch M 0 ) ≥ rch min ,
since rch M 0 ≥ 2rch min . Let us denote by w 0 ∈ (T p 0 M 0 ) ⊥ a unit normal vector of M 0 at p 0 . For δ, η > 0 to be chosen later, let Φ w 0 be the function that maps any x ∈ R n to Under these assumptions, we have in particular that d H (M 0 , M 1 ) ≤ ∥Φ w 0 -I n ∥ ∞ ≤ η ≤ rch min /10. Also, by construction, Φ w 0 (p 0 ) = p 0 + ηw 0 belongs to M 1 , so that Proof of Lemma H.5. For both models, the idea is to first build a manifold M 0 ∈ M n,d 2rch min with prescribed volume close to 1/f min , and then consider the variations of it given by Proposition H.3.

Φ w 0 (x) = x + ηϕ x -p 0 δ w 0 , where ϕ : R n → R is the real bump function ϕ(y) = exp -∥y∥ 2 /(1 -∥y∥ 2 ) 1 B(0,1) (y) of Lemma H.1. We let M 1 = Φ w 0 (M 0 )
• Let M 0 be a d-dimensional sphere of radius r 0 = rch min (f min , f max , L), which concludes the proof.

H.3.2 Proof of the Informational Lower Bounds for Manifold Estimation

With all the intermediate results above, the proofs of Theorem 5.2 and Theorem 5.5 follow straightforwardly.

Proof of Theorem 5.2 and Theorem 5.5. These are direct applications of Theorem G.1 for parameter of interest θ(D) = Supp(D) and distance ρ = d H , with the hypotheses D 0 , D 1 of the models {0}⊔D n,d rch min (f min , f max , L) and B(0, R)⊓D n,d rch min (f min , f max , L) given by Lemma H.5. that V/6 ≤ H d (M 0 ) ≤ V and M 0 ⊆ B(0, R/2). Note that for all z ∈ B(0, R/2), the translation M z = {p + z, p ∈ M 0 } belongs to M n,d rch min , has the same volume as M 0 , and satisfies M z ⊆ B(0, R/2 + ∥z∥) ⊆ B(0, R). In addition, Lemma H.6 asserts that for all z, z ′ ∈ B(0, R/2), d H (M z , M z ′ ) = ∥z -z ′ ∥. In particular, for all i ̸ = j ∈ {1, . . . , N }, d H (M z i , M z j ) = ∥z i -z j ∥ > 2r. As a result, the family {M z i } 1≤i≤N provides us with an r-packing of B(0, R) ⊓ M n,d rch min , d H with cardinality N ≥ (R/(4r)) n , and composed of submanifold with volume V/6 ≤ H d (M ) ≤ V, which concludes the proof.

H.4.2 Local Intrinsic Packings

In the same spirit as Proposition H.3 for informational lower bounds, the following result allows to build packings of manifold classes by small perturbations of a base submanifold M 0 . Note, again, that the larger the volume H d (M 0 ), the stronger the result. Proof of Proposition H.5. For δ ≤ rch min /8 to be chosen later, let {p i } 1≤i≤N be a maximal δ-packing of M 0 . From Proposition B.3, this maximal packing has cardinality N ≥ H d (M 0 ) ω d (4δ) d . Let η > 0 be a parameter to be chosen later. Given a family of unit vectors w = (w i ) 1≤i≤N ∈ (R n ) N normal at the p i 's, i.e. w i ∈ (T p i M ) ⊥ and ∥w i ∥ = 1, we let Φ w be the function defined in Lemma H.1, that maps any x ∈ R n to Φ w (x) = x + η N i=1 ϕ

x -p i δ w i , where ϕ : R n → R is the real bump function ϕ(y) = exp -∥y∥ 2 /(1 -∥y∥ 2 ) 1 B(0,1) (y) of Lemma H.1. We let M w = Φ w (M 0 ) be the image of M 0 by Φ w . The set M w ⊆ R n hence coincides with M 0 , except in the δ-neighborhoods of the p i 's, where it has a bump of size η towards direction w i . Note by now that up to rotations of its coordinates, the vector w = (w i ) 1≤i≤N belongs to S n-d (0, 1) In the rest of the proof, we will work with these two inequalities holding true. In particular, because ∥Φ w -I n ∥ ∞ ≤ η, we immediately get that d H (M 0 , M w ) ≤ η. We note also that all the Φ w 's coincide with the identity map on (say) M 0 ∩ ∂B(p 1 , δ), so that M 0 ∩ ∩ w M w contains M 0 ∩ ∂B(x 1 , δ) and is hence non-empty.

We now take two different families of unit normal vectors w and w ′ (i.e. w i , w ′ i ∈ (T p i M 0 ) ⊥ and ∥w i ∥ = ∥w ′ i ∥ = 1 for 1 ≤ i ≤ N ), and we will show that their associated submanifolds M w and M w ′ are far away in Hausdorff distance as soon as max 1≤i≤N ∥w i -w ′ i ∥ is large enough. To this aim, we first see that by construction, Φ w (p i ) = p i + ηw i ∈ Φ w (M 0 ) = M w for all i ∈ {1, . . . , N }. In particular, d H (M w , M w ′ ) ≥ max 1≤i≤N d(p i + ηw i , M w ′ ).

Let us fix a free parameter λ i ∈ [0, 1] to be chosen later. As ∥Φ w ′ -I n ∥ ∞ ≤ η, we can write for all i ∈ {1, . . . , N } that

d(p i + ηw i , M w ′ ) = d (p i + ηw i , Φ w ′ (M 0 )) = d (p i + ηw i , Φ w ′ (M 0 \ B(p i , λ i δ))) ∧ d p i + ηw i , Φ w ′ (M 0 ∩ B(p i , λ i δ)) ≥ (λ i δ -η) ∧ d p i + ηw i , Φ w ′ (M 0 ∩ B(p i , λ i δ)) .
Further investigating the term d (p i + ηw i , Φ w ′ (M 0 ∩ B(p i , λ i δ))), we see that for all x ∈ M 0 ∩ B(p i , λ i δ) ⊆ B(p i , δ), Φ w ′ (x) = x + ηϕ x-p i δ w i . But from [Fed59, Theorem 4.18], rch M 0 ≥ 2rch min ensures that any x ∈ M 0 ∩ B(p i , λ i δ) can be written as x = p i + v + u, where v ∈ T p i M 0 with ∥v∥ ≤ λ i δ, and u ∈ T p i M 0 ⊥ with ∥u∥ ≤ (λ i δ) 2 /(4rch min ). As a result, we have d (p i + ηw i , Φ w ′ (M 0 ∩ B(p i , λ i δ)))

≥ min

v∈Tp i M 0 ,∥v∥≤λ i δ u∈(Tp i M 0 ) ⊥ ,∥u∥≤(λ i δ) 2 /(4rch min ) v + u + η ϕ v + u δ w ′ i -w i .
But in the above minimum, v is orthogonal to u, w i and w ′ i , so

v + u + η ϕ v + u δ w ′ i -w i ≥ u + η ϕ v + u δ w ′ i -w i .
Additionally, ϕ v+u δ ranges in (a subset of) [0, 1] since 0 ≤ ϕ ≤ 1. In particular, d (p i + ηw i , Φ w ′ (M 0 ∩ B(p i , λ i δ))) ≥ min u∈(Tp i M 0 ) ⊥ ,∥u∥≤(λ i δ) 2 /(4rch min ) 0≤t≤1

u + η tw ′ i -w i ≥ min 0≤t≤1 η tw ′ i -w i - (λ i δ) 2 4rch min = η 0 ∨ w i , w ′ i w ′ i -w i - (λ i δ) 2 4rch min ≥ η ∥w ′ i -w i ∥ 2 - (λ i δ) 2 4rch min ,
where the second line follows from triangle inequality, and the last two from elementary calculations. Putting everything together, we have shown that for all λ 1 , . . . , λ N ∈ [0, 1],

d H (M w , M w ′ ) ≥ max 1≤i≤N (λ i δ -η) ∧ η ∥w ′ i -w i ∥ 2 - (λ i δ) 2 4rch min .
One easily checks that under the above assumptions on the parameters, provided that max 1≤i≤N ∥w ′ i -w i ∥ > 1/4 = 2/8. As a result, if we consider (1/8)-packings of the unit spheres S (Tp i M 0 ) ⊥ (0, 1) = S n-d (0, 1) for i ∈ {1, . . . , N }, then for all δ ≤ rch min /(2300d), it naturally defines a , which yields the announced result.

λ i := √ 2rch min ∥w ′ i -w i ∥
Applying the technique of Proposition H.5 with manifolds M 0 having a large prescribed volume {0} ⊔ M n,d rch min and B(0, R) ⊓ M n,d rch min respectively yields the following result.

Proposition H.6. Let V > 0 and ε ≤ rch min /(2 34 d 2 ).

• Assume that 1 ≤ V 2 d+1 σ d rch d min .

0

  of this simple strategy might only be O(rch min τ /(f min rch d min ) 1/d )-close to M , since this procedure does not use the C 2 -smoothness of M .

Figure 1 :

 1 Figure 1: Construction of an ε-packing of the manifold class by local bumping. Here, in dimension d = 1 and codimension n -d = 1, each bump has the two options "upwards" and "downwards" within each of the N ≫ 1 locations, yielding 2 N ε-separated manifolds.

.

  This shows that the statistical query complexity in STAT(τ ) over D coincides with its counterpart in STAT(βτ ) over D (clutter) β,Q 0 for any fixed 0 < β ≤ 1 and clutter distribution Q 0 .

  H d (M ) denotes the surface area of M . Proof of Lemma 2.3. Follows from Proposition B.2 and Proposition B.3. Based on the geometric model above (Definition 2.4), we now describe the statistical model (i.e. set of probability distributions) of this work. Every M ∈ M n,d rch min inherits a non-trivial finite measure induced by the d-dimensional Hausdorff measure H d on R n ⊇ M , defined by vol M = 1 M H d , and called the volume measure of M . Note that with this normalization, vol M (M ) = H d (M ) corresponds to the d-dimensional surface area of M , and vol M /H d (M ) corresponds to the uniform probability distribution on M . Definition 2.5. We let D n,d rch min (f min , f max , L) denote the set of Borel probability distributions

  Lemma 3.2. Let M ∈ M n,d rch min , and assume that η < rch min , ∆ ≤ rch min /4 and 5 8 ∆ 2

  min + η + ∆ sin θ ≤ Λ and δ ≤ 7∆/10. If Manifold Propagation terminates, then its output O satisfies max p∈M min x∈O d M (p, π M (x) ≤ ∆, where d M (•, •) is the geodesic distance of M . We are now in position to prove Theorem 3.1. Proof of Theorem 3.1. 1. By construction of Manifold Propagation, any visit of the while loop (Lines 2-12) finishes with the addition of a point to O. Since O = ∅ at initialization, the number of already performed loops is maintained to satisfy N loop = |O| when the algorithm runs. Furthermore, by Lemma 3.1 and Lemma 3.2, we have at all times min x,y∈O x̸ =y

  Manifold Propagation terminates. Therefore, Lemma 3.3 applies, and combining it with Item 2, we get max p∈M d(p, O) = max p∈M min x∈O ∥p -x∥ ≤ max p∈M min x∈O ∥p -π M (x)∥ + max x∈O ∥x -π M (x)∥ ≤ max p∈M min x∈O d M (p, π M (x)) + η ≤ ∆ + η.

  of D around x 0 is nearly rank-d, and its first d components span a d-plane close to T π M (x 0 ) M ∈ G n,d (Lemma D.1).

  Theorem 5.1. Let D ∈ {0} ⊔ D n,d rch min (f min , f max , L) have support M = Supp(D). Writing Γ = Γ f min ,fmax,L = f min fmax+Lrch min , let us assume that τ f min rch d min ≤ c d Γ 7(d+1)/2 and ε ≤ cd Γ 3 rch min ,

  Theorem 5.4. Let D ∈ B(0, R) ⊓ D n,d rch min (f min , f max , L) have support M = Supp(D). Writing Γ = Γ f min ,fmax,L = f min fmax+Lrch min , let us assume that τ f min rch d min ≤ min c d Γ 7(d+1)/2 , Γ d (n log (R/(Γrch min )) -d/2 and ε ≤ cd Γ 3 rch min ,

τ f min rch d min 2 /

 2 (d+1) for the upper bounds, and ε = Ω rch min τ f min rch d min 2/d

Proposition B. 3 .

 3 For all M ∈ M n,d rch min and r ≤ rch min /8,pk M (r) ≥ H d (M ) ω d (4r) d ,andcv M (r) ≤ H d (M ) ω d (r/4) d .Proof of Proposition B.3. First, we have pk M (r) ≥ cv M (2r) from Proposition B.2. In addition, if {p i } 1≤i≤N ⊆ M is a minimal (2r)-covering of M , then by considering the uniform distributionD M = 1 M H d /H d (M )over M , using a union bound and applying Lemma B.1, we get 1 = D M ∪ N i=1 B(p i , 2r) ≤ N i=1 D M (B(p i , 2r)) ≤ N 2 d ω d (2r) d /H d (M ).

Lemma C. 1 .

 1 Let D ∈ D n,d rch min (f min , f max , L) have support M = Supp(D), and p ∈ M . Recall that ω d = H d (B d (0, 1)) denotes the volume of the d-dimensional unit Euclidean ball. Then for all r ≤ rch min /4,

,

  Proof of Theorem 4.3. The idea is to first detect a possibly coarse base point xraw 0 using a divide and conquer strategy in the ambient space (Theorem E.1), and then refine it by considering iterated projections of xraw 0 given by the local conditional mean (Theorem 4.1). More precisely, let xraw 0 be the output of the point detection SQ algorithm of Theorem E.1 applied with parameter Λ 0 = max η, min 1 16 , Γ 2C d rch min , where C d , Γ > 0 are the constants of Theorem 4.1. From the assumptions on the parameters (recall also that we necessarily have R ≥ rch min / √ 2, see Section 2.2.3), we have Λ 0 ≤ rch min /so that Theorem E.1 applies and guarantees that xraw 0 can be obtained with at most 3n log(6R/Λ 0 ) queries to STAT(τ ) and satisfies d(x raw 0 , M ) ≤ Λ 0 . If Λ = η -condition which can be checked by the learner since the parameters η, Γ, d and rch min are assumed to be known -, then x0 := xraw 0 clearly satisfies d(x 0 , M ) = d(x raw

  This section is devoted to the proof of the two SQ manifold estimation upper bounds: the first one in the fixed point model {0} ⊔ D n,d rch min (f min , f max , L) (Theorem 5.1), and the second one for the bounding ball model B(0, R) ⊓ D n,d rch min (f min , f max , L) (Theorem 5.4). Proof of Theorem 5.1. Let us write ∆ := rch min max ε/(rch min Cd ), C 3 2 τ /(ω d f min rch d min ) 1 d+1

Theorem G. 1 (

 1 Le Cam's Lemma for Statistical Queries). Consider a model D and a parameter of interest θ : D → Θ in the metric space (Θ, ρ). Assume that there exist hypotheses D 0 , D 1 ∈ D, such that TV(D 0 , D 1 ) ≤ τ /2 and δ < ρ θ(D 0 ), θ(D 1 ) /2.

Figure 3 :

 3 Figure 3: The widgets built in Lemma H.2 and used in the proof of Lemma H.3.

  dilations M E = (Crch min )M (0) E , M S = (Crch min )M (0) S , M T B = (Crch min )M (0) T B and M N B = (Crch min )M (0) N B yields the result by homogeneity, with C d = C d σ d-1 /3 d-2 = 9(2 d σ d-1 ).

d.,

  H (M 0 , M 1 ) ≥ d(p 0 + ηw 0 , M 0 ) = η, since w 0 ∈ (T p 0 M 0 ) ⊥[START_REF] Federer | Curvature measures[END_REF] Theorem 4.8 (12)]. Let us now consider the uniform probability distributions D 0 and D 1 over M 0 and M 1 respectively. These distributions have respectivedensities f i = H d (M i ) -1 1 M i (i ∈ {0, 1}) with respect to the d-dimensional Hausdorff measure H d on R n . Furthermore, Φ w 0 is a global diffeomorphism that coincides with the identity map on B(p 0 , δ) c . As a result, since 5η 2δ ≤ 1 10d ≤ (2 1/d -1), [AKC + 19, Lemma D.2] yields that for δ ≤ rch min /2,TV(D 0 , D 1 ) ≤ 12D 0 (B(0, δ)) = 12H d (M 0 ∩ B(0, δ))/H d (M 0 ) ≤ 12(2 d ω d δ d )/H d (M 0 ),where we applied the upper bound of Lemma B.1 to get the last inequality, using that rch M 0 ≥ 2rch min .Finally, setting η = δ 2 /(92rch min ) yields a valid choice of parameters for all δ ≤ rch min /(2300d). Hence, we have shown that for all δ ≤ rch min /(2 12 d) ≤ rch min /(2300d),d H (M 0 , M 1 ) ≥ δ 2 92rch min and TV(D 0 , D 1 ) ≤ 12(2 d ω d δ d )/H d (M 0 ). Equivalently, setting τ /2 = 12(2 d ω d δ d )/H d (M 0 ) and τ (0) := 24ω d (rch min /(2 11 d)) d /H d (M 0 ), we have shown that for all τ ≤ τ (0) , there exists M 1 ∈ M n,d rch min such that d H (M 0 , M 1 ) ≥ 1 92rch min H d (M 0 )τ 24(2 d ω d ) 2/dand TV(D 0 , D 1 ) ≤ τ /2. We conclude the proof for τ ≤ τ (0) by further bounding the termd H (M 0 , M 1 ) ≥ 1 92rch min H d (M 0 )τ 24(2 d ω d )Otherwise, if τ > τ (0) , then the above construction applied with τ (0) yields the existence of someM 1 ∈ M n,drch min with the same properties, andd H (M 0 , M 1 ) ≥ rch min 2 18 H d (M 0 )τ (0) ω d rch d min 2/dand TV(D 0 , D 1 ) ≤ τ (0) /2 ≤ τ /2.Summing up the two cases above, for all τ ≤ 1 we have exhibited some M 1 ∈ M n,d rch min with properties as above, TV(D 0 , D 1 ) ≤ τ /2 andd H (M 0 , M 1 ) ≥ rch min 2 18 H d (M 0 ) min τ, τ (0)which concludes the proof.Applying the technique of Proposition H.3 with manifolds M 0 having largest possible volume (typically of order 1/f min ) in the models {0}⊔D n,d rch min (f min , f max , L) and B(0, R)⊓D n,d rch min (f min , f max , L) yields the following result. The proof follows the ideas of [AL19, Lemma 5]. To our knowledge, the first result of this type dates back to[START_REF] Christopher | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF] Theorem 6].Lemma H.5. • Assume that f min ≤ f max /4 and that2 d+1 σ d f min rch d min ≤ 1.Then for all τ ≤ 1, there exist D 0 , D 1 ∈ {0} ⊔ D n,d rch min (f min , f max , L) with respective supports M 0 and M 1 such thatd H (M 0 , M 1 ) ≥ rch min 2 20 min 1 2 20 d 2 , τ ω d f min rch dmin 2/d and TV(D 0 , D 1 ) ≤ τ /2. • Assume that rch min ≤ R/144 and f min ≤ f max /96. Writing C ′ d = 9(2 2d+1 σ d-1 ), assume that min C ′ d f min rch d min ≤ 1. Then for all τ ≤ 1, there exist D 0 , D 1 ∈ B(0, R) ⊓ D n,d rch min (f min , f max , L) with respective supports M 0 and M 1 such that d H (M 0 , M 1 ) ≥ rch min 2 30 min 1 2 10 d 2 , τ ω d f min rch d min 2/d and TV(D 0 , D 1 ) ≤ τ /2.

,,

  in R d+1 × {0} n-(d+1) ⊆ R n containing x 0 = 0 ∈ R n . By construction, rch M 0 = r 0 ≥ 2rch min , so that M 0 ∈ M n,d 2rch min , and one easily checks that H d (M 0 ) = 1/(2f min ). For all τ ≤ 1, Proposition H.3 asserts that there exists a manifold M 1 ∈ M n,d rch min such that x 0 ∈ M 1 , with volume1/f max ≤ 1/(4f min ) ≤ H d (M 0 ) ≤ H d (M 1 ) ≤ 2H d (M 0 ) ≤ 1/f min , such that d H (M 0 , M 1 ) ≥ rch minand with respective uniform distributions D 0 and D 1 over M 0 and M 1 that satisfy TV(D 0 , D 1 ) ≤ τ /2. Since the densities of D 0 and D 1 are constant and equal to H d (M 0 ) -1 and H d (M 1 ) -1 respectively, the bounds on the volumes of M 0 and M 1 show that D 0 andD 1 belong to {0} ⊔ D n,d rch min (f min , f max , L = 0) ⊆ {0} ⊔ D n,d rch min (f min , f max , L), which concludes the proof. • Let M 0 ⊆ R n be a submanifold given by Proposition H.2 applied with parameters rch ′ min = 2rch min , V = 1/(2f min ) and R ′ = R/2. That is, M 0 ∈ M n,d2rch min is such that 1/(48f min ) ≤ H d (M 0 ) ≤ 1/(2f min ) and M 0 ⊆ B(0, R/2). For all τ ≤ 1, Proposition H.3 asserts that there exists a manifold M 1 ∈ M n,d rch min such that d H (M 0 , M 1 ) ≤ rch min /10, with volume1/f max ≤ 1/(96f min ) ≤ H d (M 0 )/2 ≤ H d (M 1 ) ≤ 2H d (M 0 ) ≤ 1/f min ,and d H (M 0 , M 1 ) ≥ rch min and such that the respective uniform distributions D 0 and D 1 over M 0 and M 1 satisfy TV(D 0 , D 1 ) ≤ τ /2. Because M 0 ⊆ B(0, R/2) and d H (M 0 , M 1 ) ≤ rch min /10 ≤ R/2, we immediately get that M 1 ⊆ B(0, R/2 + R/2) = B(0, R). As a result, this family clearly provides the existence of the announced ε-packing of B(0, R) ⊓ M n,d rch min , d H . As above, the bounds on the volumes of M 0 and M 1 show that D 0 , D 1 ∈ B(0, R) ⊓ D n,d rch min (f min , f max , L = 0) ⊆ B(0, R) ⊓ D n,d

Proposition H. 5 .••

 5 For all M 0 ∈ M n,d 2rch min and r ≤ rch min /(2 34 d 2 ), there exists a family of submanifolds {M s } 1≤s≤N ⊆ M n,d rch min with cardinality N such thatlog N ≥ n H d (M 0 ) ω d rch d min rch min 2 19 r d/2, and that satisfies:• M 0 and {M s } 1≤s≤N have a point in common: M 0 ∩ ∩ 1≤s≤N M s ̸ = ∅. For all s ∈ {1, . . . , N }, d H (M 0 , M s ) ≤ 23r and H d (M 0 )/2 ≤ H d (M s ) ≤ 2H d (M 0). For all s ̸ = s ′ ∈ {1, . . . , N } d H (M s , M s ′ ) > 2r.

δ 2 2082rch

 2 min -packing of M n,d rch min with cardinality N a leastN ≥ pk S n-d (0,1) (1/8) N ≥ pk S n-d (0,1) (1/8) H d (M 0 ) ω d (4δ) d ,and which consists of elements M w such thatH d (M 0 )/2 ≤ H d (M w ) ≤ 2H d (M 0 ) and d H (M 0 , M w ) ≤ η = δ 2 /(92rch min ). In particular, by setting r = δ 2 2082rch min , then for all 0 < r ≤ rch min /(2 34 d 2 ), we have exhibited a r-packing of M n,d rch min of cardinality N with log N ≥ H d (M 0 ) ω d (4 √ 2082rch min r) d log pk S n-d (0,1) (1/8), composed of submanifolds having volume as above, and d H (M 0 , M w ) ≤ 2082r/92 ≤ 23r. From Proposition B.4, log pk S n-d (0,1) (1/8) ≥ (n -d) log 2. Finally, by considering the cases d ≤ n/2 and d ≥ n/2, one easily checks that (n -d) ≥ n/(2d). In all, we obtain the announced bound log N ≥ H d (M 0 ) ω d (4 √ 2082rch min r) d

  The first statement is a direct consequence of [AL18, Propositions 8.6 & 8.7]. The second one follows by combining the previous point with Proposition B.1.

d/2 a d and A ′ d = (5/4) d/2 A d . Proof of Lemma B.1.

  9, and dΦ is Lipschitz with constant supx d 2 x Φ op ≤ 1/(4rch min ) ≤ 1/(2rch M 0 ). Hence, [Fed59, Theorem 4.19] yields rch Φ(M ) ≥ (2rch M 0 )(1 -sup x ∥I n -d x Φ∥ op ) 2 sup x ∥d 2 x Φ∥ op (2rch M ) + (1 + sup x ∥I n -dΦ∥ op ) ≥ (2rch M 0 )/2 ≥ rch min .As a result, we have Φ(M 0 ) ∈ M n,d rch min . For the last claim, we use the properties of the Hausdorff measure H d under Lipschitz maps [ACLZ17, Lemma 6] to get

  , Lemma H.4 asserts that there exists a connected open simple path L n (ℓ) in G ⊆ G 0 with length |L n (ℓ)| = ℓ. Furthermore, Lemma H.3 applied with reach parameter 2rch min provides us with a closed d-dimensional submanifold M

  be the image of M 0 by Φ w 0 . Roughly speaking, M 0 and M 1 only differ by a bump of width δ and height η in the neighborhood of p 0 . Note by now that Φ w 0 coincides with the identity map outside B(p 0 , δ) and in particular, p 0 = Φ w 0 (p 0 ) ∈ M 1 as soon as δ ≤ rch min .Combining Proposition H.1 and Lemma H.1, we get that M 1 ∈ M n,d rch min and H d (M 0 )/2 ≤ H d (M 1 ) ≤ 2H d (M 0 ) as soon as

	5η 2δ	≤	1 10d	and	23η δ 2 ≤	1 4rch min	.

  N . Combining Proposition H.1 and Lemma H.1, we see thatM w ∈ M n,d rch min and H d (M 0 )/2 ≤ H d (M w ) ≤ 2H d (M 0 ) as soon as

	5η 2δ	≤	1 10d	and	23η δ 2 ≤	1 4rch min	.

  η δ provides valid choices of λ i ∈ [0, 1]. Plugging these values in the previous bound yieldsd H (M w , M w ′ ) ≥ max 1≤i≤N √ 2rch min ∥w ′ i -w i ∥ η -η ∧ η ∥w ′ i -w i ∥ 8 , so that if we further assume that ∥w ′ i -w i ∥ ≥ 4 √ 2η/rch min , we obtain d H (M w , M w ′ ) ≥ maxwhere the last line follows from ∥w i -w ′ i ∥ ≤ ∥w i ∥ + ∥w ′ i ∥ ≤ 2. Setting η = δ 2 /(92rch min ), which is a value that satisfies all the requirements above as soon as δ ≤ rch min /(2300d), we have built a family of submanifolds {M w } w of M n,d rch min indexed byw ∈ S n-d (0, 1) N , such that H d (M 0 )/2 ≤ H d (M w ) ≤ 2H d (M 0 ),and which are guaranteed to satisfy d H (M w , M w ′ ) >

		1≤i≤N	η ∧ η	∥w ′ i -w i ∥ 8
	=	η 8	max 1≤i≤N	w ′ i -w i ,
	δ 2 8(92rch min )	×	1 4	≥ 2	δ 2 2082rch min	,

As the present paper uses ε for precision, we use δ as the privacy parameter, contrary to the standard notation.
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Furthermore,

A Proofs of the Properties of Manifold Propagation

When running Manifold Propagation, linear approximations of the manifold are done via its (approximate) tangent spaces. A key point in the proof of its correctness is the (quantitative)

As for all query r : R n → [-1, 1], | ED 0 [r] -ED 1 [r]| ≤ 2 TV(D 0 , D 1 ) ≤ τ , it is a valid STAT(τ ) oracle. Furthermore, notice that the answers of this oracle are the same for D = D 0 and D = D 1 . Writing A = (r 1 , . . . , r q , θ) ∼ A, we denote these answers by a 1 , . . . , a q . The a i 's are random variables, with randomness driven by the randomness of A ∼ A. For i ∈ {0, 1}, let us consider the event B i = ρ θ(D i ), θ(a 1 , . . . , a q ) ≤ ε .

The fact that A estimates θ with precision ε and probability at least 1 -α over D translates into Pr A∼A (B i ) ≥ 1 -α, for i ∈ {0, 1}. But since ε ≤ δ < ρ(θ(D 0 ), θ(D 1 ))/2, the events B 0 and B 1 are disjoint (i.e. B 0 ∩ B 1 = ∅). As a result,

which yields α ≥ 1/2 and concludes the proof.

G.2 Computational Lower Bound

This section is dedicated to prove the following Theorem G.2, that provides a computational lower bound for support estimation in Hausdorff distance. It involves the generalized notion of metric packing, which is defined right below.

Theorem G.2. Given a model D over R n , any randomized SQ algorithm estimating M = Supp(D) ⊆ R n with precision ε for the Hausdorff distance, and with probability of success at least 1 -α, must make at least

queries to STAT(τ ), where M = {Supp(D), D ∈ D}.

Similarly to Appendix G.1, we put Theorem G.2 in the broader context of SQ estimation in metric spaces (see Section 2.1), and state the more general Theorem G.3 below. To this aims, and similarly to the Euclidean case (Definition B.1), let us recall the definitions of metric packings and coverings. We let (Θ, ρ) be a metric space, M ⊆ Θ a subset of Θ, and a radius ε > 0.

• An ε-covering of M is a subset {θ 1 , . . . , θ k } ⊆ M such that for all θ ∈ M, we have min 1≤i≤k ρ(θ, θ i ) ≤ ε. The covering number cv (M,ρ) (ε) of M at scale ε is the smallest cardinality k of such an ε-covering.

Theorem G.3. Given a model D and a parameter of interest θ : D → Θ in the metric space (Θ, ρ), any randomized SQ algorithm estimating θ(D) over D with precision ε and probability of success at least 1 -α, must make at least Proof of Theorem G.5. If any of the three terms is infinite, then all the terms involved clearly are infinite, so that the announced bounds hold. Otherwise, any given ε-covering of (Θ, ρ) is also a (ε, α)-covering (where we identify a finite set to the uniform measure on it), which gives the left-hand bound. For the right-hand bound, write k = pk (Θ,ρ) (ε) < ∞, and let {θ 1 , . . . , θ k } be an ε-packing of (Θ, ρ). That is, for all i ̸ = j, ρ(θ i , θ j ) > 2ε. Take ν to be the uniform probability distribution over this packing, that is set ν(S) = |{θ 1 , . . . , θ k } ∩ S|/k for all S ⊆ Θ. Note that since {θ 1 , . . . , θ k } is an ε-packing, we have ν B (Θ,ρ) (θ, ε) ≤ 1/k for all θ ∈ Θ, and as a result,

G.2.2 Proof of the Computational Lower Bounds for Randomized SQ Algorithms

We are now in position to prove the lower bounds on (randomized) SQ algorithms in general metric spaces.

Proof of Theorem G.3. For all i ∈ {0, . . . , ⌈1/τ ⌉}, write Let A be a randomized SQ algorithm estimating θ over D, and A = (r 1 , . . . , r q , θ) ∼ A. Let us write d = (⌊1/τ ⌋ + 1) q , and consider the random subset of Θ given by C(A) = θ a D (r 1 ), . . . , a D (r q ) D∈D .

Note that by construction of the oracle O, C(A) ∈ D

≤d . Let us consider the probability distribution µ over D ≤d such that the measure of a set S is equal to Pr

As A estimates θ with precision ε and probability at least 1 -α over D, this means that µ is a probabilistic (ε, α)-covering of θ(D) with (⌊1/τ ⌋ + 1) q points (Definition G.2). As a result, by definition of cv (θ(D),ρ) (ε, α), we have (⌊1/τ ⌋ + 1) q ≥ cv (θ(D),ρ) (ε, α). Finally, from Theorem G.5 we have cv (θ(D),ρ) (ε, α) ≥ (1 -α)pk (θ(D),ρ) (ε), which gives the announced result.

H Lower Bounds for Manifold Models

H.1 Diffeomorphisms and Geometric Model Stability

The following result will allow us to build different elements of M n,d rch min in a simple way, by considering diffeomorphic smooth perturbations of a base manifold M 0 . Here and below, I n is Proof of Lemma H.3. For short, we let s = 6rch min . Let L be a fixed connected open simple path on G. If |L| = 1, take M (L) to be a d-sphere of radius 2rch min centered at the only vertex of L. Assuming now that |L| ≥ 2, we will build M (L) iteratively by adding appropriate widgets of Lemma H.2 along the consecutive vertices that L goes through. We pick one of the two degree 1 vertices (endpoints) of L arbitrarily, and denote the consecutive vertices of L as x 1 , . . . , x [L|-1 .

(i) The path L has exactly one edge at x 0 , called v + 0 , which is parallel to the axes of R n since G is the square grid. In the cube x 0 + [-6rch min , 6rch min ] n , we define M (L) to coincide with the End widget M E × {0} n-(d+1) , rotated in the (e 1 , v + 0 ) plane so that -e 1 is sent on v + 0 . In this first cube, M (L) hence presents a d-cylinder, obtained by a rotation of [-s, -s/2] × S d-1 (0, s/3) × {0} n-(d+1) around x 0 , and pointing towards v + 0 . Let us call this cylinder C + 0 .

(ii) Assume now that we have visited the consecutive vertices x 0 , . . . , x k-1 of L, for some k ≥ 1, and that in the cube around

is not the other endpoint of L, there are exactly two edges at x k , represented by the axis-parallel vectors

There are three possible cases depending on the turn that L takes at x k :

Hence, we proceed similarly by rotating the Normal Bend widget M N B × {0} n-(d+2) so that (e 1 , e d+2 ) is sent on (-v - k-1 , v + k ). Note that this case can only occur if n ≥ d + 2.

(iii) If we reached the other endpoint of L (k = |L| -1), add a rotated End widget oriented in the direction of

Now that the construction of M (L) has been carried out, let us move to its claimed properties.

• By construction of the widgets and the fact that all of them are centered at points of the grid G, M (L) is included in the offset of G of radius 6rch min .

• By induction on the length of the path, it is clear that the union of the straight and bend widgets (without the ends) is isotopic to a cylinder S d-1 (0, 1) × [0, 1]. As a result, adding the two end widgets at the endpoints of the path yields that M (L) is isotopic to a d-dimensional sphere S d (0, 1). It is also clear that M (L) connected, by connectedness of L. In particular, M (L) is a compact connected d-dimensional submanifold of R n without boundary.

What remains to be proved is that rch M (L) ≥ rch min . To see this, notice that by construction, the widgets connect smoothly through sections of facing straight cylinders C ± = S d-1 (0, s/3) × [0, ±s/2] × {0} n-(d+1) (rotated), which are included in the boxes [-s/2, s/2] n centered a the midpoints of the grid. Apart from these connected ingoing and outgoing cylinders, the widgets are included in boxes [-s/2, s/2] n , which are separated by a distance s.

Hence, if two points x, y ∈ M (L) are such that ∥y -x∥ ≤ s/2, then they must belong to either the same widget or the same connecting cylinder C -∪ C + . As a result, from [Fed59,

• L n (ℓ) is connected;

• L n (ℓ) has vertex cardinality ℓ;

• if ℓ ≥ 2, L n (ℓ) has maximum degree 2, and exactly two vertices with degree 1.

Proof of Lemma H.4. For κ = 1, G n consists of a single point, so that the result is trivial. We hence assume that κ ≥ 2. Let us first build the paths L n = L n (κ n ) by induction on n. For n = 1, simply take L 1 to be the full graph G n . We orientate L 1 by enumerating its adjacent vertices in order:

denote its backwards orientation. Now, assume that we have built L n for some n ≥ 1, together with an orientation L → n . To describe L n+1 , we list an orientation L → n+1 of it: an edge of G n hence belongs to L n if an only if it joins two consecutive vertices in L → n+1 . Namely, for 1 ≤ i ≤ κ n , we let

where for the last line, ↔ stands for → if κ is odd, and ← otherwise. L n+1 clearly is connected and visits all the vertices {1, . . . , κ} n . Its edges all have degree two, except (L → n [1], 1) and (L ↔ n [κ n ], κ) which have degree 1, which concludes the construction of

H.3 Informational Lower Bounds: Hypotheses for Le Cam's Lemma

This section is devoted to prove the two informational lower bounds Theorems 5.2 and 5.5. We will use the general informational lower bound from Theorem G.1 in the models {0} ⊔ D n,d rch min (f min , f max , L) and B(0, R)⊓D n,d rch min (f min , f max , L) respectively, and parameter of interest θ(D) = Supp(D) that lies in the metric space formed by the non-empty compact sets of R n equipped with the metric ρ = d H .

H.3.1 Construction of the Hypotheses

First, we show how to build hypotheses, i.e probability distributions for Le Cam's Lemma (Theorem G.1). We present a generic construction in the manifold setting by perturbing a base submanifold M 0 . Note that the larger the volume H d (M 0 ), the stronger the result. See also Proposition H.5 for a result similar in spirit, and used to derive computational lower bounds instead of informational ones.

and so that the uniform distributions D 0 , D 1 over M 0 , M 1 satisfy TV(D 0 , D 1 ) ≤ τ /2.

Proof of Proposition H.3. Let p 0 ∈ M 0 be an arbitrary point such that ∥p 0 -x 0 ∥ ≥ rch min . For instance, by taking the geodesic variation p 0 = γ x 0 ,v 0 (2rch min ), where v 0 ∈ T x 0 M 0 is a unit

H.4 Computational Lower Bounds: Packing Number of Manifold Classes

We now prove the computational lower bounds Theorems 5.3 and 5.6. For this, and in order to apply Theorem G.2, we build explicit packings of the manifold classes. To study the two models and the different regimes of parameters, we exhibit two types of such packings. The first ones that we describe (Proposition H.4) use translations of a fixed manifold M 0 in the ambient space, and are called ambient packings (see Appendix H.4.1). The second ones (Proposition H.5) use a local smooth bumping strategy based on a fixed manifold M 0 , and are called intrinsic packings (see Appendix H.4.2). Finally, the proof of the computational lower bounds are presented in Appendix H.4.3.

H.4.1 Global Ambient Packings

To derive the first manifold packing lower bound, we will use translations in R n and the following lemma.

Proof of Lemma H.6. If v = 0, the result is straightforward, so let us assume that v ̸ = 0. Since K is compact, the map g defined for p ∈ K by g(p) = ⟨v/ ∥v∥, p⟩ attains its maximum at some

On the other hand, for all p ∈ K we have p+v ∈ K v , yielding d(p, K v ) ≤ ∥v∥, and symmetrically d(p + v, K) ≤ ∥v∥. Therefore d H (K, K v ) ≤ ∥v∥, which concludes the proof.

As a result, packings of sets in R n naturally yields packings in the manifold space, by translating a fixed manifold M 0 ⊂ R n . With this remark in mind, we get the following ambient packing lower bound.

Then for all ε ≤ R/2, log pk

and such a packing can be chosen so that all its elements M have volume

Proof of Proposition H.4. Let z 1 , . . . , z N ∈ B(0, R/2) be a r-packing of B(0, R/2). From Proposition B.4, such a packing can be taken so that N ≥ (R/(4r)) n . Applying Proposition H.2 with parameters rch min , V and R ′ = R/2, we get the existence of some M 0 ∈ M n,d rch min such Then, log pk

. Furthermore, this packing can be chosen so that all its elements M satisfy

Then, log pk

. Furthermore, this packing can be chosen so that all its elements M satisfy

Proof of Proposition H.6. For both models, the idea is to first build a manifold M 0 ∈ M n,d 2rch min with prescribed volume close to V, and then consider the variations of it given by Proposition H.5.

• Let M 0 be the centered d-dimensional sphere of radius r 0 = V/2

R n . By construction, rch M 0 = r 0 ≥ 2rch min , so that M 0 ∈ M n,d 2rch min . Furthermore, one easily checks that H d (M 0 ) = V/2. From Proposition H.5, there exists a family of submanifolds {M s } 1≤s≤N ⊆ M n,d rch min with cardinality N such that

, that all share a point x 0 ∈ ∩ 1≤s≤N M s , and such that d

As a result, the family given by the translations M ′ s = M s -x 0 clearly provides the existence of the announced ε-packing of {0} ⊔ M n,d rch min , d H .

• Let M 0 ⊆ R n be a submanifold given by Proposition H.2 applied with parameters rch 

) and d H (M 0 , M s ) ≤ 23ε for all s ∈ {1, . . . , N }, we immediately get that M s ⊆ B(0, R/2 + 23ε) ⊆ B(0, R). As a result, this family clearly provides the existence of the announced ε-packing of B(0, R) ⊓ M n,d rch min , d H .

H.4.3 Proof of the Computational Lower Bounds for Manifold Estimation

We are now in position to prove the computational lower bounds presented in this work. First, we turn to the infeasibiliy result of manifold estimation using statistical queries in the unbounded model D n,d rch min (f min , f max , L) (Proposition 2.1).

Proof of Proposition 2.1. Since σ d f min rch d min ≤ 1, the uniform probability distribution D 0 over the centered unit d-sphere M 0 ⊆ R d+1 ×{0} n-(d+1) of radius rch min belongs to D n,d rch min (f min , f max , L). Given a unit vector v ∈ R n , the invariance of the model by translation yields that the uniform distributions

we see that the family {M k } k∈Z forms an infinite ε-packing of (M, d H ). From Theorem G.2, we get that the statistical query complexity of manifold estimation over the model D n,d rch min (f min , f max , L) with precision ε is infinite, which concludes the proof.

We finally come to the proofs of the computational lower bounds over the fixed point model {0}⊔D n,d rch min (f min , f max , L) (Theorem 5.3) and the bounding ball model B(0, R)⊓D n,d rch min (f min , f max , L) (Theorem 5.6).

Proof of Theorem 5.3 and Theorem 5.6. For both results, the idea is to exhibit large enough εpackings of M = {Supp(D), D ∈ D}, and apply Theorem G.2. In each case, the assumptions on the parameters f min , f max , rch min and d ensure that the uniform distributions over the manifolds given by the packings of Proposition H.6 (and Proposition H.4 for Theorem 5.6) applied with V = 1/f min belong to the model, and hence that M contain these packings. From Theorem G.2, any randomized SQ algorithm estimating M = Supp(D) over the model {0} ⊔ D n,d rch min (f min , f max , L) with precision ε and with probability of success at least 1 -α must make at least q ≥ log (1 -α)pk (M 0 ,d H ) (ε) log(1 + ⌊1/τ ⌋) queries to STAT(τ ). Furthermore, let {M i } 1≤i≤N be an ε-packing of {0} ⊔ M n,d rch min given by Proposition H.6, that we apply with volume V = 1/f min . Recall that these manifolds are guaranteed to have volumes 1/(4f min ) ≤ H d (M i ) ≤ 1/f min . From the assumptions on the parameters of the model, we get that the uniform distributions

over the M i 's all belong to {0} ⊔ D n,d rch min (f min , f max , L). In particular, the family {M i } 1≤i≤N is also an ε-packing of M 0 , and therefore