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Abstract— This article introduces a decentralized multi-robot
algorithm for Simultaneous Localization And Mapping (SLAM)
inspired from previous work on collaborative mapping [1]. This
method makes robots jointly build and exchange i) a collection
of 3D dense locally consistent submaps, based on a Truncated
Signed Distance Field (TSDF) representation of the environ-
ment, and ii) a pose-graph representation which encodes the
relative pose constraints between the TSDF submaps and the
trajectory keyframes, derived from the odometry, inter-robot
observations and loop closures. Such loop closures are spotted
by aligning and fusing the TSDF submaps. The performances
of this method have been evaluated on multi-robot scenarios
built from the EuRoC dataset [2].

I. INTRODUCTION

In mobile robotics, many tasks such as exploration, in-
spection or navigation in cluttered areas rely on a real-
time 3D mapping of the environment. Such 3D models can
be built incrementally using Simultaneous Localization And
Mapping (SLAM) techniques which jointly estimate the map
and the trajectory of the robot, and refine them by spotting
loop closures within the trajectory based on the reconstructed
map. A wide variety of visual and LiDAR-based SLAM
algorithms have been introduced, with different output repre-
sentations for the mapping such as point clouds, occupancy
grids and meshes (see [3]). In this work, we focus on stereo-
inertial SLAM to build a TSDF-based (Truncated Signed
Distance Field [4]) dense mapping of the environment, which
is suitable for navigation and collision avoidance.

While several single-robot SLAM algorithms of that kind
already exist (see section III), one current challenge is to
extend such algorithms into a multi-robot framework. It
combines three key ingredients: i) a task and data allocation
scheme, ii) an adapted communication policy and iii) a
matching & merging strategy. The allocation scheme governs
how each task and data is either centralized, decentralized
or distributed. The communication policy supervises the
topology, planning and content of inter-robot data exchanges.
Finally, the matching & merging strategy handles the fusing
of the received data and its propagation to refine the map
and trajectory estimates.

In a decentralized multi-robot framework, several robots
exchange information in a peer-to-peer fashion to mutually
refine their knowledge of the trajectories and the environ-
ment. Such architectures bring three main advantages: i)
it enhances the efficiency of the fleet by allowing a faster
coverage of the explored area; ii) it makes the fleet more

Fig. 1: Screenshot of reconstructed map and mesh for robot 4 in scenario
3 (see section X). Submap matches are shown in red.

flexible by granting the autonomy of the agents compared
to centralized architectures, and iii) it allows each agent
to improve its estimation accuracy by fusing the shared
information. However, decentralized SLAM specifically in-
troduces three kinds of challenges. The first challenges stem
from communication issues; they involve handling contact
losses and recoveries between the robots due to limited
communication range, and scale the quantity of exchanged
data to the available bandwidth. Besides, the clocks of the
robots should be synchronized precisely enough to prop-
erly process inter-robot observations. The second kind of
challenges regard the processing of real-time multi-robot
interactions. One must ensure that sending information to
the other robots and integrating packets received from them
do not excessively monopolize the limited computational
resources of the agents. Finally, as a third challenge, robots
should properly integrate the data received from other robots,
which assumes that they are able to estimate the odometry
reference frames of the other agents, and that they avoid
double-counting issues to ensure consistent re-estimations.

II. CONTRIBUTIONS AND PAPER ORGANIZATION

To the best of our knowledge, Duhautbout et al. [1] in-
troduced the first decentralized collaborative mapping frame-
work relying on the exchange of TSDF submaps. As a main
contribution, we extend their work into a fully decentralized
multi-robot SLAM pipeline through punctual improvements
to the Back-End modules. More specifically, we make the
Back-End inference more flexible by adopting a factor-
graph formulation as a unified framework to integrate odom-



etry, direct multi-robot observation and submap matches
contraints instead of merely propagating cumulated match
corrections to subsequent submaps as done in [1]. We also
robustify the TSDF submap matching module to avoid or
mitigate spurious matches. We then propose an adjusted
communication policy to handle decentralization constraints.
Finally, the proposed method does not assume common
initial odometry reference frames. The article is organized
as follows. Section III recaps some previous works on
dense collaborative mapping and decentralized multi-robot
SLAM. Section IV details some notations used throughout
the paper. Section V gives an overview of the proposed
method. Its algorithmic blocks such as its Front-End, its
global inference, submap matching and submap exchange
modules are respectively detailed in sections VI, VII, VIII
and IX. Experimental results are discussed in section X.

III. RELATED WORKS

A. Dense mapping

Dense mapping methods provide high resolution 3D mod-
els of the observed obstacle surfaces. They contrast to sparse
mapping methods, commonly used in visual SLAM, and
which use sparse point clouds as a support to formulate
geometric errors. Sketching only the raw geometry of the
environment in an unstructured way, they are neither suitable
for visual rendering nor for path planning.

A first family of methods use dense unstructured clouds of
geometric primitives such as points or surfels [5], eventually
augmented with photometric information. Dense point clouds
may result from LiDAR scans [6], the triangulation from
stereo image pairs [7] or the projection of localized depth
maps [8]. However, such representations remain unsuitable
for collision-avoidance tasks due to their unstructured nature.

A second family of methods use occupancy grids to
explicitly represent the surfaces. For instance, Octomap
[9] defines a 3D occupancy grid of voxels with a given
resolution and internally structured by an Octree model.
In this representation, each voxel is either occupied, free
or unknown, and the obstacle surface is explicitly defined
as the collection of all occupied voxels. However, space
discretization intrinsically limits the quality of the visual
rendering, and the grid needs to be augmented with a distance
map [10] to be used for path-planning.

As a third family, 3D polygonal meshes provide an al-
ternative explicit representation of surfaces. They can be
triangulated from sparse point clouds [11], but such process
makes them hard to update. One alternative solution is to
generate meshes from implicit representations like Signed
Distance Fields (SDF) [4] which model surfaces as their
zero-level sets. Driven by the increasing embarked com-
putational capabilities and the development of new RGB-
D sensors (e.g. Intel Realsense, Kinect), implicit surface
representations eventually outperformed explicit methods in
terms of mapping accuracy and computational efficiency, and
turned out to be more adequate for path-planning issues.

B. Dense single-robot SLAM

To be used into a SLAM framework, a dense map rep-
resentation should ideally meet three requirements: i) allow
incremental building ; ii) provide an underlying model for
pose estimation for odometry and loop closure and iii) be
malleable enough to maintain local and global consistency.

Dense SLAM has first relied on dense point clouds for
LiDAR [6], RGB-D [8] and stereo [7] SLAM. Brand et
al. [7] proposed a submap-based approach which allows to
maintain global consistency by aligning the locally consistent
submaps via ICP point-cloud registration. Working with
dense surfel clouds, ElasticFusion [5] introduces a model-
to-model surface loop closure to ensure local consistency
through non-rigid surface deformation, while it maintains
global consistency using global loop closures.

SDF-based mapping was popularized by the Kinect Fusion
algorithm [12]. It builds on RGB-D information to com-
pute a Truncated SDF (TSDF) in a spatial grid. Further
developments have been made on this idea, like the Voxblox
[13], dedicated to robotic navigation. Finally, C-Blox [14]
replaced the monolithic map by a set of locally consistent
TSDF submaps, whose localization was refined using a co-
constructed feature-based map, and allowed the fusion of
redundant overlapping submaps.

C. Decentralized Dense multi-robot SLAM

Dub et al. [15] proposed SegMap which decomposes dense
LiDAR point clouds into 3d segments identified and matched
using learnt descriptors. Such descriptors are exchanged be-
tween the robots and used for dense reconstruction. Schuster
et al. [16] proposed a stereo-visual decentralized SLAM
framework. It makes each robot share some local dense
point-cloud submaps with its neighbours, which are then
aligned via ICP point-cloud registration. In this approach,
the odometry reference frames of the robots are first aligned
based on inter-robot observations. The framework proposed
in this paper shows many similarities with [16] as it com-
bines dense submapping, submap matching and pose-graph
optimization.

A decentralized mapping framework based on the TSDF
submaps was first introduced by the work of Duhautbout
et al. [1]. The authors proposed to correct the mapping
of each robot by integrating the submaps broadcast by the
other robots and matched using ICP algorithms over point
clouds extracted from the reconstructed surface polygonal
meshes. However, only the mapping part is refined by those
a posteriori corrections, while the trajectory and previous
submaps are not impacted by the spotted matches.

IV. NOTATIONS

In the next sections, SE3 and SO3 respectively denote the
Special Euclidean Group and the Special Orthogonal Group
of dimension 3. We parameterize SE3 using the composite
Lie group SO3 ×R3. The operator ⊕ denotes the SE3 pose
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Fig. 2: System overview: The map is initialized by the Front-End module which estimates the trajectory, builds the TSDF submaps and computes the
associated meshes. The Back-End modules then refine the map by spotting submap matches and re-estimating the trajectory. Finally, the communication
module sends the completed submaps, the spotted matches and the fusion bookkeeping to the other robots, and integrates received submaps.

product. We define the � operator as follows:

(∀ T1, T2 ∈ SE3) T2 � T1 =

[
logSO3

(R2 ·R>1 )∨

t2 − t1

]
(1)

where R(·) ∈ SO3 and t(·) ∈ R3 parameterize T(·) ∈ SE3,
logSO3

maps from SO3 to its Lie algebra so3 and the vee
operator maps from so3 to R3. Interested readers may refer
to [17] for more details on operations on Lie groups. Finally,
given n ∈ N, let A ∈ Mn(R) be a positive definite
symmetric matrix and x ∈ Rn, the A-weighted Mahalanobis
norm of x is defined as follows: ‖x‖A =

√
x> ·A−1 · x.

V. SYSTEM OVERVIEW

The Figure 2 gives an overview of the proposed method.
The Front-End module is very similar to one used in [1]. We
initialize the trajectory estimates using the eVO algorithm
[18], but any other stereo odometry algorithm may be used
instead. In parallel, the trajectory is splitted on-the-fly into
a succession of submaps based on the estimated travelled
distance and change in orientation. While the current submap
is still active, the TSDF representation of the observed envi-
ronment is updated using the dense depth maps computed by
the Efficient LArge Scale stereo-matching (ELAS) algorithm
[19]. Once this submap is closed, we use the Marching Cube
algorithm [20] to convert its TSDF into a polygonal mesh
which represents the surface of the observed obstacles. Those
processes allow to fill in the map which consists of the
trajectory estimates and the submaps, each submap including
a TSDF and the associated polygonal mesh.

The Back-End modules aim at ensuring the global con-
sistency of the map by spotting loop closures between
the submaps and re-estimating the trajectory. As detailed
in section VII and similarly to [1], each newly computed
submap is matched against its most overlapping neighbour
(excluding consecutive submaps) using the Iterative Closest
Point registration. While in [1], submap matchings are only
used to correct the pose of the current and posterior submaps,
we include it as an additional trajectory constraint in a factor
graph that is maintained in parallel. This factor graph may
also include factors derived from inter-robot observations
such as direct observations between the robots (see [21]) or

the observation of common landmarks. We can then refine
the whole trajectory by performing a 6-DoF optimization
over the factor graph.

Finally, the communication module handles the multi-
robot interactions. As in [1], submaps are the elementary
exchange units between the robots and each newly completed
submap is immediately broadcast to its neighbours. In the
proposed method, we exchange additional information re-
garding inter-robot observations, submap matches and patch
fusions, and we propose to manage inter-robot interactions
(including contact losses and recoveries) based on a commu-
nication history (see section IX).

VI. FRONT-END AND PATCH GENERATION

A. Submap creation

The submap creation procedure is mostly similar to [1].
The trajectory is splitted online into a succession of submaps,
relying on eVO pose estimates1. It defines the underlying
estimation model by encoding the relative pose stochastic
constraints derived from the eVO outputs. Each time a new
keyframe pose estimate is received from eVO, it is either
added to the current submap or a new submap is created
if the accumulated distance or the accumulated changes in
orientation in that submap exceeds some user-predefined
thresholds, lmax and θmax respectively. If a new submap
has to be created, its TSDF is queued to be converted into
a polygonal mesh representing the surface of the observed
obstacles. Note that each submap defines its own frame of
reference with coincides with the pose of its first keyframe,
whose covariance matrix is initialized by propagating the
uncertainties along the odometry factors.

B. Submap surface computation

In parallel to the odometry, ELAS [19] estimates depth
maps from the stereo image pairs. We associated each newly
estimated depth map to its corresponding eVO pose estimate.
Both are integrated to build a SDF representation attached

1We use a slightly modified version of eVO [18] which additionally
returns the covariance matrix of the relative pose from the previous keyframe
to the current one ΣKFk-1,KFk .



to the current submap. A SDF Φ implicitely defines the
surface S as its zero-level set i.e. S = Φ−1({0}). The
TSDF builds an incremental approximation of the SDF from
range measurements. It first relies on spatial voxellization.
We use the open-source OpenChisel library [22] which
organizes the voxels into dynamically allocated chunks and
allows constant-time access using a spatially-hashed index.
Secondly, it requires distance estimation. Given a range
measurement, we measure for each observed voxel v the
projective distance dm(v) to the measured impact point along
the observation ray. By convention, the distance is signed
positively when the voxel lies between the sensor and the
surface, and negatively when it is behind the surface. It is
truncated at a given threshold dmax as it approximates the
Euclidean distance only within the surface’s neighborhood.
OpenChisel scales this threshold dynamically w.r.t. the depth
uncertainty. To account for measurement uncertainty, each
voxel is assigned a weight ŵ(v) which reflects the estimate’s
reliability. Each new range measurement dm(v) of weight
wm(v) is fused with the current distance estimate d̂(v) of
weight ŵ(v) using a running weighted average:d̂(v) ← ŵ(v) · d̂(v) + wm(v) · dm(v)

ŵ(v) + wm(v)

ŵ(v) ← ŵ(v) + wm(v)

(2)

Such incremental refinement ensures the local consistency
of the TSDF. Furthermore, observed voxels located close
to the range sensor and whose distance sign is inconsistent
with the current measurement are reset using space carving
[22]. Finally, we use the Marching Cube algorithm [20]
to generate explicit representations of the surface as the
polygonal mesh which best fits the TSDF zero-level set. Each
TSDF is built in the reference frame of its associated submap,
and its polygonal mesh is computed as soon as the submap
is closed. Once computed and as in [16], it is queued for
submap matching and stored in a dedicated stack, where it
is identified by two IDs: a robot ID – of the robot which
computed it – and a patch ID.

VII. ICP-BASED SUBMAP MATCHING

As soon as the mesh of a submap Si is computed, we try to
match it with previously computed submap meshes according
to the following procedure inspired from [1]. First, we com-
pute the Axis-Aligned Bounding Box (AABB) AABBi that
encompasses its mesh; this rough volume estimation allows
fast pairwise comparisons for overlapping. We then select the
submap Sj whose AABBj shows the highest overlap, skip-
ping consecutive or already-matched submaps. We proceed
if vij = volume(AABBi ∩ AABBj) ≥ vmin where vmin is
a user-defined threshold. We restrict the matching procedure
to most overlapping submap for real-time requirements. We
then perform a model-to-model alignment [23] based on the
Iterative Closest Point (ICP) algorithm [24] to estimate the
relative pose TSiSj ∈ SE3 between both meshes and thus
between their associated submaps. For that purpose, we first
extract the nodes of the submap meshes within the identified
common chunks as point clouds Pi and Pj , along with their

normals. The ICP is then run using a point-to-plane criterion
(which widens the convergence bassin) within a RANSAC
scheme, implemented in the Point Cloud Library (PCL) [25].

Algorithm 1– Submap alignment procedure (inspired from [1])

Candidate submap to align: Si;
Find the most overlapping submap Sj such that
vij = volume(AABBi ∩ AABBj) ≥ vmin;

Extract the points clouds Pi and Pj within the identified overlapping
areas;

Compute the relative pose transformation T̂ ICP
SiSj

using ICP;
if ICP converges then

Check the numbers of inlier correspondences exceeds mininliers;
Check the ICP RMSE is below maxRMSE;
Check the mean angle between corresponding normals is below
max∠;

Check that T̂ ICP
SiSj

is consistent with the estimated uncertainties on
TWSi

and TWSi
;

Estimate the ICP covariance matrix ΣT̂ ICP
SiSj

;

Add the submap match factor between Si and Sj ;
if vij ≥ vfusion

min then
Fuse TSDFi into TSDFj ;

Once the ICP has run, we consider the match as successful
it passes the four following tests. First, the estimated pose
T̂ ICP
SiSj ∈ SE3 should be supported by at least mininliers inlier

correspondances. Secondly, the Root Mean Squared Error
(RMSE) RMSEICP computed over the inlier correspondences
must not exceed maxRMSE, nor should the mean angle
between corresponding normals exceed max∠. Thresholds
mininliers, maxRMSE and max∠ are user-defined. Finally and
overall, T̂ ICP

SiSj should be consistent with the estimated co-
variance matrix Σ̂TSiSj

:∥∥∥(T−1
WSi
⊕ TWSj

)
� T̂ ICP
SiSj

∥∥∥2

Σ̂TSiSj

≤ χ2
6;95% (3)

where W denotes the world frame, TWSi
and TWSj

are the
current submap poses extracted from the map, and χ2

6;95%

is the 95% fractile of a χ2 distribution with 6 degrees
of freedom. Σ̂TSiSj

is computed from Σ̂TWSi
and Σ̂TWSj

using the classical error propagation law. If the alignment
succeeds, the covariance of the ICP-estimated relative pose
has to be computed in order to include the submap match
as a new factor in the underlying pose graph. Inspired by
[7], we approximate it within its actual convergence bassin
as a spherical matrix whose standard deviations depend on
RMSEICP

σ{x,y,z} = max
(
RMSEICP, σ

min
t

)
(4a)

σ{roll,pitch,yaw} = max

(
arctan

(
2 · RMSEICP

d{yz,xz,xy}

)
, σmin
θ

)
(4b)

where d{yz,xz,xy} denotes the diameters of the AABB overlap
between the matched submaps in the respective planes and
σmin
t and σmin

θ are user-defined threshold introduced to avoid
overconfident estimation. Finally, if the overlap vij between
both submaps exceeds a predefined threshold vfusion

min > vmin,
then the query submap Si is fused into the matched submap



Sj . This requires to project the voxels of TSDFi into TSDFj
using T̂ ICP

SiSj to spot the impacted voxels of TSDFj . Then, the
values of TSDFi at the center of impacted voxels of TSDFj
are computed via trilinear interpolation, and integrated using
equation (2). The mesh of the fused submap is then deleted
from memory and replaced by a reference to the fused one
for further matches. We require each submap to keep tracks
of such fusions as the set of the submap IDs whose mesh
has been fused into it. The whole process is summarized in
algorithm 1.

VIII. FACTOR GRAPH AND BACK-END INFERENCE

Contrary to the work of [1] which only used matches to
correct the drift of posterior submaps, we use an underlying
factor graph to refine the whole trajectory and the mapping.
The structure of the maintained factor graph, similar to [16]
for the sequential case, is represented in the Figure 3.

TSDF + Mesh TSDF + Mesh

TSDF + Mesh TSDF + Mesh

Global
landmark

Ri

Rj

Fig. 3: Structure of the pose-graph with relative pose odometry factors
(orange), submap matching factors (brown), inter-robot observation factors
(green) and global landmark observation factor (blue).

In this graph, each factor between two keyframe pose
variables Ti, Tj ∈ SE3 encodes a stochastic constraint:

ξij ,
(
T−1

i ⊕ Tj
)
� T̂ij ∼ N (0,Σij) (5)

where N denotes the Gaussian distribution and Σij is the
covariance matrix of the residual expressed in m. Thus, the
likelihood of T̂ij w.r.t. Ti and Tj is:

p(T̂ij|Ti, Tj) ∝ exp

(
−1

2

∥∥ξij
∥∥2

Σij

)
(6)

Batch inference on the full pose graph is performed by
minimizing the negative log-likelihood of the relative pose
estimates w.r.t. to the pose estimates:

Θ∗ = arg min
Θ

{− log p(Z|Θ)} (7)

where Θ is the set of all optimized pose variables, and
Z the set of all relative pose measurements (may they be
direct inter-robot observations or spotted submap matches).
p(Z|Θ) is proportional to the product of the factors defined
in equation (6). The problem (7) yields a nonlinear least-
square optimization problem, solved using the Levenberg-
Marquardt algorithm. Similarly to [16], we also use a Cauchy
loss function with parameter χ2

6;95% on the loop closure
factors to mitigate eventual spurious matches.

In the proposed framework, the pose graph is built in-
crementally using the statistically independant pose and
covariance estimates provided by eVO. Batch optimization is
performed in parallel for each new submap match, using the
Ceres solver [26] which then allows to extract the submap
pose covariance matrices.

IX. MULTI-ROBOT FRAMEWORK

A. Task and data allocation scheme

The proposed multi-robot framework is fully decentral-
ized. Each robot independently estimates its own instance
of the map, as it holds valuable information for higher-level
path-planning tasks. Besides, each robot separately runs its
own matching and inference modules. However, as discussed
below, the task of spotting of inter-robot matches is splitted
among the robots as each robot only looks for inter-robot
matches between received submaps and its own, and found
matches are then shared between the robots.

B. Communication policies

In a decentralized framework with limited communication
range, robots may occasionally loose contact between each
other when covering large areas, and thus miss some valuable
information broadcast in the meanwhile. Therefore, the data
exchange policy must cover i) regular communications for
robots within communication range, and ii) a regularization
policy to handle contact recovery.

1) Regular communication policy: In the work of Duhaut-
bout et al. [1], the submaps, which includes the TSDF and its
reference pose, were the elementary exchange unit between
the robots. Similarly, we make the robots broadcast each
submap they complete to all their reachable neighbours. Each
submap message includes the submap’s ID, its associated
TSDF, its fusion bookkeeping, its associated subgraph of
poses as well as the relative pose factors derived from
direct inter-robot observations. The polygonal mesh is not
communicated and must be re-computed by the receiver. We
also make robots communicate the submap matches they
found, and wheter such match triggered a submap fusion or
not. Received matches and fusions are queued and integrated
to the map as soon as possible.

2) Regularization policy: When covering large areas,
robots may occasionally loose contact between each other.
When they meet again and recover communication, they
should regularize their knowledge. For that purpose, we make
each robot hold a reception bookkeeping. Each robot i stores
the following information for each other robot j 6= i : i) the
timestamp of the most recently received submap of robot
j, ii) the timestamp of the most recently received submap
match found by robot j. In the decentralized framework,
some submaps and matches from robot j may also have
been relayed to robot i by third robot. When two robots
meet again after a loss of contact, they first exchange their
current reception bookkeeping. They can then regularize their
knowledge by sending to the other robot all the submaps
and all the matches which are posterior to most recently
received ones. The reception of submaps and matches must



be acknowledged by the receiver robot to pursue. For each
robot, information must be sent in chronological order not
to break the consistency of the reception history if the
communication was to be lost again during the process.

C. Matching and Merging strategy

1) Stack Merging: When a robot receives a submap from
another robot, it integrates it into its associated submap
stack. In [1], received patches were integrated into a public
patch manager and eventually used to correct the robot’s
own patches stored into a distinct private patch manager.
In the proposed method, if the relative pose transformations
between its odometry reference frame and the one of the
host robot is unknown, we initialize one submap stack per
robot. Thus, each submap stack first stands as a separate
map with its own reference frame. During the process,
those submap stacks, which evolve independently from each
other, are to be fused as the transformations between their
odometry reference frames get estimated. Received inter-
robot correspondences are either added or buffered, while we
check if previously buffered correspondences can be added.
Each time a new submap is received, the Stack Merger
Module (see Figure 2) checks whether there are enough inter-
robot correspondences to estimate the relative transformation
between the reference frames of the two involved mapping
stacks. If it does, we select the most consensual relative
pose transformation hypothesis induced by the inter-robot
correspondences and fuse both stacks. All submaps of the
aligned stack are from now on considered as anchored.

2) Inter-robot submap matching: For each new submap Si
created by the host robot, the process described in algorithm
1 is performed for each anchored trajectory. For each new
submap, the robot tries to match it against its own most
overlapping submap and against the received anchored most
overlapping submap. Each robot only looks for submap
matches involving its own submaps, and may benefit from
the matches received from other robot between the submaps
of other robots. If the robot receives a fusion information,
it fuses the two involved submaps and updates their fusion
bookkeeping.

3) Multi-robot global inference: Figure 3 shows the struc-
ture of the underlying pose graph to handle multi-robot
global inference. A bach pose graph optimization is required
each time a new submap match is found or received, and as
soon as a mapping stack gets anchored. However, the opti-
mization is performed only over the anchored trajectories.

X. PERFORMANCE EVALUATION

A. Considered test scenarios

The proposed algorithm has been evaluated on multiple
multi-robot scenarios. We built those scenarios using se-
quences taken from the EuRoC dataset [2] (see Figure 4). We
built multi-robot scenarios by synchronizing the individual
sequences. Table I recaps the main characteristics for each
scenario, as well as the performance metrics of eVO [18] on
each sequence (see §X-B).

We simulated noisy and limited range relative pose inter-
robot based on the detection of markers carried by the
robots (see [21]). Given a camera C and a marker T ,
we sampled a relative pose measurement only if i) the
T fully projected onto the image plane of C, and ii) the
relative distance between C and T and the tilt observation
angle where respectively below dmax

CT = 5m and θmax
CT =

60◦. Relative measurement were sampled using Gaussian
noises with standard deviations σt = 0.1m and σθ = 5◦

for translation and orientation. However, Gaussian noise
is a simplifying simulation assumption, while real marker
measurements exhibit biases and ambiguity effects which
can cause large outliers at certain view angles and larger
distances, as analyzed by [27].
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Fig. 4: EuRoC Groundtruth trajectories (left) and screenshot from se-
quence MH1 (right)

B. Performance metrics

In each scenario and for each robot, we first evaluated the
accuracy of its trajectory estimates. As advocated in [28],
trajectories are first aligned with the groundtruth on the 3D
similarity group Sim3, to compute the Absolute Translation
Errors (ATE) and the Absolute Rotation Errors (ARE):[

δθn δpn
]>

= T̂WIn � TWIn ∈ R6 (8a)

ATE =

√√√√ N∑
n=1

‖δpn‖2

N
ARE =

√√√√ N∑
n=1

‖δθn‖2

N
(8b)

where (̂·) denotes the estimate. For each robot in each
scenario, we jointly aligned all the trajectories to evaluate
those metrics. The joint accuracy thus also accounts for the
error on the alignment of the odometry reference frames.
We also evaluated the communication load induced by the
exchanged submaps and matches between the robots, as well
as the mean duration to compute the TSDF meshes, integrate
the received submaps and compute the matches.

C. Experimental results

1) Implementation details: Simulations were carried out
using the ROS middleware [29] on an Inter R© Xeon(R) W-
123 CPU 3.60 GHz × 8 processor. We used the Maplab
framework [30] for the pose graph structure and the Open-
Chisel library [22] to handle the TSDF. We set the switch
threshold for run distance and accumulated changes in ori-
entation respectively to lmax = 3m and θmax = 90◦, and we
used a voxel resolution of 8cm for the TSDF. For submap



matching, we set mininliers = 1000, maxRMSE = 5cm and
max∠ = 30◦. Figure 1 displays the map obtained for robot
4 in the multi-robot scenario 3.

Seq. Length Duration ATE ARE Scale Scenarios
[m] [s] [m] [deg] [%] 1 2 3 4

EUROC dataset
MH1 80.6 182 0.620 14.04 0.490 7 7 7
MH2 73.5 150 0.515 10.66 1.211 7 7
MH3 130.9 132 1.018 14.46 1.943 7 7
MH4 91.7 99 1.069 10.15 3.245 7
MH5 97.6 111 1.049 10.28 3.351 7

TABLE I: Properties of the EuRoC scenarios and estimation accuracy of
the eVO algorithm on each sequence

2) Processing times: Table II recaps the processing time
statistics for the main tasks. Contrary to optimization,
submap integration and mesh computation which are per-
formed quickly, the submap matching process appears to be
the bottleneck of the method, with a median processing time
close to 5 seconds, most of this time being dedicated the ICP
alignment.

Task
Duration statistics Periodmin q1 median q3 max

[s] [s] [s] [s] [s] [s]
Integration 7.1e-4 1.09e-3 1.52e-3 0.018 0.129 4.5
Matching 0.173 2.910 4.757 6.876 16.77 6.1

Optimization 0.022 0.127 0.199 0.263 0.582 19.0
Mesh computation 0.022 0.055 0.073 0.095 0.264 13.9

TABLE II: Processing times statistics computed from all the multi-robot
scenarios. q1 and q3 respectively denote the first and third quartiles of the
associated distribution.

3) Communication load: Statistics about the mean mem-
ory consumption and exchange periods are reported in Table
III. On average, TSDF submaps weight around 4 MBytes
(most of this weight being explained by the TSDF representa-
tion) and are exchanged every 7 seconds, which is affordable
in a multi-robot framework.

Item Weight
Sending Reception period
period 2 robots 3 robots

[s] [s] [s]
Submaps 3,9 MB (± 1.2 MB) 7.4 5.7 5.6
Matches 288 B 10.3 9.4 5.3

TABLE III: Mean weight of exchanged items and exchange periods
averaged over all the scenarios

4) Spotted matches: The numbers of spotted matches for
each robot are respectively reported in Tables VI and V for
the single and multi robot cases, while errors statistics on the
derived relative poses are reported in Table IV. On average,
the median error on matches is about 10cm. Low precision
may result from the sparsity of the registered point clouds,
extracted from the submap meshes.

5) Estimation accuracy: Joint trajectory accuracies and
are respectively reported in Tables VI and VII for single
and multi-robot cases. While spotted matches combined to
pose graph optimization help to slightly improve the accuracy
on the single-robot case, they do not bring significant gains
in accuracy in the multi-robot case as accuracies on the

Sc. Total Submap match ATE distributions [m]
matches min q1 median q3 max

1 37 0.040 0.073 0.126 0.162 0.299
2 18 0.026 0.088 0.108 0.154 0.232
3 20 0.029 0.079 0.111 0.173 0.239
4 47 0.025 0.079 0.132 0.195 0.317

TABLE IV: Submap match accuracy statistics. q1 and q3 respectively
denote the first and third quartiles of the associated distribution.

Sc. Robot Submap Matches
Inter-Robot Spotted Attempted

1 Robot 1 11 19 30
Robot 2 10 18 31

2 Robot 1 2 9 41
Robot 3 2 9 44

3 Robot 4 9 13 37
Robot 5 4 7 40

4
Robot 1 10 18 37
Robot 2 9 15 30
Robot 3 5 14 34

TABLE V: Submap matching statistics

Robot
Joint trajectories Number of

ATE ARE Scale spotted/attempted
[m] [deg] [%] submap matches

Robot 1 0.320 6.484 0.81 5 / 21
Robot 2 0.310 8.396 0.34 5 / 17
Robot 3 0.843 10.970 0.10 11 / 28
Robot 4 1.003 8.095 3.71 1 / 14
Robot 5 0.851 7.116 3.26 2 / 19

TABLE VI: Trajectory accuracies for the single-robot case

Sc. Robot
Joint trajectories Host robot trajectory

ATE ARE Scale ATE ARE Scale
[m] [deg] [%] [m] [deg] [%]

1 Robot 1 0.316 7.447 0.13 0.318 6.454 0.58
Robot 2 0.316 7.484 0.21 0.308 8.326 0.01

2 Robot 1 0.630 9.083 0.62 0.347 6.479 1.74
Robot 3 0.631 9.049 0.78 0.799 10.94 0.65

3 Robot 4 0.884 7.618 3.43 0.931 8.074 3.80
Robot 5 0.904 7.608 3.38 0.809 7.100 2.90

4
Robot 1 0.539 8.784 0.53 0.326 6.455 0.91
Robot 2 0.541 8.785 0.54 0.311 8.336 0.04
Robot 3 0.540 8.801 0.59 0.797 10.99 0.29

TABLE VII: Joint trajectory RMSE (computed over all the trajectories
for each robot in each scenario) vs Host robot trajectory accuracy

host robot trajectories are comparable to the single-robot
case. Notheless, joint accuracy metrics show that each robot
manages to correctly align the received submaps into its own
map.

XI. CONCLUSION AND PERSPECTIVES

In this article, we proposed a decentralized multi-robot
method for simultaneous localization and dense 3D mapping
based on the construction and the exchange of locally con-
sistent TSDF submap. We evaluated it on some multi-robot
scenarios built from the EuRoC sequences to demonstrate its
suitability to real-time requirements, and its ability to build
a locally consistent global map integrating the data received
from other robots.

The proposed method shows some limitations which
should be addressed in future works so as to ensure scal-
ability with the number of robots and improve the matching



performance. The first limitation stems from the submap
matching process. First, the search for candidate submaps for
matching could benefit from place-recognition approaches
based for instance on sparse point cloud descriptors [31],
which could also help to pre-align submaps when dealing
with significant drift. Furthermore, ICP is known to require
a good initial alignment not to converge to local minima.
Lacking a pre-alignment step since the extracted clouds are
too sparse to use classical 3D keypoints and descriptors for
matching, the current matching process hence restricts to
low drift hypothesis. Besides, increasing the resolution of the
TSDF to get denser point clouds vainly affects the system
performances. A more extensive evaluation of the method
on dataset with longer trajectories is necessary to assess
its performances in face of significant drifts. Furthermore,
a perspective would be to adapt the ICP-based matching to
the Euclidean SDF representation, as proposed in Voxgraph
[32]. The submap registration appears to be the bottleneck
of the proposed framework and should be made faster.
Potential matches could also be organized into a priority
queue according to their heuristically estimated information
gain as done by [16]. Finally, even though the full back
optimization is performed quickly, it may benefit from an
incremental formulation.
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