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Electromagnetic Transient Analysis of Transmission
line based on rational Krylov approximation

Amjad Mouhaidali, Damien Tromeur-Dervout, Olivier Chadebec, Jean-Michel Guichon, and Sebastien Silvant

Abstract—This paper shows a comparison between Vector
fitting and rational Krylov fitting techniques for the determi-
nation of rational models concerning the fitting accuracy, the
computational performances and the model order. Primarily,
the mathematics behind the second technique are presented. It
should be noted that rational Krylov fitting have never been
used in transmission line modeling. A new procedure is proposed
to use rational Krylov fitting instead of vector fitting in the
universal line model (ULM). Furthermore, it is demonstrated
that this procedure has several advantages over the traditional
one. Two illustrative examples involving a transmission system
are presented for validation of the new procedure.

Index Terms—Electromagnetic transient, frequency depen-
dency, rational krylov approximation,Vector fitting, transmission
line model, passivity.

I. INTRODUCTION
In the frequency domain and for electromagnetic transient

studies, rational approximation is used to reproduce a given
frequency behavior. This approximation leads to recursive
convolution and fast computations in the time domain [1].
Examples of applications are the modeling of transmission
lines and cables [2], power transformers at high frequencies
and the Frequency-Dependent Network Equivalents (FDNE)
[3]. A general rational representation of a frequency dependent
function f(s) has the form:

f(s) ≈ r(s) =

N∑
m=1

cm
s− qm

+ d (1)

where s = jω in rad/s, the model order N; the poles qm
and residues cm are either real or come in complex conjugate
pairs; d is a constant. In the case of cable modeling, the
matrix f corresponds to the frequency dependent characteristic
admittance Yc(s) or the propagation function H(s).

The vector fitting VFIT [4], [5] technique is widely used
by the engineering community for the achievement of ratio-
nal models. VFIT has a relatively simple formulation, high
computational efficiency and delivers high model accuracy.
Recently, VFIT was combined with frequency partitioning and
model order reduction via balanced realizations to approximate
FDNE [6] or transmission lines and cables [7]. A novel
approach is proposed in [8], where the Matrix Pencil Method
(MPM) and the Loewner Matrix (LM) are incorporated into
the VFIT technique.
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A new rational approximation method has emerged recently
and it is based on the Rational Kylov fitting RKFIT [9]. This
method is based on Rational Arnoldi Decomposition (RAD)
for poles relocation. The used orthonormal RADs deliver
a well-conditioned basis for the numerical linear algebra
problems, and a more robust and faster convergent algorithm.
The main difference between VFIT and RKFIT is the poles
relocation method. Both methods solve a Least Square (LS)
problem at each iteration, however VFIT uses a projection
space represented in the partial fraction basis and RKFIT uses
a projection space represented in discrete-orthogonal rational
functions.

In this paper, the advantages of RKFIT are highlighted
regarding the automatic determination of the model order (N)
with a built-in model order reduction technique, the fitting
accuracy and the pole relocation convergence. It is proposed
to use RKFIT in the implementation of the Universal Line
Model (ULM) [2] instead of VFIT.

Unfortunately, RKFIT cannot guarantee the passivity of the
model. If passivity violation is detected, post fitting passivity
algorithms are necessary. Various passivity enforcement tech-
nique are presented in [10].

This paper is organized as follows. The rational Krylov
algorithm is presented in Section II. Section III assess the
numerical performances through different examples. Section
IV demonstrate the application of the new approach for a
single overhead line and an underground cable system.

II. RATIONAL KRYLOV FITTING ALGORITHM

A. Mathematical background of RKFIT

RKFIT is an iterative algorithm for solving nonlinear
weighted rational least square problems [9]. Let’s consider The
following matrices and vector:
• A = diag(si) ∈ CNs,Ns , where Ns is the number of

frequency samples
• F = diag(fi) ∈ CNs,Ns with fi = f(si)
• b ∈ CNs , where b is the starting vector.

The algorithm tries to approximate Fb as r(A)b, where r is
a rational function of the form:

r =
pm+k

qm
(2)

where pm+k and qm are polynomials of degree less or equal
to m + k and m respectively such that the relative error εer
is minimal:

εer =
||Fb− r(A)b||2
||Fb||2

→ min (3)
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The RKFIT algorithm is extended to approximate a family
of matrices all sharing a common denominator qm [9]. This
feature fits all the element of Yc(s) with a common pole set.

The rational Krylov fitting is a fitting method based on
Krylov space. We will provide a brief overview of the Krylov
methods. A more exhaustive analysis can be found in [11],
[12]. Given the matrix A and the vector b, the corresponding
order−m Krylov subspace is defined as:

Km+1(A, b)
def
= span {b, Ab, . . . , Amb} (4)

The starting point in the RKFIT algorithm is to consider a
non zero polynomial qm ∈ Pm that has no roots in Λ(A), the
set of eigenvalues of A. The rational Krylov space of order m
associated with (A, b, qm) is defined as:

Qm+1(A, b, qm)
def
= qm(A)−1Km+1(A, b) (5)

To extract information out of the rational Krylov space, the
first step is to construct the rational Arnoldi decomposition of
the space Qm+1(A, b, qm) as follows:

AVm+1Km = Vm+1Hm (6)

where the columns of Vm+1 are an orthogonal basis
of Qm+1(A, b, qm). Km and Hm are unreduced upper-
Hessemberg (m+1)×m pencils such that {hj+1,j/kj+1,j}mj=1
are the root of qm.
The rational approximation associated with the rational
Arnoldi decomposition in (6) satisfies:

r(A)b =
(
Vm+1Km

)
f
(
K†mHm

) (
Vm+1Km

)†
b (7)

B. Pole relocation process

The pole relocation process aims to find new poles that
would provide a better approximation to Fb from previous
ones. Two linear spaces in CNc are used, where the search
space is S = R(Vm+1) = Qm+1(A, b, qm) and the target
space T = R(V̂m+k+1) = Qm+k+1(A, b, qm). Let’s consider
the orthogonal projection onto T as PT = V̂m+k+1V̂

∗
m+k+1.

Then we can write that r(A)b should be the orthogonal
projection of Fb onto the target space T :

||Fb− r(A)b||2 = ||Fb− V̂m+k+1V̂
∗
m+k+1Fb||2

= ||(I − PT )Fb||2
(8)

Then we search for vector v ∈ S such that:

v = argmin
v̄∈S
||v̄||2=1

||(I − PT )F v̄||2 (9)

Defining the matrix S = FVm+1−V̂m+k+1(V̂ ∗m+k+1FVm+1),
a solution is given by v = Vm+1ĉ, where ĉ is the right singular
vector of S associated to the smallest singular value σmin. Let
a nonzero polynomial q̄m ∈ Pm that has no roots in Λ(A),
then:

Qm+1(A, b, qm) = Qm+1(A, q̄m(A)qm(A)−1b, q̄m) (10)

The pole relocation consists in finding the polynomial q̄m such
that:

v = Vm+1c = q̄m(A)qm(A)−1b (11)

C. Partial fraction basis calculation

The approximant r is calculated via a coefficient vector c ∈
Cm+k+1 such that:

c =
V̂ ∗m+k+1(Fb)

||b||2
(12)

The computation of lead to the evaluation of the relative
error and compared it to the desired approximation tolerance.
The full development of the rational Krylov fitting process is
proposed in [9], [13]. The high-level description of RKFIT is
presented in Fig 1.

1: Takes initial qm
2: repeat
3: Set search space S := Qm+1(A, b, qm)
4: Set target space T := Km+k+1(A, qm(A)−1b)
5: Find v = argmin v̄∈S

||v̄||2=1
||(I − PT )F v̄||2

6: Let q̄m ∈ Pm such that v = q̄m(A)qm(A)−1b
7: Set qm = q̄m
8: until stopping criteria satisfied
9: construct approximent r

Fig. 1. High-level description of RKFIT

III. ACCURACY COMPARISON OF RKFIT AND VFIT

In [14] a selection of algorithms for rational approximation
are discussed. Table I recapitulates the main RMS error values
for various example and different model order studied in
[14]. It was shown that RKFIT outperforms VFIT for rational
approximation regarding the approximation accuracy.

TABLE I
RMS ERROR VALUES FOR ALL TESTED EXAMPLES IN [14]

Example Model order RMS error

VFIT RKFIT

Matrix fitting
Toolbox [15]

10 1.139 × 10−2 6.246 × 10−3

20 6.069 × 10−3 1.233 × 10−3

CD player SLICOT
benchmark [16]

10 1.683 × 101 3.675 × 100

20 1.674 × 101 9.061 × 10−3

ISS model SLICOT
benchmark [16]

10 6.729 × 10−4 8.735 × 10−5

20 3.016 × 10−4 1.507 × 10−5

Nonlinear eigenvalue,
buckling example [17]

10 1.476 × 10−4 2.292 × 10−10

20 1.270 × 10−11 2.389 × 10−12

ISS model with
additive normally

distributed noise [16]

10 5.557 × 10−1 4.702 × 10−2

20 6.280 × 10−2 3.798 × 10−2

In this section, we will focus on the main differences of
the two methods. First the model order determination, then
the accuracy and pole convergence with weight, after that
the choice of the starting poles and at the end the system
passivity. An example from the literature used as benchmark
for transmission line studies will be fitted with both methods.
This case study is taken from [5] and represent the 6 × 6
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admittance matrix of the distribution network of Fig. 2 mea-
sured from nodes A and B. The magnitude of the elements
of the admittance matrix are plotted in Fig.3. We choose to
fit only the first column of the admittance matrix. This case
is challenging due to multiple resonance peaks. The fitting
accuracy is examined by comparing the fitting RMS error
calculated as:

RMSerror =

√√√√√ Ns∑
k=1

Nc∑
n=1
|ffittedn (sk)− faccuraten (sk)|2

NsNc
(13)

The Pole relocation process can be monitored by computing
so-called Hausdorff distance between the pole sets at two
consecutive iterations [10]. The simulations are performed
using a 16 GB RAM computer, i5-9600 3.10 GHz-processor
with MATLAB 2019a.

Fig. 2. Power system distribution system

The element of the vector are fitted using the relaxed
nontriviality constraint of VFIT, provided in the function
vectfit3.m, and the unstable poles are forced to be stable by
flipping them.
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Fig. 3. Magnitude of admittance matrix of the power system

A. Model order determination and reduction technique
In the first iteration of RKFIT, the model order is chosen

to be smaller than the number of frequency samples and
high enough to approximate the function with a low deviation
error. When RKFIT founds an adequately good approximation,
it reduces the model order and tries not to degrade the
approximation accuracy. The admittance matrix is fitted using
RKFIT with reduction technique. The approximation error is
presented in Figure 4 for two error tolerances. The maximal
model order is fixed to 70 and the starting poles is chosen to
be infinite.
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Fig. 4. Model order reduction with RKFIT

RKFIT achieve an RMS error below the tolerance at iter-
ations 2 and 5, after which the degree reduction takes place.
The denominator degree is reduced to N = 33 and N = 49
for tolerances T1 and T2 respectively. After 1 or 2 iterations
of pole relocation, RKFIT reaches the fixed tolerance and the
algorithm is stopped.

B. Fitting accuracy and pole convergence
In order to compare the fitting accuracy, The model order

is fixed for RKFIT and VFIT. The fitting is done with
three weighting schemes (no weight, strong inverse magnitude
weight, and weak inverse magnitude weight). The weight is
common for all the vectors elements. The initial poles are
chosen to be complex and linearly spaced.

TABLE II
RELATIVE APPROXIMATION ERROR OF VFIT AND RKFIT

Weight Order RMS error CPU

VFIT

No weight 50 1.58 × 10−4 0.87s
70 1.55 × 10−8 1.11s

Strong inverse
magnitude weight

50 1.00 × 10−3 0.85s
70 4.43 × 10−7 1.14s

Weak inverse
magnitude weight

50 2.65 × 10−4 0.78s
70 1.19 × 10−8 1.16s

RKFIT

No weight 50 9.88 × 10−5 1.04s
70 1.35 × 10−8 1.43s

Strong inverse
magnitude weight

50 3.18 × 10−4 1.00s
70 3.08 × 10−8 1.45s

Weak inverse
magnitude weight

50 2.02 × 10−4 1.06s
70 1.51 × 10−8 1.44s

The RMS error obtained by fitting the admittance matrix
through both methods for different fitting orders and weighting
schemes is given in Table II. This table validates that RKFIT
outperforms VFIT for different weighting schemes and orders
regarding fitting accuracy except with the case with weak
inverse magnitude weight and high model order. However,
VFIT is slightly faster.

The convergence of the pole relocation process as function
of the iteration count is shown in Fig.5. The model order is
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Fig. 5. Convergence of pole relocation process by RKFIT against VFIT

N = 50 and no weight scheme is applied. The Haussdorf
distance is presented on the left side of the graph and the
RMS error on the right side. It is chosen to restrict the lowest
distance to 10−8 for illustration purpose. This graph shows that
RKFIT converges faster than VFIT. After 5 iterations RKFIT
reaches the set of poles that delivers the smallest RMS error
and the distance becomes zero. For RKFIT, it is remarked the
correlation between the distance and the RMS error. When
the distance becomes zero, the RMS is at the lowest value.
However for VFIT, the RMS error reaches the lowest value
when the distance starts to decrease linearly. This observation
can be used as the fitting stopping criteria.
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Fig. 6. Convergence fo pole relocation process by RKFIT and VFIT

For the same previous example, if the model order is
increased to N = 100, VFIT does not converge. Fig. 6 shows
the convergence of the pole relocation process. RKFIT con-
verges within 4 iterations while VFIT diverges, the Haussdorf
distance rises linearly and the RMS error oscillates.

C. Choice of the starting poles

One of the main advantages of RKFIT is that the user
requires no a priori knowledge of the initial poles location and
distribution. Poles can be chosen to be infinite and RKFIT

will relocate them. Fig. 7 shows the convergence of the
pole relocations for different initial pole distributions. This
figure demonstrates that RKFIT converges faster than VFIT
for different starting poles. It should be noted that the infinite
value is fixed by the ieee arithmetic representation for positive
infinity in [18].
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Fig. 7. Convergence of poles relocation process with different starting poles

D. passivity

For a multi-port electrical network, the passivity is guaran-
teed if and only if its transfer admittance matrix Yn(s) has
a purely positive real part through the whole frequency range
[10]. Yn(s) is positive definite if and only if its Hermitian part
YH(s) has only positive eigenvalues:

eig(YH(s)) = eig (Yn(s) + Y ∗n (s)) (14)

where Y Tn (s) is the conjugate transpose of Yn. The admit-
tance matrix is fitted with different model order to assess
the passivity violation for RKFIT and VFIT. The model’s
passivity proprieties are assessed using the half singularity test
developed in [19] via the main function driver RPdriver.m in
[15].

TABLE III
PASSIVITY ASSESSMENT FOR DIFFERENT MODEL ORDER APPROXIMATION

Method Model order Passivity violation Max passivity violation

RKFIT
50 No None

70 No None

90 Yes −0.0005

VFIT
50 Yes −8.63 × 10−5

70 No None

90 Yes −0.0015

Table III illustrates the passivity assessment for different
model order approximation. It is shown that RKFIT can deliver
passive model for relatively optimal model order, However, for
high order models passivity violation appears. Despite the fact
that passivity violation cannot be anticipated, several passivity
enforcement algorithm can solve this issue.
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IV. UNIVERSAL LINE MODEL BASED ON RKFIT

In the ULM [2], the propagation function H and the
characteristic admittance Yc are approximated using VFIT [4].
The rational approximations are used for time domain imple-
mentation in EMTP-type simulation tools [20]. As outlined
in the previous section, RKFIT gives more accurate results
than VFIT. Accordingly, a fitting procedure for Yc and H is
proposed in this part using RKFIT instead of VFIT.

The proposed fitting approach has several advantages over
the fitting approach implemented in the EMT-softwares:

1) The proposed approach delivers accurate fitting results
with low RMS error and guarantees convergence of the
algorithm.

2) The model order is automatically calculated by the
RKFIT algorithm. The user only defines the RMS fitting
error tolerance.

3) The user requires no a priori knowledge of the pole
location. The poles can be equal to the ieee arithmetic
representation for positive infinity, represented in Matlab
by the value Inf.

A. Rational approximation in the ULM with RKFIT

1) Fitting the characteristic admittance: The characteristic
admittance Yc is easily fitted since it doesn’t have resonance
peaks. All the elements of Yc are fitted with the same set of
poles expressed in the following form:

Yc(s) ≈ Ycfitted
=

N∑
m=1

cm
s− qm

+D (15)

2) Fitting the propagation function: The approximation of
the propagation function is more difficult since its elements
contain propagation delays. The modal contributions of H are
calculated and a proper delay is assigned to each mode. The
delay is calculated using the optimization technique proposed
in [21]. The criterion proposed in [22] is used to group
repetitive or close delays. Time delays are removed from
the modal components and then fitted using RKFIT. The
propagation function is then fitted using the poles from the
modal approximation. The only remaining unknowns are the
residues, and H is approximated as:

H(s) ≈ Hfitted =

K∑
i=1

(
Ni∑
m=1

Rm,i
s− am,i

)
e(−sτi) (16)

where K is the number of grouped modes, τi are the collapsed
time delay, Rm,i is the matrix of residues calculated for the
corresponding poles am,i of the grouped modes and Hfitted

stands for the rational approximation of H considering the
grouped modes.

Time domain implementation is based on the equation
developed in [23] to reduce integration and interpolations
errors.

B. Numerical Results

The proposed method is used with different transmission
line configurations and the calculated results are compared

with the corresponding results from VFIT. In all cases, the
characteristic admittance and the propagation function matri-
ces are calculated for the frequency range from 0.01Hz up
to 1MHz with a sampling rate of logarithmically spaced 10
points/decade.

1) Overhead Transmission Line: Let’s consider a 30km
single conductor over-head line over a lossy ground as shown
in Fig. 8 and presented in [21].

Fig. 8. single conductor overhead line

For the fitting of Yc and H , the initial poles are chosen to
be infinite and the maximum allowable RMS-error is 10−3.
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Fig. 9. Fitting of Yc using RKFIT and VFIT

The magnitude function of Yc is shown in Fig. 9. Fig 10
reports the RMS-error from the application of both methods.
It is seen that RKFIT and VFIT reach the same RMS-error,
however RKFIT converges faster. It is worth mentioning that
both methods have the same number of poles at the end.
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Fig. 10. RMS error as function of iteration number

As for the propagation function, the time delay is τ =
1.039×10−4sec. The magnitude of H is plotted in Fig 11. The
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use of the proposed approach reduces the RMS error compared
to VFIT and it can be seen on the magnitude plote specially
at high frequencies.
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Fig. 11. Magnitude of the propagation function

2) Underground cable system : Let’s consider the cable
system in Fig. 12 with parameters given in Table IV. The
resulting order for the fitting of Yc is N = 9 for RKFIT and
N = 12 for VFIT. Fig. 13 shows the rms error as a function
of the iteration number. It is seen that RKFIT gives a faster
convergence and a lower order of approximation, although the
final result is quite similar.

Fig. 12. Cross section of three phase 145kV underground cable
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Fig. 13. RMS error as function of iteration number

TABLE IV
GEOMETRICAL AND MATERIAL PARAMETERS OF THE CABLES

Core r = 19.5mm, ρ = 3.365E − 8Ω.m
Insulation t = 18.25,εr = 2.85
Metallic sheath t = 0.22mm, ρ = 1.718E − 8Ω.m
Jacket t = 4.53,εr = 2.51

The time delays are calculated and presented in Table V.
Three time delays are nearly equal. Then the six modes of
propagation are lumped into four distinct modes, and then
subjected to rational approximation. Table VI presents the
fitting rms error of the modal propagation function using VFIT
and RKFIT. The Table VI shows that a more accurate fitting
is obtained with RKFIT using less number poles than VFIT.

TABLE V
CALCULATED TIME DELAYS (IN MILLISECOND)

0.803 1.945 6.414 1.684 1.684 1.684

TABLE VI
MODAL PROPAGATION FUNCTION APPROXIMATION USING RKFIT AND

VFIT

Mode RKFIT VFIT

RMS error Model order RMS error Model order

1 9.05 × 10−4 10 1.06 × 10−3 16

2 8.932 × 10−4 17 1.16 × 10−3 19

3 2.52 × 10−3 20 2.58 × 10−3 20

4 5.39 × 10−3 6 4.73 × 10−3 6

The propagation function H is fitted in the phase domain.
Fig. 14 shows the deviation of the resulting fitting of the ele-
ments of H for VFIT and RKFIT. Clearly, a better accuracy is
obtained using RKFIT than VFIT. The maximum residue/pole
ratio for RKFIT is 355.5 and for VFIT is 42.27. The maximum
residue/pole is lower than the critical threshold of 1000 [24].
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Fig. 14. Propagation function H

The transient simulation is performed using the obtained
model via RKFIT. The step voltage excitation is presented
in Fig. 15, where the first core is energized with a unit step
voltage at t = 0. Fig. 16 shows the simulated receiving end
voltage. The response is seen to be stable for the RKFIT
model. The results are compared to accurate results obtained
using the Numerical Inverse Laplace Transformation [25].

V. DISCUSSION

Till now, there are no comprehensive convergences analyses
for VFIT and RKFIT. However, an example from [9], [26] was
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Fig. 15. Line energization by step voltage.
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Fig. 16. Time domain simulation of unit step voltage response at the cable
receiving end.

constructed where VFIT is repellent. Despite this example and
Figure 6 in this work, VFIT is being successfully used for
various problems. Nonetheless, RKFIT is based on a numer-
ically well-defined computational scheme and have multiple
advantages compared to VFIT. The proposed method deter-
mines the model order by itself and the reduction technique
is implemented to reduce the model order if the fixed rms
error allows it. The order reduction technique is not a post
processing technique. It is one of the method proprieties and
it is mathematically proven by theorem 6.1 in [9]. The final
set of poles calculated by RKFIT is mathematically proven to
be the optimal solution [9]. We observe this in the Haussdorff
distance when it becomes equal to zero. However for VFIT, the
Haussdorf distance decreases continuously and that means that
the poles are slightly varying. The main drawback of RKFIT as
VFIT is that they don’t guarantee the passivity of the obtained
model.

VI. CONCLUSION
A new method for the rational approximation is studied and

compared to well-known vector fitting. The proposed method
is applied to transmission line modeling and specially in the
universal line model. It was shown that this method delivers
more accurate results than VFIT in the frequency domain and
stable results in the time domain. The distinct advantage of
the proposed method is the ease of the use by the engineers
regarding the model order and the starting poles.
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