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Microorganisms are key players in the transformation of mercury into neurotoxic
methylmercury (MeHg). Nevertheless, this mechanism and the opposite MeHg
demethylation remain poorly understood. Here, we explored the impact of inorganic
mercury (IHg) and MeHg concentrations from 0.05 to 50 µM on the production and
degradation of MeHg in two sulfate-reducing bacteria, Pseudodesulfovibrio hydrargyri
BerOc1 able to methylate and demethylate mercury and Desulfovibrio desulfuricans
G200 only able to demethylate MeHg. MeHg produced by BerOc1 increased with
increasing IHg concentration with a maximum attained for 5 µM, and suggested a
saturation of the process. MeHg was mainly found in the supernatant suggesting
its export from the cell. Hg L3-edge High- Energy-Resolution-Fluorescence-Detected-
X-ray-Absorption-Near-Edge-Structure spectroscopy (HERFD-XANES) identified MeHg
produced by BerOc1 as MeHg-cysteine2 form. A dominant tetracoordinated βHgS form
was detected for BerOc1 exposed to the lowest IHg concentrations where methylation
was detected. In contrast, at the highest exposure (50 µM) where Hg methylation was
abolished, Hg species drastically changed suggesting a role of Hg speciation in the
production of MeHg. The tetracoordinated βHgS was likely present as nano-particles as
suggested by transmission electron microscopy combined to X-ray energy dispersive
spectroscopy (TEM-X-EDS) and nano-X ray fluorescence (nano-XRF). When exposed
to MeHg, the production of IHg, on the contrary, increased with the increase of MeHg
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exposure until 50 µM for both BerOc1 and G200 strains, suggesting that demethylation
did not require intact biological activity. The formed IHg species were identified as various
tetracoordinated Hg-S forms. These results highlight the important role of thiol ligands
and Hg coordination in Hg methylation and demethylation processes.

Keywords: Hg, microorganisms, methylmercury, methylation, demethylation, nano-XRF, HERFD- XANES

INTRODUCTION

Methylmercury (MeHg) is a serious threat as it is a neurotoxin
bioaccumulated and bioamplified in food webs. Mercury
methylation is a biotic process mainly driven by anaerobic
microorganisms including sulfate-reducing bacteria, iron
reducing bacteria, and methanogens (Gilmour et al., 2013;
Gionfriddo et al., 2016). Recently, other microorganisms were
also shown to be able to methylate Hg (Jones et al., 2019;
Azaroff et al., 2020; Villar et al., 2020). Yet, the mechanisms
of Hg methylation, and particularly molecular and cellular
pathways at the cell level, are not fully understood. Important
advances have been made with genetic studies on Desulfovibrio
desulfuricans ND132 and Geobacter sulfurreducens PCA strains
demonstrating that hgcAB genes were required for mercury
methylation, and that Hg methylation would thus occur in the
cytosol, at the cytoplasmic membrane level (Parks et al., 2013; An
et al., 2019). Nevertheless, hgcAB genes and their expression do
not explain the differences in MeHg production under different
metabolic conditions or between different methylators, thus
suggesting that other parameters including both environmental
and physiological ones are involved in the process (Gilmour
et al., 2013; Goñi-Urriza et al., 2015).

The uptake of Hg by bacteria is still controversial between
passive and active Hg uptake. Schaefer et al. (Schaefer and
Morel, 2009; Schaefer et al., 2011, 2014) have proposed an
energy-dependent active process where Hg entered the cell using
Zn transporters. However, passive uptake of neutral species
of inorganic mercury such as HgS nanoparticles, Hg-thiol2
[Hg(SR)2], HgCl2 and aqueous HgS◦ (HgSaq) was also reported
(Benoit et al., 2001; Hsu-Kim et al., 2013). Recently An et al.
(2019) demonstrated that active transport was not required for
IHg uptake in ND132. They also suggested that the uptake could
be mediated by thiol-containing membrane proteins and that
adsorption would be a first step in the methylation process (An
et al., 2019). These ligand-exchange reactions at the cell surface
have been considered as a key step in the uptake of Hg for
both methylating (An et al., 2019), and non-methylating strains
(Mishra et al., 2017; Thomas et al., 2018, 2019). However, the
role of the cell surface thiols in Hg methylation has been recently
discarded by reporting that the blocking of these surface ligands
did not decrease Hg methylation (Thomas et al., 2020). The
authors suggested that the coordination of Hg with S ligands in
the cell could influence MeHg production (Thomas et al., 2020).
Produced MeHg would be exported by the cells (Pedrero et al.,
2012; Lin et al., 2015; Liu et al., 2016; Qian et al., 2018), but the
exported MeHg chemical forms are still unknown.

The counterpart process, demethylation of MeHg, has been
much less studied whereas the net MeHg concentration in

the environment results from both processes (Bridou et al.,
2011). It can be achieved abiotically or biotically, and two
mechanisms can be performed by microorganisms: the well-
known reductive demethylation, mediated by aerobic bacteria
harboring mer operon (Barkay et al., 2003), and the oxidative
MeHg demethylation by anaerobic bacteria including sulfate-
reducing bacteria, methanogens and methanotrophs (Oremland
et al., 1991; Lu et al., 2017) which is mostly unknown. Reductive
demethylation occurs at high concentration of Hg in contrast
to oxidative demethylation (Barkay et al., 2003), indicating that
MeHg demethylation process depends on Hg levels.

In this context, we investigated the effect of Hg concentration
on mercury methylation and demethylation in two SRB
strains, Pseudodesulfovibrio hydrargyri BerOc1 that both
methylates and demethylates mercury, and the non-methylating
Desulfovibrio alaskensis G200 that only demethylates MeHg.
We explored Hg species and cellular localization in bacterial
cells to constrain the understanding of Hg transformations.
For that, we employed High Energy Resolution Fluorescence
Detected – X-ray Absorption Near Edge Structure Spectroscopy
(HERFD-XANES) to speciate Hg ligands and synchrotron
nano X-ray fluorescence (nano-XRF) and transmission
electron microscopy combined to X-ray energy dispersive
spectroscopy (TEM-X-EDS) to locate Hg. HERFD-XANES
has been proved highly sensitive to probe Hg species
(Manceau et al., 2015b; Proux et al., 2017; Thomas et al.,
2019, 2020) and we specifically questioned the forms of
IHg and MeHg in the two bacteria. We hypothesized that
Hg speciation, particularly coordination environment, was
affected by Hg concentration and was related to the ability
to methylate Hg.

MATERIALS AND METHODS

Culture Conditions and Hg Exposures
Two sulfate reducing bacterial strains have been investigated,
Pseudodesulfovibrio hydrargyri BerOc1 (formerly Desulfovibrio
sp. BerOc1) able to both methylate inorganic mercury and
to demethylate methylmercury (Bridou et al., 2011; Pedrero
et al., 2012), and Desulfovibrio alaskensis G200, only able to
demethylate MeHg (Pedrero et al., 2012). All growth and assays
were made in anaerobic conditions, using vessels cleaned by
ultrasonication in successive baths of 10% (V/V) HNO3 and HCl
and rinsed in ultrapure water. Strains were first grown in the
dark at 30◦C and pH 7.0–7.1 in a multipurpose medium (MM)
under sulfate reducing conditions (SR) with lactate/sulfate as
electron donor/acceptor (see Supplementary Data 1). Mid-log
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phase SR cultures were used to inoculate (10%) MM medium with
pyruvate/fumarate (PF condition, S1) instead of lactate/sulfate
to limit sulfide production. Cultures in late-log growth phase
(maximal optical density (OD 600 nm) ∼ 0.2 or ∼ 107 cell/mL)
were washed twice (4000 g, 20–30 min, 4◦C) in the MM PF
medium to remove free sulfides. A fresh MM PF medium was
inoculated with washed cells at 20% to obtain non-sulfidogenic
conditions. The medium was reduced with titanium citrate
(0.05 mL/L). Cell growth was monitored by optical density
measured with a spectrophotometer at 600 nm. Cell counting
was performed by flow cytometry using a BD Accuri C6
analyzer (TBMCore). A total of 1.6 mL from each culture was
sampled and stored at −80◦C in 5% (v/v) filtered formaldehyde.
Cells were tagged with 10X SYBR R© (Invitrogen) following
manufacturer’s instructions. Correlation between optical density
and cell abundance was performed to normalize methylmercury
and inorganic mercury production assays.

Hg methylation/demethylation experiments were carried out
in acid pre-cleaned glass material with PTFE stoppers, using the
MM PF medium and washed inoculum, in the dark at 30◦C
and pH 7.1. To evaluate the effect of Hg concentrations on
BerOc1 and G200 growth, on the Hg methylation/demethylation
capacities and on the Hg species involved, cultures were spiked
either with 0, 0.5, 5 and 50 µM HgCl2 (IHg) or with 0, 0.5, 5, and
50 µM CH3HgCl (MeHg) at mid-log phase growth and incubated
during 24 h. BerOc1 was also exposed to 0.05 µM HgCl2.
Experiments were done in triplicates. Sulfides were quantified at
the end of incubation using the Cline method (Cline, 1969) with
a spectrophotometer at 670 nm and concentrations were below
the detection limit (∼ 1 µM).

IHg and MeHg Measurements by
GC-ICPMS and Partitioning
IHg and MeHg concentrations in the bulk culture were
determined at the end of incubation (24 h) by taking 1 mL of the
incubation medium and stopping Hg reactions with addition of
1 mL of HNO3 6N. MeHg and IHg production was expressed as
µmol/cell by dividing the quantity of MeHg or IHg measured at
the end of the culture (in µmol) by the number of cells measured
at the end of the culture.

To determine IHg and MeHg partitioning, the remaining
culture was centrifuged (15 min, 10000 g, +4◦C) to separate the
supernatant and the pellet. 1 mL of supernatant was collected,
and diluted with 50% (V/V) of HNO3 6N for measurements
of IHg and MeHg concentrations. The centrifuged pellet was
resuspended in 1 mL of MM PF medium and 100 µL was
collected and diluted with 50% (V/V) of HNO3 6N for IHg
and MeHg analysis.

Concentrations of IHg and MeHg were determined by double
spike species-specific isotope dilution analysis. For that, the
samples (bulk cultures, supernatant fractions, and pellets) were
extracted on a microwave assisted extraction with previously
added HNO3 6N (Bridou et al., 2011). Then the extracts were
spiked with appropriate amounts of isotopically enriched 199IHg
standard and 201Hg-enriched MeHg standard, for quantification
by isotope dilution method (Bridou et al., 2011). The Hg species

were propylated using NaBPr4 at pH 4 and extracted into iso-
octane after shaking the vials manually for 10 min. Finally,
the samples were analyzed by Gas Chromatography-ICP-MS
[a Trace GC coupled to a X2 series (Thermo Electron)] and
the results were mathematically treated applying isotope pattern
deconvolution approaches (Rodríguez-González et al., 2007).

IHg and MeHg concentrations were thus measured in
each cellular fraction (pellet and supernatant fractions) and
converted into quantities in µg. The percentage of each Hg
species in each cellular fraction was calculated by dividing
the amount of Hg species in the fraction by the sum
of the Hg amount measured in all the fractions (Total
Hg = MeHgsupernatant + IHgsupernatant + MeHgpellet + IHgpellet).
Mass balance between the sum of the fractions and the added Hg
amount was evaluated. Recoveries were found to range between
42 and 100% (average 75%) and no relationship was found
between the recoveries and Hg concentration, suggesting that Hg
did not precipitate as an insoluble form. The low recoveries might
result from losses during the incubation period due to sorption
of Hg species on the glass wall and poor accuracy in measuring
volumes of the collected fractions.

TEM-X EDS
BerOc1 exposed to 5 µM HgCl2 during 24 h and controls
(not exposed to Hg) were investigated. After incubation, cells
were centrifuged (4000 g, 30 min), rinsed in fresh MM PF
medium free of Hg, and centrifuged (10000 g, 5 min). The
pellet was embedded in agarose 4% at 37◦C and agarose pieces
were mixed with cryo-protectant (bovin serum albumin 20%).
High pressure freezing was performed immediately using the
EM-HPM 100 Leica microsystem. Freeze-substitution was done
using an Automatic Freeze Substitution System AFS2 (Leica
microsystem). The frozen bacterial samples were transferred
under LN2 into cryovials containing 0.2% uranyl acetate in
anhydrous acetone. The vials were placed in the AFS2 at −90◦C
for 3 days and four washings in acetone were done at −55◦C.
Samples were then immersed in Lowicryl HM20/acetone mixture
during 24 h and pure HM20 for 32 h before polymerization
with UV during 48 h at −55◦C. Samples were warmed to 20◦C
for 25 h. Embedded samples were then cut in 70 nm thin
sections as described in Penen et al. (2017) and deposited on
TEM copper grids with carbon film. Sections were imaged with
a FEI TECNAI 12 microscope with an accelerating voltage of
120 kV and equipped with an X-Energy Dispersive Spectroscopy
(X-Flash 6T 60 Bruker synergie 4). X-EDS fluorescence spectra
were collected in nanoprobe mode (50 nm of diameter) in some
regions of interest.

Synchrotron-Based Measurements
HERFD-XANES
Preparation of Hg reference compounds and bacterial
samples
Solid and liquid Hg reference compounds (including IHg and
MeHg) were prepared as described in Supplementary Data 2
and analyzed by Hg HERFD-XANES spectroscopy to interpret
spectra from experimental bacterial pellets.
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At the end of incubations with IHg and MeHg, BerOc1, and
G200 cultures were centrifuged (4000 g, 30 min), rapidly rinsed
once in fresh MM PF medium free of Hg, and twice in ultrapure
water. After centrifugation (10000 g, 5 min), the bacterial pellet
was collected and prepared as a frozen pellet in liquid N2 and
kept in LN2 until measurements. Frozen bacterial pellets and Hg
references were then transferred into a helium cryostat operating
at 10K for measurements.

HERFD-XANES measurements
Hg speciation was investigated using Hg L3-edge (12.284 keV)
HERFD-XANES spectroscopy on FAME-UHD beamline at ESRF
(Grenoble, France). HERFD –XANES spectra were collected
by selecting the Hg Lα1 (3d5/2 = > 2p3/2) fluorescence line
using 5 spherically bent Si(111) crystal analyzers aligned in
Bragg position (Proux et al., 2017). The diffracted intensity
was measured with a Si drift detector (SDD). Calibration of
the monochromator was done using a Se foil (maximum of
the first derivative set at the Se K-edge position: 12.658 keV).
HERFD-XANES data treatment was performed using ATHENA
software (Ravel and Newville, 2005). Normalized HERFD-
XANES spectra were treated by linear combination fitting (LCF)
of Hg reference compounds spectra. The quality of the fit was
estimated by the normalized sum-squared residual parameter
NSS = 6(µxanes – µfit)2/6(µxanes)2 in the energy range 12.272 –
12.362 keV. The precision on the proportion was estimated to 2%
(Proux et al., 2017).

Cellular Hg Localization by Nano X-Ray Fluorescence
BerOc1 cultures exposed to 0.5, 5, and 50 µM HgCl2 and to
5 µM CH3HgCl in MM PF medium during 24 h were rapidly
rinsed as described for HERFD-XANES measurements. A few
µL of suspension were deposited on Si3N4 membranes, blotted
and plunged in liquid ethane using the Leica EM-GP2 plunge
freezer. Samples were then slowly freeze-dried during 11 h using
various temperature steps from – 120◦C to 25◦C. Nano-XRF
measurements were done at ambient temperature.

Nano-X ray fluorescence was carried out on ID16B at ESRF.
The incident beam was used in pink beam mode (energy
bandwidth 1E/E≈10−2) at 17.5 keV and the photon flux was
5 × 1011 ph/s. It was focused to reach 60 nm (H) × 50 nm
(V) lateral resolution on the sample using KB mirrors while two
SDD detectors (six elements) positioned at 15◦ with respect to
the sample recorded the fluorescence signal (Martinez-Criado
et al., 2016). Fluorescence maps were collected with a 25 nm
or 50 nm step size and a 100–400 ms dwell time. XRF spectra
were fitted using the PYMCA software (Solé et al., 2007) to
obtain elemental maps.

RESULTS

Effects of IHg and MeHg Concentrations
on Growth and Hg Methylation and
Demethylation
The effect of IHg and MeHg concentrations was evaluated by
measuring bacterial growth and production of MeHg and IHg.

MeHg and IHg production per cell was reported for each strain
(Figure 1). For BerOc1 strain, an increase of MeHg production
was observed from an IHg exposure of 0.05 µM to 5 µM with
a production of MeHg amounting to 6.9 × 10−12 µmol/cell at
0.05 µM and to 6.5 × 10−11 µmol/cell at 5 µM (Figure 1A).
For these IHg exposures, BerOc1 growth was not affected
(Figure 1B). A relatively limited increase of MeHg production
(a factor 10) compared to the high increase of IHg concentration
(a factor 100) was thus observed, suggesting a saturation of Hg
methylation. The methylation potentials – calculated as

MeHg produced
total Hg

∗ 100

– decreased from 24.2% at 0.05 µM IHg to 23.2% at 0.5 µM
and to 3.1% at 5 µM IHg. At 50 µM IHg, the methylation of
Hg was abolished while growth was strongly impaired (∼ 20%
of growth compared to the control), confirming that methylation
required intact biological functions. As expected, G200 strain did
not methylate IHg, and similarly to BerOc1, its growth was not
affected until 5 µM IHg exposure. At 50 µM IHg, G200 growth
was also affected (∼60% of growth compared to the control).

For both strains, IHg produced by demethylation increased
with increasing concentrations of MeHg in the whole range tested
(Figure 1C). The IHg formed at 50 µM MeHg was the highest
(6.6 × 10−11 µmol/cell for BerOc1 and 9.4 × 10−10 µmol/cell
for G200) whereas the bacterial growths were highly impaired
(Figure 1D), thus indicating that demethylation occurred
whatever the physiologic state of cells and did not require an
intact biological activity.

Partitioning of IHg and MeHg
The effect of Hg concentrations on the partitioning of IHg and
MeHg between the cell-associated fraction and the supernatant
after 24 h of incubation was evaluated for both strains.
Hg partitioning in BerOc1 depended on IHg concentration
(Figure 2A). At the lowest concentrations (0.05 and 0.5 µM)
IHg was mainly localized in the supernatant, with proportions
ranging between 50 and 60% of total Hg. In contrast,
at 5 and 50 µM IHg exposure, IHg was predominantly
associated with the cell pellet (>60%) indicating either a high
adsorption/internalization of IHg by the cells or the presence
of IHg particles in the medium that were retained in the pellet
fraction after centrifugation. For 0.05, 0.5, and 5 µM IHg
exposures, MeHg produced by BerOc1 was mainly found in the
supernatant, suggesting the export of MeHg. For G200, the main
part of IHg was encountered in the cell pellet whatever the IHg
concentration (Figure 2B). As for BerOc1, it may result from
adsorption/internalization of IHg by the cells or from formation
of IHg particles in the medium.

Hg partitioning did not differ much between strains
and between the various MeHg concentrations of exposure
(Figures 2C,D): 75 to 92% of Hg was found as MeHg
in the supernatant and the proportion of IHg was low in
both supernatant and cell pellet (<10%). Collectively, these
results and the increase of the production of IHg per cell
with increasing MeHg exposure, support the hypothesis that
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FIGURE 1 | MeHg production by BerOc1 and G200 (A), and their cell growth (B), IHg production by BerOc1 and G200 (C) and their cell growth (D) depending on
IHg (A,B) and MeHg (C,D) exposure. Error bars correspond to standard deviation calculated on results from two or three replicates. Insets correspond to zooms on
the smallest IHg and MeHg exposures (from 0.05 to 5 µM).

demethylation is not limited by an intact biological activity
contrary to Hg methylation.

Hg Speciation by Hg L3-Edge
HERFD-XANES
High-energy-resolution-fluorescence-detected-X-ray-absorption
-near-edge-structure spectroscopy was applied on BerOc1
and G200 pellets to identify the Hg species depending on the
concentration of IHg and MeHg exposure (Figure 3). Distinct
spectral features in the near edge area from Hg reference
compounds (Supplementary Figure 1) attested the very good
sensibility of HERFD-XANES spectroscopy, particularly for
sulfur-containing ligands and the ability to distinguish linear
two coordination [αHgS, Hg-Cysteine2, Hg(SR)2, Hg-thiol
resin] from tetragonal coordination (βHgS, Hg-cysteine4).
Bacteria exposed to IHg or MeHg had different Hg speciations
(Figure 3A). When exposed to MeHg, BerOc1 and G200 had
both HERFD-XANES spectra showing a peak at 12.288 keV
similarly to methylated Hg references, and the modulation after
edge was typical of CH3Hg-thiol species (Supplementary Figure
1). In contrast, when exposed to IHg, these spectral signatures
vanished, indicating that MeHg was not the predominant species.

In the methylating strain BerOc1, linear combination fits
(Figure 3B and Supplementary Table 1) indicated that produced
MeHg was under a CH3Hg-cysteine2 form for the lowest

exposures with proportion of 13% for 0.05 µM IHg and 9% for
0.5 µM IHg. No methylated Hg species was detected in the cell
pellet for the 5 µM exposure, probably because the proportion
of the methylated forms was too low compared to total Hg
(methylation potential of 3.1%). Therefore, the proportion of
methylated Hg forms in the cell pellet decreased with increasing
IHg exposure in agreement with the methylation potentials. The
βHgS form was by far the dominant species identified for BerOc1
from 0.05 µM IHg to 5 µM IHg (84, 90, and 100% for 0.05, 0.5,
and 5 µM IHg exposures, respectively). The highest IHg exposure
(50 µM) showed a different pattern with 31% βHgS, 40% Hg(SR)2
and 29% Hg(0). The reliability of this Hg(0) proportion is
questionable since the ability of this strain to reduce Hg(II) under
growing conditions is very low, near absent (unpublished data).
However, the fit agreement was corroborated by the maximum
of the derivatives of Hg(0) spectrum and BerOc1 50 µM IHg
spectrum, that both displayed a shift to lower energies compared
to other Hg references and other IHg exposures (Supplementary
Figure 2). Overall, we can infer that Hg speciation was drastically
changed compared to lower exposures. For the non-methylating
strain G200, obviously, no methylmercury species was identified
when exposed to IHg. The βHgS species accounted for more than
61% of the Hg species while a second tetracoordinated Hg, Hg-
cysteine4 was also identified for 0.5 and 5 µM IHg exposures.
Similarly to BerOc1, G200 cells exposed to 50 µM IHg had a
different speciation identified as 41% Hg(0) and 58% Hg(SR)2.
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FIGURE 2 | Partitioning of IHg and MeHg (in% of total Hg) in the cell pellet and in the supernatant for BerOc1 (A,C) and G200 (B,D) exposed to various
concentrations of IHg (A,B) or MeHg (B,C). Error bars correspond to standard deviation calculated on results from two or three replicates.

Hg speciation in BerOc1 exposed to 0.5 and 5 µM MeHg
could be described with predominant CH3Hg-cysteine2 (62%)
while the βHgS form and tetracoordinated Hg-cysteine occurred
as secondary species [25 and 27% of βHgS and 11 and 10%
of Hg-cysteine4 for 0.5 and 5 µM, respectively (Figure 3B
and Supplementary Table 1)]. The highest MeHg exposure
(50 µM) exhibited a different speciation with dominance of βHgS
(49%), CH3Hg-cysteine2 (35%) and Hg-cysteine4 (15%). G200
exposed to MeHg showed also spectral pattern with dominance of
CH3Hg-cysteine2 (from 83 to 68% and 54% for 0.5, 5, and 50 µM
MeHg, respectively) while Hg-cysteine4 was identified as the only
secondary phase for the two lowest exposures. βHgS was detected
as the secondary species in the G200 for 50 µM MeHg exposure.

Hg Localization by TEM-X-EDS and
Nano-XRF
Transmission electron microscopy combined to X-ray energy
dispersive spectroscopy and nano-XRF were used to evaluate
both the impact of Hg on the cell physiology and to locate
Hg at the cell level in BerOc1 strain exclusively. TEM images
showed that Hg at 5 µM IHg did not affect BerOc1 cells
since control and 5 µM IHg exposed cells had similar size,
membranes and periplasmic space and cytoplasm (Figure 4).
Intracellular cytoplasmic dense material composed of P, Ca, K,
and Fe was evidenced for both control and Hg exposed cells, likely
corresponding to calcium iron polyphosphate bodies observed

inside microbial cells (Kornberg, 1995; Cosmidis et al., 2014).
Nanometer-sized extracellular dense material was present in
both cultures (Figure 4 and Supplementary Figure 3). It was
composed of P, K, Ca, Fe for the control while in the IHg exposed
culture, in addition to these compounds, Hg and S enriched nano-
sized aggregates were also detected. No Hg could be detected
inside the bacterial cells. We then used nano-XRF to potentially
detect a more diluted pool of Hg, due to its better sensitivity
compared to X-EDS.

Nano-X ray fluorescence maps showed that Hg occurred as
nano-sized hot spots located at the interface cell/medium or
in the extracellular medium for 0.5 and 5 µM IHg exposures
(Figures 5A,B). In these spots, Hg was co-located with S, and
could correspond to the βHgS identified by HERFD-XANES. For
the highest exposure (50 µM), Hg imaging had a different pattern
and Hg was rather associated with the cell with lower S ratio
than the other IHg exposures as shown by bicolor Hg/S maps
(Figure 5C). Distribution of essential elements (Ca, Fe) for this
high exposure and the absence of the intracellular (Fe, Ca)- hot
spot that was observed for the lower exposures attested that the
cell homeostasis was affected probably due to the toxic level of
mercury. It also corresponded to a decrease of cell growth and
an odd Hg speciation [composed of βHgS, Hg(0) and Hg(SR)2)]
identified by HERFD-XANES. When exposed to 5 µM of MeHg
(Figure 5D), contrary to IHg exposure, Hg was encountered as
more diffused at the BerOc1 cell level and not as nano-sized hot
spots in the extracellular medium or at the cell/medium interface,
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FIGURE 3 | Mercury speciation in BerOc1 and G200 by Hg L3-edge HERFD-XANES spectroscopy. (A) Spectra of BerOc1 and G200 exposed to various
concentrations of MeHg and IHg (black lines) and their linear combination fit (dashed red lines). (B) Proportion of Hg species determined from linear combination
fitting of the spectra from BerOc1 and G200 displayed in (A) plotted with the methylation and demethylation potentials.

suggesting a different pattern of Hg trafficking in the cell. Hg
was still associated with S in agreement with a S-containing
binding environment.

DISCUSSION

Hg Methylation as a Saturated Process
Our results indicated that MeHg production per cell increased
with increasing IHg concentration in the range of 0.05 µM –
5 µM IHg concentrations. The non-linearity between IHg
concentrations and MeHg production also suggested that the
Hg methylation mechanism tended to be saturated in the
highest part of this range of concentrations. Increasing MeHg
production has been also observed for D. desulfuricans strain
ND132 from 5 ppb to 100 ppm Hg (25 nM to 400 µM Hg)
under sulfidogenic conditions (Gilmour et al., 2011), and the
fraction of Hg converted into MeHg decreased significantly as

Hg concentrations increase. In estuarine sediment slurries, King
et al. (1999) suggested that the non-linear relationship between
MeHg production and IHg concentration was due to saturation
of methylating enzymes in SRB, but not clear evidence of the
effect of Hg concentration on MeHg production is available. As
an intracellular process, it can be inferred that Hg methylation is
related to Hg uptake by the bacterial cell, and that cell sorption
can be the first step for Hg uptake. The addition of thiols
compounds (cysteine, glutathione, penicillamine) can remobilize
Hg for uptake and methylation, possibly by acting as competitive
ligand exchange with bacterial cell surface sites (Liu et al., 2016).
Monitoring Hg methylation with time in non-growing ND132
cells, Liu et al. (2016) observed a Hg methylation plateau after
24 h of incubation with 25 nM HgCl2 and suggested that this
plateau resulted from immobilization of Hg(II) by strong surface
cellular binding (Liu et al., 2016). Recent speciation modeling
also pointed out that metal complexation with cell surface
ligands should be involved in Hg uptake and Hg methylation
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FIGURE 4 | TEM images of thin sections from BerOc1 control (A) and exposed to 5 µM IHg (B,C) with X-EDS spectra collected on extracellular and intracellular
dense aggregates (arrows). Hg was detected in some extracellular nano-particles.

FIGURE 5 | Tricolor (RGB, upper line) nano-XRF maps of the distribution of Hg (red), Fe (Green) and Ca (Blue) and bicolor (RB, lower line) nano-XRF maps of Hg (red)
and S (Blue) in microbial cells of BerOc1 exposed to 0.5 µM IHg (A), 5 µM IHg (B), 50 µM IHg (C), and 5 µM MeHg (D) during 24 h. Incident energy = 17.5 keV,
step size = 50 nm for (B,C) and 25 nm for (A,D), counting time = 100 ms/pt for (B,C), and 200 ms/pt for (A) and 400 ms/pt for (D). Dashed lines in white delimit the
bacterial cells.
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(Adediran et al., 2019). However, recently, Thomas et al. (2020)
evaluated the role of surface thiol sites by blocking them with a
highly efficient thiol binding ligand and did not find any effect
in Hg methylation in G. sulfurreducens PCA, thus impeding the
hypothesis that cell binding with thiols was necessary for this
strain. Here, when Hg methylation occurred, both nano-XRF
and TEM-X EDS indicated Hg nano-particles in the extracellular
medium or at the cell/medium interface that could have been
exported out of the cell or formed by biomolecules produced by
the cell (see next paragraph). In contrast, at high Hg exposure
(50 µM), nano-XRF showed that most of Hg was associated to the
cell. This high internalization of Hg, could be due to an altered
controlled uptake, but also to an impaired efflux system, thus
resulting in an accumulation of Hg in the cell.

Formation of βHgS Like Compounds
Tetracoordinated βHgS-like compound was identified for both
methylating and non-methylating strains and for IHg and MeHg
exposures. This phase might correspond to the Hg/S enriched
nano-sized extracellular particles observed by TEM-X EDS and
nano-XRF although it was beyond the abilities of the imaging
techniques to distinguish MeHg from IHg. We do not know
how these particles are formed. If they formed at the beginning
of the exposure in the culture medium, they should have been
available for Hg methylation. Indeed, at 5 µM of IHg, where
the maximum of methylation was observed, only βHgS was
identified by HERFD-XANES. The availability of HgS(s) particles
for Hg methylation by G. sulfurreducens PCA has been observed.
For instance, when sulfides (from 20 to 500 nM) and Hg(II)
(20–25 nM) were added in the culture medium before PCA
inoculation, all Hg precipitated as solid HgS but Hg methylation
occurred, thus indicating that Hg from HgS was available for
methylation (Adediran et al., 2019). The authors and others
suggested that size and structure of HgS play a role in Hg
bioavailability and Hg methylation by bacteria (Zhang et al.,
2012; Pham et al., 2014; Adediran et al., 2019). Other studies
confirmed the bioavailability of HgS(s) nanoparticles (Graham
et al., 2012; Thomas et al., 2018). Alternatively, the βHgS-like
particles observed in our study could be originated from Hg-thiol
compounds formed in the cell and exported since IHg associated
to biomolecules was identified in the cytosol of BerOc1 and
G200 (Pedrero et al., 2012). Finally, another possibility is that
they could form due to interactions of S-containing biomolecules
produced by the bacteria with Hg at the vicinity of the cell.
For instance, Adediran et al. (2019) demonstrated that PCA
strain biosynthesized and exported thiols, mainly cysteine, in the
culture medium (Adediran et al., 2019). It can be hypothesized
that BerOc1 and G200 produce thiols that can interact with Hg,
and it is possible that they evolve toward a more crystallized
form. Indeed, Manceau et al. proposed the formation of βHgS
from Hg(II)-(cysteine ethyl ester)2 and from Hg(II)-thiols of
natural organic matter through an abiotic way (Manceau et al.,
2015a; Enescu et al., 2016). βHgS was also identified in Escherichia
coli and G. sulfurreducens cultures probably due to precipitation
with endogenous sulfides sources (Thomas and Gaillard, 2017;
Thomas et al., 2018). Interestingly Thomas et al. (2020) pointed
out that Hg-S3/S4 enhanced Hg uptake and methylation in

G. sulfurreducens PCA whereas Hg-S2 was related to low Hg
methylation. Here we identified predominant tetracoordinated
Hg-S when MeHg was produced in BerOc1 corroborating the
important role of Hg ligands and coordination in the mechanism
of Hg methylation.

Methylated Hg Is Also Bound to Thiol
Biomolecules
We report the formation of MeHg-cysteine2 like molecules
by BerOc1 following IHg exposure. Since Hg methylation
is expected to occur intracellularly and MeHg was mainly
encountered in the supernatant in our study, the methylating
strain might export the produced MeHg-thiol. The MeHg export
has been proposed for BerOc1 (Pedrero et al., 2012) and other
strains such as D. desulfuricans ND132 and G. sulfurreducens
PCA (Schaefer and Morel, 2009; Schaefer et al., 2011; Lin
et al., 2015; Liu et al., 2016). Pedrero et al. (2012) evidenced
biomolecules of high molecular weight (>70, 20, and 17 kDa)
binding MeHg in the extracellular medium of BerOc1 but the
chemical nature of these molecules remained unidentified. We
also evidenced by Hg partitioning that part of MeHg (2–16%)
for both methylating and non-methylating strains exposed to
MeHg was found at the end of the growth in the pellet and
occurred as MeHg-thiols (MeHg-cysteine2 like form) based on
HERFD-XANES. However, we could not state if the Hg present
at the cell level and observed by nano-XRF corresponded to this
methylated form.

Hg Demethylation as a Non-saturated
Process
It was shown here that for both strains, the production of IHg
was the highest for the highest MeHg concentrations. Similar
conclusion was reported for various sulfate-reducing bacteria
exposed to lower MeHg concentrations (Bridou et al., 2011).
Some methanotrophs also increased their ability to demethylate
MeHg with increasing MeHg concentrations (Lu et al., 2017).
Taken together, these results support that demethylation is not
limited by an intact biological activity. MeHg demethylation
might nevertheless require interaction with the cell since Hg
associated to the cell was detected by nano-XRF. Here, between
2 and 16% of total Hg was present as MeHg (identified as
MeHg-Cysteine2 by HERFD-XANES) in the pellet whatever the
strain and the MeHg initial concentration. The IHg formed by
demethylation in the pellet was identified as tetracoordinated Hg
species modeled by both βHgS and Hg-(cysteine)4, again pointing
out that this Hg coordination is of importance in cell Hg pathway.
We note that the proportion of inorganic Hg species identified
by HERFD-XANES in the pellet – ranging from 15 to 64% – is
high compared to Hg partitioning (IHg in the pellet accounts for
10–38% of the total Hg in the pellet). Although, it is difficult to
compare these results since the bacterial pellet was washed before
XANES measurement in contrast to partitioning, both methods
indicated an increase of IHg with increasing MeHg exposure.

This study thus suggests the saturation of Hg methylation
process with Hg concentrations in contrast to MeHg
demethylation. It also highlights the predominance of
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tetracoordinated inorganic Hg-S species in Hg intracellular
processes, and corroborates its role in Hg methylation with
important environmental implications. This speciation should be
further investigated in future environmental studies.

Supporting Information
Composition of the culture medium, strains, preparation of
Hg references for HERFD-XANES, Hg L3-edge HERFD-XANES
reference spectra, derivatives of HERFD-XANES bacterial
spectra and Hg references spectra, TEM-X EDS analyses,
proportion of Hg species determined by LCF.
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