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ABSTRACT

In a previous work (MGV18), we showed numerically that the turbulent cascade generated by quasi-2D
structures (with wave vectors mostly-perpendicular to the mean magnetic field) is able to generate a temperature
profile close to the one observed in solar wind (' 1/R) in the range 0.2 ≤ R ≤ 1 au. Theory, observations
and numerical simulations point to another robust structure, the radial-slab, with dominant wave vectors along
the radial: we study here the efficiency of the radial-slab cascade in building the 1/R temperature profile.
As in MGV18, we solve the three-dimensional MHD equations including expansion to simulate the turbulent
evolution. We find that an isotropic distribution of wave vectors with large cross helicity at 0.2 au, along with a
large wind expansion rate, lead again to a temperature decay rate close to 1/R but with a radial-slab anisotropy
at 1 au. Surprisingly, the turbulent cascade concentrates in the plane transverse to the radial direction, displaying
1D spectra with scalings close to k−5/3 in this plane. This supports both the idea of turbulent heating of the solar
wind, and the existence of two different turbulent cascades, quasi-2D and radial slab, at the origin of the heating.

We conclude that sampling the radial spectrum in the solar wind may give but a poor information on the real
cascade regime and rate when the radial slab is a non-negligible part of turbulence.

Keywords: Magnetohydrodynamics (MHD) — plasmas — turbulence — solar wind

1. INTRODUCTION

The solar wind is a spherically expanding and turbulent
flow in which the proton temperature decreases slower than
the adiabatic prediction T ∝ R−3/4, where R is the helio-
centric distance beyond 0.3 AU. Measurements of the tem-
perature profile return different scaling laws, T ∝ R−α, with
α ∈ [0.5, 1] depending on the periods analyzed (at minimum
or maximum of the solar cycle) or on the type of stream
considered (fast, slow, or fast and slow streams) or on the
distinction between parallel and perpendicular temperatures
(Marsch et al. 1982; Totten et al. 1995; Hellinger et al. 2011;
Elliott et al. 2012; Hellinger et al. 2013). Despite their differ-
ences, the scaling-law exponents indicate that heating must
be supplied to protons in their way out from the Sun. Inter-
estingly, when streams are separated according to their speed
and rectified for their acceleration in the heliosphere, their
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temperature decreases as 1/R0.9±0.1 (Totten et al. 1995; Mak-
simovic et al. 2020, and specifically for fast winds Perrone
et al. 2019), suggesting that a similar strong heating is at
work in fast and slow streams.

A possible source of slow proton cooling is a turbulent cas-
cade, which is suggested by the power-law energy spectra
currently observed since Coleman (1968). In a recent work
(Montagud-Camps et al. 2018, MGV18 hereafter), we ob-
tained by direct numerical simulations a 1/R temperature de-
cay in the distance range [0.2, 1] au, close to the slow temper-
ature decrease of Totten et al. (1995). The numerical demon-
stration relies on choosing initial parameters such as the rel-
ative expansion rate, the turbulent Mach number and, most
importantly, the initial eddy geometry that characterizes the
strong cascade, namely a quasi-2D geometry.

Solar wind turbulence is not made only of the quasi-2D
geometry, but an important contribution is often given by
the so-called slab component (Matthaeus et al. 1990; Zank &
Matthaeus 1992; Dasso et al. 2005; Zank et al. 2017). In the
slab component the wave vectors are mostly along the mean
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magnetic field B0, while they lay mostly within the plane per-
pendicular to B0 in the quasi-2D component1.

Dasso et al. (2005) found that at a 20 minutes scale, the
2D component is dominant in the slow wind, while the slab
is dominant in the fast wind. In line with this work, we
supposed in MGV18 that the turbulent heating obtained in
the our simulations of the quasi-2D regime applied in slow
winds. Other properties, as the spectral index and cross he-
licity (Grappin et al. 1991; Chen et al. 2013) have been found
to vary with wind speed. Such variations should motivate in-
vestigating whether the 1/R temperature decay still obtains
when passing from the quasi-2D to the slab structure.

However, there are indications that the true alternative
structure in solar wind turbulence is not the slab, but
the radial-slab structure. Numerical work (Grappin et al.
1993),(Verdini & Grappin 2016, VG16 hereafter) and obser-
vational work at 12 hours scale (Saur & Bieber 1999) find
actually that turbulence is made of a combination of quasi-
2D component and radial-slab, the latter being made of wave
vectors aligned with the radial direction, as expected from
the simple linear effect of wind expansion, combined with
turbulence (Dong et al. (2014), VG16).

Arguments against the existence of the slab structure are
that there is no proof, either theoretical (but see Zank et al.
2017) or numerical (see the negative results by Ghosh et al.
(1998a,b)) that the slab geometry exists in MHD turbulence,
and direct observation doesn’t exist, since it relies completely
on the hypothesis of axial symmetry about the mean mag-
netic field, which is not proven. We discuss at the end of the
paper the possibility proposed by VG16 that the slab actually
hides a radial-slab structure.

We thus investigate here at which conditions the observed
slow 1/R temperature decay can be obtained in general by a
combination of quasi-2D and radial-slab. We use the same
method as in MGV18, direct simulations of the MHD equa-
tions, including wind expansion (expanding box model or
EBM, see Grappin et al. 1993; Grappin & Velli 1996; Dong
et al. 2014). Within this description, visco-resistive terms
dissipate kinetic and magnetic fluctuations. Our work is
based on the assumption that in a direct turbulent cascade,
the energy cascade rate is independent of the detailed energy
dissipation mechanism. This principle is supported by recent
MHD-Hall simulations (Papini et al. in preparation).

We solve the primitive MHD equations in the heliocen-
tric distance range 0.2 < R < 1 au. We act on the heating
rate by controlling three parameters, namely, the initial spec-
tral anisotropy, the relative expansion rate (i.e., measured in
terms of large eddy turnover rate), the turbulent Mach num-

1 With quasi-2D component, or geometry, we refer to only wavevector
anisotropy, with no further specification on the component (or variance)
anisotropy

Figure 1. Scheme of the numerical domain in an expanding box
model simulations. Left Box: initial state of the domain at 0.2AU;
right box: final state of the domain at 1AU. The origin of the refer-
ence frame is at the center of the box and follows it with its transport
by the wind. (From Grappin et al. (1993)).

ber and cross helicity. A comparison with Helios data allows
us to determine the upper scale of our simulations.

We find that the radial-slab geometry allows to generate a
1/R temperature decrease (thus close to the measurement of
Totten et al. 1995) using parameters relatively close to those
used for the quasi-2D turbulent geometry, but with important
differences in 1D scaling laws.

Section 2 introduces the equations, parameters and basic
physics. Section 3 describes the initial conditions of the sim-
ulations. Section 4 gives the main results. Section 5 is a
discussion.

2. EQUATIONS, BASIC PARAMETERS AND PHYSICS

2.1. Equations

We derive here briefly the basic equations (see MGV18
for a detailed description, in particular, of the dissipation
terms). We start with the MHD equations for the density ρ,
(isotropic) pressure P, the velocity fluctuation u = U − U0êr

(where U is the total velocity and U0 is the mean radial flow
amplitude, and the magnetic field B. Consider a Cartesian
frame with X,Y,Z coordinates, the X-axis parallel to the ra-
dial passing through the middle of the box, and change to a
Galilean frame moving with the mean wind along the radial
coordinate. In this frame, the plasma volume is uniformly
stretched in the transverse directions (see fig. 1), thus neglect-
ing curvature terms.

All fields are assumed periodic in the comobile coordinates
x, y, z:

t = τ (1)

x = (X − U0τ)/ax (2)

y = Y/a(t) (3)

z = Z/a(t) (4)

The parameter
ax = Lx/L0

y = Lx/L0
z (5)
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is the initial aspect ratio of the domain (Lx, Ly, Lz being the
size of the domain in the three directions, and the suffix 0
denoting the initial value). Note that the radial size Lx is a
constant, while the other sizes of the domain increase lin-
early with time. The parameter a measures this transverse
expansion. It is defined as the heliospheric distance R(t) of
the barycenter of the plasma domain, normalized by the ini-
tial distance R0:

a = R(t)/R0 = 1 + εt = Ly/L0
y = Lz/L0

z (6)

In this equation, ε = da/dt is the expansion parameter de-
fined as the initial ratio between the characteristic expansion
and turnover times in the transverse directions (perpendicular
to the radial):

ε =
τNL

τexp
=

U0/R0

k00
y u0

rms
(7)

where k00
y = 2π/L0

y = 2π/L0
z is the initial minimum

wavenumber in the transverse directions and u0
rms is the initial

root mean square value of the velocity fluctuations.
The EBM equations finally read, with dissipation terms

omitted:

∂tρ + ∇(ρ~u) = −2ρ(ε/a) (8)

∂tP + (~u.∇)P + γP∇.~u = −2γP(ε/a) (9)

∂t~u + ~u.∇~u + ∇(P + B2/2)/ρ − ~B.∇~B/ρ = −~U(ε/a) (10)

∂t~B + ~u.∇~B − ~B.∇~u + ~B∇.~u = −~B(ε/a) (11)

P = ρT (12)

where U = (0, uy, uz) and B = (2Bx, By, Bz). The
nabla operator that appears in the previous equations
is written in terms of comobile coordinates as ∇ =

(1/(ax)∂x, (1/a(t))∂y, (1/a(t))∂z). The plasma is transported
radially, which implies that, in a local cartesian coordinate
system (x,y,z) where x represents the local radial direction, it
expands in directions y and z perpendicular to the local radial
direction (fig. 1).

Expansion modifies the evolution in two ways: (i) by
damping the different fields amplitudes (cf. the rhs terms in
eq. 8-12); (ii) by damping the gradients perpendicular to the
radial, due to the 1/a(t) factor in the nabla expression.

Explicit visco-resistive terms (not shown) are added to the
previous equations in order to be dissipate the energy that is
transported along the spectrum down to the smallest available
scales. This energy is given to the internal energy, so that the
heating per unit mass reads:

Qν = µ(ω̃2 + 4/3 (∇̃ · u)2) + ηJ̃2 (13)

where ω̃ = ∇̃ × u is the vorticity, J̃ = ∇̃ × B is the current
density and ∇̃ = (∂x, ∂y, ∂z) is the nabla operator defined with
respect to the comobile coordinates: this choice of the como-
bile coordinates for dissipation terms ensures a better control
of energy at grid scales.

The dissipation appears as a non-adiabatic source term ρQν

in the equation for the internal energy, which reads:

∂tP+ (~u.∇)P+γP∇.~u+2γP(ε/a) = ρ̄κ∆̃T + (γ−1)ρ̄Qν (14)

where κ is the thermal conductivity.
The corresponding heating is negligible at start, when en-

ergy is concentrated in large scale fluctuations only, but be-
comes substantial, as soon as nonlinear couplings have trans-
ferred energy towards scales small enough. The heating (and
associated dissipation) can then be called “turbulent”, and,
at the same time, gains universality, being in principle inde-
pendent of the precise value of viscosity and resistivity, and
is believed to be a correct prediction for the interplanetary
plasma as well, where dissipation is not achieved by visco-
resistive terms.

2.2. Basic physics

2.2.1. Expansion vs turbulence, generalities

We summarize here the respective effects of the mean ra-
dial wind (also called “expansion” in the following) and
of turbulence, as discussed in particular in Grappin et al.
(1993); Grappin & Velli (1996); Dong et al. (2014), VG16
and MGV18.

The mean radial wind alone is responsible for the follow-
ing effects: (i) eddies become elongated in the two direc-
tions perpendicular to the radial directions; (ii) fluctuations
are damped; (iii) plasma cools.

On the contrary, turbulence alone is responsible of the fol-
lowing: (i) eddies become elongated in the direction of the
mean magnetic field; (ii) energy cascades from large to small
scales, leading to a turbulent dissipation, which heats the
plasma.

The respective importance of expansion and turbulence is
measured by the expansion parameter ε which is the ratio of
nonlinear time over expansion time (eq. 7). When ε = 0, the
system evolves as in standard MHD. When ε � 1, the largest
eddies nonlinear time is much smaller than the transport time,
so that turbulence is expected to evolve in the same way as
without expansion, that is, expansion simply adds its own
decay laws to turbulent dissipation. Note however that in
the limit of vanishing ε, the number of nonlinear times to
be integrated increases without limit, and we cannot hope to
study the turbulent evolution from 0.2 and 1 AU in a finite
computational time.

When expansion is strong enough, when, e.g., ε ' 1, one
expects that it will modify the turbulent evolution, as e.g.,
by delaying shock formation (Grappin et al. 1993), and/or by
forming anisotropic turbulent structures with radial symme-
try (Dong et al. (2014), VG16). It is worth mentioning that
expansion might also lead to the formation of magnetic field
switch-backs abundantly observed during the first two PSP
encounters (Squire et al. 2020).



4

2.2.2. Diagnostic tools and notations

Spectral anisotropy is basic here, as we will consider it to
be a signature of either slow winds or fast winds, according to
the findings of Dasso et al. (2005). Simulations can provide
either 3D energy spectra EM

3D(kx, ky, kz) (the suffix M denoting
the magnetic fluctuations) or its inverse Fourier transform,
the 3D autocorrelation AC:

AC(Lx,Ly,Lz) =

∫
EM

3D(kx, ky, kz)ei(kxLx+kyLy+kzLz)dkxdkydkz.

(15)
We will also consider the reduced 1D energy spectra in the

three x,y,z directions. We thus define:

E1D(kx) =

∫
E3D(kx, ky, kz)dkydkz (16)

and similarly for the other two spectra E1D(ky) and E1D(kz).
Without special mention, the 1D spectra will show total en-
ergy, that is kinetic + magnetic energy per unit mass. The x
direction is that of the radial, with the x,y plane containing
the mean magnetic field direction.

In the following, we will always use physical and not co-
mobile coordinates. Units of wavenumbers will be the initial
smallest transverse wavenumber k00

y = 2π/L0
y , where L0

y is the
transverse size of the initial numerical domain. Accordingly
the units of spatial lags Lx,y,z will be 2π/k00

y .

2.2.3. Heating

The critical heating that is necessary to produce the slow
cooling of temperature as observed by Totten et al. (1995)
can be obtained as follows. Imposing a mean temperature
profile T̄ ∝ 1/R in eq. 14 and taking the spatial average,
one finds after some simplifications that the heating rate must
be Qν = Qc where the “critical heating” resulting from a
turbulent cascade must be:

Qc = (1/2)T̄U0/R (17)

This formal solution is a slightly modified version of the one
considered in Verma et al. (1995).

Now, we may rewrite the critical condition Qν = Qc in
terms of M (turbulent Mach number) and ε. To do this, we
use QK41, the phenomenological estimate of the energy trans-
fer rate (equal to Qν) in the inertial range:

QK41 = k(u2 + δB2/ρ)3/2 ' 3ku3, (18)

where k is within the inertial range and u2, δB2/ρ are the
kinetic and magnetic energies of fluctuations within the range
[k/
√

2, k
√

2], which are assumed to be equal. Vasquez et al.
(2007) have shown that the K41 expression is related in cold
winds to the turbulent dissipation rate as:

QK41 ' 10Q̄ν (19)

Run Type N σ0
c ε ax µ0[10−3]

G2 GYRO 512 0 0.2 5 1.5
I2 ISO 512 0 0.2 1 3.5
I4 ISO 512 0 0.4 1 2.5
I6 ISO 512 0 0.6 1 4.6
I8 ISO 512 0 0.8 1 7
I4s ISO 512 0.95 0.4 1 4.5

I4s5 ISO 512 0.95 0.4 5 1.5
I4s5M ISO 1024 0.95 0.4 5 1.0

Table 1. Parameters and initial conditions for the simulations.
From left to right: name of the run; type of 3D symmetry of the
spectra (ISO for isotropic, GYRO for gyrotropic, i.e. approximately
axisymmetric around the mean magnetic field, see section 3); num-
ber of grid points N in each direction; the normalized cross helicity,
σ0

c ; the expansion parameter, ε; the aspect ratio of the numerical
domain, ax; the value of the dynamic viscosity, µ0. For all simula-
tions, the maximum excited wavenumbers are kmax

y,z /k0 = 4 for the
directions transverse to the radial and kmax

x /k00
y = a−1

x kmax
y,z /k

00
y in the

radial direction; the 1D spectral index is m0 = 5/3, the turbulent
Mach number is M0 = 1, with urms = brms = 1, and the mean mag-
netic field is slightly inclined in the ecliptic plane, B0 = [2, 2/5, 0].

So that after simple algebra the critical condition Qν = Qc

(cf eq. 17) becomes

M2/ε ' 4.4 (20)

where we define the turbulent Mach number as

M = urms/
√

(5/3)T (21)

The non-dimensional ratio (eq. 20) has been used to ini-
tialize simulations when studying the turbulent heating of
slow/cold winds in MGV18. In this paper, we found that
eq. 19 was approximately verified in our direct MHD simu-
lations. Typically, we used M = 1, ε = 0.2.

3. INITIAL CONDITIONS

3.1. GYRO and ISO symmetries, domain aspect ratio

We consider as in VG16 two kinds of initial conditions at
0.2 AU, denoted ISO and Gyro in the following. The ISO 3D
spectrum is isotropic. The Gyro 3D spectrum is an ellipsoid
with minor axis parallel to the radial direction, thus quasi-
parallel to the mean field direction, and it corresponds to a
quasi-2D geometry2. In VG16, we have shown that, with
appropriate choice of parameters, the ISO structure trans-
forms into a radial-slab structure. On the contrary, the Gyro
structure is seen to keep its initial ellipsoid structure, with
its minor axis following the mean magnetic field as it rotates

2 Choosing a symmetry axis strictly in the mean-field direction does not
change the results and only makes initial conditions more complicated.
This initial condition is practically equivalent to a quasi-2D geometry.
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Figure 2. The two kinds of Initial conditions. Top panels: GYRO
symmetry; bottom panels: ISO symmetry. Left panels: 3D auto-
correlations AC(Lx, Ly, Lz = 0); right panels: 3D energy spectra
E3D(kx, ky, kz = 0). Straight lines show the mean field direction.
Note the limited number of wave vectors excited: 1/5 ≤ kx ≤ 4/5
and 1 ≤ ky,z ≤ 4 in the GYRO case, 1 ≤ |k| ≤ 4 in the ISO case.

Figure 3. Initial and final domains of the simulations in the X-
Y plane (dotted lines). (a) Initial aspect ratio ax = L0

x/L
0
y = 5,

final aspect ratio unity; (b) Initial aspect ratio unity, final aspect
ratio 1/5; (c) same as (a) but with different initial autocorrelation.
Inside each domain we represent schematically the autocorrelation
corresponding to the initial GYRO and ISO symmetry, (a) and (b)
respectively, and the expected symmetry at 1 AU when only linear
effects are accounted for.

with increasing heliocentric distance, and with its length fol-
lowing the expected classical critical balance between linear
Alfvén time and nonlinear time VG16; MGV18.

Fig. 2 shows the GYRO (top) and ISO (bottom) initial con-
ditions as 2D cuts in the plane containing the mean magnetic
field: the autocorrelations on the left panels and spectra on

the right panels. In this figure, as well as in all other forth-
coming figures showing autocorrelations (and spectra), the
spatial unit is the initial transverse size of the domain divided
by 2π. Note the limited number of wave vectors excited in
the spectra: 1/5 ≤ kx ≤ 4/5 and 1 ≤ ky,z ≤ 4 in the GYRO
case, 1 ≤ |k| ≤ 4 in the ISO case. We refer the reader to our
previous work (MGV18) for a justification of such a choice.

Simulations have 512 equally spaced grid points in each
direction (apart from one run with 1024 resolution, see Ta-
ble 1), initial kinetic and magnetic energies are at equipar-
tition, and velocity fluctuations are purely solenoidal. The
initial energy spectra are generated by exciting kinetic and
magnetic fluctuations with random phases, with the 1D en-
ergy spectrum in the radial direction E(kx) being proportional
to k−m0 , with m0 = 5/3.

The initial plasma domain considered in our simulations
has either an aspect ratio ax = L0

x/L
0
y = 5, thus evolving to a

final aspect ratio unity, or an aspect ratio unity, thus evolving
to a final aspect ratio 1/5 (see fig. 3). On the contrary, the only
run with GYRO initial conditions (G2) has an initial aspect
ratio 5 (see panel a), while ISO initial conditions will have
ax = 1, 5, as in panels b and c. Note that local couplings are
favoured at end or beginning of the calculation depending on
the initial aspect ratio being 5 or 1.

3.2. Choice of parameters

Consider first the choice of M0 and ε. It is easily found
that, for a fixed distance interval, the integration time in-
creases with the number of large scale nonlinear times dur-
ing travel, that is, when the expansion parameter ε decreases.
For this reason, it was found that ε values within the interval
[0.2, 0.4] was convenient to begin with (cf. MGV18).

Then, as recalled in the previous section, to reach substan-
tial heating, one should adopt a large enough expansion pa-
rameter ε and a large enough ratio M2

0/ε (eq. 20), which thus
leads to M0 ' 1. This assumes - as a starting point - that the
efficiency of the cascade will be comparable, whatever the
geometry of turbulent patterns.

We will then consider initial normalized cross-helicity,
σ0

c = 0 or σ0
c = 0.95, close to those found for slow and fast

winds near 0.3 AU, at solar minimum (D’Amicis & Bruno
2015).

The initial (0.2 AU) brms and urms equal 1 and the mean
magnetic field is B0 = (2, 2/5, 0), close to aligned with the
radial. Due to the conservation of the magnetic flux during
expansion by the EBM equations, the mean magnetic field
rotates as distance/time increases until it reaches an angle of
45◦ with respect to the radial at the end of the simulation (R=

1 au).
Table 1 lists the runs described in this paper together with

the various parameter values: normalized cross helicity σ0
c ,

turbulent Mach number M0, expansion parameter ε, initial
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aspect ratio of the domain ax, initial cutoff wavenumber in
the directions transverse to radial kmax

y,z , 1D spectral slope m0,
and viscosity µ0 (assumed to decay as 1/R and equal to the
resistivity and the thermal conductivity). Apart from run G2
with GYRO initial anisotropy, the simulations have initial
isotropic spectra (ISO symmetry), increasing values of the
expansion parameters (runs I2-I8) or of initial cross helic-
ity (runs I4s, I4s5, I4s5M). The latter series are candidates
for the radial-slab, and will allow exploring the effect of the
initial aspect ratio (passing from 1 to 5) and of resolution
(passing from 512 to 1024).

4. RESULTS

In this section we start from the quasi-2D regime that gen-
erates a 1/R temperature, as studied in MGV18. We then
change in turn the initial symmetry, the expansion parame-
ter, and the initial cross helicity in order to (i) keep a strong
heating able to lead to a temperature profile close to 1/R; (ii)
pass from the quasi-2D to the radial-slab geometry.

4.1. From Gyro to ISO initial conditions

We start with a GYRO initial symmetry, M0 = 1, and
ε = 0.2 (run G2)3 and compare it to run I2, which differs
only in the symmetry of the initial spectrum, now completely
isotropic. In VG16, who studied the case of low initial Mach
number M0 = 0.12), isotropic initial conditions were found
to enhance the quasi-linear behavior, thus producing an au-
tocorrelation elongated towards the transverse directions in-
stead of towards the mean field in VG16.

In Fig. 4 we compare the magnetic autocorrelations at 1
au in the plane Lz = 0 for runs G2 and I2. Panel a shows
run G2: at 1 au the autocorrelation’s main axis has followed
the mean field axis (see straight line) as it rotated away from
the initial quasi-radial direction. Panel b shows run I2: the
ISO initial symmetry leads here at 1 au to a major axis in be-
tween the directions of B0 and the Ly axis. These two results
are compatible with those of the low Mach number runs in
VG16.

We then consider in Fig. 5 the heating obtained in both
runs, with thick solid lines for run G2 and dotted lines for run
I2. The left panel (a) shows the normalized heating Qν/Qc,
and the right panel (b) shows the temperature decay com-
pensated by a 1/R decay. For the GYRO run G2, heating
is close to critical everywhere except for a very short phase
during which the spectrum forms (R ≤ 0.24 au). Correspond-
ingly, the temperature decay is close to 1/R except during the
short start-up phase for which it follows the adiabatic 1/R4/3

curve4. For the ISO run I2, the start-up phase is shorter, with

3 Such parameters have been used in MGV18 (run E) - the only difference
between runs E and G2 is that in the latter the diffusive parameters are
somewhat smaller.

4 These results are similar to those of run E in MGV18
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Figure 4. 3D autocorrelation of the magnetic field fluctuations
AC(Lx, Ly, Lz = 0) at 1 au for simulations with ε = 0.2 and different
initial conditions. Panel a. Run G2 (with initial GYRO symmetry).
Panel b. Run I2 (with initial ISO symmetry). In each panel, the
straight line denotes the mean field direction (here at 450 from the
radial direction).
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Figure 5. Heating curves for the same runs shown in Fig. 4 with
ε = 0.2 and GYRO symmetry (run G2, thick solid line) and ISO
symmetry (run I2, dotted line). Panel a. Heating Qν vs distance
normalized by critical heating Qc. Panel b. Temperature vs dis-
tance compensated by 1/R decay (T/T0×R/R0), with thin solid line
showing the adiabatic solution 1/R4/3.

heating being initially well above the critical value, and then
becoming somewhat subcritical. Correspondingly, the tem-
perature decay is close to 1/R only in the last interval [0.6, 1]
au.

4.2. Increasing the expansion parameter

We have seen that imposing isotropic initial conditions
turns the symmetry axis of the autocorrelation away from
the mean field axis. We now again start with ISO symmetry
and increase the expansion parameter ε, in the hope to force
the final autocorrelation closer to the radial-slab pattern (see
VG16).

Fig. 6 compares the evolution of anisotropy with distance
for runs I2 (ε = 0.2, top panels) and I6 (ε = 0.6, bottom
panels). While, as already mentioned, run I2 has a major axis
in between the Ly and the B0 axis, for run I6 on the contrary,
the main axis is now almost parallel to the Ly axis: this is true
already at distance R = 0.6 au (compare panels b and c).
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Figure 6. Evolution with distance of the autocorrelation for ISO
initial conditions and different expansion parameter. Distance in-
creases from left to right: R=0.3, 0.6 and 1au. Top panels: run I2
(ε = 0.2); Bottom: run I6 (ε = 0.6). The straight line in each panel
denotes the direction of the mean magnetic field.

The heating curves for runs I4, I6, I8 are shown in fig. 7,
in the left panel we plot the heating normalized by the crit-
ical heating and in the right panel the temperature is com-
pensated by 1/R. Increasing the expansion parameter ε from
0.4 (solid line), to 0.6 (dotted), and 0.8 (dashed), increases
the delay before a substantial heating occurs, which is ex-
pected as the distance traveled during the first nonlinear time
becomes larger with larger ε. Note that all three temperature
curves show a final stage with approximately an 1/R temper-
ature decrease (panel b). The largest 1/R range is obtained
with the smallest expansion, ε = 0.4. This is at variance with
the case of run I2 considered previously, with ε = 0.2, which
led to early overheating and only in the last distance range an
identifiable radial slope for the temperature curve.
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Figure 7. Heating curves for runs shown in Fig. 6 (same format
of Fig. 5). ISO symmetry with increasing values of the expansion
parameter, ε = 0.4, 0.6, 0.8, for runs I4, I6, I8 in thick solid, dotted,
and dashed lines, respectively.

4.3. Non-zero cross helicity

Since a high cross helicity σc is frequent, particularly in
fast winds, we now compare two ISO runs with respectively
σ0

c=0 and 0.95 (runs I4 and I4s). We choose ε=0.4, since for
this expansion parameter the temperature decays as 1/R for
R > 0.24 au and the final anisotropy should be intermediate
between that of runs I2 (top figure) and I6 (bottom figure). In
other words the autocorrelation’s major axis for run I4 should
lie in between the mean field axis and the perpendicular to the
radial.

Fig. 8 shows the magnetic autocorrelation for runs I4 (a)
and I4s (b): a strong cross-helicity clearly moves the major
axis closer to the perpendicular to the radial. In spite of this
difference in anisotropy, we see in fig. 9 that the heating and
temperature curves of the two runs don’t differ noticeably.
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Figure 8. Autocorrelation at 1 AU for two runs with ε = 0.4 and
different initial cross-helicity. Panel (a): run I4 with σ0

c = 0. Panel
(b): run I4s with σ0

c = 0.95.
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Figure 9. Heating curves for runs shown in Fig. 8 (same format of
Fig. 5). ISO symmetry with vanishing and large cross helicity, run
I4 and I4s in solid and dotted lines respectively.

5. DISCUSSION

5.1. Summary: from quasi-2D to radial-slab

In order to study the turbulent heating generated by ed-
dies with radial-slab symmetry, we have considered a series
of simulations starting from quasi-2D and arriving at quasi
perfect radial-slab symmetry, by keeping the turbulent Mach
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number equal to one and by only changing the initial config-
uration at 0.2 AU as follows:

• changing initial symmetry from GYRO to ISO

• increasing by a factor two the expansion rate, from 0.2
to 0.4.

• imposing a strong cross helicity.

We emphasize that if a pure 2D geometry is chosen as initial
conditions, turbulence remains 2D and the plane in which
wavevectors are confined does not rotate with the mean field
(see Ghosh & Roberts 2012). On the contrary, to achieve a
rotation of the anisotropy with the mean-field axis, a quasi-
2D initial geometry is necessary, that is, a breath of the spec-
trum in the mean-field direction (Ghosh & Roberts 2012,
VG16; MGV18). However, in the following we will see that
by adding energy at larger and larger field-parallel wavevec-
tors and by increasing cross helicity, nonlinearities are weak-
ened, but not switched-off, and the symmetry axis unbinds
from the magnetic field axis.

The resulting transition from the quasi-2D to the radial-
slab geometry is summarized in fig. 10, the runs G2, I2, I4,
I4s being shown from top to bottom. In each row, we plot
from left to right: (a) a given energy level for the 3D magnetic
autocorrelation ACb(Lx, Ly, Lz); (b) a set of isocontours of the
autocorrelation in the plane Lz = 0; (c) a set of isocontours
of the spectrum in the plane kz = 0.

In the middle column, the 2D cuts of the autocorrelation
show again what we have already seen in the previous sec-
tion, namely a progressive rotation of the major axis of the
autocorrelation from the mean field direction towards the
transverse direction.

In the first column, the 3D iso-surfaces reveal that this is
accomplished by a two-fold process: the axis of symmetry
changes from the mean-field to the radial direction and at the
same time the shape of the autocorrelation gradually changes
from prolate to oblate. In other words, for the radial-slab
regime (last row) the anisotropy is mainly determined by the
transverse stretching due to the expansion of the plasma vol-
ume during transport by the wind.

Autocorrelation best displays the large-scale anisotropy,
while Fourier transform best displays medium-scale
anisotropy. The two smallest Fourier isocontours in the
right column which correspond to the large scales show the
same behavior as already seen in the autocorrelation. On
the contrary, the large isocontours that correspond to small
scales clearly have a tendency to align with the radial axis.
As we will now, these scales belong to the dissipative range
and their alignment with the radial may be ascribed to the
absence of nonlinear couplings. Hence, in these results, the
radial-slab structure which appears in run I4s seems decou-
pled from the cascade mechanism.
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Figure 10. Summary of the progressive transition from B0−aligned
to radial-slab pattern: autocorrelation and Fourier spectra. Left
column: given energy isocontour of the 3D magnetic autocorrela-
tion ACB (with the red line showing the mean magnetic field direc-
tion, the blue line showing the radial direction Ox); middle column:
given set of energy isocontours of ACB(Lx,Ly,Lz=0); right column:
given set of energy isocontours of the 3D spectrum, kz = 0 plane.
In the last two cases, the straight diagonal line shows the mean field
direction. From top to bottom: runs G2, I2, I4, I4s.

5.2. Transverse vs radial spectra

A better understanding of the radial-slab structure can be
gained by looking at 1D spectra. Fig. 11 shows the total (ki-
netic+magnetic) 1D energy spectra at 1 au for runs G2, I2,
I4, and I4s in panels (a), (b), (c), and (d), respectively. In
each panel E(kx), E(ky), E(kz) are plotted with solid, dot-
ted, and dashed lines respectively; all are compensated by
k−5/3. All runs, except perhaps run I2, have transverse spec-
tra E(ky) and E(kz) with a scaling index close to -5/3 in the
range 0.2 ≤ k ≤ 1. On the contrary, the radial spectrum E(kx)
has only a dissipative tail in the available range kx ≥ 1: there
is no information at larger scales on the radial spectrum at
R=1 AU, for the simple reason that the radial extent Lx of the



9

(a)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
5
/3

 E
to

t(
k
)

(a)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
5
/3

 E
to

t(
k
)

(a)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
5
/3

 E
to

t(
k
)

(b)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
5
/3

 E
to

t(
k
)

(b)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
5
/3

 E
to

t(
k
)

(b)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
5
/3

 E
to

t(
k
)

(c)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
1
.6

7
E

to
t

(c)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
1
.6

7
E

to
t

(c)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
1
.6

7
E

to
t

(d)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
1
.6

7
E

to
t

(d)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
1
.6

7
E

to
t

(d)

10-1 100 101

Kxyz

0.0001

0.0010

0.0100

0.1000

1.0000

k
1
.6

7
E

to
t

Figure 11. 1D energy power spectra Etot(k) at 1 AU for the same
runs presented in Fig. 10: runs G2, I2, I4, I4s in panels (a) to (d)
respectively. The 1D spectrum along kx, ky, kz is plotted with solid,
dotted, and dashed lines respectively, and compensated by k−5/3.

plasma domain is limited from start to kx ≥ 1, and does not
change with distance.

In order to reveal the spectral evolution at larger radial
scales (kx < 1), we now run again run I4s, but extending
the radial domain by a factor 5, i.e., consider a domain as-
pect ratio ax = 5 as for the case of the GYRO run. This gives
rise to two runs I4s5 and I4s5M, respectively with resolution
N=512 and N=1024, the increased resolution of run I4s5M
allowing to test the convergence of the results. As in previ-
ous runs we initialize an isotropic 3D spectrum in the range
1 ≤ k ≤ 4 (excluding the modes kx < 1) and use the same
random series in runs I4s5 and I4s5M so as to have strictly
the same initial conditions.

First, consider run I4s5M with 1024 resolution. In
Fig. 12 we plot the evolution with distance of 1D spectra
in the three directions using the same styles as in Fig. 11,
with now each panel showing a different distance (R =

0.2, 0.42, 0.76, 1 AU). Note that the initial spectra (panel
a) have the same energy density in the three directions for
kx,y,z ≥ 1, which is consistent with the isotropy of the 3D
spectrum, however the radial spectrum E(kx) is alone to have
a non-vanishing energy in the large-scale range 0.2 ≤ kx ≤ 1.
Recall that this large-scale range exists only in the radial (x)
direction. No energy is given to the kx axis itself (i.e., with
ky = kz = 0). However the situation is different for the lines
parallel to the kx axis (i.e., with ky, kz , 0): these lines cross
the shell 1 ≤ |k| ≤ 4, and these lines contribute to the energy
spectrum E(kx) (see eq. 16), which is thus non zero in the
range 0.2 ≤ kx < 1.

During the radial evolution (panels b, c, d) in the range
0.2 ≤ ky,z ≤ 1, the transverse spectra E(ky,z) progressively
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Figure 12. Evolution with distance of the three 1D spectra in
run I4s5M. From panel (a) to (d) distance increases as R =

0.2, 0.46, 0.72, and 1 au. 1D spectra E(kx), E(ky), and E(kz) are
plotted with solid, dotted, and dashed lines, respectively, and com-
pensated by k−5/3.
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Figure 13. Summary plot for runs including large radial scales and
ending at 1 au with aspect ratio unity. Runs I4s5M with N = 10243

and I4s5 with N = 5123 are plotted in thick and thin lines respec-
tively. (a) 1D spectra in the three directions at 1 AU, E(kx), E(ky),
and E(kz) in solid, dotted, and dashed lines, respectively; (b) auto-
correlation at 1 AU of run I4s5M; (c) Normalized Heating Q/Qc vs
distance; (d) Normalized temperature RT/(R0T0) vs distance.
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flatten, reaching a scaling index close to −1.85 at 1 au, while
the radial spectrum E(kx) progressively steepens, reaching a
scaling index close to −1 at 1 au. Note that the behavior of
transverse spectra does not change substantially when chang-
ing the initial aspect ratio from ax = 1 to ax = 5.

An overview of the properties of the two runs with large
radial scales is given in Fig. 13. Runs I4s5 and I4s5M with
resolution 5123 and 10243 appear in thin and thick lines, re-
spectively. We plot the 1D spectra E(kx), E(ky), E(kz) at 1 au
compensated by k−5/3 (panel a), the 2D cut of the autocor-
relation at 1 AU (only for run I4s5M, panel b), the heating
Q(R) normalized by the critical heating Qc (panel c), and fi-
nally the temperature profile compensated by 1/R (panel d).
Panel a shows that the radial spectral index is definitely -1 for
both resolutions, while the transverse spectrum shows some
additional flattening when increasing resolution from 512 to
1024. Panel b shows that the anisotropy is marginally af-
fected by the presence of large radial scales, with a radial-
slab structure that is slightly tilted towards the mean-field di-
rection. Compare with fig. 10, central bottom panel (I4s).
Finally, heating is again close to critical and leads to a tem-
perature decrease close to 1/R (panels c and d).

These properties lead us to conclude that: (i) the heat-
ing doesn’t vary whether energy is present (runs I4s5M and
I4s5) or not (I4s) in large radial scales; (ii) the decoupling
between the radial and transverse wave vectors occurs inde-
pendently of the domain aspect ratio, and (iii) the turbulent
heating is due to a turbulent cascade developing in transverse
directions, that is, in the plane perpendicular to the radial.

5.3. Matching Helios and simulation data

The values of the parameters in our simulations were cho-
sen following two main criteria: (i) an initial expansion
parameter ε not too small, in order to limit the computa-
tion time, and an initial turbulent Mach number M0 large
enough to achieve the required heating (see eq. 20), in prac-
tice M0 = 1. By comparing their values at 1 au with those of
Helios 1 mission, we determine now which part of the Solar
Wind spectrum these parameters describe.

Fig. 14 shows the evolution of parameters with distance
for the two runs runs I4s5M and G2, representative of the
radial-slab and quasi-2D geometries, in the top and bottom
panels, respectively. The turbulent Mach number M is drawn
with solid line in panels a and c: it steadily decreases from its
initial value M0 =1 down to 0.85 at 1 au for the radial-slab,
and to 0.7 at 1 au in the quasi-2D run. The cross helicity σc

decreases from σ0
c = 0.95 to about 0.6 at 1 au for the radial-

slab run (dotted line, panel a), while it remains always close
to zero for the quasi-2D run that has a vanishing initial cross
helicity (not shown).

In panels b and d, we show the evolution with distance of
two relative expansion parameters: the radial and transverse

(a)

1 2 3 4 5
R/R0

0.1

1.0

10.0

M
a

c
h

 s
ig

m
a

_
c

(a)

1 2 3 4 5
R/R0

0.1

1.0

10.0

M
a

c
h

 s
ig

m
a

_
c

(b)

1 2 3 4 5
R/R0

0.1

1.0

10.0

e
p

s
_

ra
d

 e
p

s
_

tr
a

n
s

(c)

1 2 3 4 5
R/R0

0.1

1.0

10.0

M
a

c
h

 s
ig

m
a

_
c

(c)

1 2 3 4 5
R/R0

0.1

1.0

10.0

M
a

c
h

 s
ig

m
a

_
c

(d)

1 2 3 4 5
R/R0

0.1

1.0

10.0

e
p

s
_

ra
d

 e
p

s
_

tr
a

n
s

Figure 14. Evolution with distance of several parameters for a
radial-slab run (I4s5M, top panels) and quasi-2D run (G2, bottom
panels). Left panels (a and c): the Mach number M (solid line) and
the cross helicity σc (dotted line) versus distance. Right panels (b
and d): the parameters of radial expansion, εrad (solid line), and of
transverse expansion, εtrans (dotted line) versus distance.
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Figure 15. First 118 days of Helios I mission, daily values of (a)
turbulent Mach number M0; (b) expansion parameter εrad; (c) cross
helicityσc. RMS quantities are computed on: τ0=1day (solid lines),
τ1=8h20 (dotted lines) and τ2=1hour (dashed lines) (a and b only).
Upper panel (a) shows distance R in units of 0.1 au (dashed line).

ones. The transverse expansion, εtrans, is simply defined as
the expansion parameter, ε (eq. 7), in which the nonlinear
time is calculated on the transverse box size, taking into ac-
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count the time/distance variation:

εtrans =
U/R

k0
yurms

. (22)

The radial expansion, εrad, is a similar non-dimensional pa-
rameter in which the nonlinear timescale is calculated on the
largest radial scale, and it will be used for comparison with
observations, since it allows an evaluation at a fixed Doppler
frequency f by applying the Taylor hypothesis:

εrad =
U/R

k0
xurms

=
U/R

(2π f /U)urms
. (23)

As a rule, both εrad (solid line, panels c and d) and εtrans

(dotted line, panels c and d) vary with distance due to the
increase of nonlinear time, but εtrans is also affected by the
increase of the box size due to expansion, Ly ∝ 1/k0

y ∝ R.
Since the domain aspect ratio Lx/Ly reduces from 5 to 1 as
distance varies from 0.2 to 1 au, also the ratio εrad/εtrans will
vary from 5 to unity. The overall evolution is similar in both
runs, with εrad decreasing by about a factor two, so the value
at 1 au, εrad = 1 and εrad = 0.5 for radial-slab and quasi-2D,
respectively, is roughly determined by the initial condition.

We now show in Fig. 15 the daily evolution of the three
parameters M (panel a), εrad (panel b) and σc (panel c) com-
puted during the first four months of Helios 1 mission in
which fast and slow streams are present. We define av-
erages and fluctuations at three different time scales, τ0 =

one day (solid lines), τ1 =8h20 (dotted lines) and τ2=1 hour
(dashed line), leading to three estimates of M, εrad for these
timescales (for clarity, only the values of σc at the two largest
time scales are given). The top panel (a) also shows the
heliocentric distance R in units of 0.1 au. Note that in sin-
gle spacecraft data, only the radial scales are measurable by
transforming the temporal scale into a spatial scale using the
Taylor hypothesis, and so only the parameter εrad can be ob-
tained.

Table 2 allows to compare the parameter values obtained
in simulations at 1 au with those found during the first four
months of Helios mission. For the latter we show the average
and standard deviations of M and εrad values, computed in the
range 0.8 < R < 1 au, considering in turn the three timescales
τ0,1,2. For each of the two runs G2 and I4s5M, we indicate in
parenthesis the Helios timescales τ0,1,2 for which the Mach
and expansion rate obtained in simulations lie within the in-
terval of variation appearing in the three Helios rows.

The comparison of Mach numbers (column denoted by
“M”) shows that the simulation G2 matches Helios scale τ1

(and marginally τ2), while simulation I4s5M matches Helios
scales τ0 and τ1. Using the expansion rate εrad leads on the
contrary to both G2 and I4s5M matching the largest one-day
scale τ0. As a final compromise, we choose the following 1
au upper scale: 1 day (τ0) for the radial-slab (I4s5M) and a
half-day, in between τ0 and τ1, for the quasi-2D (G2).

τ M εrad

Helios τ0 ∼ 1d 1.15±0.4 0.7±0.3
Helios τ1 ∼ 8h20 0.96±0.3 0.3±0.1
Helios τ2 ∼ 1h 0.5±0.2 0.07±0.02

Quasi-2D (run G2) 0.7 (τ1,τ2) 0.5 (τ0)
Radial-slab (run I4s5M) 0.85 (τ0,τ1) 1 (τ0)

Table 2. Summary of parameter values measured during the first
four months of Helios 1 mission and at the end of simulations G2
and I4s5M. Top rows denoted by “Helios” give the turbulent Mach
number M and εrad with urms computed on each of the three time
scales τ0,1,2, averaged in the interval 0.8 ≤ r ≤ 1 au, together with
their standard deviation. The two bottom rows give the final values
at 1 au of M and εrad for runs G2 and I4s5M, respectively, together
with the time scale(s) (τ0,1,2) for which the simulation results lie
within the interval of variation of Helios parameters.

5.4. Slab versus Radial-slab

In this work we assumed that the measured anisotropy in
the solar wind is well described by a combination of radial-
slab and quasi-2D geometry (Saur & Bieber 1999), leaving
aside the more popular combination of slab and quasi-2D ge-
ometry (e.g. Matthaeus et al. 1990; Dasso et al. 2005)

As already commented in the introduction, there are sev-
eral arguments in support of our choice. First, the analy-
sis leading to the slab geometry relies on the hypothesis of
symmetry around the mean magnetic field, which does not
necessarily hold in the solar wind. Second, by fitting solar
wind data at 12h scales to different combination of geomet-
ric models, Saur & Bieber (1999) rejected the slab geometry
in favor of the radial-slab geometry, which, in combination
with quasi-2D geometry, yielded the most reliable descrip-
tion of fluctuations anisotropy. Third, there is no numerical
support in favor of the slab geometry (but see Zank et al.
2017), while we showed here and in VG16 that a radial-slab
geometry is obtained with isotropic turbulence at 0.2 au and
relatively large expansion rate or cross helicity).

In VG16 we also claimed that the radial-slab geometry
transforms into a slab geometry when axisymmetry around
the mean field is assumed, as in the above-cited observational
works that employ a slab geometry. This would represent a
definite proof that the underlying geometry is the radial-slab,
but it is not the case. In fact, our claim was based on an er-
roneous use of 2D FFT. When using 3D FFT the radial-slab
geometry transforms into an Isotropic geometry, except in the
trivial situation in which the mean field direction is close to
the radial direction. This is on average true for the intervals
analyzed by Dasso et al. (2005), the mean-field-angle being
θBV ∼ 30o, but since the distribution of angles is broad it can-
not be taken as a proof of our claim. We cannot thus reconcile
the two sets of observations and we defer this to a future work
that compares in detail solar wind data and simulations.
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5.5. Conclusion

In the present work, we have shown that varying the spec-
tral anisotropy, relative expansion rate, and cross helicity at
0.2 au could lead to either 2D, radial-slab or intermediate
anisotropy at 1 au, still leading to a temperature decay close
to 1/R. This numerical proof supports the turbulent origin
of the slow temperature decay of solar wind streams what-
ever, and in spite of, the observed differences in the spectral
anisotropies: (radial-slab or quasi-2D).

In the quasi-2D regime (run G2), we obtain a scaling close
to k−5/3 in all directions. In the radial-slab regime (run
I4s5M), we obtain a 1/k radial scaling and scalings close to
k−1.85 in the two transverse directions. The limited resolu-
tion doesn’t allow to reveal the existence of a possible radial
k−5/3 range at smaller scales and/or at later times. However,
Bruno et al. (2019) showed that cascades starting from scales
of one or several days may be found in slow winds, along
with cases in which the 1/ f spectrum shows up. It would be
interesting to understand if such differences arise because of
different spectral anisotropy, as our simulations indicate.

Note that either the radial-slab or the quasi-2D regime ap-
pears almost immediately, depending on whether the initial
symmetry is already isotropic or quasi-2D. In particular the
former does not evolve into the latter as in Roberts & Of-
man (2019), possibly due to the absence of shear that would
strengthen the cascade.

Concerning the differences in spectral indices in the radial
and transverse directions, it is worth noticing that also the
variance anisotropy measured at 1 au was shown to vary with
the sampling direction (Vech & Chen 2016): one can expect
that also different power-law indices coexist. The same com-
bination of -5/3 in the perpendicular direction and -1 in the
parallel direction has been found in multishell simulations of
the accelerating region (Verdini et al. 2012), suggesting that
such initial spectral anisotropy can be maintained at larger
distances. Recent measurements taken during the first two
Parker Solar Probe (PSP) orbits showed that the 1/ f spectral
range exists below 0.2 au (Chen et al. 2020). Observations
close to or inside the Alfvénic critical point will eventually
shed light on its origin.

Our simulations suggest that the radial spectrum observed
at large scales may not inform us about the nature and rate
of the cascade. More precisely, the slow relaxation of the
1/ f spectral range towards a steeper scaling observed in the
solar wind does not provide a simple criterion to describe
a progressive increase of cascade rate and turbulent heating
with heliocentric distance. Generally, the flattening of the

spectra with increasing wind speed, proton temperature, and
cross helicity (Grappin et al. 1991), (Chen et al. 2013) or
decreasing heliocentric distance (Chen et al. 2020) might not
be associated with a decrease of cascade rate neither.

Finally, it would be interesting to use PSP data to extend
the temperature profile back to Sun and find until which dis-
tance the empirical correlation between turbulent heating and
solar wind properties holds, i.e. Q = 0.5UT/R (Verma et al.
1995). At present, observations during the first two PSP or-
bits roughly confirm its validity. In fact, the cascade rate at
distances around 0.1 au is about a factor 100 larger than at 1
au and it is correlated with the wind speed (Bandyopadhyay
et al. 2020).

Our analysis in this study is limited in several ways: (i)
only large scales have been considered, due to numerical con-
straints (studying smaller scales, thus with shorter nonlinear
times would take a longer CPU time, the distance interval be-
ing fixed); (ii) we limited ourselves to the MHD framework,
i.e., with isotropic temperature, and neglecting the difference
between proton and electrons; (iii) we did not include veloc-
ity shear or |B| ≈ const magnetic fluctuations that are charac-
teristic of the solar wind (see Roberts & Ofman 2019, for this
kind of simulations); (iv) we are not able to reproduce the ob-
served typical evolution of the 1/ f range (Roberts 2010), nor
the shift of the scale separating the 1/ f and the f −5/3 ranges
(Bruno & Carbone 2013). These aspects will be the subject
of following works. In spite of these important limitations,
we think that the present work, together with that of MGV18,
provides a significant step forward: it is the first to evaluate
in direct simulations the turbulent heating between 0.2 and
1 au, by taking into account at the same time the expansion
of the wind and the full nonlinear couplings, and to prove
that a strong heating can be achieved in the inner heliosphere
independently of the type of spectral anisotropy.

ACKNOWLEDGMENTS

The authors would like to acknowledge Thierry Passot and
the referee for their helpful remarks on the manuscript. This
work was granted access to the HPC resources of CINES
and IDRIS under the allocations 2018-A0050407683 and
2019-A0070407683 made by GENCI. It has been supported
by Programme National Soleil-Terre (PNST/INSU/CNRS).
This research was also supported by OP RDE project No.
CZ.02.2.69/0.0/0.0/16 027/0008495, International Mobility
of Researchers at Charles University.

REFERENCES

Bandyopadhyay, R., Goldstein, M. L., Maruca, B. A., et al. 2020,
The Astrophysical Journal Supplement Series, 246, 48

Bruno, R., & Carbone, V. 2013, Living Reviews in Solar Physics,
10, 2. http://adsabs.harvard.edu/cgi-bin/nph-data query?
bibcode=2013LRSP...10....2B&link type=ABSTRACT

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013LRSP...10....2B&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013LRSP...10....2B&link_type=ABSTRACT


13

Bruno, R., Telloni, D., Sorriso-Valvo, L., et al. 2019,
ASTRONOMY AND ASTROPHYSICS, 627, A96

Chen, C., Bale, S., Salem, C. S., & MARUCA, B. A. 2013, The
Astrophysical Journal, 770, 125

Chen, C. H. K., Bale, S. D., Bonnell, J. W., et al. 2020, The
Astrophysical Journal Supplement Series, 246, 53

Coleman, P. J. J. 1968, The Astrophysical Journal, 153, 371
D’Amicis, R., & Bruno, R. 2015, ApJ, 805, 84
Dasso, Milano, L. J., Matthaeus, W. H., & Smith, C. W. 2005, The

Astrophysical Journal, 635, L181
Dong, Y., Verdini, A., & Grappin, R. 2014, The Astrophysical

Journal, 793, 118
Elliott, H. A., Henney, C. J., McComas, D. J., Smith, C. W., &

Vasquez, B. J. 2012, Journal of Geophysical Research (Space
Physics), 117, A09102

Ghosh, S., Matthaeus, W. H., Roberts, D. A., & Goldstein, M. L.
1998a, J. Geophys. Res., 103, 23691.
http://adsabs.harvard.edu/cgi-bin/nph-data query?bibcode=

1998JGR...10323691G&link type=ABSTRACT
—. 1998b, J. Geophys. Res., 103, 23705.

http://adsabs.harvard.edu/cgi-bin/nph-data query?bibcode=

1998JGR...10323705G&link type=ABSTRACT
Ghosh, S., & Roberts, D. A. 2012, in American Institute of Physics

Conference Series, Vol. 1436, American Institute of Physics
Conference Series, ed. J. Heerikhuisen, G. Li, N. Pogorelov, &
G. Zank, 302–307

Grappin, R., & Velli, M. 1996, J. Geophys. Res., 101, 425
Grappin, R., Velli, M., & Mangeney, A. 1991, Annales

Geophysicae, 9, 416
—. 1993, Physical Review Letters, 70, 2190
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