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Abstract

We study a class of nonlinear BSDEs with a superlinear driver process f adapted to
a filtration F and over a random time interval [[0, S]] where S is a stopping time of F.
The terminal condition ξ is allowed to take the value +∞, i.e., singular. Our goal is to
show existence of solutions to the BSDE in this setting. We will do so by proving that
the minimal supersolution to the BSDE is a solution, i.e., attains the terminal values
with probability 1. We consider three types of terminal values: 1) Markovian: i.e., ξ is
of the form ξ = g(ΞS) where Ξ is a continuous Markovian diffusion process and S is a
hitting time of Ξ and g is a deterministic function 2) terminal conditions of the form
ξ = ∞ · 1{τ≤S} and 3) ξ2 = ∞ · 1{τ>S} where τ is another stopping time. For general
ξ we prove the minimal supersolution is continuous at time S provided that F is left
continuous at time S. We call a stopping time S solvable with respect to a given BSDE
and filtration if the BSDE has a minimal supersolution with terminal value∞ at terminal
time S. The concept of solvability plays a key role in many of the arguments. Finally,
we discuss implications of our results on the Markovian terminal conditions to solution
of nonlinear elliptic PDE with singular boundary conditions.

2020 Mathematics Subject Classification. 35J75, 60G40, 60G99, 60H30, 60H99.

Keywords. Backward stochastic differential equation, stopping time, singularity, continuity
problem, Green’s function.

1 Introduction and definitions

A backward stochastic differential equation (BSDE) is a stochastic differential equation (SDE)
with a prescribed terminal condition. They have been intensively studied since the seminal
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papers [5, 27]; they arise naturally in stochastic optimal control problems (see among others
[35]), they provide a probabilistic representation of semi-linear partial differential equations
(PDE) extending the Feynman-Kac formula ([28]) and they have found numerous applications
in finance and insurance [8, 10].

If the driver term of the BSDE has superlinear growth the solution of the BSDE can blow
up in finite time, this allows one to specify ∞ as a possible terminal value for such BSDE;
when the terminal value is allowed to take∞ it is called “singular.” In [1, 19, 30, 34], we study
nonlinear BSDE with singular terminal condition at a deterministic terminal time T . Such
BSDE generalize parabolic diffusion-reaction PDE with singular final trace ([14, 22, 33]) and
they are a key tool in optimal stochastic control problems with terminal constraints ([2, 14, 19]
and the references therein).

In this paper, we focus on BSDE with singular terminal conditions over a random time
horizon. We adopt the general framework for BSDE with terminal singular values established
in [18, 19, 20] and consider BSDE of the following form

dYt = −f(t, Yt, Zt, Ut)dt+ ZtdWt +

∫
E
Ut(e)π̃(de, dt) + dMt, YS = ξ, (1)

where W is a d-dimensional Brownian motion and π̃ is a compensated Poisson random mea-
sure on a probability space (Ω,F ,P) with a filtration F = (Ft)t≥0; the unknown that is
sought is the quadruple (Y, Z, U,M). The filtration F is supposed to be complete and right
continuous. The solution component M is required to be a local martingale orthogonal to
π̃. The function f : Ω × R × Rd × B2

µ → R is called the generator (or driver) of the BSDE.
Finally S is a stopping time of the filtration F and ξ is an FS measurable random variable,
which is singular, i.e., P({ξ = ∞}) > 0. Precise conditions on all of these terms are spelled
out in subsections 1.1 and 1.2 below. A quadruple (Y, Z, U,M) is said to be a supersolution
of (1) if it satisfies the first equation in (1) and

lim inf
t→+∞

Yt∧S ≥ ξ, almost surely, (2)

holds. A supersolution (Y min, Zmin, Umin,Mmin) is called minimal if Y min ≤ Y for any
other supersolution (Y,Z, U,M). We say (Y, Z, U,M) solves the BSDE with singular terminal
condition ξ if it satisfies the first equation in (1) and

lim
t→+∞

Yt∧S = ξ; (3)

i.e., to go from a supersolution to a solution we need to replace the lim inf in (2) with lim
and ≥ with =. In the rest of this paper whenever we refer to the “solution” of a BSDE with
a singular terminal value, it will be in the sense of (3). The condition (3) means that the
process Y is continuous at time S; for this reason we refer to the problem of establishing that a
candidate solution satisfies (3) as the “continuity problem”. Just as BSDE over deterministic
time intervals generalize parabolic PDE, BSDE over random time intervals are generalizations
of elliptic PDE; we provide further comments on this connection, on the motivation for the
study of BSDE over random time horizon with singular terminal values and on the implication
of continuity results for BSDE theory as well as constrained stochastic optimal control at the
end of this subsection.

We call a terminal condition “Markovian” if it is of the form ξ = g(ΞS) where, g : Rd 7→
R+ ∪ {∞}, Ξ is a Markov diffusion process and S is the first time Ξ hits a smooth ∂D,
D ⊂ Rd. For such exit times, existence of minimal supersolutions for (1) are proved in
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[19] for arbitrary terminal condition (see subsection 1.2 below). The work [31] proves that
these minimal supersolutions are in fact solutions for the case F = FW and for the specific
generator f(y) = −y|y|q−1 and for Markovian terminal conditions. The works [18, 20] develop
solutions to (1) when ξ belongs to some integrability space. The goal of the present work
is to prove that the minimal supersolution of (1) satisfies (3) (and therefore is a solution)
for several classes of singular terminal conditions and several assumptions on S. We outline
these classes and assumptions in the following paragraphs.

In two previous works [34] and [1] that prove continuity results for deterministic terminal
times, two of the main ingredients are the minimal supersolution Y min,∞ with terminal con-
dition ∞ at terminal time and the apriori upperbounds on supersolutions; both of these, are
readily available in the prior literature for deterministic terminal times (for the one dimen-
sional Brownian case treated in [34], Y min,∞ is deterministic and has an explicit formula). For
random terminal times the existence of Y min,∞ and apriori upperbounds are known only for
exit times of Markov diffusions from smooth domains. One of the main ideas of the present
work is to impose the existence of Y min,∞ as an assumption on the stopping time S and base
most of our arguments on this assumption. We call the terminal stopping time S solvable with
respect to the BSDE (1) if there exists a supersolution to the BSDE with terminal value ∞
at terminal time S (see Definition 3), deterministic times and exit times of Markov diffusion
processes are solvable for a wide range of BSDE; times that have a strictly positive density
around 0 are not solvable [19]. Many of our arguments are based on this solvability concept;
some basic consequences of solvability are given in Section 2. In particular, if S is solvable,
the BSDE (1) has a minimal supersolution for any singular terminal condition ξ ≥ 0 (Lemma
1). In addition to S being solvable, in many arguments we assume F to be left continuous
at S for the following reason. Because the filtration F is assumed to be general (apriori only
completeness and right-continuity is assumed) there is no way to control the jumps of the
additional local martingale component M of the solution at the terminal time. To avoid such
jumps, we suppose that F is left-continuous at time S.

We now indicate the main results of the present work. In Section 3 we assume S to
be solvable and consider the problem of proving the existence of the limt→∞ Y

min
t for an

arbitrary singular terminal condition ξ ≥ 0. When S is deterministic, in [32], the existence
of a limit for Y min is proved under some additional conditions on generator f . Here we show
that these assumptions are also sufficient for a random terminal time (Section 3) provided
that it is solvable.

Section 4 focuses on Markovian terminal conditions. To the best of our knowledge, [31] is
the only paper that proves continuity results for a singular terminal condition at a random
time S; [31] assumes f(y) = −y|y|q, ξ to be Markovian and F Brownian. The results in
Section 4 generalize the results in [31] to a general filtration F and driver f keeping the
terminal condition Markovian. An important step is a bound on the expected value of an
integral over the solution processes and dist(Ξ), where dist(x) = infy∈∂D |x− y| (see Lemma
5). One of the main ingredients in the proof is the apriori upperbound on Y derived in [19].
When F is Brownian and f is deterministic, the solution of the BSDE with a Markovian
terminal condition can be used construct a viscosity solution of an associated elliptic PDE.
This is discussed in subsection 4.1.

Sections 5 and 6 focus on the continuity problem for non-Markovian terminal conditions
of the form ξ1 = ∞ · 1{τ≤S} (Section 5) and ξ2 = ∞ · 1{τ>S} (Section 6) where τ is an-
other stopping time of F. The results in these sections generalize results from [34] (the one
dimensional Brownian case) and [1] (the general filtration, driver case) treating same type
of terminal conditions where S is assumed to be deterministic. Events of the form {τ ≤ S}
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naturally arise when one modifies constraints on stochastic optimal control problems based
on the values the state process of the problem takes. We refer to [34, 1] for more comments on
why we pay particular attention to these type of non-Markovian terminal conditions. Solu-
tion of the continuity problem for general terminal conditions of the form∞·1A for arbitrary
A ∈ FS is an open problem even for the one dimensional Brownian case and S deterministic.

Section 5 provides two arguments to prove

lim
t→+∞

Y min
t∧S = ξ1. (4)

The first one is an adaptation of the argument given for the same type of terminal condition
in [1]. It involves the construction of an auxiliary linear process that dominates Y min and that
is known to have the desired limit property at the terminal time S. The main assumption
on τ for the construction of the upperbound in [1] is that τ has bounded density at the
terminal time; in the current setting this is replaced with the assumption that the random
variable 1{τ≤S}Y

∞
τ has a bounded %-moment for some % > 1 (see (39)). The other main

ingredient in the construction of the upperbound process in [1] is the apriori upperbounds
on the supersolution of BSDE; in the current context this is replaced by the solvability
assumption on S. Subsection 5.2 presents a new argument for the terminal value ξ1 that is
completely based on the original BSDE (i.e., it doesn’t involve the solution of an auxiliary
linear BSDE). To simplify arguments this subsection assumes F to be generated only by the
Brownian motion W . The only assumption on τ is that it be solvable. Let Y τ,∞ be the
supersolution of the BSDE with terminal condition ∞ at terminal time τ . The main idea of
this argument is the use of the process Y τ,∞ as an upperbound to prove (4). Working directly
with the original BSDE in constructing upperbounds can lead to less stringent conditions
on model parameters. As an example, we consider in subsection 5.3 the case S = T and
τ = inf{t : |Wt| = L} which was originally studied in [34] using essentially a special case
of the argument based on the linear auxiliary process which requires the q parameter in
assumption (B2) to satisfy q > 3. The new proof given subsection 5.3 based on the new
argument based on solvable stopping times establishes (4) for the minimal supersolution
assuming only q > 2.

The argument in Section 6 that proves that the minimal supersolution corresponding to ξ2

is in fact a solution follows closely the argument given for the same type of terminal condition
in [1] for the case S = T deterministic. The assumptions in this section are: S is solvable
and P(S = τ) = 0; no solvability is required for τ.

BSDE with random terminal times are a generalization of elliptic semi-linear PDE (ex-
tension of the Feynman-Kac formula, see [7, 26, 28]). The works [9, 21, 23, 24] show that the
solution of some of these PDE can exhibit a singularity of the following form on the boundary
of the domain D

lim
x→∂D

u(x) = +∞.

This boundary behavior generalizes to

lim
t→+∞

Yt∧S = +∞

for BSDE of the form (1) (the clearest connection between the last two condition arises
when S is a first hitting time of a Markov diffusion process, see subsection 4.1). Minimal
supersolutions of BSDE of the type (1) with ∞-valued terminal values at random terminal
times can also be used to express the value function of a class of stochastic optimal control
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problems over a random time horizon [[0, S]] with terminal constraints of the form 1A ·qS = 0,
for some A ∈ FS , where q is the controlled process (see [19]).

Strengthening (2) to (3) (i.e., going from a supersolution to a solution) has implications
both for BSDE theory and for stochastic optimal control applications. Consider two dis-
tinct terminal values ξ1 and ξ2; with (2) it is impossible to tell whether the corresponding
minimal supersolutions are distinct. Whereas (3) guarantees that distinct solutions Y 1 and
Y 2 correspond to distinct terminal values ξ1 and ξ2. In stochastic optimal control / finance
applications a non-tight optimal control (corresponding to strict inequality in (2)) can be
interpreted as a strictly super-hedging trading strategy. Continuity results overrule such
strategies. For more comments on these points we refer the reader to [1].

The next two subsections give the definitions, assumptions and results we employ from
previous works (subsection 1.1 concerns integrable terminal conditions and subsection 1.2
concerns singular terminal values). The only novelty is Definition 3, the definition of a
solvable stopping time. We comment on possible future work in the Conclusion (Section 7).

1.1 Integrable data

Let us start with the definition of solution for BSDE (1).

Definition 1 (Classical solution). A process (Y, Z, U,M) = (Yt, Zt, Ut,Mt)t≥0, such that

• Y is progressively measurable and càdlàg ,

• Z is a predictable process with values in Rd,

• M is a local martingale orthogonal to W and π̃,

• U is also predictable and such that for any t ≥ 0∫ t

0

∫
E
(|Us(e)|2 ∧ |Us(e)|)µ(de) < +∞,

is a solution to the BSDE (1) with random terminal time S with data (ξ; f) if on the set
{t ≥ S} Yt = ξ and Zt = Ut = Mt = 0, P-a.s., t 7→ f(t, Yt, Zt, Ut)1t≤T belongs to L1

loc(0,∞)
for any T ≥ 0, the stochastic integrals w.r.t. W and π̃ are well-defined and, P-a.s., for all
0 ≤ t ≤ T ,

Yt∧S = YT∧S +

∫ T∧S

t∧S
f(r, Yr, Zr, ψr)dr −

∫ T∧S

t∧S
ZrdWr

−
∫ T∧S

t∧S

∫
E
Ur(e)π̃(de, dr)−

∫ T∧S

t∧S
dMr. (5)

For precise definitions on the stochastic integral w.r.t. π̃ and orthogonality, we refer to
[15].

In [18, 20], Theorem 3 ensures the existence and uniqueness of a solution, under some
conditions on the terminal value ξ and on the generator f . Let us evoke them here.

Firstly the following integrability condition is assumed: for some r > 1

E
[
erρS |ξ|r +

∫ S

0
erρt|f(t, 0, 0,0)|rdt

]
< +∞. (6)

5



The constant ρ depends on r and on the generator f (see Remark 2). We suppose that
f : Ω × [0, T ] × R × Rm × B2

µ → R is a random measurable function, such that for any
(y, z, ψ) ∈ R×Rm ×B2

µ, the process f(t, y, z, ψ) is progressively measurable. For notational
convenience we write f0

t = f(t, 0, 0,0), where 0 denotes the null application from E to R.
The space B2

µ is defined1 as follows:

B2
µ =

{
L2
µ if r ≥ 2,

L1
µ + L2

µ if r < 2,

where Lpµ = Lp(E , µ;R) is the set of measurable functions ψ : E → R such that

‖ψ‖pLpµ =

∫
E
|ψ(e)|pµ(de) < +∞.

The next conditions are adapted from [19]:

(A1) The function y 7→ f(t, y, z, ψ) is continuous and monotone: there exists χ ∈ R such
that a.s. and for any t ≥ 0 and z ∈ Rm and ψ ∈ B2

µ

(f(t, y, z, ψ)− f(t, y′, z, ψ))(y − y′) ≤ χ(y − y′)2.

(A2) For every j > 0 and n ≥ 0, the process

Υt(j) = sup
|y|≤j
|f(t, y, 0,0)− f0

t |

is in L1((0, n)× Ω).

(A3) There exists a progressively measurable process κ = κy,z,ψ,φ : Ω×R+ ×Rm ×B2
µ → R

such that

f(t, y, z, ψ)− f(t, y, z, φ) ≤
∫
E
(ψ(e)− φ(e))κy,z,ψ,φt (e)µ(de)

with P⊗ Leb⊗ µ-a.e. for any (y, z, ψ, φ), −1 ≤ κy,z,ψ,φt (e) and |κy,ψ,φt (e)| ≤ ϑ(e) where
ϑ belongs to the dual space of B2

µ, that is L2
µ or L∞µ ∩ L2

µ.

(A4) There exists a constant Lf such that a.s.

|f(t, y, z, ψ)− f(t, y, z′, ψ)| ≤ Lz|z − z′|

for any (t, y, z, z′, ψ).

We denote

K2 =
1

2
(L2

z + L2
ϑ).

Remark 1. We can replace (A3) by the Lipschitz condition: there exists a constant Lϑ such
that

|f(t, y, z, ψ)− f(t, y, z, φ)| ≤ Lϑ‖ψ − φ‖B2
µ
.

As explained at the beginning of [18, Section 5], (A3) implies Lipschitz regularity of f w.r.t.
ψ, with Lϑ equal to the norm ‖ϑ‖(B2

µ)∗ of ϑ in the dual space of B2
µ. However (A3) is

sufficient to ensure comparison principle for the solution of BSDEs (see [28, Proposition
5.34], [8, Theorem 3.2.1] or [18, Remark 4] ).

1For the definition of the sum of two Banach spaces, see for example [17]. The introduction of B2
µ is

motivated in [20].

6



Remark 2. Constant ρ in (6) satisfies

ρ > ν = ν(r) :=

{
χ+K2 if r ≥ 2,

χ+ K2

r−1 +
L2
ϑ

ε(Lϑ,r)
if r < 2.

(7)

where the constant 0 < ε(Lϑ, r) < r− 1 depends only on Lϑ and r (see [20], Section 4). The
additional term in ν disappears if the generator does not depend on the jump part ψ (that is,
if Lϑ = 0). Even if we can not compute ε explicitly, we know that

0 < ε ≤ (r − 1)
(
2(α(Lϑ, r) + 1)2 − 1

)− 2−r
2 ,

and α(Lϑ, r) has to be chosen such that for any x ≥ α(Lϑ, r),

1

2r/2
xr − 2r/2 − 1− r(2Lϑ + 1)x ≥ 0.

The right-hand side is an increasing function w.r.t. r ∈ (1, 2) and decreasing w.r.t. Lϑ ≥ 0.
Hence when r is close to one and Lϑ is large, ε is be very small and thus ρ becomes large.

In [18, 20], a second integrability condition is supposed:

E
[∫ S

0
erρt|f(t, e−νtξt, e

−νtηt, e
−νtγt)|rdt

]
< +∞, (8)

where ξt = E(eνSξ|Ft) and (η, γ,N) are given by the martingale representation:

eνSξ = E(eνSξ) +

∫ ∞
0

ηsdWs +

∫ ∞
0

∫
E
γs(e)π̃(de, ds) +NS

with

E

[(∫ ∞
0
|ηs|2ds+

∫ ∞
0

∫
E
|γs(e)|2π(de, ds) + [N ]S

)r/2]
< +∞.

Now [18, 20, Theorem 3] becomes

Theorem 1. Under Conditions (A1) to (A4) and if ξ and f0 satisfy assumptions (6) and
(8) , BSDE (1) has a unique solution (Y, Z, U,M) in the sense of Definition 1 such that for
any 0 ≤ t ≤ T

E
[
erρ(t∧S)|Yt∧S |r +

∫ T∧S

0
epρs|Ys|rds+

∫ T∧S

0
erρs|Ys|r−2|Zs|21Ys 6=0ds

]
+E

[∫ T∧S

0
erρs|Ys−|r−21Ys− 6=0d[M ]cs

]
+E

[∫ T∧S

t∧S

∫
E
erρs

(
|Ys−|2 ∨ |Ys− + Us(e)|2

)r/2−1
1|Ys−|∨|Ys−+Us(e)|6=0|Us(e)|2π(de, ds)

]

+E

 ∑
0<s≤T∧S

erρs|∆Ms|2
(
|Ys−|2 ∨ |Ys− + ∆Ms|2

)r/2−1
1|Ys−|∨|Ys−+∆Ms|6=0

 < +∞.

And

E

[(∫ S

0
e2ρs|Zs|2ds

)r/2
+

(∫ S

0
e2ρs

∫
E
|Us(e)|2π(de, ds)

)r/2
+

(∫ S

0
e2ρsd[M ]s

)r/2]

≤ CE
[
erρS |ξ|p +

∫ S

0
erρs|f(s, 0, 0,0)|rds

]
.

The constant C depends only on r, K and χ.
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In general (8) is not easy to check. Nonetheless if ξ is bounded, we can take ν = 0 in (8)
and assume that:

E
[∫ S

0
erρt|f(t, ξt, ηt, γt)|rdt

]
< +∞,

where ξt = E(ξ|Ft) and

ξ = E(ξ) +

∫ ∞
0

ηsdWs +

∫ ∞
0

∫
E
γs(e)π̃(de, ds) +NS .

1.2 Supersolution for singular terminal condition

To lighten the presentation, in the rest of the paper, ξ is supposed to be non-negative. Theorem
1 gives sufficient conditions to ensure the existence and uniqueness of the solution (Y, Z, U,M).
When the terminal condition is singular, that is if ξ does not belong to any Lp(Ω) for some
p > 1, we adopt the following definition.

Definition 2 (Supersolution for singular terminal condition). We say that a triple of pro-
cesses (Y, Z, U,M) is a supersolution to the BSDE (1) with singular terminal condition
YS = ξ ≥ 0 if it satisfies:

1. There exists some ` > 1 and an increasing sequence of stopping times Sn converging to
S such that for all n > 0 and all t ≥ 0

E

[
sup
r∈[0,t]

|Yr∧Sn |` +

(∫ t∧Sn

0
|Zr|2dr

)`/2

+

(∫ t∧Sn

0

∫
E
|Ur(e)|2π(de, dr)

)`/2
+ [M ]

`/2
t∧Sn

]
< +∞;

2. Y is non-negative;

3. for all 0 ≤ t ≤ T and n > 0:

Yt∧Sn = YT∧Sn +

∫ T∧Sn

t∧Sn
f(r, Yr, Zr, Ur)dr −

∫ T∧Sn

t∧Sε
ZrdWr

−
∫ T∧Sn

t∧Sn

∫
E
Ur(e)π̃(de, dr)−

∫ T∧Sn

t∧Sn
dMr. (9)

4. On the set {t ≥ S}: Yt = ξ, Z = U = M = 0 a.s. and (2) holds:

lim inf
t→+∞

Yt∧S ≥ ξ, a.s.

We say that (Y, Z, U,M) is a minimal supersolution to the BSDE (1) if for any other super-
solution (Y ′, Z ′, U ′,M ′) we have Yt ≤ Y ′t a.s. for any t > 0.

Remark 1. The non-negativity condition can be replaced in general by: Y is bounded from
below by a process Ȳ such that E supt≥0 |Ȳt∧S |` < +∞.

We next introduce a concept that we think provides a general and natural framework for
the study of BSDE (1) with singular terminal conditions when the terminal time is a stopping
time:
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Definition 3. A stopping time S will be called solvable with respect to the BSDE (1) if the
filtration F is left-continuous at time S and if the BSDE (1) has a supersolution on the time
interval [[0, S]] with terminal condition YS =∞ that is defined as the limit of the solution of
the same BSDE with terminal condition equal to the constant k, as k tends to ∞.

Most of our arguments will be based on solvable stopping times. From [19], we know that
every deterministic time S is solvable provided Conditions (A), (B1) and (B2) below hold.
Exit times of diffusions from smooth domains provide another example of a solvable stopping
time, see Theorem 2 below (a restatement of [19, Theorem 2] in terms of solvable times).
[19, Example 1] shows that any stopping time that has a strictly positive density around 0
is nonsolvable. Section 2 lists some immediate consequences of the definition above that will
be useful in the rest of this article.

1.2.1 Additional conditions on f

For a singular terminal value ξ, the conditions (6) and (8) are false. Hence following [19], we
add some hypotheses concerning the generator f and the terminal random time S.

(B1) There exists a constant q > 1 and a positive and bounded process η such that for any
y ≥ 0

f(t, y, z, ψ) ≤ − y
ηt
|y|q−1 + f(t, 0, z, ψ).

(B2) The processes f0 and ξ− are bounded.

(B3) There exists δ > δ∗ such that E
[
eδS
]
< +∞. The constant δ∗ depends on χ, Lz and

Lϑ.

(B4) There exists m > m∗ such that for any j

E
∫ S

0
|Υt(j)|mdt < +∞.

The value of m∗ depends on χ, Lz and Lϑ and also on δ and δ∗.

We further suppose that the generator (t, y) 7→ −y|y|q−1/ηt satisfies the (A) and (B) as-
sumptions, which means that η satisfies:

E
∫ T

0

1

ηmt
dt < +∞. (10)

The values of δ∗ and m∗ are given in [19]. Let us simply recall that if y 7→ f(t, y, z, ψ) is non
increasing, that is for χ = 0, then we have:

δ∗ = 2K2, m∗ =
2δ

δ − 2K2
.

We consider (Y (k), Z(k), ψ(k),M (k)) the unique solution of the BSDE: for any t < T

Y
(k)
t∧S = Y

(k)
T∧S +

∫ T∧S

t∧S
f(r, Y (k)

r , Z(k)
r , U (k)

r )dr

−
∫ T∧S

t∧S
Z(k)
r dWr −

∫ T∧S

t∧S

∫
E
U (k)
r (e)π̃(de, dr)−

∫ T∧S

t∧S
dM (k)

r , (11)

9



with the truncated terminal condition:

P− a.s., on the set {t ≥ S}, Y
(k)
t = ξ ∧ k, Z(k)

t = U
(k)
t = M

(k)
t = 0. (12)

From [19, Proposition 5], under (A), (B2), (B3) and (B4), there exists a unique solution
(Y (k), Z(k), ψ(k),M (k)) to the BSDE (11) and (12).

By the comparison principle for BSDEs, the sequence Y (k) is non decreasing and converges
to some process Y min. As for deterministic terminal time, the key point is to obtain an a
apriori estimate on Y (k), independent of the constant k. This a prior estimate ensures that
the stopping time S is solvable in the sense of Definition 3.

1.2.2 Known results for exit times

To have such estimate, [19] restricts attention to the case where S is the first hitting time of
a diffusion, namely

S = SD = inf{t ≥ 0, Ξt /∈ D}, (13)

where the forward process Ξ in Rd is the strong solution to the stochastic differential equation

dΞt = b(Ξt)dt+ σ(Ξt)dWt (14)

with some initial value Ξ0 ∈ Rd. The functions b : Rd → Rd and σ : Rd → Rd×d satisfy a
global Lipschitz condition: there exists some C > 0 such that

∀x, y ∈ Rd ‖σ(x)− σ(y)‖+ ‖b(x)− b(y)‖ ≤ C‖x− y‖. (15)

The domain D is an open bounded subset of Rd, whose boundary is at least of class C2 (see
for example [13], Section 6.2, for the definition of a regular boundary). From now on, Ξ0 is
fixed and supposed to be in D.

Note that the condition (B3) imposes some implicit hypotheses between the generator
f , the set D and the coefficients of the SDE (14). The [19, Lemma 2] details some sufficient
conditions on the coefficients b and σ.

We introduce the signed distance function dist : Rd → R of D, which is defined by
dist(x) = infy/∈D ‖x− y‖ if x ∈ D and dist(x) = − infy∈D ‖x− y‖ if x /∈ D. [19, Proposition
6] is a Keller-Osserman type inequality (see [16, 25]): there exists a constant C such that:

0 ≤ Y (k)
t∧S ≤ Y

min
t∧S ≤

C

dist(Ξt∧S)2(p−1)
. (16)

Constant p > 1 is the Hölder conjugate of q.
Next we define the notion of supersolution. To this end, we set for n ≥ 1

Sn = inf

{
t ≥ 0,dist(Ξt) ≤

1

n

}
, (17)

where dist(Ξt) denotes the distance between the position of Ξ at time t and the boundary of
D. The main result [19, Theorem 2] is:

Theorem 2. If S is the exit time given by (13), and if F is left-continuous at time S, under
Assumptions (A) and (B), S is a solvable stopping time (Definition 3). Moreover there
exists a minimal supersolution (Y min, Zmin, ψmin,Mmin) to BSDE (1) with singular terminal
condition Y min

S = ξ (Definition 2).

Let us emphasize that estimate (16) implies that a.s. Y min
t ≤ Cn2(p−1) if t ≤ Sn. This

property is similar to the result in Lemma 3 in the continuous case.

10



2 Solvable stopping time and minimal supersolution

The next lemmas are useful consequences of the notion of solvable stopping times. First, note
that the left-continuity assumption of F at time S is true for example if S is predictable and
if F is a quasi-left continuous filtration (that is for any predictable stopping time τ , we have
Fτ− = Fτ ). This property of the filtration rules out the possibility that any of the involved
processes has jumps at predictable, and a fortiori deterministic times. An important example
is the filtration generated by the Brownian motion W and the orthogonal Poisson random
measure π and S is given by (13).

Lemma 1. Assume that S is solvable and suppose that the generator f satisfies Conditions
(A). Then the BSDE (1) has a minimal supersolution on the time interval [[0, S]] with terminal
condition YS =∞.

Proof. The arguments can be found in [19, Propositions 4 and 7]. The adaptation is straight-
forward in our setting since the arguments are not based on a particular form of the stopping
time S. Only left-continuity of the filtration is important. �

Let us emphasize that Assumptions (B) are not necessary here, since solvability implies
existence of a supersolution. In the rest of the paper we denote by (Y∞, Z∞, U∞,M∞) the
minimal weak supersolution with terminal condition +∞ a.s. at time S. Sometimes, if we
want to stress the dependence w.r.t. S, we denote it (Y S,∞, ZS,∞, US,∞,MS,∞).

Lemma 2. Assume that S is solvable and suppose that generator f satisfies Conditions (A),
(B2), (B3) and (B4). Then the BSDE (1) with a singular Markovian terminal value ξ
at time S, has a minimal supersolution (Y min, Zmin, Umin,Mmin) on the time interval [[0, S]]
with terminal condition Y min

S = ξ.

Proof. Let us denote by Y (k),∞ the first component of the solution of the BSDE (1) with
terminal condition k. Since S is solvable, and with (A), Y (k),∞ is an increasing sequence
converging to Y∞.

Again from [19, Proposition 5], under (A), (B2), (B3) and (B4), there exists a unique
solution (Y (k), Z(k), ψ(k),M (k)) to the BSDE (11) and (12). By comparison principle, a.s for
any t ≥ 0

Y
(k)
t ≤ Y (k),∞

t ≤ Y∞t .

Hence we obtain an upper estimate on Y (k), independent of k, which replaces the upper
bound (16). Arguing now as in [19], we obtain the existence of (Y min, Zmin, Umin,Mmin). �

Note that the main result of Theorem 2 is the solvability of the first exit time S. The
existence of (Y min, Zmin, ψmin,Mmin) comes from the preceding lemma.

Before we move further, let us note the following:

Lemma 3. Suppose a stopping time S is solvable. Suppose (Y,Z, U,M) is a supersolution
of (1) with terminal condition ξ constructed as the limit of solutions with terminal condition
ξ ∧ k. Then the sequence Sn in Definition 2 can be chosen so that

Yt ≤ n for t < Sn. (18)
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Proof. Let Y S,∞ denote the first component of the supersolution for terminal condition ∞
and let S1,∞

n be the sequence of Sn in Definition 2 for the same terminal condition. It follows
from (9) and (2) that Y S,∞ has càdlàg sample paths on [[0, S]] and limt→∞ Y

S,∞
t∧S = ∞. This

implies that the hitting times

S2,∞
n

.
= inf{t : Y S,∞

t∧S ≥ n} (19)

satisfy: S2,∞
n ≤ S and it is a non-decreasing sequence. From the first property of a superso-

lution, this sequence converges almost surely to S. Now suppose that S2,∞
N = S for some N

(and thus for any n ≥ N). It would mean that Y S,∞ has a jump at time S. In other words,
the martingale parts have a jump at time S. But it is excluded in Definition 3. Thus

S2,∞
n ↗ S as n↗∞. (20)

Then if we replace the stopping times S1,∞
n in Definition 2 with S3,∞

n
.
= S1,∞

n ∧ S2,∞
n all of

the conditions of the definition remain valid; furthermore

Y S,∞
t ≤ n for t < S3,∞

n , (21)

holds. This proves the lemma for the terminal condition ∞. Let Y S,k denote the solution of
(1) with terminal condition YS = k. Then by definition Y S,k

t∧S ↗ Y S,∞
t∧S . This and (21) imply

Y S,k
t ≤ Y S,∞

t ≤ n for t < S3,∞
n . (22)

Let Y S,ξ be the minimal supersolution of (1) with terminal condition YS = ξ and let Y S,ξ∧k

be the solution of (1) with terminal condition YS = ξ ∧ k. By the assumption of the lemma

Y S,ξ∧k
t∧S ↗ Y S,ξ

t∧S (23)

as k ↗∞. By comparison principle for the solution of BSDE we have Y S,ξ∧k
t∧S ≤ Y S,k

t∧S . This,

(22), (23), the definition (19) of S2,∞
n and letting k ↗∞ imply

Y S,ξ
t ≤ Y S,∞

t ≤ n for t < S3,∞
n . (24)

Let S1,ξ
n be the sequence of stopping time appearing in the definition of the supersolution

Y S,ξ. Define S2,ξ
n

.
= S1,ξ

n ∧ S3,∞
n . From (18) and from the assumption that β1,ξ

n ↗ β we infer

S2,ξ
n ↗ S. This implies that if we replace the replace S1,ξ

n with S2,ξ
n all of the conditions

appearing in the definition of the supersolution Y S,ξ continue to hold; by (24) this sequence
of stopping times also satisfy

Y S,ξ
t ≤ Y S,∞

t ≤ n for t < S2,ξ
n . (25)

This proves the lemma for the terminal condition ξ. �

If we work with the filtration FW generated by the Brownian motion W , then BSDE (1)
reduces to the following:

dYt = −f(t, Yt, Zt)dt+ ZtdWt. (26)

Corollary 1. In the Brownian filtration FW , if S is solvable, then (18) becomes:

Yt ≤ n for t ≤ Sn. (27)

Proof. Indeed the trajectories of Y are now continuous, not only càdlàg. �
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3 On the existence of a limit

In Definition 2, we only supposed that (2) holds: a.s.

lim inf
t→+∞

Y min
t∧S ≥ ξ.

If ξ = +∞ a.s. then we immediately obtain that

lim inf
t→+∞

Y∞t∧S = lim
t→+∞

Y∞t∧S = +∞.

In this section, we focus on the existence of the limit, that is, does it hold that a.s.

lim inf
t→+∞

Y min
t∧S = lim

t→+∞
Y min
t∧S ?

This question was studied in [32] for a deterministic final time T and the result remains true
in our setting.

We suppose that S is a solvable stopping time and that Conditions (A) and (B) hold.
Hence for any ξ, we can consider the minimal supersolution (Y min, Zmin, Umin,Mmin) of
BSDE (1) with terminal condition ξ at time S, which is obtained as the increasing limit of
the solution with terminal condition ξ ∧ k.

Roughly speaking, the limit of Y min
·∧S exists provided we know the precise behavior of the

generator f w.r.t. y. The details can be found in [32] and are left to the reader. We break
the generator f into four parts:

f(s, y, z, ψ) = [f(s, y, z, ψ)− f(s, 0, z, ψ)] + [f(s, 0, z, ψ)− f(s, 0, 0, ψ)]

+ [f(s, 0, 0, ψ)− f(s, 0, 0,0)] + f0
s

= φ(s, y, z, u) +$(s, z, ψ) + %(s, ψ) + f0
s . (28)

Moreover we suppose that

(C1) The generator f satisfies

btg(y) ≤ f(t, y, z, ψ)− f(t, 0, z, ψ), ∀y ≥ 0, ∀(t, z, ψ),

where

• b is positive and E
∫ S

0
bsds < +∞;

• g is a negative, decreasing and of class C1 function and concave on R+ with
g(0) < 0 and g′(0) < 0.

(C2) Moreover one of the next three cases holds:

• Case 1. f does not depend on ψ or %(t, ψ) ≥ 0;

• Case 2. The value ϑ of (A3) belongs to L1
µ(E) and there exists a constant κ∗ > −1

such that κ0,0,ψ,0
s (e) ≥ κ∗ a.e. for any (s, ψ, e);

• Case 3. µ is a finite measure on E .
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Since Conditions (B) should hold, in particular (B1), we deduce that btg(y) ≤ − 1

ηt
y|y|q−1

for any t ≥ 0 and y. Thus w.l.o.g. g(y) ≤ −y|y|q and bt ≥ (−1/g(1))
1

ηt
= C

1

ηt
for some

positive constant C. We can always add to g a linear function like −y− 1 such that g(0) < 0
and g′(0) < 0. Let us define the function Θ on (0,+∞) by

Θ(x) =

∫ +∞

x

−1

g(y)
dy. (29)

Recall that g is continuous and negative on R+. Thus from the condition g(y) ≤ −y|y|q, the
function Θ : [0,+∞) → (0,Θ(0)] is well defined, decreasing, of class C1, and bijective. Let
Θ−1 : (0,Θ(0)]→ [0,+∞) be the inverse of Θ.

The next theorem shows that process Y min is càdlàg on R+ when filtration F is complete
and right-continuous. No additional assumption (left-continuity) on the filtration is needed
here.

Theorem 3. Assumptions (A), (B) and (C) hold. Then the minimal supersolution Y min

is equal to: a.s. for any t ≥ 0

Y min
t∧S = Θ−1

(
E
[
Θ(ξ)− Φ+

t∧S + Φ−t∧S

∣∣∣∣Ft]) .
The processes Φ+ and Φ− are two non-negative càdlàg supermartingales with a.s. lim

t→+∞
Φ−t∧S =

0.

Now Φ+ being a non-negative càdlàg supermartingale, we can deduce the existence of the
following limit:

lim
t→+∞

Φ+
t∧S := Φ+

S−

Thereby the limit of Y min exists

lim
t→+∞

Y min
t∧S = Θ−1

(
Θ(ξ)− Φ+

S−
)
≥ ξ.

In other words, Y min is a càdlàg process.

Proof. We follow the arguments developed in the proof of [32, Lemma 2.3]. We only have to

handle the stopping time S. Since Y
(k)
t is bounded from below by zero, we can apply Itô’s

formula: for 0 ≤ t ≤ T

Θ(Y
(k)
t∧S) = Θ(Y

(k)
T∧S) +

∫ T∧S

t∧S
Θ′(Y

(k)
s− )f(s, Y (k)

s , Z(k)
s , U (k)

s )ds

−
∫ T∧S

t∧S
Θ′(Y

(k)
s− )Z(k)

s dWs −
∫ T∧S

t∧S
Θ′(Y

(k)
s− )

∫
E
U (k)
s (e)π̃(de, ds)−

∫ T∧S

t∧S
Θ′(Y

(k)
s− )dM (k)

s

−1

2

∫ T∧S

t∧S
Θ′′(Y

(k)
s− )|Z(k)

s |2ds−
1

2

∫ T∧S

t∧S
Θ′′(Y

(k)
s− )d[M (k)]cs

−
∫ T∧S

t∧S

∫
E

[
Θ(Y

(k)
s− + U (k)

s (e))−Θ(Y
(k)
s− )−Θ′(Y

(k)
s− )U (k)

s (e)
]
π(ds, de)

−
∑

t∧S<s≤T∧S

[
Θ(Y

(k)
s− + ∆M (k)

s )−Θ(Y
(k)
s− )−Θ′(Y

(k)
s− )∆M (k)

s

]
= EFtΘ(Y

(k)
T∧S)− Φ

(k)
t∧S,T∧S (30)
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where

Φ
(k)
t∧S,T∧S = −EFt

∫ T∧S

t∧S
Θ′(Y

(k)
s− )f(s, Y (k)

s , Z(k)
s , U (k)

s )ds+
1

2
EFt

∫ T∧S

t∧S
Θ′′(Y

(k)
s− )|Z(k)

s |2ds

+
1

2
EFt

∫ T∧S

t∧S
Θ′′(Y

(k)
s− )d[M (k)]cs

+ EFt
∑

t∧S<s≤T∧S

[
Θ(Y

(k)
s− + ∆M (k)

s )−Θ(Y
(k)
s− )−Θ′(Y

(k)
s− )∆M (k)

s

]
+ EFt

∫ T∧S

t∧S

∫
E

[
Θ(Y

(k)
s− + U (k)

s (e))−Θ(Y
(k)
s− )−Θ′(Y

(k)
s− )U (k)

s (e)
]
π(ds, de).

We use the decomposition (28) of the generator f . Since Θ is non increasing and convex, the
next terms are non-negative:

EFt
∑

t∧S<s≤T∧S

[
Θ(Y

(k)
s− + ∆M (k)

s )−Θ(Y
(k)
s− )−Θ′(Y

(k)
s− )∆M (k)

s

]
1

2
EFt

∫ T∧S

t∧S
Θ′′(Y

(k)
s− )d[M (k)]cs

− EFt
∫ T∧S

t∧S
Θ′(Y

(k)
s− )f0

s ds

and we can use monotone convergence theorem to pass to the limit as T tends to +∞.
Starting for the inequality: $(s, z, ψ) ≥ −Lz|z|, and using the concavity of g, we obtain

that

−Θ′(Y
(k)
s− )$(s, Z(k)

s , U (k)
s )ds+

1

2
Θ′′(Y

(k)
s− )|Z(k)

s |2ds ≥
L2
z

2g′(Y
(k)
s )

≥ L2
z

2g′(0)
.

And
−Θ′(Y

(k)
s− )φ(s, Y (k)

s , Z(k)
s , U (k)

s ) ≥ −bs.

Since E
∫ S

0 bs < +∞ and from (B3), we deduce that the negative part of

−Θ′(Y
(k)
s− )

[
f(s, Y (k)

s , Z(k)
s , U (k)

s )− f(s, 0, 0, U (k)
s )
]
ds+

1

2
Θ′′(Y

(k)
s− )|Z(k)

s |2ds

is bounded in L1, uniformly w.r.t. (T, k). The remaining term is

− EFt
∫ T∧S

t∧S
Θ′(Y

(k)
s− )

[
f(s, 0, 0, U (k)

s )− f0
s

]
ds

+ EFt
∫ T∧S

t∧S

∫
E

[
Θ(Y

(k)
s− + U (k)

s (e))−Θ(Y
(k)
s− )−Θ′(Y

(k)
s− )U (k)

s (e)
]
π(ds, de).

Assume that f does not depend on ψ or that %(s, ψ) ≥ 0 (Case 1). Again from the
convexity of Θ, this last term is non-negative. Our previous arguments show that we can
pass to the limit when T goes to +∞ in (30):

Θ(Y
(k)
t∧S) = EFtΘ(ξ ∧ k)− Φ

(k)
t∧S,S .

Then by monotone convergence theorem, we obtain the convergence (in L1) of Φ
(k)
t∧S,S to some

process Φt and:
Θ(Yt∧S) = EFt [Θ(ξ)]− Φt∧S . (31)
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We can decompose the process Φ:

Φt∧S = Φ+
t∧S − Φ−t∧S ,

such that Φ+ and Φ− are non-negative càdlàg supermartingales with:

Φ−t∧S ≤ EFt
∫ S

t∧S

(
bs −

L2
z

2g′(0)

)
ds.

In particular a.s.
lim

t→+∞
Φ−t∧S = 0.

For the Case 2 and the Case 3, we can exactly use the same arguments as in [32]. We skip
them here. This achieves the proof of the theorem. �

Remark 2. A careful reading shows that (B1) is unnecessary. We only need that the function
Θ is well-defined.

4 Markovian terminal conditions

In this section, we assume that Conditions (A) and (B) hold and that S is given by (13).
Thereby S is a solvable stopping time (Theorem 2). We further suppose that

(D1) The terminal data ξ satisfies
ξ = g(ΞS),

where g : Rd → R+ is a function such that F∞ = {g = +∞} ∩ ∂D is a closed set.

(D2) On Rd \ F∞, g is locally bounded, that is, for all compact set K ⊂ Rd \ F∞,

g1K ∈ L∞(Rd).

(D3) The boundary ∂D belongs to C3.

To obtain the continuity, we start with a technical result. We know that estimate (16)
holds:

0 ≤ Y (k)
t∧S ≤ Y

min
t∧S ≤

C

dist(Ξt∧S)2(p−1)
.

The constant C depends on q, D and the bound on b and σ. Here we construct another
estimate which depends also on the function g.

Lemma 4. If U is an open set such that U ∩ F∞ = ∅ and U ∩ ∂D 6= ∅, then there exists a
constant C = C(U, g, q, b, σ,D) and an open set DU such that D ⊂ DU and if distU denotes
the distance to the boundary of DU , we have

P− a.s. ∀k ∈ N, ∀t ≥ 0, Y
(k)
t ≤ C

(distU (Ξt∧S))2(p−1)
. (32)

Recall that S is always the first exit time from D.
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The proof is a straightforward adaptation of [31, Proposition 7] and [19, Proposition 6].
The second technical result concerns (Zmin, Umin), and it is the extension of [31, Propositions
4 and 8] (a similar result was not proven in [19]).

Lemma 5. Under assumptions (A) and (B), for any ε > 1, there exists a constant C such
that

E
∫ S

0

(
‖Zmin

r ‖2 +

∫
E

∣∣Umin
r (e)

∣∣2 µ(de)

)
dist(Ξr)

4(p−1)+εdr ≤ C.

This inequality holds if we replace Zmin and Umin by Z(k) and U (k). If Condition (D) holds,
then we can replace dist by distU , with a modification of the value of the constant C.

Proof. The beginning of the proof is similar to [19, Proposition 6]. Let λ > 0 and introduce
the set Dλ = {x ∈ Rd, |dist(x)| ≤ λ}. Then it follows from Lemma 14.16 in [13] that there
exists a positive constant λ0 such that dist ∈ C2(Dλ0). Since D is bounded there exists
a constant R > 0 such that 0 ≤ dist(x) ≤ R for all x ∈ D. Let ϕ ∈ C∞(Rd, [0, 1]) with
ϕ = 1 on Rd \ Dλ0 and ϕ = 0 on Dλ0/2. We define a function ζ ∈ C2(Rd,R+) such that

ζ = (1 − ϕ)dist + Rϕ on D. Since ζ ≥ dist ≥ 0 on D, x 7→ |ζ(x)|4(p−1)+ε is not in C2(Rd),
but this function belongs to C2(D \ Dλ0) and we can define this function on the rest of
(Rd \D) ∪Dλ0 in order to have the required regularity. For λ < λ0, define

Sλ = inf{t ≥ 0, Ξt ∈ Dλ}.

Take λ sufficiently small such that Ξ0 ∈ D \Dλ. The Itô formula leads to:(
Y

(k)
t∧Sλ

)2
ζ(Ξt∧Sλ)4(p−1)+ε =

(
Y

(k)
0

)2
ζ(Ξ0)4(p−1)+ε +

∫ t∧Sλ

0
‖Z(k)

r ‖2ζ(Ξr)
4(p−1)+εdr

− 2

∫ t∧Sλ

0
Y (k)
r f(r, Y (k)

r , Z(k)
r , U (k)

r )ζ(Ξr)
4(p−1)+εdr

+ 2

∫ t∧Sλ

0
Y (k)
r ζ(Ξr)

4(p−1)+ε

(
Z(k)
r dWr +

∫
E
U (k)
r (e)π̃(de, dr) + dM (k)

r

)
+

∫ t∧Sλ

0
ζ(Ξr)

4(p−1)+ε

∫
E

∣∣∣U (k)
r (e)

∣∣∣2 π(de, dr)

+

∫ t∧Sλ

0
ζ(Ξr)

4(p−1)+εd[M (k)]cr +
∑

0<s≤t∧Sλ

ζ(Ξr)
4(p−1)+ε(∆M (k)

r )2

+ (4(p− 1) + ε)

∫ t∧Sλ

0
(Y (k)
r )2ζ(Ξr)

4(p−1)+ε−1∇ζ(Ξr) (b(Ξr)dr + σ(Ξr)dWr)

+
(4(p− 1) + ε)

2

∫ t∧Sλ

0
(Y (k)
r )2

[
(4(p− 1) + ε− 1)ζ(Ξr)

4(p−1)+ε−2‖σ(Ξr)∇ζ(Ξr)‖2

+ζ(Ξr)
4(p−1)+ε−1tr

(
σσ∗(Ξr)D

2ζ(Ξr)
)]
dr

+ 2(4(p− 1) + ε)

∫ t∧Sλ

0
Y (k)
r ζ(Ξr)

4(p−1)+ε−1Z(k)
r ∇ζ(Ξr)σ(Ξr)dr. (33)

Taking the expectation removes all martingale terms. From (16), we know that there exists
a constant such that for any k and all t ≥ 0,(

Y
(k)
t∧Sλ

)2
ζ(Ξt∧Sλ)4(p−1) ≤ C.
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Thereby the terms

(4(p− 1) + ε)

∫ t∧Sλ

0
(Y (k)
r )2ζ(Ξr)

4(p−1)+ε−1∇ζ(Ξr)b(Ξr)dr

+
(4(p− 1) + ε)

2

∫ t∧Sλ

0
(Y (k)
r )2

[
(4(p− 1) + ε− 1)ζ(Ξr)

4(p−1)+ε−2‖σ(Ξr)∇ζ(Ξr)‖2

+ζ(Ξr)
4(p−1)+ε−1tr

(
σσ∗(Ξr)D

2ζ(Ξr)
)]
dr

are bounded by

C

(
E
∫ S

0
ζε−1(Ξr)dr + E

∫ S

0
ζε−2(Ξr)dr

)
.

For ε > 1, the arguments developed in the proof of [31, Proposition 4] show that these
integrals are finite. The Cauchy–Schwarz inequality leads to∣∣∣∣E∫ t∧Sλ

0
Y (k)
r ζ(Ξr)

4(p−1)+ε−1Z(k)
r ∇ζ(Ξr)σ(Ξr)dr

∣∣∣∣
≤
(
E
∫ t∧Sλ

0
‖Z(k)

r ‖2ζ(Ξr)
4(p−1)+εdr

)1/2

×
(
E
∫ t∧Sλ

0
(Y (k)
r )2ζ(Ξr)

4(p−1)+ε−2‖∇ζ(Ξr)σ(Ξr)‖2dr
)1/2

.

But since ∇ζ and σ are bounded,

E
∫ t∧Sλ

0
(Y (k)
r )2ζ(Ξr)

4
q

+ε−2‖∇ζ(Ξr)σ(Ξr)‖2dr ≤ CE
∫ S

0
ζε−2(Ξr)dr < +∞.

Compared to [31], the novelties are the generator f and the terms U (k) and M (k). First using
(28):

− 2

∫ t∧Sλ

0
Y (k)
r f(r, Y (k)

r , Z(k)
r , U (k)

r )ζ(Ξr)
4(p−1)+εdr

= −2

∫ t∧Sλ

0
Y (k)
r f0

r ζ(Ξr)
4(p−1)+εdr − 2

∫ t∧Sλ

0
Y (k)
r %(r, U (k)

r )ζ(Ξr)
4(p−1)+εdr

− 2

∫ t∧Sλ

0
Y (k)
r $(r, Z(k)

r , U (k)
r )ζ(Ξr)

4(p−1)+εdr − 2

∫ t∧Sλ

0
Y (k)
r φ(r, Z(k)

r , U (k)
r )ζ(Ξr)

4(p−1)+εdr.

We know that |Y (k)
r f0

r ζ(Ξr)
4(p−1)+ε| ≤ C. From (A4)

$(r, Z(k)
r , U (k)

r ) = $(k)
r Z(k)

r

with |$(k)
r | ≤ Lz. Again by the Cauchy-Schwarz inequality and the previous arguments:∣∣∣∣E∫ t∧Sλ

0
Y (k)
r $(r, Z(k)

r , U (k)
r )ζ(Ξr)

4(p−1)+εdr

∣∣∣∣
≤ C

(
E
∫ t∧Sλ

0
‖Z(k)

r ‖2ζ(Ξr)
4(p−1)+εdr

)1/2

.
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From (A3) and similar arguments, we also have:∣∣∣∣E∫ t∧Sλ

0
Y (k)
r %(r, U (k)

r )ζ(Ξr)
4(p−1)+εdr

∣∣∣∣
≤ C

(
E
∫ t∧Sλ

0

∫
E
(U (k)

r (e))2µ(de)ζ(Ξr)
4(p−1)+εdr

)1/2

.

Note that with (B1)

2E
∫ t∧Sλ

0
Y (k)
r φ(r, Y (k)

r , Z(k)
r , U (k)

r )dr ≤ −2E
∫ t∧Sλ

0

1

ηr

∣∣∣Y (k)
r

∣∣∣q dr ≤ 0.

Up to some localization procedure we have

E
∫ t∧Sλ

0
ζ(Ξr)

4(p−1)+ε

∫
E

∣∣∣U (k)
r (e)

∣∣∣2 π(de, dr)

= E
∫ t∧Sλ

0
ζ(Ξr)

4(p−1)+ε

∫
E

∣∣∣U (k)
r (e)

∣∣∣2 µ(de)dr.

Coming back to (33) and taking the expectation, we obtain:

E
(
Y

(k)
t∧Sλ

)2
ζ(Ξt∧Sλ)4(p−1)+ε − E

(
Y

(k)
0

)2
ζ(Ξ0)4(p−1)+ε

− (4(p− 1) + ε)E
∫ t∧Sλ

0
(Y (k)
r )2ζ(Ξr)

4(p−1)+ε−1∇ζ(Ξr)b(Ξr)dr

− (4(p− 1) + ε)

2
E
∫ t∧Sλ

0
(Y (k)
r )2

[
(4(p− 1) + ε− 1)ζ(Ξr)

4(p−1)+ε−2‖σ(Ξr)∇ζ(Ξr)‖2

+ζ(Ξr)
4(p−1)+ε−1tr

(
σσ∗(Ξr)D

2ζ(Ξr)
)]
dr

+ 2E
∫ t∧Sλ

0
Y (k)
r f0

r ζ(Ξr)
4(p−1)+εdr

≥ E
∫ t∧Sλ

0
‖Z(k)

r ‖2ζ(Ξr)
4(p−1)+εdr − C

(
E
∫ t∧Sλ

0
‖Z(k)

r ‖2ζ(Ξr)
4(p−1)+εdr

)1/2

− C
(
E
∫ t∧Sλ

0

∫
E
(U (k)

r (e))2µ(de)ζ(Ξr)
4(p−1)+εdr

)1/2

+ E
∫ t∧Sλ

0
ζ(Ξr)

4(p−1)+ε

∫
E

∣∣∣U (k)
r (e)

∣∣∣2 µ(de)dr.

The left-hand side of the inequality is bounded, uniformly w.r.t. k, t and λ. Hence for all k,
t and λ,

E
∫ t∧Sλ

0

(
‖Z(k)

r ‖2 +

∫
E

∣∣∣U (k)
r (e)

∣∣∣2 µ(de)

)
ζ(Ξr)

4(p−1)+εdr ≤ C.

By Fatou’s lemma,

E
∫ S

0

(
‖Zmin

r ‖2 +

∫
E

∣∣Umin
r (e)

∣∣2 µ(de)

)
ζ(Ξr)

4(p−1)+εdr ≤ C.

Since ζ ≥ dist on D, we obtain the announced result. If (D) holds, we adapt the above
arguments using (32) instead of (16). �
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Theorem 4. Assume that Conditions (A), (B) and (D) hold. Then a.s.

lim inf
t→+∞

Y min
t∧S = ξ.

Proof. The proof is based on the arguments developed in [31, Theorem 2] and [32, Theorem
3.5]. Thus we skip the details and we only evoke the main ideas.

Recall that F∞ = {g = +∞} ∩ ∂D is a closed set, that U is an bounded open set such
that U ∩ F∞ = ∅ and U ∩ ∂D 6= ∅. Now we take a function ϕ : Rd → R+ of class C2 and
with a compact support included in U . For β > 0 we apply the Itô formula to the process

e−βtY
(k)
t ϕ(Ξt):

E
[
e−βS(g ∧ k)(ΞS)ϕ(ΞS)

]
= E

[
e−β(t∧S)Y

(k)
t∧Sϕ(Ξt∧S)

]
− βE

∫ S

t∧S
e−βsY (k)

s ϕ(Ξs)ds− E
∫ S

t∧S
e−βsϕ(Ξs)f(s, Y (k)

s , Z(k)
s , U (k)

s )ds

+ E
∫ S

t∧S
e−βsY (k)

s Lϕ(Ξs)ds+ E
∫ S

t∧S
e−βs∇ϕ(Ξs)σ(Ξs)Z

(k)
s ds. (34)

β > 0 is here only to avoid time integrability trouble. Again we decompose f using (28).

E
∫ S

t∧S
e−βsϕ(Ξs)f(s, Y (k)

s , Z(k)
s , U (k)

s )ds

= E
∫ S

t∧S
e−βsϕ(Ξs)f

0
s ds+ E

∫ S

t∧S
e−βsϕ(Ξs)

[
f(s, Y (k)

s , Z(k)
s , U (k)

s )− f(s, 0, Z(k)
s , U (k)

s )
]
ds

+ E
∫ S

t∧S
e−βsϕ(Ξs)$

(k)
s Z(k)

s ds+ E
∫ S

t∧S
e−βsϕ(Ξs)%(s, U (k)

s )ds.

Using the previous lemma and the Cauchy-Schwarz inequality, arguing as in [31], we deduce
the existence of some constant C, independent of k and t, such that

E
∫ S

t∧S
e−βs

∣∣∣ϕ(Ξs)
(
$(k)
s Z(k)

s + %(s, U (k)
s )
)

+∇ϕ(Ξs)σ(Ξs)Z
(k)
s

∣∣∣ ds ≤ C.
From Lemma 4,

E
∫ S

t∧S
e−βsY (k)

s |ϕ(Ξs) + Lϕ(Ξs)| ds ≤ C.

Hence all terms in (34), except maybe

−E
∫ S

t∧S
e−βsϕ(Ξs)

[
f(s, Y (k)

s , Z(k)
s , U (k)

s )− f(s, 0, Z(k)
s , U (k)

s )
]
ds,

are uniformly bounded. Thus this remaining term is also bounded and, thanks to (B1), is
greater than

E
∫ S

t∧S
e−βsϕ(Ξs)(Y

(k)
s )qds.
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The dominated convergence theorem and again Lemma 5 imply that, up to a suitable subse-
quence, we can pass to the limit on k in (34) to obtain for any t ≥ 0:

E
[
e−βSg(ΞS)ϕ(ΞS)

]
= E

[
e−β(t∧S)Y min

t∧S ϕ(Ξt∧S)
]

− βE
∫ S

t∧S
e−βsY min

s ϕ(Ξs)ds− E
∫ S

t∧S
e−βsϕ(Ξs)f(s, Y min

s , Zmin
s , Umin

s )ds

+ E
∫ S

t∧S
e−βsY min

s Lϕ(Ξs)ds+ E
∫ S

t∧S
e−βs∇ϕ(Ξs)σ(Ξs)Z

min
s ds.

Using Fatou’s lemma and letting t go to +∞, we deduce that

E
[
e−βSg(ΞS)ϕ(ΞS)

]
≥ E

[
e−βSϕ(ΞS) lim inf

t→+∞
Y min
t∧S

]
.

The conclusion follows since a.s.

lim inf
t→+∞

Y min
t∧S ≥ g(ΞS).

We emphasize again that the technical details are in [31, 32] and are skipped in this paper.
Note that since Ξ is continuous, several technical issues of [32] are avoided here. �

4.1 Related elliptic PDE

Since [7, 26], it is well known that BSDEs with random terminal time and elliptic PDE are
strongly related. Inspiring by [21, 23, 24], [31] extended such result to singular boundary
value for the elliptic PDE, when the generator f is of the form −y|y|q−1, q > 1. Let us now
assume that S is given by (13), that f is a deterministic function2, and that the terminal
time is given by (D1), namely ξ = g(ΞS). We consider the system: for any x ∈ D

Ξxt = x+

∫ t

0
b(Ξxr )dr +

∫ t

0
σ(Ξxu)dWu, (35)

Y min,x
t = g(ΞxS) +

∫ S

t
f(Ξxr , Y

min,x
r , Zmin,x

r )dr −
∫ S

t
Zmin,x
r dWr. (36)

Of course, Equation (36) of this forward-backward SDE has to be understood in the sense of
Definition 2.

We consider the elliptic PDE{
−Lv − f(x, v,∇vσ∗) = 0 on D;

v = g on ∂D,
(37)

where the operator L is the infinitesimal generator of Ξ.
The following definition can be found in [3], [4] (or [26], [6] for v continuous). If v is

a function defined on D, we denote by v∗ (respectively v∗) the upper- (respectively lower-)
semicontinuous envelope of v: for all x ∈ D

v∗(x) = lim sup
x′→x, x′∈D

v(x′) and v∗(x) = lim inf
x′→x, x′∈D

v(x′).

The next definition holds for bounded boundary condition g.

2If the terminal time and the terminal values are deterministic functions of ΞS , then the solution of the
BSDE (1) verifies U = M = 0. Hence we can assume w.l.o.g. that f does not depend on U here.
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Definition 4 (Viscosity solution).

• v : D → R is called a viscosity subsolution of (37) if v∗ < +∞ on D and if for all
φ ∈ C2(Rd), whenever x ∈ D is a point of local maximum of v∗ − φ,

−Lφ(x)− f(x, v∗(x),∇φ(x)σ∗(x)) ≤ 0 if x ∈ D;

min (−Lφ(x)− f(x, v∗(x),∇φ(x)σ∗(x)), v∗(x)− g(x)) ≤ 0 if x ∈ ∂D.

• v : D → R is called a viscosity supersolution of (37) if v∗ > −∞ on D and if for
all φ ∈ C2(Rd), whenever x ∈ D is a point of local minimum of v∗ − φ,

−Lφ(x)− f(x, v∗(x),∇φ(x)σ∗(x)) ≥ 0 if x ∈ D;

max (−Lφ(x)− f(x, v∗(x),∇φ(x)σ∗(x)), v(x)− g(x)) ≥ 0 if x ∈ ∂D.

• v : D → R is called a viscosity solution of (37) if it is both a viscosity sub- and
supersolution.

If the boundary condition is singular, we adapt the preceding definition.

Definition 5 (Unbounded viscosity solution). We say that v is a viscosity solution of the
PDE (37) with unbounded terminal data g if v is a viscosity solution on D in the sense of
Definition 4 and if

g(x) ≤ lim
x′→x

x′∈D, x∈∂D

v∗(x
′) ≤ lim

x′→x
x′∈D, x∈∂D

v∗(x′) ≤ g(x).

Remark that this definition implies that v∗ < +∞ and v∗ > −∞ on D. Under Conditions
(A), (B) and (D) and if

• g : ∂D → R+ is continuous,

• f is continuous on D × R× Rd,

using [28, Theorem 5.74], if we define u(k)(x) = Y
(k),x

0 , then u(k) is continuous on D and it
is a viscosity solution of the elliptic PDE (37) with boundary data g ∧ k. Evoke that the
sequence Y (k),x is converging to Y min,x. If

u(x) , Y min,x
0 ,

then u is the supremum of continuous functions u(k), u is non-negative and lower-semicontinuous
on D and satisfies:

∀x ∈ D, u(x) ≤ C

dist2(p−1)(x)
.

Following the arguments of [31] with some adapted modifications, we have:

Proposition 1. If Conditions (A), (B) and (D) hold, and if f and g are continuous func-
tions, then the function u defined by u(x) = Y min,x

0 is a viscosity solution of the elliptic PDE
in the sense of Definition 5.

Moreover suppose that the matrix σσ∗ is uniformly elliptic: there exists a constant α > 0
such that

∀x ∈ Rd, σσ∗(x) ≥ αId. (38)

If the map (x, y, z) 7→ (b(x), σ(x), f(x, y, z)) is of class C1, then u belongs to C0(D, [0,+∞]))∩
C2(D, [0,+∞)).
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5 Terminal condition ξ1

In this section we study terminal conditions of the form

ξ1 =∞ · 1{τ≤S}

where τ is another stopping time. We know from [1, Section 2] that when S = T is determin-
istic and τ has a bounded density around the terminal time T , the minimal supersolution of
BSDE (1) with terminal condition ξ1 satisfies

lim
t→T

Y min
T = ξ1.

Our goal is to prove similar continuity results when S is a stopping time. For this we will
consider two approaches: the first is an extension of the approach taken in [1, Section 2], the
present section focuses on this. We consider a new approach in the next subsection.

5.1 First approach

The approach of [1, Section 2] can be summarized as follows:

1. Assume that τ has a bounded density around the terminal time T .

2. Let Y∞ be the minimal supersolution of (1) on the interval [[0, S]] with terminal condi-
tion YS =∞; define the auxiliary terminal condition

ξ
(τ)
1 = 1{τ≤S}Y

∞
τ .

3. Use the bounded density assumption and apriori upperbounds on Y∞τ to prove

E
[(
ξ

(τ)
1

)%]
<∞ (39)

for some % > 1, in particular, ξ
(τ)
1 is not a singular terminal condition.

4. Let Ŷ u be the solution of a linear BSDE with terminal condition ξ
(τ)
1 whose driver term

is chosen to guarantee Y min ≤ Ŷ u (the superscript u stands for upper bound).

5. Derive the continuity of Y min from that of Ŷ u.

This argument requires a modification when the terminal time S is random because 1) apriori
upperbounds on supersolutions with explicit expressions are not in general available and 2)
even when such bounds were available, assumptions only on the distribution of τ (such as
the bounded density assumption in the first item of the list above) would not be sufficient
because the expectation in (39) depends on the joint distribution of τ and Y min

τ∧S . In light of
these observations, in the next theorem we take (39) as our starting point. Proposition 2
gives an example of a case where (39) is satisfied. Let us emphasize that (39) implies that
P(τ = S) = 0. Indeed, if not, then

E
[(
ξ

(τ)
1

)%]
≥ E

[
1{τ=S} (Y∞S )%

]
= +∞.
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Theorem 5. Assume that the stopping time S is solvable, such that Conditions (A) and
(B) hold. Let τ be a stopping time such that there exists % large enough (depending on δ and
δ∗ in (B3)) such that (39) holds. Then Y min is continuous at S, that is a.s.

lim
t→+∞

Y min
t∧S = ξ1.

Proof. We adopt the argument in [1] given for deterministic terminal times (see the list above)
to solvable terminal times as follows. Since S is solvable, there exists a minimal supersolution
(Y∞, Z∞, U∞,M∞) to BSDE (1) with terminal condition +∞ at time S.

First, we consider the (linear in y) generator

g(t, y, z, ψ) = χy + f(t, 0, z, ψ),

which satisfies all conditions (A), and the terminal value ξ
(τ)
1 at the random time S. Note

that ξ
(τ)
1 is Fτ∧S-measurable, thus FS-measurable. Let us check that (6) holds, namely for

some r > 1 and ρ > ν(r)

E
[
erρS |ξ(τ)

1 |
r +

∫ S

0
erρt|g(t, 0, 0,0)|rdt

]
< +∞.

Note that g(t, 0, 0,0) = f0
t and (B2) holds. From the proof of [19, Proposition 5], using

(B3), there exists r > 1 and ρ > ν(r) such that rν(r) < δ. Hence we can find γ > 1 such
that E(erργS) < +∞. Hölder’s inequality leads to:

E
[
erρS |ξ(τ)

1 |
r
]
≤
(
EerργS

)1/γ (E|ξ(τ)
1 |

rγ∗
)1/γ∗

.

If % ≥ rγ∗, then we deduce that E|ξ(τ)
1 |rγ∗ < +∞ and (6) is satisfied.

Then we have to verify that (8) holds for ξ
(τ)
1 . This can be done by linearizing g and

using the same arguments as for (6). Applying Theorem 1 leads to the existence and the

uniqueness of the solution (Ŷ u, Ẑu, Ûu, M̂u).
We next prove that Ŷ u does serve as an upper bound on Y (k), the solution of the BSDE

(1) with terminal condition ξ1 ∧ k = k1τ≤S at time S: a.s. for any t ≥ 0

Y
(k)
t∧τ∧S ≤ Ŷ

u
t∧τ∧S .

Indeed by comparison principle, Y (k) ≤ Y∞. Hence a.s. Y
(k)
τ∧S = Y

(k)
τ 1τ≤S ≤ Y∞τ 1τ≤S = ξ

(τ)
1 .

Since f(t, y, z, ψ) ≤ g(t, y, z, ψ) by Condition (A1), we deduce the wanted result.
We conclude using some linearization procedure (see [1, Lemma 3]) that a.s. on the

FS-measurable set {τ > S}, that
lim

t→+∞
Ŷ u
t∧S = 0.

Thereby a.s. on the same set

0 ≤ lim
t→+∞

Y min
t∧S ≤ lim

t→+∞
Ŷ u
t∧S = 0 = ξ1.

The continuity is proved. �
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Let us develop an example. Let us assume that S is the first exit time of Ξ given by (13),
S = SD = inf{t ≥ 0, Ξt /∈ D}, such that there exists a constant C such that (16) holds:

0 ≤ Y∞t∧S ≤
C

dist(Ξt∧S)2(p−1)
.

We also suppose that σ is uniformly elliptic (Equation (38)), such that by [12], for Ξ0 = x ∈ D,
Ξt has a density φ(t, x, ·). Under this assumption, to prove (39) it suffices to prove

E
[
1{τ≤S}

1

dist(Ξτ )%2(p−1)

]
<∞, (40)

for some % > 1. Theorem 5 above gives:

lim
t→∞

Y min
t∧S = ξ1,

assuming (40).
The expectation in (40) depends on the joint distribution of (τ, S,ΞS). We are not aware

of results available in the current literature that would imply (40) under broad and general
assumptions on these variables. A basic case that can be treated with techniques that we
know of is when τ is independent of Ξ (and therefore of S). The next proposition proves (40)
under this setting.

Proposition 2. Suppose that S is the first exit time of Ξ given by (13), that σ is uniformly
elliptic, and that τ is independent of Ξ. If q > 1 + 2%, then

E
[
1{τ≤S}

1

dist(Ξτ )%2(p−1)

]
<∞, (41)

Proof. The equality 1/p + 1/q = 1 and q > 1 + 2% imply 2(p − 1)% < 1. Let us denote the
distribution of τ by Fτ . The expectation (40) can then be written as

E
[
1{τ≤S}

1

dist(Ξτ )%2(p−1)

]
=

∫ ∞
0

E
[
1{t≤S}

1

dist(Ξt)%2(p−1)

]
dFτ (t).

Since S is the exit time of Ξ from a smooth domain with uniformly elliptic diffusion matrix,
we have:

E
[
1{τ≤S}

1

dist(Ξτ )%2(p−1)

]
=

∫ ∞
0

E
[
1{t<S}

1

dist(Ξt)%2(p−1)

]
dFτ (t)

that {Ξt ∈ D} ⊃ {t < S} implies

≤
∫ ∞

0
E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
dFτ (t). (42)

We next bound

E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
.

For Ξ0 = x ∈ D, let φ(t, x, ·) be the density of Ξt. The expectation above then can be written
as

E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
=

∫
D
φ(t, x, y)

1

dist(y)%2(p−1)
dy. (43)
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Define Dε = {x ∈ D : dist(x) ≤ ε} for ε > 0; by [13, Lemma 14.16] there exists ε′1 > 0 such
that dist is C2 in Dε′1

. Therefore one can choose ε1 ∈ (0, ε′1] so that dist is smooth on Dε1

and x /∈ Dε1 . The continuity of dist implies that Dε is closed; Dε is therefore compact since
Dε ⊂ D and D is bounded. This, the continuity of dist and x /∈ Dε1 imply

C1
.
= inf

y∈Dε1
|x− y| > 0. (44)

Since b and σ are Lipschitz continuous and since σ is uniformly elliptic, from [12, page
16] we have the following Aronson’s estimate on φ(t, x, y) :

φ(t, x, y) ≤ C2

td/2
e−

λ0|y−x|
2

4t .

This and (44) imply

φ(t, x, y) ≤ C2

td/2
e−

λ0C
2
1

4t ,

for y ∈ Dε1 . The right side of this inequality is continuous and bounded for t ∈ [0,∞].
Therefore

C3
.
= sup

t∈[0,∞],y∈Dε1
φ(t, x, y) ≤ sup

t∈[0,∞],y∈Dε1

C2

td/2
e−

λ0C
2
1

4t <∞. (45)

We now decompose (43) into two integrals over Dε1 and D \Dε1 :

E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
=

∫
D
φ(t, x, y)

1

dist(y)%2(p−1)
dy

=

∫
D\Dε1

φ(t, x, y)
1

dist(y)%2(p−1)
dy.+

∫
Dε1

φ(t, x, y)
1

dist(y)ρ2(p−1)
dy

≤ 1

ε
2%(p−1)
1

+

∫
Dε1

φ(t, x, y)
1

dist(y)%2(p−1)
dy. (46)

the last inequality coming from: dist(y) > ε1 for y ∈ D \Dε1 .
It remains to bound the last integral. For this note that dist is C2 over Dε1 . Furthermore,

∂D is the 0-level curve of dist, in particular, for y ∈ ∂D, the gradient ∇dist(y) is normal to
∂D. ∂D is a C1 surface, with nonvanishing normal at everypoint. It follows from these and
the definition of dist that ∇dist satisfies |∇dist(y)| = 1 for y ∈ ∂D. Now define

Eε = {y ∈ D : dist(y) > ε} = D \Dε.

That dist is C2(Dε1) implies that ∂Dε1 is a C2 bounded surface and that the function

A(ε) = Area(∂Eε)

is C1 over the interval [0, ε1]. In particular, it is continuous and satisfies

C4
.
= sup

ε∈[0,ε1]
A(ε) <∞. (47)

This and the definition of dist imply |∇dist(y)| = 1 for y ∈ ∂Dε for ε ≤ ε1. We are now in a
setting where we can apply the co-area formula [11, Theorem 5, page 713], which gives∫

Dε1

φ(t, x, y)
1

dist(y)%2(p−1)
dy =

∫ ε1

0

(∫
∂Eε

φ(t, x, y)dS

)
1

ε%2(p−1)
dε
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∂Eε ⊂ Dε1 and (45) imply

≤
∫ ε1

0

(∫
∂Eε

C3dS

)
1

ε%2(p−1)
dε

This and (47) give

≤ C3C4

∫ ε1

0

1

ε%2(p−1)
dε.

Recall that %2(p− 1) < 1. This and the last line imply∫
Dε1

φ(t, x, y)
1

dist(y)%2(p−1)
dy < C5, (48)

where

C5
.
= C3C4

∫ ε1

0

1

ε%2(p−1)
dε <∞.

The bound (48) we have just derived and (46) imply

E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
≤ 1

ε
%2(p−1)
1

+ C5.

This and (42) imply (41). �

For example, if f only depends on y and is non increasing (χ = 0), then it is sufficient to
have q > 3.

5.2 A new argument for ξ1

In the rest of the paper, to clearly state the ideas and for a less technical presentation we
will restrict our attention to the Brownian framework, i.e., we assume that F = FW is the
filtration generated by the d-dimensional Brownian motion W . Therefore (1) reduces to (26),
that is:

dYt = −f(t, Yt, Zt)dt+ ZtdWt.

The continuity arguments in Section 5.1 above and in [1, Section 2] use the solution of a linear
auxiliary BSDE as an upper bound to the minimal supersolution. In this section we would
like to explore a new upper bound that is based directly on the original nonlinear BSDE. As
will be seen, whenever applicable, this is more natural and leads to less strict conditions on
the parameter q of Condition (B1).

We assume τ and S to be solvable in the sense of Definition 3. Let Y S,∞ and Y τ,∞ denote
the ∞-supersolutions3 corresponding to τ and S. The main idea of the present section as
compared to that of Section 5.1 and [1, Section 2] is the following: we replace the upper
bound process Ŷ u of the proof of Theorem 5 with Y τ,∞.

Theorem 6. Suppose τ and S are solvable in the sense of Definition 3. Then a supersolution
Y min of (26) with terminal condition Y min

S = +∞ · 1{τ≤S} exists and

lim
t→∞

Y min
t∧S = +∞ · 1{τ≤S} = ξ1. (49)

3When we refer to Y as the solution, we mean the first component Y of a solution (Y,Z).
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Proof. By assumption there exists a supersolution Y S,∞ to the BSDE with terminal condition
YS =∞ and this supersolution is the limit of processes Y (L) which are solutions of the same
BSDE with terminal condition YS = L. Let ξ ≥ 0 be an arbitrary terminal condition and let
Y L,ξ be the solution of (26) with terminal condition YS = ξ∧L. Comparison with Y (L) imply
that limL↗∞ Y

L,ξ defines the minimal supersolution Y min to (26) with terminal condition ξ.
By assumption τ is solvable. Therefore, there exists a process Y τ,∞ that is a supersolution
to BSDE (26) with terminal condition Yτ =∞. Let τn be the sequence of increasing stopping
times in Definition 2 associated with this supersolution and let Y τ,∞,L be the sequence of
solutions of (26) with terminal condition Yτ = L; by definition

Y τ,∞ = lim
L↗∞

Y τ,∞,L.

By Corollary 1, Y τ,∞ is bounded by n in the interval [[0, τn]].
Similarly, let Y S,ξ1,L be the sequence of solutions of BSDE (26) with terminal condition

YS = ξ1 ∧ L = L · 1{τ≤S}.. We will now prove

Y S,ξ1,L
t ≤ Y τ,∞

t , t ≤ τn ∧ S. (50)

To prove this consider, for L1 > 0 the solution Y S,ξ1,L,L1 of BSDE (26) with terminal condition

Yτ∧S =
(
Y S,ξ1,L
τ 1{τ≤S}

)
∧ L1 = (Y S,ξ1,L

τ ∧ L1)1{τ≤S}, which is Fτ∧S-measurable. We will

compare this process with Y τ,L1 , the solution of (26) with terminal condition Yτ = L1, on
the time interval [[0, τ ∧ S]]. By its definition, the terminal value of Y S,ξ1,L,L1 at time τ ∧ S
equals,

Y S,ξ1,L,L1

τ∧S = (Y S,ξ1,L
τ ∧ L1)1{τ≤S}

which is bounded by

≤ L11{τ ≤ S}. (51)

Again by definition

Y τ,L1

τ∧S = Y τ,L1
τ 1{τ≤S} + Y τ,L1

S 1{S<τ} = L1 + Y τ,L1

S 1{S<τ}.

It follows from this Y τ,L1 ≥ 0 and (51) that

Y S,ξ1,L,L1

τ∧S ≤ Y τ,L1

τ∧S . (52)

The processes Y S,ξ1,L,L1 and Y τ,L1 are solutions of BSDE (26) on the interval [[0, τ∧S]] (in the
sense of Theorem 1). This, τn ∧ S ≤ τ ∧ S, the inequality (52) and the comparison principle
for BSDE imply

Y S,ξ1,L,L1
t ≤ Y τ,L1

t , for t ∈ [[0, τn ∧ S]].

Letting L1 ↗ ∞ gives (50). Recall that Y τ,∞ is bounded by n in the interval [[0, τn]]. This
and (50) implies the same bound for Y S,ξ1,L. Letting L ↗ ∞ we discover that the process
Y S,ξ1 is a solution of (26) in the interval [[0, τn ∧ S]] with terminal condition

ξ11{S<τn} + Y S,ξ1
τn 1{τn≤S} = Y S,ξ1

τn 1{τn≤S} ≤ n.

In particular, Y S,ξ1 is continuous on [[0, τn ∧ S]] and satisfies

lim
t→∞

Y S,ξ1
t∧τn∧S = Y S,ξ1

τn∧S −∆Y S,ξ1
τn∧S .
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Now over the event {τn > S}, Y S,ξ1
τn∧S = 0, and since the filtration is continuous at time S,

there is no jump at time S. Thus over the event {τn > S}

lim
t→∞

Y S,ξ1
t∧τn∧S = 0.

Since Y S,ξ1 = Y min, this and
∞⋃
n=1

{τn > S} = {τ > S}

implies (49). �

5.3 An example in one space dimension

In this subsection we go back to the setup studied in [34, Section 2]: the driver is deterministic
and only a function of y:

f(y) = −y|y|q−1,

the terminal time S is deterministic T and the terminal condition is

YT =∞ · 1{τ≤T} (53)

where τ is the first exit time of W from the interval (0, L). Note that since f is deterministic
and since the terminal conditions only depend on W , the solution (Y,Z, U,M) of BSDE (1)
is reduced to (Y, Z,0, 0) and the BSDE can be reduced to:

Ys = Yt +

∫ t

s
f(Yr)dr +

∫ t

s
ZrdWr. (54)

Theorem 2.1 of [34] states that for q > 2 the minimal supersolution of the BSDE (54) with
terminal condition (53) is continuous at time T . Let yt denote the solution of dy

dt = −f(y) on
the interval [0, T ] with terminal value yT =∞, i.e.,

yt
.
= ((q − 1)(T − t))1−p, t < T, 1/p+ 1/q = 1. (55)

The proof of [34, Theorem 2.1] is based on the following integrability result:

E[yτ1{τ≤T}] = E[yτ1{τ<T}] <∞. (56)

As in the proof of Theorem 5, [34] constructs a linear process that is continuous at time T
to find a continuous upperbound on the minimal supersolution (which implies the continuity
of the minimal supersolution); the bound (56) ensures that the upper bound linear process is
well defined. The bound (56) requires q > 2 and that is the reason why this was assumed in
[34] in its treatment of the terminal condition (53). We will now derive the same continuity
result under the assumption q > 1 using Theorem 6 above.

To apply Theorem 6 to the present setup we need T and τ to be solvable. This essentially
means that the BSDE has weak supersolutions with terminal value ∞ at these terminal
times. The weak supersolution for terminal time T is the deterministic process t 7→ yt.
That τ is solvable can be derived from (16). Instead of invoking this general result, in the
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following lemma we will make use of the simple nature of f and W to explicitly construct
the supersolution Y τ,∞ with terminal condition Yτ =∞. Following [29, page 307] we will use

x(v, vl)
.
= v

1− q+1
2

l

(
q + 1

4

)1/2 ∫ v/vl

1

(
uq+1 − 1

)−1/2
du. (57)

to construct solutions to the ODE

1

2

d2V

dx2
− V q = 0. (58)

The function x is strictly increasing in v, furthermore, q > 1 implies x(∞, vl) <∞. Define

L(vl) = x(∞, vl).

Let x−1(·, vl) denote the inverse of x(·, vl). Now define

v(x, vl)
.
= x−1(|x− L/2|, vl).

Lemma 6. On the interval [L/2 − L(vl), L/2 + L(vl)], v(·, vl) satisfies (58) with boundary
conditions ∞ on both sides.

Proof. Direct calculation using the definition (57) of x. �

To construct a supersolution of (54), we want to solve (58) in the interval [0, L] with
∞ terminal conditions. Note that L(0) = ∞ and L(∞) = 0 and L is a decreasing smooth
function. It follows that there is a unique v∗ such that L(v∗) = L/2. Then for vl = v∗, v(x, v∗)
solves (58) in the interval [0, L] with ∞ terminal conditions. For our argument we also need
solutions to (58) in the time interval [0, L] with boundary condition n on both sides. For this
purpose, the next lemma constructs a sequence 0 < vn ↗ v∗ such that x(n, vn) = L/2.

Lemma 7. There exists a sequence 0 < vn ↗ v∗ such that x(n, vn) = L/2.

Proof. Recall that v∗ is the unique solution of x(∞, v∗) = L/2, i.e.,

(v∗)1− q+1
2

(
q + 1

4

)1/2 ∫ ∞
1

(
uq+1 − 1

)−1/2
du = L/2.

This implies in particular

x(1, v∗) = (v∗)1− q+1
2

(
q + 1

4

)1/2 ∫ 1/v∗

1

(
uq+1 − 1

)−1/2
du < L/2.

Furthermore, the function vl 7→ x(1, vl) is continuous on (0, v∗] and increases to∞ as vl ↘ 0.
This implies that there exists v1 < v∗ satisfying x(1, v1) = L/2. Now note x(2, v1) > L/2 and
x(2, v∗) < L/2. Applying the same argument gives v2 ∈ (v1, v

∗) satisfying x(2, v2) = L/2.
Repeating the same argument inductively gives us an increasing sequence vn bounded by v∗

solving x(n, vn) = L/2. The limit v∗∗ of this sequence satisfies x(∞, v∗∗) = L/2. Recall that
v∗ is the unique solution of this equation. This yields vn ↗ v∗. �

We can now state and prove the generalization of [34, Theorem 4] to q > 1:
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Theorem 7. For q > 1 the minimal supersolution of (54) with terminal condition YT =
∞ · 1{τ≤T} is continuous at time T .

Proof. By the previous lemma there exists vn ↗ v∗ that solves x(n, vn) = L/2. It follows
from this and Lemma 6 that v(·, vn) solves (58) on [0, L] with terminal condition n on both
sides and that v(·, vn) → v(·, v∗). The comparison principle for the equation (58) implies
that in fact v(·, vn)↗ v(·, v∗). Now define the processes

Y τ,n
t = v(Wt, vn), Y τ,∞

t = v(Wt, v
∗).

e:eq:bsdebrownian Itô’s formula implies that Y τ,n
t solves (54) with terminal condition Yτ = n.

Define τn be the first time W hits [1/n, L−1/n]. Itô’s formula implies Y τ,∞ satisfies (9) (with
βn = τn) and the definition of v(·, v∗) and the continuity of the sample paths of W imply
(2) with ξ = ∞. Therefore, Y τ,∞ is a weak supersolution of (54) with terminal condition
Yτ =∞. Furthermore, v(·, vn)↗ v(·, v∗) implies Y τ,n

t ↗ Y τ,∞
t . These imply that τ satisfies

all of the conditions of being solvable. T is also solvable because it is deterministic. Theorem
6 now implies the statement of the present theorem. �

6 Terminal condition ξ2

We assume S to be solvable. This means that there exists a minimal supersolution Y S,∞ ≥ 0
to (26) with terminal condition Y S,∞

S = ∞ and a sequence of stopping times Sn ↗ S such

that Y S,∞
t ≤ n for t ≤ Sn. (Definitions 2 and 3, Lemma 1 and Corollary 1).

Our continuity result is as follows:

Theorem 8. Suppose S is solvable and τ is an arbitrary stopping time such that P(S = τ) =
0. Then BSDE (26) has a supersolution in the time interval [[0, S]] with terminal condition
YS = ξ2 =∞ · 1{τ>S}. Furthermore this supersolution is continuous at S:

lim
t→∞

YS∧t = ξ2. (59)

This generalizes [1, Theorem 2] which assumes deterministic terminal times, to random
terminal times. The main idea of the proof of [1, Theorem 2] generalized to the current setup
is as follows: we construct a sequence of supersolutions to (26) with terminal conditions
YS = ∞ · 1{τ>Sn} where Sn is the sequence of stopping times approximating S. Note that
these processes are all defined over the time interval [[0, S]], Sn < S allows one to prove they
are all continuous at time S. This, ∞ · 1{τ>Sn} ≥ ∞ · 1{τ>S} and comparison principle for

BSDE allow one to argue that Y S,ξ2 is also continuous at S, which is the result we seek.
Let us define several processes that will be useful in the proof of Theorem 8, as solution

of BSDE (26) over the time interval [[0, S]], changing the terminal condition at time S:

• Y S,L corresponds to the terminal condition L ;

• Y S,0 to the terminal condition 0 ;

• Y S,ξ2,L,n to the terminal condition L · 1{τ>Sn}.

Note that these terminal conditions are FS-measurable and bounded. Hence from Theorem 1
and the conditions (B), these solutions are well defined and unique (in the sense of Definition
1).
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Let Y Sn,ξ2,L be the solution of (26) in the time interval [[0, Sn]] with terminal condition

YSn = Y S,L
Sn
· 1{τ>Sn} + Y S,0

Sn
· 1{τ≤Sn}.

The existence and uniqueness of Y Sn,ξ2,L comes from the estimates on Y S,L and Y S,0 in
Theorem 1. We begin our argument with the following lemma.

Lemma 8. The process Y S,ξ2,L,n has the following structure:

Y S,ξ2,L,n
t = Y Sn,ξ2,L

t 1t≤Sn + Y S,0
t · 1t>Sn · 1τ≤Sn + Y S,L

t · 1t>Sn · 1τ>Sn . (60)

Proof. First, Sn < S implies that the right side of (60) defines an adapted and continuous
process, denoted by Y, with bounded terminal condition YS = L · 1{τ>Sn}. Let us show that
Y satisfies also (26). We define similarly:

Zt = ZSn,ξ2,Lt 1t≤Sn + ZS,0t · 1t>Sn · 1τ≤Sn + ZS,Lt · 1t>Sn · 1τ>Sn .

For any 0 ≤ t ≤ T , let us distinguish several cases:

• If 0 ≤ t ≤ T ≤ Sn < S, then since Y Sn,ξ2,L solves (26) on [[0, Sn]]:

Yt∧S = Y Sn,ξ2,L
t = Y Sn,ξ2,L

T +

∫ T

t
f(u, Y Sn,ξ2,L

u , ZSn,ξ2,Lu )du−
∫ T

t
ZSn,ξ2,Lu dWu

= YT∧S +

∫ T∧S

t∧S
f(u,Yu, ZSn,ξ2,Lu )du−

∫ T∧S

t∧S
ZSn,ξ2,Lu dWu.

• If Sn < t ≤ T , then

Yt∧S = Y S,0
t∧S · 1τ≤Sn + Y S,L

t∧S · 1τ>Sn

= YT∧S +

∫ T∧S

t∧S

[
f(u, Y S,0

u , ZS,0u ) · 1τ≤Sn + f(u, Y S,L
u , ZS,Lu ) · 1τ>Sn

]
du

−
∫ T∧S

t∧S

[
ZS,0u · 1τ≤Sn + ZS,Lu · 1τ>Sn

]
dWu

= YT∧S +

∫ T∧S

t∧S
f(u,Yu, ZS,0u · 1τ≤Sn + ZS,Lu · 1τ>Sn)du

−
∫ T∧S

t∧S

[
ZS,0u · 1τ≤Sn + ZS,Lu · 1τ>Sn

]
dWu

since both sets {τ ≤ Sn} and {τ < Sn} are FSn-measurable.

• If 0 ≤ t ≤ Sn < T , then

Yt∧S = Y Sn,ξ2,L
t = YSn +

∫ Sn

t∧S
f(u,Yu, ZSn,ξ2,Lu )du−

∫ Sn

t∧S
ZSn,ξ2,Lu dWu

= Y S,0
Sn
· 1τ≤Sn + Y S,L

Sn
· 1τ>Sn

+

∫ Sn

t∧S
f(u,Yu, ZSn,ξ2,Lu )du−

∫ Sn

t∧S
ZSn,ξ2,Lu dWu

= YT∧S +

∫ T∧S

Sn

f(u,Yu, ZS,0u · 1τ≤Sn + ZS,Lu · 1τ>Sn)du

−
∫ T∧S

Sn

[
ZS,0u · 1τ≤Sn + ZS,Lu · 1τ>Sn

]
dWu

+

∫ Sn

t∧S
f(u,Yu, ZSn,ξ2,Lu )du−

∫ Sn

t∧S
ZSn,ξ2,Lu dWu.
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Hence we have verified that (Y,Z) solves the BSDE (26). The statement of the lemma follows
from the uniqueness of such a solution (Theorem 1). �

We now give

Proof of Theorem 8. Let Y S,ξ2∧L be the solution of (26) with bounded terminal condition
YS = ξ2 ∧ L = L · 1{τ>S}. The inequality ξ2 ∧ L ≤ L implies

Y S,ξ2∧L
t ≤ Y S,L

t , t ≤ S.

This and Y S,L
t ≤ n for t ≤ Sn imply that, if we define

Y S,ξ2
t = lim

L↗∞
Y S,ξ2∧L
t ,

then Y S,ξ2 is a classical solution of (1) on the time interval [[0, Sn]]. That (59) holds over the
event {ξ2 =∞} = {τ > S} follows from the fact that Y S,ξ2 is constructed by approximation
from below (see [30]). For completeness, we reproduced this argument: note

lim inf
t→∞

Y S,ξ2
t∧S ≥ lim inf

t→∞
Y S,ξ2∧L
t∧S = ξ2 ∧ L

for all L. Letting L↗∞ implies

lim inf
t→∞

Y S,ξ2
t∧S ≥ ξ2.

In particular,
lim
t→∞

Y S,ξ2
t∧S = lim inf

t→∞
Y S,ξ2
t∧S = ξ2 =∞

over the event {τ > S}. This proves (59) over the event {τ > S}.
It remains to prove (59) over the event {τ ≤ S}. Recall the process Y S,ξ2,L,n of (60) that

is the solution of (26) over the interval [[0, S]] with terminal condition YS = L ·1{τ>Sn}. That
Sn ≤ S implies

L · 1{τ>Sn} ≥ L · 1{τ>S}.

This and the comparison principle lead to

Y S,ξ2,L
t ≤ Y S,ξ2,L,n

t , for t ≤ S.

Lemma 8 implies
Y S,ξ2,L,n
t = Y S,0

t , for t ∈]]Sn, S]]

over the event {τ ≤ Sn}. Combining the last two displays we get

Y S,ξ2,L
t ≤ Y S,0

t , for t ∈]]Sn, S]]

over the event {τ ≤ Sn}. The right side of the last inequality doesn’t depend on L. Taking
limits on the left gives

Y S,ξ2
t ≤ Y S,0

t , for t ∈]]Sn, S]].

over the event {τ ≤ Sn}. The right side of the above inequality is a classical solution of the
BSDE (26) with 0 terminal condition. Therefore, taking limits of both sides above give

lim sup
t→∞

Y S,ξ2
t∧S ≤ lim

t→∞
Y S,0
t∧S = 0.
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By its construction, Y S,ξ2 ≥ 0. This and the last display imply

lim
t→∞

Y S,ξ2
t∧S = 0.

over the event {τ ≤ Sn}. Finally, Sn ↗ S and P(τ = S) = 0 imply
⋃∞
n=1{τ ≤ Sn} = {τ ≤ S}.

This and the last display imply
lim
t→∞

Y S,ξ2
t∧S = 0 = ξ2

over the event {τ ≤ S}. This completes the proof of the theorem. �

7 Conclusion

The present work develops solutions to the BSDE (1) with random terminal time S for a
range of singular terminal values. We do this by proving that the minimal supersolution is
continuous at S and attains the terminal value. A key ingredient of our framework and our
arguments is the concept of a solvable stopping time with respect to the given BSDE and
the filtration, introduced in the present work. Solvability means that the the BSDE has a
supersolution with value ∞ at the given stopping time. We note that a stopping time that
has a positive density around 0 is not solvable. We also note that deterministic times as well
as exit times of continuous diffusion processes from smooth domains are solvable. A natural
direction for future work is to further understand the concept of solvability and identify other
classes of solvable/nonsolvable stopping times.
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