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In this paper, we introduce an iterative process which converges strongly to a common element of sets of solutions of finite family of generalized equilibrium problems, sets of fixed points of finite family of continuous relatively nonexpansive mappings and sets of zeros of finite family of γ-inverse strongly monotone mappings in Banach spaces. Our theorems improve and generalize several results which are announced recently. Our iteration process, method of proof and corollaries are of independent interest.

INTRODUCTION

Let E be a real Banach space with dual E * . We denote by J the normalized duality mapping from E to 2 E * defined by

Jx := {f * ∈ E * : x, f * = x 2 = f * 2 },
where •, • denotes the generalized duality pairing between members of E and members of E * . It is well known that if E * is strictly convex then J is single valued and if E is uniformly smooth then J is uniformly continuous on bounded subsets of E. Moreover, if E is reflexive and strictly convex Banach space with a strictly convex dual, then J -1 is single valued, one-to-one, surjective, and it is the duality mapping from E * into E and thus JJ -1 = I E * and J -1 J = I E (see e.g., [START_REF] Cioranescu | Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems[END_REF][START_REF] Takahashi | Nonlinear Functional Analysis[END_REF]).

Remark 1. If E = l p , 1 < p < ∞, then J is given explicitly as Jx = x 2-p lp y ∈ l q , x = {x 1 , x 2 , • • • }, y = {x 1 |x 1 | p-2 , x 2 |x 2 | p-2 , • • • }, 1
p + 1 q = 1 and so J -1 is also easily computed. Furthermore, if E = L p , Jx = x

2-p

Lp |x| p-2 x ∈ L q , 1 p + 1 q = 1 (see e.g., [START_REF] Alber | Metric and generalized projection operators in Banach spaces: properties and applications[END_REF]). Observe that if H is a Hilbert space, then E * = H, J and J -1 becomes the identity operator on H.

Let C be a nonempty closed convex subset of a real Banach space E. Let f : C × C → R be a bifunction, where R is the set of real numbers, and B : C → E * be a nonlinear mapping. The generalized equilibrium problem (for short, GEP ) for f and B is to find u ∈ C such that

f (u, v) + Bu, v -u ≥ 0, ∀ v ∈ C. (1) 
The set of solutions for the problem (1) is denoted by GEP (f, B), i.e.,

GEP (f, B) := {u ∈ C : f (u, v) + Bu, v -u ≥ 0, ∀ v ∈ C}.
If B = 0 in (1), then GEP (1) reduces to the classical equilibrium problem (for short, EP ) and GEP (f, 0) is denoted by EP (f ), i.e., EP (f ) = {u ∈ C : f (u, v) ≥ 0, ∀ v ∈ C}.

If f = 0 in (1), then GEP (1) reduces to the classical variational inequality problem and GEP (0, B) is denoted by V I(B, C), i.e., V I(B, C) = {u * ∈ C : Bu * , vu * ≥ 0, ∀ v ∈ C}.

The problem [START_REF] Alber | Metric and generalized projection operators in Banach spaces: properties and applications[END_REF] is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, min-max problems, the Nash equilibrium problems in non-cooperative games and countless of others;

(see, for instance, [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF][START_REF] Moudafi | Proximal and dynamical approaches to equilibrium problems[END_REF])

A mapping A : D(A) ⊂ E → E * , is said to be monotone if for each x, y ∈ D(A), the following inequality holds:

xy, Ax -Ay ≥ 0.

A is said to be γ-inverse strongly monotone if there exists a positive real number γ such that

xy, Ax -Ay ≥ γ Ax -Ay 2 , for all x, y ∈ K.

(

) 3 
If A is γ-inverse strongly monotone, then it is Lipschitz continuous with constant 1 γ , that is, Ax -Ay ≤ 1 γ xy , for all x, y ∈ D(A), and hence uniformly continuous.

Let E be a smooth real Banach space. The function φ : E × E → R defined by φ(x, y) = x 2 -2 x, Jy + y 2 for all x, y ∈ E,

is studied by Alber [START_REF] Alber | Metric and generalized projection operators in Banach spaces: properties and applications[END_REF], Kamimura and Takahashi [START_REF] Kamimura | Strong convergence of a proximal-type algorithm in a banach space[END_REF], and Riech [START_REF] Reich | Strong convergence theorems for resolvents of accretive operators in Banach spaces[END_REF]. It is obvious from the definition of the function φ that ( xy ) 2 ≤ φ(x, y) ≤ ( x + y ) 2 for x, y ∈ E.

(

) 5 
Observe that in a Hilbert space H, (5) reduces to φ(x, y) = xy 2 , for x, y ∈ H.

Let E be a reflexive, strictly convex and smooth real Banach space and let C be a nonempty closed and convex subset of E. The generalized projection mapping, introduced by Alber [START_REF] Alber | Metric and generalized projection operators in Banach spaces: properties and applications[END_REF], is a mapping Π C : E → C, that assigns to an arbitrary point y ∈ E the minimum point of the functional φ(•, y), that is Π C y = x, where x is the solution to the minimization problem φ(x, y) = min{φ(x, y), x ∈ C}.

In fact, we have the following result.

Lemma 1. [START_REF] Alber | Metric and generalized projection operators in Banach spaces: properties and applications[END_REF] Let C be a nonempty closed and convex subset of a reflexive, strictly convex, and smooth real Banach space E and let y ∈ E. Then there exists a unique element x 0 ∈ C such that φ(x 0 , y) = min{φ(z, y) : z ∈ C}.

Let C be a nonempty closed convex subset of E, and let T be a mapping from C into itself. We denote by F (T ) the set of fixed points of T . A point p ∈ C is said to be an asymptotic fixed point of T [START_REF] Reich | Strong convergence theorems for resolvents of accretive operators in Banach spaces[END_REF] if C contains a sequence {x n } ∞ n=1 which converges weakly to p such that lim n→∞

x n -T x n = 0. The set of asymptotic fixed points of T will be denoted by F (T ). The asymptotic behavior of relatively nonexpansive mapping was studied in [START_REF] Butnariu | Asymptotic behavior of relatively nonexpansive operators in banach spaces[END_REF][START_REF] Censor | Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization[END_REF]. A mapping T from C into itself is said to be relatively nonexpansive [START_REF] Su | Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings[END_REF][START_REF] Zegeye | Strong convergence for monotone mappings ad relatively weak nonexpansive mappings[END_REF] if the following conditions are satisfied:

(R1) F (T ) = ∅; (R2) φ(p, T x) ≤ φ(p, x), ∀ x ∈ C, p ∈ F (T ); (R3) F (T ) = F (T ).
If E is a smooth, strictly convex and reflexive real Banach space, and A ⊂ E × E * is a continuous monotone mapping with A -1 (0) = ∅ then it proved in [START_REF] Kohsaka | Strong convergence of an iterative sequence for maximalmonotone operators in Banach spaces[END_REF] that J r := (J + rA) -1 J, for r > 0 is relatively nonexpansive. Moreover, if C is nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach E, and T : C → C is relatively nonexpansive then F (T ) is closed and convex (see, [START_REF] Matsushita | Weak and Strong Convergence Theorems for Relatively Nonexpansive Mappings in a Banach Space[END_REF]).

Let f : C × C → R be a bifunction. The equilibrium problem for f is to find

x * ∈ C such that f (x * , y) ≥ 0, ∀ y ∈ C. (7) 
The set of solutions of ( 7) is denoted by EP (f ). For solving the equilibrium problem for a bifunction f : C ×C → R, let us assume that f satisfies the following conditions:

(A1) f (x, x) = 0 for all x ∈ C, (A2) f is monotone, that is, f (x, y) + f (y, x) ≤ 0 for all x, y ∈ C, (A3) for each x, y, z ∈ C, lim t→0 f (tz + (1 -t)x, y) ≤ f (x, y),
(A4) for each x ∈ C, y → f (x, y) is convex and lower semicontinuous.

Many authors studied the problem of finding a common element of the set of fixed points of nonexpansive and / or relatively nonexpansive mappings and the set of solutions of an equilibrium problem in the frame work of Hilbert spaces and Banach spaces respectively: see, for instance, [START_REF] Qin | Convergence theorems of common elements for equilibrium problems and fixed point problems in banach spaces[END_REF][START_REF] Reich | Strong convergence theorems for resolvents of accretive operators in Banach spaces[END_REF][START_REF] Yongfu | Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators[END_REF][START_REF] Takahashi | Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in banach spaces[END_REF][START_REF] Zegeye | Strong convergence for monotone mappings ad relatively weak nonexpansive mappings[END_REF][START_REF] Ofoedu | An algorithm for finding common solutions of various problems in nonlinear operator theory[END_REF][START_REF] Osilike | The Hybrid Steepest Descent Method for Solutions of Equilibrium Problems and other Problems in Fixed Point Theory[END_REF] and the references therein. For finding an element of F (S) ∩ V I(A, C), Takahashi and Toyoda [START_REF] Takahashi | Weak convergence theorems for nonexpansive mappings and monotone mappings[END_REF] introduced the following iterative scheme:

x n+1 = α n x n + (1 -α n )SP C (x n -λ n Ax n ), n ≥ 1, (8) 
where x 0 ∈ C, P C is a metric projection of H onto C, {α n } n≥1 is a sequence in (0, 1) and {λ n } is a sequence in (0, 2α), where α is strong monotonicity constant of A.

Recently, Iiduka and Takahashi [START_REF] Iiduka | Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings[END_REF] introduced the following iterative scheme:

x n+1 = α n u + β n x n + γ n SP C (x n -λ n Ax n ), n ≥ 1, (9) 
where u, x 0 ∈ C, and proved the strong convergence theorems for iterative scheme (9) under some conditions on parameters. Furthermore, Tada and Takahashi [START_REF] Tada | Weak and strong convergence theorems for nonexpansive mappings and equilibrium problems[END_REF] introduced the Mann type iterative algorithm for finding a common element of the EP (f ) and the set of the common fixed points of nonexpansive mapping and obtained the weak convergence of the Mann type iterative algorithm. In 2007, Yao, Liou and Yao [START_REF] Yao | Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings[END_REF] introduced an iterative process for finding a common element of the set of solutions of the EP (f ) and the set of common fixed points of infinitely many nonexpansive mappings in Hilbert spaces. They proved a strong convergence theorem under mild conditions on iterative parameters. Very recently, Moudafi [START_REF] Moudafi | Weak convergence theorems for nonexpansive mappings and equilibrium problems[END_REF] proposed an iterative algorithm for finding a common element of GEP (f, B) ∩ F (S), where B : C → H is an α-inverse strongly monotone mapping, and obtained a weak convergence theorem.

In this paper, it is our aim to introduce an iterative process for finding a common element of sets of solutions of finite family of generalized equilibrium problem, sets of fixed points of finite family of continuous relatively nonexpansive mappings and sets of zeros of finite family of γ-inverse strongly monotone mappings in Banach spaces.

PRELIMINARIES

Let E be a normed linear space with dim E ≥ 2. The modulus of smoothness of E is the function ρ

E : [0, ∞) → [0, ∞) defined by ρ E (τ ) := sup x + y + x -y 2 -1 : x = 1; y = τ .
The space E is said to be smooth if ρ E (τ ) > 0, ∀ τ > 0 and E is called uniformly smooth if and only if

lim τ →0 + ρ E (τ ) τ = 0.
The modulus of convexity of E is the function δ

E : (0, 2] → [0, 1] defined by δ E (ǫ) := inf 1 - x + y 2 : x = y = 1; ǫ = x -y .
E is called uniformly convex if and only if δ E (ǫ) > 0 for every ǫ ∈ (0, 2]. Let p > 1. Then E is said to be p-uniformly convex if there exists a constant c > 0 such that δ(ǫ) ≥ cǫ p for all ǫ ∈ [0, 2]. Observe that every p-uniformly convex Banach space is uniformly convex real Banach space.

It is well known (see for example [START_REF] Xu | Inequalities in Banach spaces with applications[END_REF]) that

L p (l p ) or W p m is p -unif ormly convex if p ≥ 2; 2 -unif ormly convex if 1 < p ≤ 2.
In the sequel, we shall make use of the following definitions and lemmas.

Lemma 2. [START_REF] Xu | Inequalities in Banach spaces with applications[END_REF] If E is a uniformly convex real Banach space, then there exists a continuous, strictly increasing and convex function g : [0, ∞) → [0, ∞), g(0) = 0, such that for all x, y ∈ B r (0) := {x ∈ E : x ≤ r} and for any α ∈ [0, 1], we have

αx + (1 -α)y 2 ≤ α x 2 + (1 -α) y 2 -α(1 -α)g( x -y ).
Lemma 3. [START_REF] Xu | Inequalities in Banach spaces with applications[END_REF] Let E be a 2-uniformly convex real Banach space. Then for all x, y ∈ E, we have

x -y ≤ 2 c 2 Jx -Jy . ( 10 
)
where J is the normalized duality mapping of E and 0 < c < 1.

Lemma 4. [1]

Let C be a nonempty closed and convex subset of a reflexive, strictly convex, and smooth real Banach space E and let

x ∈ E. Then ∀ y ∈ C, φ(y, Π C x) + φ(Π C x, x) ≤ φ(y, x). Lemma 5. [8] Let C be a nonempty closed convex subset of a smooth, uniformly convex Banach space E. Let {x n } ∞ n=1 and {y n } ∞ n=1 be sequences in E such that either {x n } ∞ n=1 or {y n } ∞ n=1 is bounded. If lim n→∞ φ(x n , y n ) = 0, then lim n→∞ x n -y n = 0. Lemma 6. [1] Let C be a convex subset of a smooth real Banach space E. Let x ∈ E. Then x 0 = Π C x if and only if z -x 0 , Jx 0 -Jx ≥ 0, ∀z ∈ C. We denote by N C (v) the normal cone for C at a point v ∈ C, that is N C (v) := {x * ∈ E * : v -y, x * ≥ 0 for all y ∈ C}.
In the sequel we shall use the following lemma.

Lemma 7. (Rockafellar [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF]) Let C be a nonempty closed convex subset of a real Banach space E and let A be a monotone and hemicontinuous opeartor of C into E * with C = D(A). let B ⊂ E × E * be an operator defined as follows:

Bv := Av + N C (v), v ∈ C, ∅, v ∈ C. ( 11 
)
Then B is maximal monotone and B -1 (0) = V I(A, C).

We make use of the function

V : E × E * → R defined by V (x, x * ) = x 2 -2 x, x * + x * 2
, for all x ∈ E and x * ∈ E * , studied by Alber [START_REF] Alber | Metric and generalized projection operators in Banach spaces: properties and applications[END_REF]. That is V (x, x * ) = φ(x, J -1 x * ) for all x ∈ E and x * ∈ E * . We know the following Lemma.

Lemma 8. [1]

Let E be a reflexive strictly convex and smooth real Banach space with E * as its dual. Then

V (x, x * ) + 2 j -1 x * -x, y * ≤ V (x, x * + y * ), for all x ∈ E and x * , y * ∈ E * . Lemma 9.
[2] Let C be closed convex subset of a smooth srictly convex and reflexive real Banach space E. Let f be a bifunction from C × Cto R satisfying (A1)-(A4). Then, for r > 0 and x ∈ E, there exists z ∈ C such that

f (z, y) + 1 r y -z, Jz -Jx ≥ 0, ∀ y ∈ C. ( 12 
)
Remark 2. Replacing x with J -1 (Jx -rB(x)) in [START_REF] Moudafi | Proximal and dynamical approaches to equilibrium problems[END_REF], where B is monotone mapping from C into E * , then there exists z ∈ C such that

f (z, y) + Bx, y -z + 1 r y -z, Jz -Jx ≥ 0, ∀ y ∈ C.
By a similar argument of the proof of Lemma 2.8 and Remark 2.9 of [START_REF] Takahashi | Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings[END_REF], we have the following Lemmas.

Lemma 10. [START_REF] Takahashi | Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in banach spaces[END_REF] Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive real Banach space E. Let F be a bifunction from C × C to R satisfying (A1)-(A4) and B : C → E * be a monotone mapping. For r > 0 and x ∈ E, define a mapping T r : E → C as follows:

T r x := {z ∈ C : f (z, y) + Bx, y -z + 1 r y -z, Jz -Jx ≥ 0, ∀ y ∈ C} for all x ∈ E.
Then the following hold:

(1) T r is single valued

(2) T r is firmly nonexpansive type mapping, i.e., for all x, y ∈ E, T r x -T r y, JT r x -JT r y ≤ T r x -T r y, Jx -Jy ;

(3) F (T r ) = GEP (F, B);

(4) GEP (F, B) is closed and convex.

Lemma 11. [START_REF] Takahashi | Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in banach spaces[END_REF] Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. Let F be a bifunction from C × C to R satisfying (A1)-(A4). For r > 0, x ∈ E and p ∈ F (T r ), we have that φ(q, T r x) + φ(T r x, x) ≤ φ(q, x).

RESULTS

Let C be a nonempty closed convex subset of 2-uniformly convex and uniformly smooth real Banach space E.

Let f 1 , f 2 : C × C → R, k = 1, 2, • • • , q be bifunctions and B 1 , B 2 : C → E * be monotone mappings. Let T j : C → C, j = 1, 2, • • • , d

be finite family of continuous relatively nonexpansive mappings and

A i : C → E * , i = 1, 2, • • • , m be finite family of γ i -inverse strongly monotone operators with constants γ i ∈ (0, 1), i = 1, 2, • • • , m;
then in what follows, we shall study the following iteration process.

                       x 0 ∈ C 0 = C, chosen arbitrarily, z n = Π C J -1 (Jx n -λ n A n+1 x n ), y n = J -1 (α n Jx n + (1 -α n )JT n+1 z n ); u n , v n ∈ C s.t. f 1 (u n , y) + B 1 y n , y -u n + 1 rn y -u n , Ju n -Jy n ≥ 0, ∀ y ∈ C, f 2 (v n , y) + B 2 y n , y -v n + 1 rn y -v n , Jv n -Jy n ≥ 0, ∀ y ∈ C, w n = J -1 (βJu n + (1 -β)Jv n ), C n+1 = {z ∈ C n : φ(z, w n ) ≤ φ(z, x n )}, x n+1 = Π Cn+1 (x 0 ), n ≥ 0, (13) 
where A n = A n( mod m) , T n = T n( mod m) and J is the normalized duality mapping on E;

{r n } n≥1 ⊂ [c 1 , ∞) for some c 1 > 0, β, α n ∈ (0, 1) for all n ∈ N such that lim inf n→∞ α n (1 -α n ) > 0; and {λ n } n≥1 is a sequence in [a, b] for some 0 < a < b < c 2 γ
2 , where c is the 2-uniformly convex constant of E and γ = min

1≤i≤m γ i .
We shall define 

T k,r x := {z ∈ C : f k (z, y) + B k x, y -z + 1 r y -z, Jz -Jx ≥ 0, ∀ y ∈ C} for all x ∈ E, k = 1, 2.
γ i ∈ (0, 1), i = 1, 2, . . . , m. Let F :=   d j=1 F (T j )   ∩ m i=1 A -1 i (0) ∩ 2 k=1 GEP (f k , B k ) = ∅ and let {x n }
be a sequence defined by [START_REF] Ofoedu | An algorithm for finding common solutions of various problems in nonlinear operator theory[END_REF]. Then the sequence {x n } is well defined for each n ≥ 0.

Proof. We first show that C n is closed and convex for all n ≥ 1. It is obvious that C 0 = C is closed and convex from the definition. Suppose that C n is closed convex for some n ≥ 1. From the definition of C n+1 , we have that z ∈ C n+1 implies φ(z, w n ) ≤ φ(z, x n ). This is equivalent to

z 2 -2 z, Jw n + w n 2 ≤ z 2 -2 z, Jx n + x n 2 Which gives 2( z, Jx n -z, Jw n ) = 2( z, Jx n -Jw n ) -x n 2 -w n 2 ≤ 0
It follows that C n+1 is closed and convex, hence Π Cn+1 is well defined for all n ≥ 0.

Next we prove that F ⊂ C n for all n ≥ 0. From the assumption, we see that F ⊂ C 0 = C. Suppose that F ⊂ C n for some n ≥ 1. Now, for p ∈ F, the property of G and Lemma 2 give that

φ(p, w n ) =φ(p, J -1 (βJu n + (1 -β)Jv n )) = p 2 -2 p, βJu n + (1 -β)Jv n + βJu n + (1 -β)Jv n 2 ≤ p 2 -2β p, Ju n -2(1 -β) p, Jv n + β Ju n 2 + (1 -β) Jv n 2 =βφ(p, u n ) + (1 -β)φ(p, v n ) =βφ(p, T 1,rn y n ) + (1 -β)φ(p, T 2,rn y n ) ≤βφ(p, y n ) + (1 -β)φ(p, y n ) = φ(p, y n ) =φ(p, J -1 (α n Jx n + (1 -α n )JT n+1 z n )) = p 2 -2 p, α n Jx n + (1 -α n )JT n+1 z n + α n Jx n + (1 -α n )JT n+1 z n 2 ≤ p 2 -2α n p, Jx n -2(1 -α n ) p, JT n+1 z n + α n Jx n 2 +(1 -α n ) JT n+1 z n 2 =α n φ(p, x n ) + (1 -α n )φ(p, T n+1 z n ) ≤α n φ(p, x n ) + (1 -α n )φ(p, z n ). (14) 
Moreover, by Lemma 4 and Lemma 8 we get that

φ(p, z n ) =φ(p, Π C J -1 (Jx n -λ n A n+1 x n )) ≤φ(p, J -1 (Jx n -λ n A n+1 x n )) =V (p, Jx n -λ n A n+1 x n ) ≤V (p, (Jx n -λ n A n+1 ) + λ n A n+1 x n ) -2 J -1 (Jx n -λ n A n+1 x n ) -p, λ n A n+1 x n =V (p, Jx n ) -2λ n J -1 (Jx n -λ n A n+1 x n ) -p, A n+1 x n =φ(p, Jx n ) -2λ n x n -p, A n+1 x n -2λ n J -1 (Jx n -λ n A n+1 x n ) -x n , A n+1 x n ≤φ(p, x n ) -2λ n x n -p, A n+1 + 2 J -1 (Jx n -λ n A n+1 x n ) -x n , -λ n A n+1 x n (15) 
Thus, since p ∈ ∩ m i=1 A -1 i (0) and γ = min γ i , we have that

x -p, A i x ≥ γ A i x 2 for i = 1, 2, • • • , m.
Thus, we have from (15) that

φ(p, z n ) ≤ φ(p, x n ) -2λ n γ A n+1 x n 2 + 2 J -1 (Jx n -λ n A n+1 x n ) -x n , -λ n A n+1 x n (16) 
Therefore, from (10), ( 16) and λ n ≤ c 2 γ 2 we obtain that

φ(p, z n ) ≤φ(p, x n ) -2λ n γ A n+1 x n 2 + 4λ 2 n c 2 A n+1 x n 2 =φ(p, x n ) + 2λ n 2 c 2 λ n -γ A n+1 x n 2 ≤ φ(p, x n ). (17) 
Substituting ( 17) into ( 14), we have

φ(p, w n ) ≤ φ(p, x n ),
that is p ∈ C n+1 . This implies, by induction, that F ⊂ C n and the sequence {x n } ∞ n=0 generated by ( 13) is well defined for all n ≥ 0.

Theorem 1. Let C be a nonempty closed convex subset of 2-uniformly convex and uniformly smooth real Banach space E. Let f 1 , f 2 : C × C → R be bifunctions satisfying (A1) -(A4) and B 1 , B 2 : C → E * be continuous monotone mappings. Let T j : C → C, j = 1, 2, . . . , d be a finite family of continuous relatively nonexpansive mappings and A i : C → E * , i = 1, 2, . . . , m be a finite family of γ i -inverse strongly monotone operators with

constants γ i ∈ (0, 1), i = 1, 2, . . . , m. Let F :=   d j=1 F (T j )   ∩ m i=1 A -1 i (0) ∩ 2 k=1 GEP (f k , B k ) = ∅. Let
{x n } n≥0 be a sequence defined by [START_REF] Ofoedu | An algorithm for finding common solutions of various problems in nonlinear operator theory[END_REF]. Then, the sequence {x n } n≥0 converges to some element of F .

Proof. We have from Lemma 12 that F ⊂ C n , ∀ n ≥ 0 and x n is well defined for each n ≥ 0. From x n = Π Cn (x 0 ), and Lemma 4, we have

φ(p, x 0 ) = φ(Π Cn x 0 , x 0 ) ≤ φ(p, x 0 ) -φ(p, x n ) ≤ φ(p, x 0 ), for each p ∈ F ⊂ C n and n ≥ 0. Thus the sequence {φ(x n , x 0 )} ∞ n=0 is bounded. Furthermore, since x n = Π Cn (x 0 ) and x n+1 = Π Cn+1 (x 0 ) ∈ C n+1 ⊂ C n we have that φ(x n , x 0 ) ≤ φ(x n+1 , x 0 ), ∀ n ≥ 0,
which implies that {φ(x n , x 0 )} n≥0 is increasing and hence lim n→∞ φ(x n , x 0 ) exists. Similarly, by Lemma 4, we have, for any positive integer l, that

φ(x n+l , x n ) =φ(x n+l , Π Cn x 0 ) ≤φ(x n+l , x 0 ) -φ(Π Cn x 0 , x 0 ) =φ(x n+l , x 0 ) -φ(x n , x 0 ) ∀ n ≥ 0.
Since lim n→∞ φ(x n , x 0 ) exists, we have that lim n→∞ φ(x n+l , x n ) = 0. Thus, Lemma 5 implies that

lim n→∞ x n+l -x n = 0, (18) 
and hence {x n } is cauchy. Therefore, there exists a point x * ∈ C such that x n → x * as n → ∞. Since

x n+1 = Π Cn+1 x 0 ∈ C n+1 , we have φ(x n+1 , w n ) ≤ φ(x n+1 , x n ), ∀ n ≥ 0.
Thus, by [START_REF] Su | Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings[END_REF] and Lemma 5 we get that

lim n→∞ x n+1 -w n = 0, (19) 
and hence x nw n ≤ x nx n+1 + x n+1w n → 0 as n → ∞, which implies that w n → x * as n → ∞. Furthermore, the uniform continuity of J on bounded sets, gives that

lim n→∞ Jx n+l -Jw n = 0, (20) 
We note that if E is uniformly smooth then E * is uniformly convex. Thus, using property of φ and Lemma 2 we have, for all p ∈ F , that

φ(p, y n ) =φ(p, J -1 (α n Jx n + (1 -α n )JT n+1 z n ) = p 2 -2 p, α n Jx n + (1 -α n )JT n+1 z n + α n Jx n + (1 -α n )JT n+1 z n 2 ≤ p 2 -2α n p, Jx n -2(1 -α n ) p, JT n+1 z n + α n Jx n 2 + (1 -α n ) JT n+1 z n 2 -α n (1 -α n )g( Jx n -JT n+1 z n ) =α n φ(p, x n ) + (1 -α n )φ(p, T n+1 z n ) -α n (1 -α n )g( Jx n -JT n+1 z n ) ≤α n φ(p, x n ) + (1 -α n )φ(p, z n ) -α n (1 -α n )g( Jx n -JT n+1 z n ), (21) 
Thus, from ( 17) and ( 21) we have that

φ(p, y n ) ≤ φ(p, x n ) + 2(1 -α n )λ n 2 c 2 λ n -γ A n+1 2 -α n (1 -α n )g( Jx n -JT n+1 z n ) (22) 
On the other hand from Lemma 11 we get that

φ(p, w n ) =φ(p, J -1 (βJu n + (1 -β)Ju n )) ≤βφ(p, u n ) + (1 -β)φ(p, v n ) =βφ(p, T 1,r y n ) + (1 -β)φ(p, T 2,r y n ) ≤ φ(p, y n ). (23) 
Substituting ( 22) into [START_REF] Takahashi | Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in banach spaces[END_REF] we get that

φ(p, w n ) ≤ φ(p, x n ) + 2(1 -α n )λ n 2 c 2 λ n -γ A n+1 2 -α n (1 -α n )g( Jx n -JT n+1 z n ). (24) 
Now, using the fact that λ n < c 2 γ 2 , the inequality [START_REF] Xu | Inequalities in Banach spaces with applications[END_REF] implies that

α n (1 -α n )g( Jx n -JT n+1 z n ) ≤φ(p, x n ) -φ(p, w n ) = p 2 -2 p, Jx n + x n 2 -p 2 + 2 p, Jw n -w n 2 = x n 2 -w n 2 -2 p, Jx n -Jw n ≤ x n -w n ( x n + w n ) + 2 p Jx n -Jw n ≤M 0 ( x n -w n + Jx n -Jw n ), (25) 
for some M 0 > 0. Thus, since lim n→∞

x nw n = 0, lim n→∞ Jx n -Jw n = 0 and we obtain

φ(p, x n ) -φ(p, w n ) -→ 0, as n -→ ∞, (26) 
and hence inequality [START_REF] Yao | Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings[END_REF] implies that g( Jx n -JT n+1 z n ) → 0 as n → ∞. Therefore, from the property of g we get that Jx n -JT n+1 z n → 0 as n → ∞. Furthermore, since J -1 is also uniformly norm-to-norm continuous on bounded sets, we see that

lim n→∞ x n -T n+1 z n = 0. (27) 
Moreover, from [START_REF] Xu | Inequalities in Banach spaces with applications[END_REF] we have that

(1 -α n )2λ n γ - 2 c 2 λ n A n+1 x n 2 ≤ φ(p, x n ) -φ(p, w n ) which yields that lim n→∞ A n+1 x n = 0 (28) 
Now, Lemma 4, Lemma 8 and ( 17) imply that

φ(x n , z n ) =φ(x n , Π C J -1 (Jx n -λ n A n+1 x n )) ≤φ(x n , J -1 (Jx n -λ n A n+1 x n )) =V (x n , Jx n -λ n A n+1 x n ) =V (x n , (Jx n -λ n A n+1 x n ) + λ n A n+1 x n ) -2 J -1 (Jx n -λ n A n+1 x n ) -x n , λ n A n+1 x n =φ(x n , x n ) + 2 J -1 (Jx n -λ n A n+1 x n ) -x n , -λ n A n+1 x n =2 J -1 (Jx n -λ n A n+1 x n ) -x n , -λ n A n+1 x n ≤2 J -1 (Jx n -λ n A n+1 ) -J -1 Jx n λ n A n+1 =2 J -1 λ n A n+1 x n λ n A n+1 x n ≤ 4b 2 c 2 A n+1 x n 2 .
that is

φ(x n , z n ) ≤ 4b 2 c 2 A n+1 x n 2 . ( 29 
)
It follows from ( 28), (29) and Lemma 5 that

lim n→∞ x n -z n = 0; (30) 
and hence z n → p as n → ∞.

We now show that p ∈ ∩ d j=1 F (T i ). Observe that from ( 27) and ( 30) we obtain that

T n+1 z n -z n ≤ T n+1 z n -x n + z n -x n → 0 as n → ∞.
Hence,

lim n→∞ T n+1 z n = p. ( 31 
)
Let {n l } l≥1 ⊂ N be such tat T n l +1 = T 1 for all l ∈ N, then since z n l → p as l → ∞, we obtain from (31), using continuity of T 1 , that p = lim l→∞

T n l +1 z n l = lim l→∞ T 1 z n l = T 1 p. Similarly, if {n k } k≥1 ⊂ N is such that T n k +1 = T 2 for all k ∈ N, then we have again that p = lim k→∞ T n k +1 z n k = lim k→∞ T 2 z n k = T 2 x * .
Continuing, we obtain that

T j p = p, j = 1, 2, • • • , d. Hence, p ∈ d j=1 F (T j ).
Next we show that p ∈

m i=1 A -1 i (0). Since A i is γ-inverse strongly monotone for i = 1, 2, • • • , m, we have that A i , is 1 γ -Lipschitz continuous. Thus, A n+1 x n -A n+1 p ≤ 1 γ x n -p → 0, as n → ∞. (32) 
Hence, from ( 32) and ( 28), we obtain that

A n+1 p ≤ A n+1 x n -A n+1 p + A n+1 x n → 0 as n → ∞.
Consequently, we get that lim n→∞ A n+1 p = 0.

Let {n s } s≥1 ⊂ N be such that A ns+1 = A 1 for all s ∈ N. Then, A 1 p = lim s→∞ A ns+1 p = 0. Lemma 11,[START_REF] Takahashi | Weak convergence theorems for nonexpansive mappings and monotone mappings[END_REF] and the fact that x n → p, z n → p as n → ∞, we obtain

Similarly, we have that

A i p = 0 for i = 2, • • • , m. Thus, p ∈ m i=1 A -1 i (0). Furthermore, we show that p ∈ GEP (f k , B k ) = F (T k,r ), k = 1, 2. Let p ∈ F. From u n = T 1,rn y n ,
φ(p, u n ) =φ(p, T 1,rn y n ) ≤ φ(p, y n ) ≤α n φ(p, x n ) + (1 -α n )φ(p, z n ) ≤φ(p, x n ) + φ(p, z n ) → 0 as n → ∞. (33) 
Thus, by Lemma 5 and (33), u n → p and y n → p as n → ∞. These imply that,

u n -y n → 0 as n → ∞.

Consequently, lim n→∞

Ju n -Jy n = 0. Hence,

lim n→∞ Ju n -Jy n r n = 0. ( 34 
)
But from (A2) we note that

B 1 y n , v -u n + 1 r n v -u n , Ju n -Jy n ≥ -f 1 (u n , v) ≥ f 1 (v, u n ) ∀ v ∈ C,
and hence

B 1 y n , v -u n + v -u n , Ju n -Jy n r n ≥ f 1 (v, u n ) ∀ v ∈ C. ( 35 
)
Put z t = tv + (1t)p for all t ∈ (0, 1] and v ∈ C. Consequently, we get that z t ∈ C. From (35), it follows that

B 1 z t , z t -u n -B 1 z t , z t -u n ≥ -B 1 y n , z t -u n -z t -u n , Ju n -Jy n r n + f 1 (z t , u n )
This implies that

B 1 z t , z t -u n ≥ B 1 z t , z t -u n -B 1 y n , z t -u n -z t -u n , Ju n -Jy n r n + f 1 (z t , u n ) = B 1 z t -B 1 u n , z t -u n + B 1 u n -B 1 y n , z t -u n -z t -u n , Ju n -Jy n r n + f 1 (z t , u n ).
By the continuity of B 1 and the fact that u n → p, y n → p as n → ∞, we obtain that

B 1 u n -B 1 y n → 0 as n → ∞. (36) 
Since B 1 is monotone, we have that B 1 z t -B 1 u n , z tu n ≥ 0. Using this, (34) and (36), it follows from (A4) and (36) that

f 1 (z t , p) ≤ lim inf n→∞ f 1 (z t , u n ) ≤ lim n→∞ B 1 z t , z t -u n = B 1 z t , z t -p .
Now, from (A1) and (A4) we get that

0 =f 1 (z t , z t ) ≤ tf 1 (z t , v) + (1 -t)f 1 (z t , p) ≤tf 1 (z t , v) + (1 -t) B 1 z t , z t -p ≤tf 1 (z t , v) + (1 -t) B 1 z t , tv + (1 -t)p -p =tf 1 (z t , v) + (1 -t)t B 1 z t , v -p .
and hence

f 1 (z t , v) + (1 -t) B 1 z t , v -p ≥ 0.
Letting t → 0, we have

f 1 (p, v) + B 1 p, v -p ≥ 0.
This implies that p ∈ GEP (f 1 , B 1 ). Similarly, considering v n = T 2,rn y n , the same argument gives that p ∈ GEP (f 2 , B 2 ).

Finally, we prove that p = Π F (x 0 ). From x n = Π Cn (x 0 ), we have

Jx 0 -Jx n , x n -z ≥ 0 ∀ z ∈ C n . Since F ∈ C n , we also have that Jx 0 -Jx n , x n -p ≥ 0 ∀ p ∈ F. (37) 
By taking limits in (37), one has

Jx 0 -Jx * , x * -p ≥ 0, ∀ p ∈ F.
Now, by Lemma 6 we have that x * = Π F x 0 . This completes the proof.

Strong convergence theorem for approximating a common element of sets of solutions of two generalized equilibrium problems and the sets of fixed points of finite family of relatively nonexpansive mappings in Banach spaces may not require that E is a 2-uniformly convex real Banach space. In fact, we have the following Theorem. 

F (T j )   ∩ 2 k=1 GEP (f k , B k ) = ∅. Let {x n } n≥0 be a sequence defined by                    x 0 ∈ C 0 = C, chosen arbitrarily, y n = J -1 (α n Jx n + (1 -α n )JT n+1 x n ); u n , v n ∈ C s.t. f 1 (u n , y) + B 1 y n , y -u n + 1 rn y -u n , Ju n -Jy n ≥ 0, ∀ y ∈ C, f 2 (v n , y) + B 2 y n , y -v n + 1 rn y -v n , Jv n -Jy n ≥ 0, ∀ y ∈ C, w n = J -1 (βJu n + (1 -β)Jv n ), C n+1 = {z ∈ C n : φ(z, w n ) ≤ φ(z, x n )}, x n+1 = Π Cn+1 (x 0 ), n ≥ 0, (38) 
where T n = T n( mod m) and J is the normalized duality mapping on E;

{r n } n≥1 ⊂ [c 1 , ∞) for some c 1 > 0, β, α n ∈ (0, 1) for all n ∈ N such that lim inf n→∞ α n (1 -α n ) > 0.
Then, the sequence {x n } n≥0 converges to some element of F .

Proof. Put A i ≡ 0, i = 1, 2, . . . , m in Theorem 1. Then, we get that z n = x n ; and the method of proof of Theorem 1 gives the required assertion without the requirement that E is a 2-uniformly convex real Banach space.

If, in Theorem 2, we have that B 1 ≡ B 2 ≡ 0,then we get the following corollary 

F (T j )   ∩ 2 k=1 EP (f k ) = ∅. Let {x n } n≥0 be a sequence defined by                    x 0 ∈ C 0 = C, chosen arbitrarily, y n = J -1 (α n Jx n + (1 -α n )JT n+1 x n ); u n , v n ∈ C s.t. f 1 (u n , y) + 1 rn y -u n , Ju n -Jy n ≥ 0, ∀ y ∈ C, f 2 (v n , y) + 1 rn y -v n , Jv n -Jy n ≥ 0, ∀ y ∈ C, w n = J -1 (βJu n + (1 -β)Jv n ), C n+1 = {z ∈ C n : φ(z, w n ) ≤ φ(z, x n )}, x n+1 = Π Cn+1 (x 0 ), n ≥ 0, (39) 
where T n = T n( mod m) and J is the normalized duality mapping on E; {r n } n≥1 ⊂ [c 1 , ∞) for some c 1 > 0, β, α n ∈ (0, 1) for all n ∈ N such that lim inf n→∞ α n (1α n ) > 0. Then, the sequence {x n } n≥0 converges to some element of F .

If, in Theorem 2, we have that f 1 ≡ f 2 ≡ 0, then we have the following corollary. 

F (T j )   ∩ 2 k=1 V I(B k , C) = ∅. Let {x n } n≥0 be a sequence defined by                    x 0 ∈ C 0 = C, chosen arbitrarily, y n = J -1 (α n Jx n + (1 -α n )JT n+1 x n ); u n , v n ∈ C s.t. B 1 y n , y -u n + 1 rn y -u n , Ju n -Jy n ≥ 0, ∀ y ∈ C, B 2 y n , y -v n + 1 rn y -v n , Jv n -Jy n ≥ 0, ∀ y ∈ C, w n = J -1 (βJu n + (1 -β)Jv n ), C n+1 = {z ∈ C n : φ(z, w n ) ≤ φ(z, x n )}, x n+1 = Π Cn+1 (x 0 ), n ≥ 0, ( 40 
)
where T n = T n( mod m) and J is the normalized duality mapping on E; {r n } n≥1 ⊂ [c 1 , ∞) for some c 1 > 0, β, α n ∈ (0, 1) for all n ∈ N such that lim inf n→∞ α n (1α n ) > 0. Then, the sequence {x n } n≥0 converges to some element of F .

If E = H, a Hilbert space, then E is 2-uniformly convex and uniformly smooth real Banach space, in this case, continuous relatively nonexpansive mapping reduces to continuous quasi-nonexpansive mapping. Furthermore, J = I, identity operator on H and Π C = P C , projection mapping from H into C. Thus, the following corollaries hold. 

γ i ∈ (0, 1), i = 1, 2, • • • , m. Let F :=   d j=1 F (T j )   ∩ m i=1 A -1 i (0) ∩ 2 k=1 GEP (f k , B k ) = ∅. Let {x n } n≥0 be a sequence defined by                        x 0 ∈ C 0 = C, chosen arbitrarily, z n = P C (x n -λ n A n+1 x n )), y n = α n x n + (1 -α n )T n+1 z n ; u n , v n ∈ C s.t. f 1 (u n , y) + B 1 y n , y -u n + 1 rn y -u n , u n -y n ≥ 0, ∀ y ∈ C, f 2 (v n , y) + B 2 y n , y -v n + 1 rn y -v n , v n -y n ≥ 0, ∀ y ∈ C, w n = βu n + (1 -β)v n , C n+1 = {z ∈ C n : z -w n ≤ z -x n }, x n+1 = P Cn+1 (x 0 ), n ≥ 0, ( 41 
)
where

A n = A n( mod m) , T n = T n( mod m) and {r n } n≥1 ⊂ [c 1 , ∞) for some c 1 > 0, β, α n ∈ (0, 1) for all n ∈ N such that lim inf n→∞ α n (1 -α n ) > 0; and {λ n } n≥1 is a sequence in [a, b] for some 0 < a < b < c 2 γ
2 , where c is the 2-uniformly convex constant of E and γ = min 1≤i≤m γ i . Then, the sequence {x n } converges strongly to a point of F . 

. Let f 1 , f 2 : C × C → R, k = 1, 2, • • • , q be bifunctions satisfying (A1) -(A4) and B 1 , B 2 : C → E * be monotone continuous mappings. Let T j : C → C, j = 1, 2, • • • , d be finite family of continuous quasi-nonexpansive mappings. Let F :=   d j=1 F (T j )   ∩ 2 k=1 GEP (f k , B k ) = ∅. Let {x n } n≥0 be a sequence defined by                    x 0 ∈ C 0 = C, chosen arbitrarily, y n = α n x n + (1 -α n )T n+1 x n ; u n , v n ∈ C s.t. f 1 (u n , y) + B 1 y n , y -u n + 1 rn y -u n , u n -y n ≥ 0, ∀ y ∈ C, f 2 (v n , y) + B 2 y n , y -v n + 1 rn y -v n , v n -y n ≥ 0, ∀ y ∈ C, w n = βu n + (1 -β)v n , C n+1 = {z ∈ C n : z -w n ≤ z -x n }, x n+1 = P Cn+1 (x 0 ), n ≥ 0, (42) 
where

T n = T n( mod m) and {r n } n≥1 ⊂ [c 1 , ∞) for some c 1 > 0, β, α n ∈ (0, 1) for all n ∈ N such that lim inf n→∞ α n (1 -α n ) > 0.
Then, the sequence {x n } converges strongly to a point of F .

Corollary 5. Let C be a nonempty closed convex subset of a real Hilbert space

H. Let T j : C → C, j = 1, 2, • • • , d be finite family of continuous quasi-nonexpansive mappings. Let B 1 , B 2 : C → E * be monotone continuous mappings. Let F :=   d j=1 F (T j )   ∩ 2 k=1 V I(B k , C) = ∅. Let {x n } n≥0 be a sequence defined by                    x 0 ∈ C 0 = C, chosen arbitrarily, y n = α n x n + (1 -α n )T n+1 x n ; u n , v n ∈ C s.t. B 1 y n , y -u n + 1 rn y -u n , u n -y n ≥ 0, ∀ y ∈ C, B 2 y n , y -v n + 1 rn y -v n , v n -y n ≥ 0, ∀ y ∈ C, w n = βu n + (1 -β)v n , C n+1 = {z ∈ C n : z -w n ≤ z -x n }, x n+1 = P Cn+1 (x 0 ), n ≥ 0, ( 43 
)
where T n = T n( mod m) and {r n } n≥1 ⊂ [c 1 , ∞) for some c 1 > 0, β, α n ∈ (0, 1) for all n ∈ N such that lim inf n→∞ α n (1α n ) > 0. Then, the sequence {x n } converges strongly to a point of F . Let {x n } n≥0 be a sequence defined by [START_REF] Ofoedu | An algorithm for finding common solutions of various problems in nonlinear operator theory[END_REF]. Then, the sequence {x n } n≥0 converges to some element of F .

Proof. Let p ∈ F . Then by assumption Ax ≤ Ax -Ap ∀ x ∈ C and in particular Ax ≤ Ax -Ap = 0 which implies that Ap = 0 and so p ∈ A -1 (0). Therefore, the conclusion follows from Theorem 1.

The proof of the following theorem can be easily obtained from the method of proof of Theorem 1. 

Lemma 12 .

 12 Let C be a nonempty closed convex subset of 2-uniformly convex and uniformly smooth real Banach space E. Let f 1 , f 2 : C × C → R be bifunctions satisfying (A1) -(A4) and B 1 , B 2 : C → E * be continuous monotone mappings. Let T j : C → C, j = 1, 2, . . . , d be a finite family of relatively nonexpansive mappings and A i : C → E * , i = 1, 2, . . . , m be a finite family of γ i -inverse strongly monotone operators with constants

Theorem 2 .

 2 Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth real Banach space E. Let f 1 , f 2 : C × C → R be bifunctions satisfying (A1) -(A4) and B 1 , B 2 : C → E * be continuous monotone mappings. Let T j : C → C, j = 1, 2, . . . , d be a finite family of continuous relatively nonexpansive mappings. Let F :=   d j=1

Corollary 1 .

 1 Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth real Banach space E. Let f 1 , f 2 : C × C → R be bifunctions satisfying (A1) -(A4). Let T j : C → C, j = 1, 2, . . . , d be a finite family of continuous relatively nonexpansive mappings. Let F :=   d j=1

Corollary 2 .

 2 Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth real Banach space E. Let B 1 , B 2 : C → E * be continuous monotone mappings. Let T j : C → C, j = 1, 2, . . . , d be a finite family of continuous relatively nonexpansive mappings. Let F :=

Corollary 3 .

 3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let f 1 , f 2 : C × C → R, k = 1, 2, • • • , q be bifunctions satisfying (A1) -(A4) and B 1 , B 2 : C → E * be monotone continuous mappings. Let T j : C → C, j = 1, 2, • • • , d be finite family of continuous quasi-nonexpansive mappings and A i : C → E * , i = 1, 2, • • • , m be finite family of γ i -inverse strongly monotone operators with constants

Corollary 4 .

 4 Let C be a nonempty closed convex subset of a real Hilbert space H

Corollary 6 . 2 k=1GEP 2 k=1GEPTheorem 3 . 2 k=1GEP

 62232 Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let f 1 , f 2 : C × C → R, k = 1, 2, • • • , q be bifunctions satisfying (A1) -(A4). Let T j : C → C, j = 1, 2, • • • , d be finite family of continuous quasi-nonexpansive mappings. Let F := k ) = ∅. Let {x n } n≥0 be a sequence defined by C 0 = C, chosen arbitrarily, y n = α n x n + (1α n )T n+1 x n ; u n , v n ∈ C s.t. f 1 (u n , y) + 1 rn yu n , u ny n ≥ 0, ∀ y ∈ C, f 2 (v n , y) + 1 rn yv n , v ny n ≥ 0, ∀ y ∈ C, w n = βu n + (1β)v n , C n+1 = {z ∈ C n : zw n ≤ zx n }, x n+1 = P Cn+1 (x 0 ), n ≥ 0, (44)whereT n = T n( mod m) and {r n } n≥1 ⊂ [c 1 , ∞) for some c 1 > 0, β, α n ∈ (0, 1) for all n ∈ N such that lim inf n→∞ α n (1α n ) > 0.Then, the sequence {x n } converges strongly to a point of F .Note that, if, in Theorem 1, we replace"(f k , B k ) = ∅" with " Ax ≤ Ax -Ap ∀ p ∈ F, x ∈ C and F := (f k , B k ) = ∅",then we get the following theorem. Let C be a nonempty closed convex subset of 2-uniformly convex and uniformly smooth real Banach space E. Let f 1 , f 2 : C × C → R be bifunctions satisfying (A1) -(A4) and B 1 , B 2 : C → E * be continuous monotone mappings. Let T j : C → C, j = 1, 2, . . . , d be a finite family of continuous relatively nonexpansive mappings and A i : C → E * , i = 1, 2, . . . , m be a finite family of γ i -inverse strongly monotone operators with constants γ i ∈ (0, 1), i = 1, 2, . . . , m. Let F := (f k , B k ) = ∅.

Theorem 4 .

 4 Let C be a nonempty closed convex subset of 2-uniformly convex and uniformly smooth real Banach spaceE. Let f k : C × C → R k = 1, 2, . .. , q be finite family of bifunctions satisfying (A1) -(A4) and B k :C → E * k = 1, 2, . . . , q be finite continuous monotone mappings. Let T j : C → C, j = 1, 2, . . . , d be a finite family of continuous relatively nonexpansive mappings and A i : C → E * , i = 1, 2, . . . , m be a finite family of γ i -inverse strongly monotone operators with constants γ i ∈ (0, 1), i = 1, 2, . . . , m. Let F := A i , C) ∩ q k=1 GEP (f k , B k ) = ∅. Let {x n } n≥0 be a sequence defined by
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where

2 , where c is the 2-uniformly convex constant of E and γ = min 1≤i≤m γ i . Then, the sequence {x n } converges strongly to a point of F . CONCLUSION Corollary 1 improves Theorem 3.1 of Takahashi and Zembayashi [START_REF] Takahashi | Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings[END_REF] to a finite family of relatively nonexpansive mappings and equilibrium problems. Theorem 3.1 of Li and Su [START_REF] Hongyu | Strong convergence theorem by a new hybrid method for equilibrium problems and variational inequality problems[END_REF] is a special case of Theorem 3 in which i = 1, k = 1, B 1 ≡ B 2 ≡ 0 and T j ≡ I for all j = 1, . . . , d. Slight modifications of the iteration schemes studied in this paper extend the results of Ofoedu et al. [START_REF] Ofoedu | An algorithm for finding common solutions of various problems in nonlinear operator theory[END_REF] from Hilbert space to 2-uniformly convex Banach space. Our theorems improve and generalize the main results of Takahashi and Zembayashi [START_REF] Takahashi | Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings[END_REF], Li and Su [START_REF] Hongyu | Strong convergence theorem by a new hybrid method for equilibrium problems and variational inequality problems[END_REF], Ofoedu et al. [START_REF] Ofoedu | An algorithm for finding common solutions of various problems in nonlinear operator theory[END_REF] and several other results which are announced recently. Our iteration process, method of proof and corollaries are of independent interest.
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