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Abstract

Experiments and numerical simulations have shown that turbulence in

transitional wall-bounded shear flows frequently takes the form of long

oblique bands, if the domains are sufficiently large to accommodate

them. These turbulent bands have been observed in plane Couette,

plane Poiseuille flow, counter-rotating Taylor-Couette flow, torsional

Couette flow, and annular pipe flow. At their upper Reynolds-number

threshold, laminar regions carve out gaps in otherwise uniform tur-

bulence, ultimately forming regular turbulent-laminar patterns with a

large spatial wavelength. At the lower threshold, isolated turbulent

bands sparsely populate otherwise laminar domains and complete lam-

inarization takes place via their disappearance. We review results for

plane Couette flow, plane Poiseuille flow, and free-slip Waleffe flow fo-

cusing on thresholds, wavelengths and mean flows, with many of the

results coming from numerical simulations in tilted rectangular domains

that form the minimal flow unit for the turbulent-laminar bands.
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Figure 1

(a) Turbulent-laminar pattern in plane Couette flow experiment. Adapted from Prigent et al.

(2003). (b) Turbulent spiral in Taylor-Couette flow experiment. From Coles & van Atta (1966).

1. Introduction

The transition to turbulence in wall-bounded shear flows is often said to be subcritical, which

calls to mind the famous quotation by Stanislaw Ulam “Using a term like nonlinear science

is like referring to the bulk of zoology as the study of non-elephant animals” (Campbell et al.

1985). An essential feature of transitional turbulence is its spatial inhomogeneity, also called

spatial intermittency. Classical transitions in configurations such as co-rotating Taylor-

Couette flow or Rayleigh-Bénard convection occur uniformly. There exists a threshold in

Reynolds or Rayleigh number above which the laminar flow is linearly unstable and, after a

relatively short time, the entire flow is occupied by a new state. For the wall-bounded shear

flows which we will describe, this is not true. All of these flows are linearly stable in the

Reynolds-number regime in which transition to turbulence occurs. For transition to take

place, the flows must be subjected to a finite-amplitude perturbation. There exist various

critical Reynolds numbers, one below which the asymptotic state is uniform laminar flow,

and another above which it is uniform turbulence, separated by an intermediate range in

which the asymptotic state is a mixture, more or less organized, of laminar and turbulent

flow. The flows in this intermediate range are the subject of this article.

2. Plane Couette flow: turbulent-laminar banded patterns

Plane Couette flow is the flow between two parallel rigid plates that are separated by

a fixed distance and that move at equal and opposite velocities. A particularly striking

manifestation of spatial inhomogeneity in this system is a state consisting of persistent

turbulent bands coexisting with nearly laminar regions, as shown in figure 1(a). Supple-

mental movie 1 shows the emergence of a turbulent-laminar banded pattern

from uniform turbulence as Re is lowered.

Such states occur in other similar shear flows. In particular they occur in counter-

rotating Taylor-Couette flow, the flow between concentric cylinders that rotate in opposite

directions. Indeed, it was in counter-rotating Taylor-Couette flow that an oblique turbulent

band – or in this geometry, a turbulent spiral – was first observed by Coles & van Atta

(1966), as seen in figure 1(b). This state was famously mentioned by Feynman (1964) and

another depiction of it is included in the widely-cited encyclopedic survey of Taylor-Couette
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flow by Andereck, Liu & Swinney (1986). (Because a translating frame is equivalent to a

stationary one, only the relative velocity is significant in plane Couette flow. However, both

relative and mean rotation are significant in Taylor-Couette flow. Consequently, flows with

co-rotating and counter-rotating cylinders have quite different properties. In particular, a

classic supercritical bifurcation occurs in parts of the co-rotating parameter space, while

parts of the counter-rotating parameter space resemble plane Couette flow.)

Starting in the 1990s, it was shown that in a less confined geometry, the turbulent spiral

is part of a regular alternating pattern which, moreover, also occurs in plane Couette flow.

Tillmark & Alfredsson (1992) used a looped belt to conduct pioneering experiments on

transition in plane Couette flow. Using a similar device, Daviaud, Hegseth & Bergé (1992)

showed that turbulent spots grew into inclined patches, and suggested that these might

be related to the turbulent Taylor-Couette spirals. Prigent, Grégoire, Chaté, Dauchot

& van Saarloos (2002) then carried out experiments with extremely large aspect ratios,

i.e. spanwise and streamwise directions that were 338 and 770 times the half-gap for plane

Couette flow and axial and azimuthal directions of 884 and 724 times the half-gap for

counter-rotating Taylor-Couette flow. These large aspect ratios are necessary because the

pattern wavelength is on the order of 40 times the half-distance between the plates. The

bands are aligned obliquely (on the order of 24◦) with respect to the streamwise direction.

Both the wavelength and the angle depend, weakly but reproducibly, on the Reynolds

numbers. This state can thus be called a turbulent-laminar banded pattern and it has been

studied extensively since then.

Turbulent-laminar banded patterns were first simulated numerically by Barkley & Tuck-

erman (2005a). A visualization of this pattern is shown in figure 2(a) via the kinetic energy

at mid-gap. While the turbulent bands are oriented obliquely to the streamwise direction,

within each turbulent region are structures primarily aligned with the streamwise direction.

These structures correspond to the streamwise vortices and streaks known to be the essen-

tial building blocks of transitional shear turbulence (Hamilton, Kim & Waleffe 1995, Waleffe

1997). The spanwise width of these structures is on the scale of the fluid gap. Streaks are

clearly visible in the supplemental movie, which shows the streamwise velocity

at the midplane. The red (positive) and blue (negative) undulating filamentary

structures are the streaks.

A key feature of these simulations is the use of a periodic rectangular tilted domain,

whose long direction is perpendicular to the bands, i.e. parallel to the wavevector of the

pattern. Plates situated at y = ±h move at speed U in equal and opposite directions at an

angle θ from the x axis. The laminar flow and Reynolds numbers are:

ulam
Cou = U

y

h
estrm ≡ U

y

h
(cos θex + sin θez) Re = ReCou ≡

Uh

ν
(1)

If θ = 0, there is no tilt and Eq. (1) reduces to the usual convention for plane Couette flow

where estrm = ex. We call y the vertical or wall-normal direction and (x, z) the horizontal

directions. Coordinates x and z will refer to the band-parallel and band-perpendicular

directions; the streamwise and spanwise directions will be referred to as such. Velocity

components u ≡ (u, v, w) will be specified where necessary. Where not otherwise specified,

we will use non-dimensionalized variables such that U = h = 1 and Re will refer to ReCou.

Figure 2(b,c,d) shows the construction principle for this domain. The idealized minimal

flow unit, abbreviated MFU (Hamilton et al. 1995) of size [Lx, Ly, Lz] = [4, 2, 6] is shown

in figure 2(b). There is no tilt and its spanwise width Lz = 4 is such as to contain just

one pair of counter-rotating streamwise vortices, illustrated with red and blue colored bars.
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Figure 2

(a) Turbulent laminar-pattern for plane Couette flow at Re = 350. calculated in a narrow
rectangular tilted box. Shown is the kinetic energy at mid-gap of an instantaneous snapshot. The

laminar regions are uniformly black, while the turbulent regions consists of sets of narrow
horizontal streaks and vortices on the scale of the gap. The laminar regions are uniformly black,

while the turbulent regions consist of narrow horizontal stripes on the scale of the gap. Adapted

from Barkley & Tuckerman (2005a). (b,c,d) Tilted box used for simulations. (e) Oblique unstable
equilibrium state computed in tilted domain by Reetz, Kreilos & Schneider (2019).

(The nominal spanwise width of a single vortex is the size of the fluid gap, which in nondi-

mensional units is 2.) In order to sensibly impose periodicity in a tilted domain, streamwise

vortices must meet adjacent ones in crossing a boundary, as illustrated in figure 2(c). To

maintain a vortex-pair spacing of approximately 4, the short direction of the domain Lx
must be related to the angle θ by Lx ≈ 4/ sin θ. Shown here is a typical value of 24◦ for

which we take Lx = 10 ' 4/ sin θ = 9.83. Finally, the remaining horizontal dimension

Lz of the domain is taken to be long to contain one wavelength of the turbulent-laminar

pattern, typically 40 half-gaps. This domain can be called the minimal band unit (MBU).

The domain can also be prolonged, as in figure 2(d), to contain several repetitions of the

pattern. The outlines of these domains, repeated periodically so as to tile figure 2(a), are

seen as faint white lines.

Simulating turbulent-laminar patterns in tilted computational domains with a single

long direction has two purposes. The first is the obvious reduction in the computational re-

sources required in comparison to those required for domains with two large directions. The

second is that such simulations capture the minimal, or near-minimal conditions necessary

for turbulent-laminar patterns to form and this allows more direct access to the mechanisms

underlying these patterns.

Figure 2(e) shows an unstable equilibrium solution computed by Reetz, Kreilos &

Schneider (2019) which greatly resembles the instantaneous pattern on the left. Follow-

ing the first calculation of a non-trivial equilibrium by Nagata (1990), a large number of

unstable equilibria (called exact coherent structures in the context of wall-bounded shear

flows) have been computed (e.g., Gibson, Halcrow & Cvitanović 2009). The scenario de-

duced by Reetz et al. (2019) shows that the equilibrium in figure 2(e) is connected to the

Nagata solution via two successive bifurcations. Oblique equilibria have also been calculated

by high-Re asymptotic methods by Deguchi & Hall (2015). Unstable equilibria are thought

4



(c) Re=340

(b) Re=393

(a) Re=330

0 800
0

356

338

0

0

338

0
770

streamwise

streamwise

sp
an

w
is

e

sp
an

w
is

e
sp

an
w

is
e

Figure 3

Competition in plane Couette flow between turbulent-laminar bands with opposite angles. (a)
Streamwise velocity in midplane computed by Duguet et al. (2010) in a domain oriented along the

streamwise and spanwise directions. (b,c) Plane Couette experiment of Prigent et al. (2003). The

wavelength increases as Re decreases.

to play an underlying role in organizing turbulence (Cvitanović & Eckhardt 1989, Kawahara

& Kida 2001). Schneider, Marinc & Eckhardt (2010) have extended these ideas to compute

edge states which are spatially localized within large domains and mildly chaotic. We shall

not focus further on equilibria; see Kawahara, Uhlmann & Van Veen (2012).

Domains large in both the streamwise and spanwise directions, while less economical,

can capture further features of the systems such as competition between different angles and

wavelengths. Figure 3 shows turbulent-laminar banded patterns with competing angles in

plane Couette flow from simulations by Duguet, Schlatter & Henningson (2010) and from

experiments by Prigent, Grégoire, Chaté & Dauchot (2003). The competition between

bands at opposite angles was studied by these authors and by Hegseth, Andereck, Hayot

& Pomeau (1989) and Goharzadeh & Mutabazi (2001, 2008) in terms of diffusive phase

dynamics and Ginzburg-Landau equations.

Most of the simulations presented in this section were obtained using the spectral-

element/Fourier code Prism (Henderson & Karniadakis 1995) to integrate the Navier-Stokes

equations on grids containing 6-12 points per unit length in the horizontal directions and

15-20 in the wall-normal direction in a domain tilted at 24◦. We will also present some

simulations in large domains whose sides are aligned with the streamwise and spanwise

directions.

Turbulent-laminar patterns are associated with large-scale and reproducible mean flows,

as can be expected since they break the spatial homogeneity in the streamwise and spanwise

directions. Entitling their article “Progress report on a digital experiment in spiral turbu-

lence” to highlight their then-groundbreaking experimental techniques, Coles & van Atta

(1966) sketched the form of the mean flow at midgap between the two cylinders in their

Taylor-Couette apparatus; see figure 4(a). Results in figure 4(b) from our full numerical

computations in plane Couette flow show the mean flow to be somewhat different, but also

emphasize the importance of strong flow parallel to the band boundaries. Duguet & Schlat-

ter (2013) show that this along-band flow is a simple consequence of the incompressibility

of the large-scale flow.
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(a)

(b)

Figure 4

Horizontal views of flow accompanying turbulent-laminar banded pattern. (a) Sketch from

experimental data at mid-plane of Taylor-Couette flow in Coles & van Atta (1966). (b)
Computations of plane Couette flow, above and below mid-plane, adapted from Barkley &

Tuckerman (2007). Turbulent regions are shown in grey and laminar regions are shown in white.

Both show prominent band-parallel flow at the turbulent-laminar boundaries.

A more complete view of the mean structure of a turbulent-laminar pattern is presented

in figure 5. We use 〈〉 to denote averaging in time and along the band direction x, yielding

functions which depend on the wall-normal direction y and the band-perpendicular direction

z. The deviation from laminar Couette flow is plotted in a periodically prolonged domain.

The centers of two adjacent turbulent bands are located at z = −20 and z = 20, as seen in

the turbulent kinetic energy Eturb. The intervening laminar region is centered on z = 0. The

top plot shows the along-band flow 〈u〉 (into and out of the plane shown), which is strong at

the interfaces. The flow along the bands is accompanied by a large scale circulation around

the turbulent bands, although we emphasize that this streamfunction 〈ψ〉 corresponds to

the deviation from laminar Couette flow. For this periodic pattern, the mean flow can

be approximated to high accuracy as the sum of only three trigonometric functions in the

band-perpendicular direction z:

u(y, z) ≈ u0(y) + uc(y) cos(2πz/λ) + us(y) sin(2πz/λ) (2)

where λ is the wavelength, here 40 half-gaps, and u represents 〈u〉 or 〈ψ〉.
Figure 6 illustrates various regimes of turbulent-laminar patterns as a function of

Reynolds number. Spatiotemporal diagrams have been produced by sampling simulations

in tilted domains along a line in the (long) band-perpendicular direction z. The Reynolds

number or the domain size is also evolved over the course of the simulation. Figure 6(a)

shows the evolution to the patterned state as the Reynolds number is decreased. Time

evolves upward and as it does Re is decreased in steps as shown at the right of the figure.

At Re = 500 the flow is in a state of uniform, or featureless turbulence. Following a decrease

to Re = 350, a distinct pattern forms with three turbulent bands alternating with regions

of quasi-laminar flow. As Re is further decreased, one turbulent band is lost at Re = 310
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Figure 5

Mean flow of a turbulent-laminar pattern at Re = 350, with the average taken over time and the

band-parallel direction, and laminar plane Couette flow subtracted. The centers of the turbulent
bands are at z = ±20, the center of the laminar region at z = 0 and the boundaries at z ≈ ±10.

The band-parallel flow 〈u〉 is strongest at the boundaries. The flow in the (y, z) plane is

represented by a streamfunction 〈ψ〉, which shows circulation around the turbulent band,
characterized by high turbulent kinetic energy Eturb and low pressure 〈p〉. Color ranges for each

field from blue to red: 〈u〉 [–0.4, 0.4], 〈ψ〉 [0, 0.09], Eturb [0, 0.4], 〈p〉 [0, 0.007]. From Barkley &

Tuckerman (2007).

and a second is lost at Re = 300, leaving a single band that subsequently fully relaminarizes

at Re = 290. The general trend shown in Figure 6(a) is robustly observed with decreasing

Reynolds number, but the details will vary with realization. This Reynolds number scan

is coarse; more precise thresholds and means of determining them are described later. In

particular, patterned states that appear to be stable may ultimately revert to laminar flow

on very long time scales. Figure 6(b) shows the reverse transition from a turbulent-laminar

banded pattern to uniform turbulence as the Reynolds number is increased from 350 to

420. Figure 6(c) shows that if the Reynolds number is fixed at 350 and the domain size is

increased, a turbulent band repeatedly splits in order to retain a wavelength of about 40.

The same procedure for Re = 300 in (d) shows a single isolated band, independent of the

domain size. This localized band is expected to revert to laminar flow on some very long

time scale. In (e), Re = 410 and the domain size is fixed at 40. Laminar and turbulent

patches repeatedly appear and disappear. In all of the cases shown in figure 6, when lami-

nar patches appear, the intensity of the turbulence within the bands increases, keeping the

total turbulent intensity approximately constant.

A quantitative characterization of the pattern is provided by the line graphs to the left

of figures 6(a), (b), and (e). These show the time-dependent moduli |wλ| of the coefficients

of the one-dimensional spatial Fourier transform (in the band-perpendicular direction) of

the spanwise velocity at mid-gap averaged over intervals of ∆T = 500. These provide a

good characterization of the patterns, with significant λ = 40 and λ = 60 components at

appropriate times and it is this information that has been used to define a threshold. Figure

7(a) presents the Reynolds-number dependence of the spectral coefficient |ŵλ=40|, where av-

erages have been taken over long time series such as the one in figure 6(e). A clear transition

is seen near Re = 430, which we take to be the threshold between uniform turbulence and

turbulent-laminar bands in plane Couette flow in our narrow tilted rectangular domain.

Much of section 5 will be devoted to characterizing the lower threshold that separates lam-

inar flow from the presence of turbulence. Figure 7(b) constructs probability distribution

www.annualreviews.org • 7
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Figure 6

Different regimes of turbulent-laminar banded patterns in plane Couette flow. Spatiotemporal
diagrams are constructed by sampling the kinetic energy at 32 points along a line at the mid-gap

y = 0 in the long direction z, averaging over temporal windows of length T = 500 and using colors

varying from white (zero; laminar flow) to black (turbulent). For (a,b), the domain length is
Lz = 120. In (a), we start with uniform turbulence and lower the Reynolds number from

Re = 500. Three lighter laminar patches appear when Re = 350, leading to a wavelength of 40.

Near 310, one of the patches disappears, leading to a wavelength of 60, and near 300, another
disappears, leading to a single patch, which disappears at 290. Plots to the right show detailed

evolution of the kinetic energy within the temporal window in turbulent and laminar regions. In

(b), the initial condition is the turbulent-laminar banded pattern at Re = 350, which evolves to
uniform turbulence when the Reynolds number is increased. In (c) and (d), the domain length is

increased in small discrete steps from Lz = 50 to Lz = 140. For Re = 350 (c), the turbulent

region splits to retain an approximate wavelength of 40, while for Re = 300 (d), its width remains
constant, corresponding to a single localized band. Plots above (c) and (d) of the final

instantaneous turbulent kinetic energy show that for Re = 350, the turbulent kinetic energy
remains above zero throughout the domain, whereas for Re = 300 it is zero in the laminar region.

In (e), with Re fixed at the intermediate value of 410 and Lz fixed at 40, the state remains poorly
defined, with turbulent patches appearing and disappearing. Plots to the left of (a), (b), and (e)
show the variation in time of the one-dimensional spatial Fourier components of the spanwise
velocity, with the solid, dotted, short-dashed, and long-dashed curves corresponding to the λ = 40,

λ = 60, λ = 120, and uniform components.

functions from these long timeseries by averaging over intervals of ∆T = 500. At Re = 500,

when the turbulence is uniform, the most probable value of |ŵλ=40| is 0. At Re = 410, the

distribution undergoes an inflection and by Re = 350, when a turbulent-laminar pattern

8
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Figure 7

Modulus |ŵλ=40| of the λ = 40 Fourier component in the band-perpendicular direction of the

spanwise velocity at mid-gap, such as shown in figure 6(e). (a) Average over timeseries. A

transition between uniform turbulence and a pattern is seen near Re = 430. (b) Logarithm of
probability distribution function for a uniformly turbulent flow at Re = 500, an intermittent flow

at Re = 410, and a turbulent-laminar patterned flow at Re = 350. The most probable value is
zero for uniform turbulence but has a finite value for a patterned flow. (c) Time-averaged

band-perpendicular square Fourier component of the streamwise velocity |ûλ|2 for Re = 350.

Dominant coefficient corresponding to bands has wavelength λ = 40, while coefficients
corresponding to streamwise vortices and streaks have 3.6 ≤ λ ≤ 5.7. Adapted from Tuckerman &

Barkley (2011).

Figure 8

Survey of turbulent-laminar patterned regimes in our computations of plane Couette flow in a
narrow tilted rectangular domain as a function of imposed angle θ and Reynolds number Re.
Uniform turbulence (solid squares, red), intermittent (green, crosses in squares), turbulent-laminar
patterns with wavelength 40 (blue, crosses) or 60 (light blue, dots), localized states (stars, purple),

laminar Couette flow (hollow squares, yellow). Numbers show wavelengths found in experiments

of Prigent et al. (2003) at indicated values of θ and Re. From Tuckerman & Barkley (2011).

with λ = 40 is robust, the most probable value is non-zero. Finally, figure 7(c) presents

the entire Fourier spectrum at Re = 350, contrasting the coefficients corresponding to the

bands, with λ = 40, with those of the much smaller structures with λ ≈ 4, twice the gap

of size 2. These smaller structures, as seen in figure 2(a), consist of streamwise vortices

www.annualreviews.org • 9



(wall-normal and spanwise flow) and streaks (spanwise dependence of the streamwise ve-

locity). At mid-gap their mean spanwise velocity is zero and hence we show the streamwise

components |ûλ|.
Finally, figure 8 presents a survey of the regimes that are seen in minimal band units

as a function of imposed angle θ and Reynolds number. The experiments of Prigent et al.

(2003) show wavelengths (in the band-perpendicular direction) that increase from 46 to 60

half-gaps and angles that increase from 25◦ to 37◦ as the Reynolds number is decreased,

as can also be seen in figure 3(b,c). Because the angle is imposed in tilted MBU domains,

simulations can compute patterns with a wide range of both angles and wavelengths. Most

of these are presumably unstable when placed in a larger, less constrained domain, since they

have not been observed. For 15◦ ≤ θ ≤ 72◦, we use a tilted domain whose dimensions are

[4/ sin θ, 2, 120] and find periodic or localized bands. Simulations in a non-tilted domain with

a long streamwise length of 220 and a short spanwise direction of length 4 (corresponding

to 90◦) show direct laminarization at Re ≈ 400 after a very short-lived transient pattern.

In contrast, simulations with a long spanwise length of 120 and a short streamwise length

of 10 (corresponding to 0◦) show repeated nucleation of turbulent regions which persists to

Reynolds numbers as low as Re ≈ 200; see Barkley & Tuckerman (2005b).

3. Poiseuille flow: two superposed shear layers

Turbulent-laminar banded patterns also exist in plane Poiseuille flow, sometimes called

channel flow – the flow between two parallel rigid plates maintained at a constant distance

and driven by an imposed streamwise pressure gradient or flux; see figure 9. Banded

patterns were observed first numerically in plane Poiseuille flow by Tsukahara and co-

workers (2005, 2006) and experimentally by Hashimoto, Hasobe, Tsukahara, Kawaguchi

& Kawamura (2009), with later simulations by Brethouwer, Duguet & Schlatter (2012),

Fukudome & Iida (2012), Tuckerman, Kreilos, Schrobsdorff, Schneider & Gibson (2014),

Xiong, Tao, Chen & Brandt (2015), Kushwaha, Park & Graham (2017) and Tao, Eckhardt

& Xiong (2018).

The properties of transitional plane Poiseuille flow resemble those of plane Couette

flow. However, the similarities are somewhat masked by the trivial fact that the two flows

effectively use different non-dimensionalization. Plane Poiseuille flow can be viewed as the

superposition of two shear layers of opposite sign. Thus the characteristic length scale in

Poiseuille flow – the half-channel height – is the full height of one of these shear layers. In

contrast, the half-channel height in the Couette flow convention is half its shear-layer height.

In addition, several different conventions are used for the velocity scale in plane Poiseuille

flow. Here we consider the system driven by an imposed flux, rather than imposed pressure

gradient. Hence the mean streamwise velocity Ubulk is known. We use as a velocity scale

U ≡ 3Ubulk/2, which is the centerline velocity of laminar flow with mean velocity Ubulk.

The velocity scale, U , is then the difference between the maximum and minimum velocity

of laminar Poiseuille flow. However, in Couette flow the velocity scale used is half the

difference between the velocities of the two walls. As a result, in terms of the shear, both

the length scale and the velocity scales used for nondimensionalization in plane Poiseuille

flow are twice those used in plane Couette flow. Thus, roughly speaking, one should expect

values of RePoi, as conventionally defined, to differ from values of ReCou by a factor of four:

ulam
Poi = U

(
1− y2

h2

)
estrm RePoi ≡

Uh

ν
=

4
(
U
2

) (
h
2

)
ν

≈ 4ReCou (3)
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Figure 9

Turbulent bands in plane Poiseuille flow. (a) Three-dimensional view of deviation from laminar

flow of streamwise velocity at RePoi = 1140 in lower half of [51.2, 2, 22.5] domain from Tsukahara
et al. (2006). (b) wall-normal velocity (colors) and horizontal mean flow (arrows) at RePoi = 700

in a [200, 2, 160] domain from Xiong et al. (2015). The inset is the initial condition. All lengths
are in units of the half-gap, h; time, t, is in advective units, h/U , where U is 3/2 of the bulk

velocity. Panels adapted with permission from

where ReCou uses plane Couette conventions based on each single-sign shear layer.

Plane Poiseuille flow also differs from plane Couette flow in its symmetries. Plane

Couette flow possesses centro-symmetry, i.e. simultaneous reflection in the streamwise and

wall-normal directions. In contrast, although plane Poiseuille flow has reflection symmetry

in the wall-normal direction, it is not symmetric between the upstream and downstream

directions. Therefore turbulent-laminar bands in plane Couette flow are stationary, at least

on short time scales, while in plane Poiseuille flow they generically travel in the streamwise

direction since there is no symmetry to keep them stationary.

Figure 10 shows results from simulations for plane Poiseuille flow in a tilted MBU do-

main with dimensions [10, 2, 40]. The simulations use the pseudospectral Chebyshev/Fourier

Channelflow 2.0 code (Gibson, Reetz, Azimi, Ferraro, Kreilos et al. 2019) with 12 points

per unit horizontal length and 32 per unit wall-normal length. The protocol is similar to

that used in the previous plane Couette simulations – the Reynolds number is decreased

in discrete steps during the simulation. Results are shown in a frame of reference moving

at the mean velocity U . Figure 10(a) shows that, starting from uniform turbulence and

decreasing the Reynolds number, the approximate threshold for appearance of the bands is

RePoi ≈ 1900 = 475 × 4; that for localized bands is RePoi ≈ 1300 = 325 × 4; and that for

relaminarization is RePoi ≈ 800 = 4×200 in the MBU. Rather than a typical wavelength of

40 half-gaps, the wavelength at onset is 20 half-gaps, i.e. 40 quarter-gaps, the natural com-

parison to use with plane Couette flow. The travelling character of the turbulent-laminar

patterns is evident. Patterns travel more quickly than the mean flow for RePoi . 1100 and

more slowly for RePoi & 1100; the velocities range from approximately 0.03U to −0.03U .

Figure 10(b,c,d) also shows cross-sections of time and band-direction averaged fields; see

also Tsukahara et al. (2005). The streamwise velocity, alternates between a parabolic and

flattened profile, the streamfunction shows two superposed elongated recirculation cells,

and the turbulent kinetic energy is concentrated near the two bounding walls.

We now consider the various forces which must be in equilibrium to maintain a statis-

tically permanent turbulent-laminar banded pattern, and which dominate in the turbulent
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Figure 10

(a) Evolution of simulation of plane Poiseuille flow in long narrow tilted rectangular channel in
the frame of the streamwise bulk velocity. The simulation is initialized with uniform turbulence at

RePoi = 2000 and the Reynolds number is decreased in steps of 100. Spanwise velocity timeseries

at 32 points along a line at y = 0.8 are plotted. Laminar bands with wavelength 20 emerge at
around RePoi ≈ 1900, with wavelength increasing to 40 at RePoi ≈ 1200 and turbulence

disappearing at RePoi ≈ 800. The pattern moves more slowly than the bulk velocity for

RePoi & 1100 and more quickly for RePoi . 1100. (b,c,d) Temporally and band-averaged fields for
Re = 1100. (b) Streamwise velocity 〈u〉 (including laminar profile) alternates between a parabolic

profile in y, in which the maximum value of 〈u〉 is high, and a flattened profile, in which it is low.
(c) Streamfunction 〈ψ〉 in the (y, z) plane shows two superposed elongated recirculating cells. (d)

Turbulent kinetic energy Eturb shows that the turbulence is localized near the walls, at which the

shear is highest. (e,f) Streamwise Reynolds stress (green), advective (blue), and viscous (red)
forces as a function of z at three y locations for the mean flow associated with turbulent-laminar

band in Poiseuille flow (e) at RePoi = 1100 and in Couette flow (f) at ReCou = 300. For both

flows, Fturb acts in the same direction as the laminar profile, while Fvisc is in the opposite
direction. The balance of forces is very similar for the y > 0 and y < 0 sections of Poiseuille flow

and the y < 0 section of Couette flow. The force balance for the y > 0 and y < 0 sections of

Couette flow are related by centro-symmetry. All lengths are in units of the half-gap, h; time, t, is
in advective units, h/U , where U is 3/2 of the bulk velocity. From Tuckerman et al. (2014).

or laminar regions. We write the averaged Navier-Stokes equation

0 ≈ −〈(ũ · ∇)ũ〉︸ ︷︷ ︸
Fturb

+ −〈ulam · ∇(u− ulam)〉︸ ︷︷ ︸
Fadv

+
1

Re
∇2〈u− ulam〉︸ ︷︷ ︸

Fvisc

(4)

Equation (4) omits the largest forces, which balance to maintain the laminar flow, as well

as some of the negligibly smallest forces. We have projected onto the streamwise direction
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to define Fturb, the turbulent or Reynolds-stress force; Fadv, expressing the dominant ad-

vection by the laminar flow; and Fvisc, the viscous force countering curvature. Figure 10

shows these forces at three wall-normal locations as a function of z for a turbulent band for

both Poiseuille and Couette flow. The relation between the forces above and below mid-gap

respect the symmetries of the Poiseuille and Couette configurations, while the relation be-

tween the forces in the Poiseuille and Couette flows confirms the interpretation of Poiseuille

flow as two superposed Couette flows. Recalling that z has a component in the streamwise

direction and given the signs of Poiseuille and Couette flow in the upper and lower halves

of the channel, Fturb mostly acts to accelerate the fluid in the streamwise direction and

Fvisc to oppose it. Fadv changes sign as the band is traversed. The Couette turbulent band

is localized: in the laminar region where Fturb = 0, we also have Fadv = Fvisc = 0. The

Poiseuille turbulent band, though, is bordered by regions in which Fturb = 0 but Fadv and

Fvisc are equal and opposite, though small.

An interesting feature of plane Poiseuille flow is that a localized perturbation may evolve

into an isolated oblique turbulent bands by extending from only one of its endpoints, as

in figure 9(b) from Xiong et al. (2015). This is another manifestation of the asymmetry

between the upstream and downstream streamwise directions of plane Poiseuille flow: unlike

in plane Couette flow, here the two ends of a single band experience a different relationship

to the streamwise flow. Spreading is observed to start at RePoi = 660. Above this Reynolds

number localized turbulent bands increase steadily in length in sufficiently large domains,

or sustain themselves in a cycle of band extension and breakup in periodic domains (Xiong

et al. 2015, Tao et al. 2018, Kanazawa 2018).

4. Waleffe flow: role of the walls

An important question is the role of walls in wall-bounded shear flows, assumed in their

very name. The necessity for rigid walls was questioned by Waleffe (1997), who derived

his classic Self-Sustaining Process not from wall-bounded plane Couette flow, but from a

simplified version in which the no-slip boundary conditions u = v = w = 0 at y = ±1 are

replaced by free-slip conditions ∂yu = v = ∂yw = 0. The flow is still confined between

boundaries, but is not driven by wall motion or by a pressure gradient, but instead by an

imposed bulk force varying sinusoidally in the wall-normal direction y.

Figure 11(a) shows the correspondence between plane Couette flow and Waleffe flow.

In plane Couette flow, the laminar profile is straight, while the mean turbulent flow takes a

sigmoidal form with sharp changes near the boundaries and is nearly linear in the interior,

corresponding to constant mean shear. In contrast, in Waleffe flow the laminar profile is

sinusoidal while the mean turbulent profile is roughly linear corresponding to a constant

shear. If the domain of Waleffe flow is taken to be the interior of plane Couette flow, as

in figure 11(a), then Waleffe flow can be viewed as modeling only this region, without the

near-wall regions (Chantry, Tuckerman & Barkley 2016). Figure 11(a) indicates a specific

scaling based on this correspondence: the height H of the Waleffe domain is 0.625 times

the height h of the plane Couette domain and the maximum speed V of the Waleffe profile

is correspondingly 0.625 times the speed U of the plane Couette profile. This height, that

of the inner near-linear portion of the mean turbulent plane Couette flow profile, is not

universal but varies slowly with Re in the transition region. We define a Reynolds number
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Figure 11

Correspondence between flows with rigid and with free-slip walls. (a) Plane Couette flow and

Waleffe flow. The wall-normal bounds ±H of the Waleffe flow domain and its velocity extrema

±V are matched to those of the interior portion of the turbulent mean profile of plane Couette
flow with wall-normal bounds ±h and velocity extrema ±U . (b) Plane Poiseuille flow and its

corresponding free-slip version as two superposed Waleffe flows. From Chantry et al. (2016).

Re for Waleffe flow, based on the correspondence with plane Couette flow, i.e.

ulam
Wal = V sin

(π
2

y

H

)
estrm Re ≡ Uh

ν
=
V/0.625×H/0.625

ν
(5)

where the notation is defined in figure 11. Simulations are carried out by adapting

Channelflow 2.0 (Gibson et al. 2019) for the free-slip conditions, on a grid with 12 points

per horizontal unit length and 15 per wall-normal unit length.

Waleffe flow undergoes the same sequence of transitions as plane Couette flow as the

Reynolds number is decreased, from uniform turbulence through regular turbulent-laminar

bands, then isolated and fragmented bands, and finally to laminar flow. Turbulent-laminar

patterns exist in Waleffe flow approximately for Re ∈ [250, 640], a wide range which encom-

passes the corresponding range for plane Couette flow. Figure 12 compares the patterns for

both flows. Horizontal views of the instantaneous flows and as well as vertical views of the

averaged flows show the marked resemblance between the patterns. (Model Waleffe flow

(MWF), also shown on this figure, will be discussed later.)

The free-slip version of plane Poiseuille flow is constructed explicitly as a superposition

of two free-slip Couette flows, or equivalently as a free-slip channel driven by a body force

with y dependence cos(πy/H), as shown in figure 11(b). There are two provisos. First, rigid-

wall plane Poiseuille flow has two boundary layers that are to be “clipped”, rather than the

four that would exist in two superposed rigid-wall plane Couette flows, leading to slightly

different scalings. Second, a Tollmien-Schlichting-like eigenmode which would otherwise

be unstable at transitional Reynolds numbers must be suppressed. With the appropriate

scaling and Reynolds-number definition, turbulent-laminar bands are then present in free-

slip plane Poiseuille flow over the range [700,1800], close to the range found for the rigid

case; see figure 10(a). The temporally and spatially band-parallel averaged flows in figure

12 highlight the resemblance between these flows in the rigid-wall and free-slip versions, as

well as the interpretation of plane Poiseuille flow as two superposed plane Couette flows;

see also figures 5 and 10, in which the wall-normal direction is not stretched.

Other ideas for simulating fully turbulent channel flow at higher Reynolds numbers in

the interior region only have been proposed by Podvin & Fraigneau (2011) and Mizuno &

Jiménez (2013), who substitute for the no-slip boundary condition at the wall a synthetic

velocity field imposed at an interior, off-wall boundary.
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Figure 12

(a) Banded turbulence visualised by instantaneous streamwise velocity at the midplane, with

contours from negative (blue) to positive (red) velocity in plane Couette flow, Waleffe flow and

model Waleffe flow. (b) Mean flow for turbulent laminar patterns in plane Couette flow (PCF),
Waleffe flow (WF), model Waleffe flow (MWF), and (c) their plane Poiseuille equivalents (PPF,

WF). Flows are calculated in a tilted domain like that of figure 2(b) and averages are taken in

time and in the band-parallel direction. Planes shown are in the band-perpendicular direction z
and in the wall-normal direction y. Arrows show the flow in these planes, while colors show the

magnitude of the flow in the band-parallel direction. The y-direction has been stretched by a
factor of 3 and black horizontal tick marks in (b) PCF and (c) PPF indicate the bounds of the

interior region to which Waleffe flow corresponds. Lengths are in units of the half-gap, h, for PCF

and PPF. For WF and MWF, h is the half-gap of the corresponding wall-bounded PCF and PPF
flows. From Chantry et al. (2016).

5. Model Waleffe flow: directed percolation

We have seen that rigid walls are not necessary to reproduce the basic phenomenology of

transition to turbulence in plane Couette and Poiseulle flows. This has not only important

theoretical consequences, but also practical ones, since this allows the high wall-normal

resolution requirements of boundary layers to be avoided. We take a step further and

seek a minimal model in the wall-normal direction which reproduces the phenomenology of

transitional plane Couette flow. We expand (u, v, w) in low-order trigonometric functions

as follows:

u(x, y, z) = u0(x, z) + u1(x, z) sin(βy) + u2(x, z) cos(2βy) + u3(x, z) sin(3βy), (6a)

v(x, y, z) = v1(x, z) cos(βy) + v2(x, z) sin(2βy) + v3(x, z) cos(3βy), (6b)

w(x, y, z) = w0(x, z) + w1(x, z) sin(βy) + w2(x, z) cos(2βy) + w3(x, z) sin(3βy), (6c)
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where β = π/(2H). In order to insure incompressibility, we use a poloidal-toroidal plus

mean-mode representation

u = f(y)ex + g(y)ez +∇× ψ(x, y, z)ey +∇×∇× φ(x, y, z)ey, (7)

where f , g and ψ match the y-formulation of u and φ matches that of v. Because ψ and

φ are taken to be periodic in x and z, their derivatives cannot produce functions that are

constant in x and z, and so the mean modes f , g must be included explicitly to achieve a

general, valid representation of u (e.g., Marqués 1990). Substituting (7) into the Navier-

Stokes equations and applying Fourier orthogonality in y, we derive our governing equations,

which are seven PDEs in (x, z, t) and six ODEs for the non-constant components of f and

g. The original eight-ODE model, derived by Waleffe (1997) to illustrate the self-sustaining

process, is contained within the system and can be recovered by reducing the number of

modes in y and imposing a single Fourier wavenumber in x and z. Our model is inspired

by a series of models (Manneville & Locher 2000, Lagha & Manneville 2007, Seshasayanan

& Manneville 2015, Moehlis et al. 2004) of plane Couette and Waleffe flow.

Not only can the degrees of freedom economized in the wall-normal direction be used

to increase the horizontal degrees of freedom, but since the length scales in the horizontal

directions tend to mimic those in the wall-normal direction, the elimination of the boundary

layers leads to economy in resolution in the horizontal directions as well. In particular, only

4 modes per horizontal spatial unit are needed, compared with 10 for plane Couette flow.

In simulations performed in very large domains, we add a horizontal drag force, some-

times called Rayleigh or Ekman friction:

FRayl ≡ −σ(uex + wez) (8)

to the Navier-Stokes equations. This force damps all modes, but its effect is most important

on modes with no vertical curvature and little horizontal curvature. These would otherwise

decay extremely slowly in Waleffe flow and which are absent in Couette flow. The value

σ = 10−2 reproduces the damping to which these modes would be subjected in the wall

regions of the corresponding Couette flow.

Model Waleffe flow (MWF) displays qualitatively the same transitional phenomena as

Waleffe flow and plane Couette flow, but at lower Reynolds numbers. The turbulent-laminar

bands shown for MWF in figure 12(a) and (b) occur in the approximate Reynolds number

range of [125,230], using the definitions given in equation (5). Inclusion of the drag force

(8) shifts upwards the Reynolds number necessary to produce the same phenomena, but

these values still remain far below those for plane Couette or Waleffe flow.

Figure 13 shows a simulation at Re = 160 starting from an initial vortex, following

Schumacher & Eckhardt (2001). A localized turbulent spot develops, with its correspond-

ing large-scale quadrupolar flow, then a spanwise elongated turbulent patch, and finally a

complex banded form. This evolution matches that seen in simulations of plane Couette

flow by Duguet et al. (2010) and Duguet & Schlatter (2013). The turbulent spot in the

early stage of development was first studied in plane Couette flow by Lundbladh & Johans-

son (1991) and Tillmark & Alfredsson (1992). More recently, the evolution of spots has

been investigated as a means to understand the mechanisms of turbulent-laminar interface

growth, as well as the development and role of large-scale flows; see Duguet & Schlatter

(2013), Lemoult, Gumowski, Aider & Wesfreid (2014), Couliou & Monchaux (2015, 2018).

In the previous sections, we have mentioned lower bounds for the existence of isolated

bands, but these have been only approximate. A long-standing and fundamental question
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Growth of a turbulent spot in model Waleffe flow. The flow is initialised with a poloidal vortex
and subsequent evolution is visualised by streamwise velocity at the midplane. At early times

(t = 250) (a), a large-scale quadrupolar flow dominates as shown by streamlines of the y-averaged

flow (contour lines, only plotted away from the spot for visibility). By t = 1250 bands begin to
develop and form a zigzag across the domain (b). The bands continue to grow, and by t = 3000 a

complex array of bands fills the domain (c). From Chantry et al. (2016).

has been whether the transition to turbulence is discontinuous or continuous. The CEA-

Saclay group (Daviaud, Hegseth & Bergé 1992, Bottin, Daviaud, Manneville & Dauchot

1998, Bottin & Chaté 1998) has extensively investigated this question for plane Couette

flow; Manneville & Dauchot (2001), Manneville (2015) has stressed that the question must

be addressed in the spatiotemporal context.

We have used model Waleffe flow to answer this question (Chantry, Tuckerman

& Barkley 2017) by carrying out simulations in an extremely large domain of size

[2560, 1.25, 2560]. Figure 14 shows the instantaneous streamwise velocity at the midplane

for such a simulation, at Re = 173.824 with σ = 10−2, and illustrates precisely why such

large domains are necessary for this type of study. The smaller domains used in past ex-

periments and simulations, also shown in figure 14, would be likely to detect no turbulence

under these conditions and this is in fact the case. We define the turbulent fraction Ft
to be the fractional area of the horizontal domain for which the height-integrated energy

of the deviation from laminar flow is greater than a threshold value, 0.01, i.e. the colored

areas of figure 14. For the large domain of figure 14, a continuous dependence of Ft on

Re is obtained, with a threshold Rec ≈ 173.80, as shown in figure 15(a). For simulations

of MWF carried out in a smaller domain of size [380, 1.25, 70], figure 15(b) shows that Ft
behaves discontinuously with Re. Philip & Manneville (2011) computed a discontinuous

transition to turbulence in plane Couette flow whose Reynolds-number threshold decreased

with increasing domain size, but all of their domains were considerably smaller than any of

those depicted in figure 14. The transition to turbulence in MWF is continuous, but only

in the limit of infinite domain size; even in figure 15(a), there exists a minimum non-zero

value of Ft based on the domain size. In the classic hydrodynamic pattern-forming systems

such as co-rotating Taylor-Couette flow or Rayleigh-Bénard convection, the transition is to

a new state which exists everywhere, but has infinitesimally small amplitude. In contrast,

in MWF (and presumably also in plane Couette flow and Poiseuille flow), transition to tur-

bulence occurs via the increasing density occupied by the turbulent state in an otherwise
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Figure 14

Instantaneous depiction of intermittent turbulence just above onset of sustained turbulence.

Streamwise velocity in the midplane is shown for a simulation of model Waleffe flow in a domain
with dimensions [2560, 1.25, 2560] at reduced Reynolds number ε = 1.4× 10−4 with Rayleigh

friction factor σ = 10−2 after 1.2× 106 time units. Laminar flow is seen as white. The turbulence

fraction is Ft ≈ 0.1. Experimental and numerical domains of Bottin et al. (1998), Duguet et al.
(2010), Avila (2013) and are overlaid in red, blue and orange respectively. Part of the

quasi-one-dimensional domain of Lemoult et al. (2016) is shown in green and the spanwise width

of the plane Poiseuille experiment of Sano & Tamai (2016) is indicated in purple on the right.
From Chantry et al. (2017).

laminar background, not via its increasing amplitude in any given area or volume.

Our simulations of MWF demonstrate a more specific aspect of turbulent transition.

Noting that in subcritical shear flows, turbulence could spread into laminar regions but

cannot arise spontaneously, Pomeau (1986) postulated that this transition might belong to

the universality class of directed percolation, an idea supported by Manneville & Dauchot

(2001). This would imply not only that Ft varies continuously with Reynolds number, but

also that power laws with specific predicted exponents would hold near onset. Figure 15(a)

shows that Ft ∼ (Re−Rec)β , where β has the value 0.583 predicted for directed percolation

with two extended directions (Lübeck 2004). Figure 16 shows the temporal evolution of

Ft for various Reynolds numbers near Rec. Above Rec, Ft eventually saturates at the

finite values plotted in figure 15(a), while below Rec, Ft eventually decreases to zero. The

supplemental movie shows the evolution of MWF in our large domain, for cases

with Re ≈ Rec and Re > Rec. The theory of directed percolation makes quantitative

predictions about this behavior (Lübeck 2004). When time and the turbulent fraction are

rescaled as shown in 16(b), to t|ε|ν‖ and tαFt, with the definition ε ≡ (Re−Rec)/Rec and
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Bifurcation diagrams for the transition to turbulence. (a) Continuous transition in domain of size

[2560, 1.25, 2560]. Equilibrium turbulence fraction Ft is plotted as a function of Re. Points and

error bars denote mean and standard deviation of Ft. (b) Discontinuous transition in a domain of
size [380, 1.25, 70], approximately that of the experiments by Bottin & Chaté (1998). Filled points

denote sustained turbulence, while open points denote the turbulence fraction of long-lived
transient turbulence. Black dashed curves show the directed percolation power law from the large

domain. Adapted from Chantry et al. (2017).
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Figure 16

(a) Turbulence fraction as function of time for a range of Reynolds numbers initialised with
uniform turbulence. Above criticality, the turbulence fraction saturates at a finite value, and

below it falls to zero. At criticality, the turbulence fraction decays in time as a power law

Ft ∼ t−α with the directed percolation exponent α ' 0.4505 (dashed line). Colored lines from
highest to lowest Ft correspond to evolution at reduced Reynolds numbers ranging from

ε = 0.87× 10−3 to ε = −1.33× 10−3. (b) Data above and below criticality collapse onto two

scalings (black dashed curves) when the directed percolation exponents are used to rescale time
and turbulence fraction. From Chantry et al. (2017).

the exponents have the theoretical values α ' 0.4505 and ν‖ ' 1.295, the data collapse on

two curves, one for above-critical evolution and the other for below-critical evolution.

Counter-rotating Taylor-Couette flow with a very narrow gap, and hence minimal cur-

vature, has been used as a way of approaching plane Couette flow. Shi, Avila & Hof (2013)

carried out simulations of Taylor-Couette flow in a long tilted domain like that of figure 2

in order to determine the typical statistical lifetimes as a function of Reynolds number for

decay and splitting, as in figure 6(a) and (c). The two curves cross at Re = 325 (using the
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Turbulent-laminar patterns in annular pipe flow (a,b,c) adapted from Ishida et al. (2016), and in
duct flow (d,e,f) adapted from Takeishi et al. (2015). The aspect ratio A is defined as

A = (rout + rin)/(rout − rin) for annular pipe flow and as A = Lspan/height for duct flow. For
large A, there are two extended directions and turbulence takes the form of oblique bands. For

small A, only the streamwise direction is extended and turbulence takes the form of puffs.

Lengths in (d-f) are in units of the half-height, h.

conventions of plane Couette flow), which defines a critical point beyond which splitting

dominates decay, as pioneered in Avila, Moxey, de Lozar, Avila, Barkley & Hof (2011) for

pipe flow. This value should approximate the directed percolation threshold, were such a

calculation to be carried out for fully resolved wall-bounded plane Couette flow. Note that

this implies that the states with Re ≤ 325 seen in figure 6 are probably long transients. The

value of Re = 323 was already mentioned in Bottin et al. (1998), although in reference to

discontinuous experimental results like those of figure 16(b). Lemoult, Shi, Avila, Jalikop,

Avila & Hof (2016) combined the narrow-gap limit with a drastic reduction in the spanwise

direction by reducing the axial height (see figure 14), so that turbulence would take the

form of patches rather than bands. They showed that the transition to turbulence for this

case verified the scalings of one-dimensional directed percolation.

An important open question is the nature of the transition in plane Poiseuille flow. Sano

& Tamai (2016) report evidence for directed percolation with a critical Reynolds number of

RePoi = 830. However, as seen in figure 9(b) of section 3, this transition is preceded by the

formation of robust oblique turbulent bands at Reynolds numbers as low as RePoi = 660

(Xiong et al. 2015, Tao et al. 2018). Thus the transition in plane Poiseuille flow may be

more complicated than standard directed percolation.

6. Other flows

Oblique turbulent bands form when there is one confined and two extended directions. In

addition to the previously mentioned study by Lemoult et al. (2016), several other scenarios

have been explored in which the bands become patches or puffs when one of the extended

directions is reduced. Figure 17 shows pressure-driven flows in two parameterized geome-

tries: axially driven flow between two concentric cylinders called annular pipe flow (Ishida,

Duguet & Tsukahara 2016), and flow through a rectangular duct (Takeishi, Kawahara, Wak-
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Figure 18

Turbulent bands in counter-rotating Taylor-Couette (a) experiment of Goharzadeh & Mutabazi

(2001) and (b) simulation of Meseguer et al. (2009). (c) Spiraling turbulent bands in experiment

of Cros & Le Gal (2002) of torsional Couette flow between closely spaced differentially rotating
disks. (d) Oblique turbulent patch in Poiseuille-Couette flow from Klotz et al. (2017).

abayashi, Uhlmann & Pinelli 2015). The analogue of the spanwise direction (perpendicular

to the gap and to the streamwise direction) is the circumference for the annular pipe and

the larger cross-sectional dimension for the duct. For both flows, a spanwise-to-gap aspect

ratio can be defined; both approach plane Poiseuille flow in the limit of infinite aspect ratio

and resemble pipe flow in the limit of small aspect ratio. Figure 17 shows oblique bands for

large A and localized puffs for small A.

For counter-rotating Taylor-Couette flow, in which turbulent bands were first discovered,

the directions analogous to streamwise and spanwise are azimuthal and axial. An experi-

mental realization by Goharzadeh & Mutabazi (2001) is shown in figure 18, along with a

numerical realization by Meseguer, Mellibovsky, Avila & Marques (2009); see also Dong

(2009). Rotating plane Couette flow (where the axis of rotation is oriented in the spanwise

direction and located at mid-gap) is closely related to Taylor-Couette flow; this flow has

been surveyed and turbulent bands observed by Tsukahara, Tillmark & Alfredsson (2010)

and Brethouwer et al. (2012). Torsional Couette flow, the flow between two differentially

rotating closely spaced disks, is another variant, in which the analogue of the streamwise

direction is azimuthal, as in Taylor-Couette flow, but the analogues of the spanwise and gap

directions are radial and axial. Figure 18(c) shows an experimental realization of spiralling

widely spaced turbulent bands in this flow by Cros & Le Gal (2002). An oblique turbulent

patch has also been seen in a Poiseuille-Couette experiment with one moving wall and zero

mean flux by Klotz, Lemoult, Frontczak, Tuckerman & Wesfreid (2017), as shown in figure

18(d).

Turbulent bands have been sought in other flows, with a view to determining which

features favor or suppress them. Brethouwer et al. (2012) observed bands in Couette and

Poiseuille flows subjected to stabilizing influences such as stratification, cyclonic rotation,

or a magnetic field, but at higher and wider Reynolds-number ranges. Spatially localized

turbulence was also studied by Zikanov, Krasnov, Boeck, Thess & Rossi (2014) and by

Deusebio, Caulfield & Taylor (2015) in the presence of a magnetic field and stratification,

respectively. Wang, Shekar & Graham (2017) observed oblique bands in simulations of

viscoelastic turbulence in channel flow. Ishida, Brethouwer, Duguet & Tsukahara (2017)
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found that rough walls tend to suppress turbulent bands in plane Poiseuille flow. Khapko,

Schlatter, Duguet & Henningson (2016) found that the asymptotic suction boundary layer

does not support oblique turbulent bands. They provided evidence that this is due to the

lack of vertical confinement, more specifically the fact that a boundary layer, bordered by

only one wall, allows large-scale wall-normal flows. This is consistent with the analysis

of Duguet & Schlatter (2013) on the role of incompressibility of the large-scale flows in

generating oblique structures.

7. Conclusion

In all of the transitional flows we have depicted, turbulence takes the form of long and

well-separated oblique bands. These bands exist whenever the domain is sufficiently large

to accomodate them, and this is true even very close to the threshold for turbulence, e.g.

in figures 6(d) or 14. Their widths and angles remain comparable to those in a regularly

spaced pattern, even when the bands are isolated or sparsely scattered throughout the

domain. They occur in the hydrodynamic flows discussed in detail here, i.e. plane Couette

flow and Poiseuille flow, and also in many other flows such as Taylor-Couette flow, torsional

Couette flow, and annular pipe flow.

A tilted rectangular domain with periodic boundary conditions (MBU) provides the

minimal horizontal domain in which one or a few turbulent bands can be computed. By

reproducing their phenomenology with free-slip boundary conditions, we have shown that

the boundary layers are unimportant and the effect of the walls is only to produce shear

and confinement. In order to carry out simulations in domains containing a large number

of bands, we have shown that a minimal model of the vertical dependence retains the

qualitative properties of transitional plane Couette flow and we have used this model to

show that the transition to turbulence via band extinction is in the universality class of

directed percolation.

Turbulent bands assemble and organize the much smaller streamwise streaks and vor-

tices of which they are composed. First considered as an exotic manifestation and gen-

eralization of pattern formation, turbulent bands have turned out to be elementary and

fundamental components of transitional flows, much like the streaks and vortices. They oc-

cupy an intermediate position in the hierarchy between the large horizontal dimensions of

a domain and the vertical gap size which is the scale of the streaks and vortices. The bands

exist symbiotically with large-scale flows; the interaction between the two is responsible for

maintaining them. Yet, despite the considerable interest and effort devoted to their study,

the mechanisms producing the bands remain, at best, incompletely understood. Their an-

gles and widths cannot yet be quantitatively explained by a predictive theory from first

principles.
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